
ABSTRACT 

Nip rollers are used extensively in converting processes; however, correct design 
and usage of these types of rollers requires a sound understanding of the mechanics of the 
nip in both the machine and cross-width directions. This behavior is difficult to predict 
owing to the nonlinear nature of the contact region and the near incompressible material 
characteristics of typical nip roller coverings. This paper is a companion to a paper 
presented at IWEB11 where experimental data characterizing web feed rates, nip 
pressures and wrinkling in nip rollers comprised of single and dual durometer cover 
systems was presented. In this paper, modeling techniques are developed for predicting 
nip pressures and nip roller feed rates in both the machine and cross-width directions. 
The models presented include the ability to analyze roller coverings engineered with the 
ability to control nip roller feed rate while retaining desirable nip pressure characteristics. 
Parametric studies demonstrating the influence of many of the material and design 
parameters of nip rollers on nip roller feed rate and nip pressure are presented. 
Nondimensionalized parameters are also developed to assist engineers in the design of 
nip rollers to insure suitable performance. 

NOMENCLATURE 

𝑒 dilatation, equal to 𝜀𝑥 + 𝜀𝑦 
𝑘𝑟 foundation stiffness, constant 
𝑝 mean stress, equal to −1

3
�𝜎𝑥𝑥+𝜎𝑦𝑦 + 𝜎𝑧𝑧� 

𝑝 layer number 
𝑟 equivalent nip roller radius, equal to 𝑟1𝑟2

𝑟1+𝑟2
 

𝑠 response array, equal to �𝑢𝛼 , 𝑣𝛼 ,𝜎𝑦𝑦𝛼 ,𝜎𝑥𝑦𝛼 � 
𝑡 layer thickness 
𝑢, 𝑣 inplane horizontal and vertical displacements 
𝑤 axial half length of nip roller covering 
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𝑥′ point interpolation function is centered about 
𝐴𝑝 individual elastic layer transfer matrix in multiple layer configuration 
𝐴𝑖𝑗 ,𝐺𝑖𝑗 individual terms of single, multi elastic layer transfer matrix 
𝐵 nip roller journal length 
𝐵�(𝛼) term relating periodic normal load to periodic horizontal displacement 
𝐵�(𝛼) term relating periodic normal load to periodic vertical displacement 
𝐸 Young’s modulus 
𝐸𝐼 nip roller shell flexural stiffness 

𝐹 complete elastic layer transfer matrix in multiple layer configuration 
𝐹𝐼 interpolation function 
𝐹𝐼� (𝛼) interpolation function spatial frequency spectrum 
𝐼11, 𝐼21 influence coefficients representing vertical, horizontal displacement at one point 

due to a unit load at another point 
𝑁,𝑀 response, load point of the influence coefficients 
𝑃 total number of layers 
2𝜋𝛼−1 spatial wavelength of loading and displacement response 
𝛿 axial direction nip engagement 
𝛿𝑖 nip engagement intercept for linearized foundation stiffness 
𝛿0 nip engagement 
𝜀 roller creep, see reference [1] 
𝜀𝑥, … strain components 

𝜂 roller deflection stiffness parameter, equal to � 𝑘𝑟
4𝐸𝐼

4
 

𝜅 material constant, defined as 3 − 4𝜐, equal to 𝜆+3𝜇
𝜆+𝜇

 where 𝜆 is 1st Lamé constant 
𝜎0 interpolation function value at 𝑥 = 𝑥′ 
𝜎𝑥𝑥 , … stress components 
𝜇 2nd Lamé constant (shear modulus), equal to 𝐸

2(1+𝜐)
 

𝜐 Poisson’s ratio 

INTRODUCTION 

Nip rollers are used extensively in the web handling industry for a wide range of 
applications and generally fall into one of two categories. Web transport deals with web 
handling processes where the intention is not to permanently deform the web while web 
processing deals with processes where the intention is to modify the web in some way. 
While the mechanics of nips in either case tend to be complex owing to nonlinearities of 
various types, the former case, which is the concern of this paper, is easier to deal with 
since the nonlinearities generally arise from geometry and not from large strains or 
material effects. 

A companion paper, presented at the 2011 IWEB conference [1], presented results 
illustrating some of the unique characteristics of nip roller systems and serves as the basis 
for this paper. The tendency of nip roller systems to convey webs at speeds slightly 
different than the surface speed outside of the nip was discussed. This effect, referred to 
as creep, results from the nearly incompressible nature of the rubbers typically used to 
cover nip rollers. Creep was shown to be a function of nip loading and was demonstrated 
to give rise to web wrinkling due to cross-direction variation in load arising from 
nonuniform roller deflection. Methods were described for measuring nip load, nip 
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engagement, nip footprint and creep. Empirical results were presented for a conventional, 
single durometer nip roller cover design and for a novel, dual durometer nip roller cover 
design that provides the ability to control and manage creep so as to reduce the 
conveyance sensitivity due to differential creep. 

The intent of this paper is twofold. First, analytical first principles models will be 
presented that can be used to study the behavior of nip roller systems that were described 
previously. Results from the models will be demonstrated and will include comparisons 
between single and dual durometer systems. The first model, the nip footprint model, 
described at a high level by Timoshenko [2], will serve to develop nip footprint, nip 
engagement and creep as a function of nip load. Included is the ability to model single or 
multiple layer rubber covering systems with the added benefit of being able to treat the 
rubber as being incompressible. The second model, the nip width model, serves to enable 
extension of the nip behavior across the width of the nip roller system and follows the 
derivation presented by Good [3]. This model will also be applied to the single and dual 
durometer systems. The second purpose of this paper will be to apply a nondimensional-
ization procedure to the nip width model and will be used to bring further understanding 
to the behavior of nip systems. 

NIP MECHANICS FOOTPRINT MODEL 

The nip mechanics footprint model presented in this section expands on an 
approach first described by Timoshenko [2] and consists of several steps: (a) formulation 
of the governing equations for an elastic layer, (b) derivation of a transfer matrix for 
analyzing an elastic layer, (c) development of an influence coefficient approach for 
analyzing one or several layers to arbitrary, finite machine direction load distributions 
and (d) application of the elastic layer solution to the nip mechanics system. 

Step (a) – Governing Equations for an Elastic Layer 
In this step, the classical equations for the response of an elastic layer of finite depth 

are given. Figure 1 shows the stress components which act on an elemental area of an 
elastic layer. Plane strain is assumed; e.g.., variations in behavior of the layer occur along 
the layer (x direction – machine direction) and though the layer (y direction – radial 
direction) but not into the layer (z direction – cross direction). From Figure 1, σxx and σyy 
are the in-plane normal stress components, σzz is the normal out-of-plane stress 
component and σxy is the in-plane shear stress component. The remainder of the stress 
components are zero. A balance of forces in the x and y directions yields the equilibrium 
equations: 

 x direction: 𝜕𝜎𝑥𝑥
𝜕𝑥

+ 𝜕𝜎𝑥𝑦
𝜕𝑦

= 0, 

 y direction: 𝜕𝜎𝑦𝑦
𝜕𝑦

+ 𝜕𝜎𝑥𝑦
𝜕𝑥

= 0. {1} 
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Figure 1 – Elastic Layer Elemental Area, Stress Components 

The strain/displacement relationships from Figure 2 are given by: 

 𝜀𝑥 = 𝜕𝑢
𝜕𝑥

,     𝜀𝑦 = 𝜕𝑣
𝜕𝑦

,     𝛾𝑥𝑦 = 𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥

. {2} 

 

Figure 2 – Elastic Layer Displacement Components 

The out-of-plane displacement is zero since variations do not occur in the z direction. We 
next write equations which relate the stresses and strains. Since the layer is assumed to 
behave in a linear, elastic manner, Hooke’s law applies. Defining the dilatation 
(expansion in volume per unit volume) as: 

 𝑒 ≡ 𝑑𝑖𝑙𝑎𝑡𝑎𝑡𝑖𝑜𝑛 = 𝜀𝑥 + 𝜀𝑦 {3} 

the stress/strain equations are given by: 
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𝜎𝑥𝑥 =
3 − 𝜅
𝜅 − 1

𝜇𝑒 + 2𝜇𝜀𝑥 

𝜎𝑦𝑦 =
3 − 𝜅
𝜅 − 1

𝜇𝑒 + 2𝜇𝜀𝑦 

 𝜎𝑧𝑧 = 3−𝜅
𝜅−1

𝜇𝑒,  𝜎𝑥𝑦 = 𝜇𝛾𝑥𝑦 {4} 

In equations {4}, 𝜇 and 𝜅 are the material properties of the layer and are related to 
Young’s modulus, E, and Poisson’s ratio, 𝜐, as follows: 

𝜅 = 3 − 4𝜐 =
𝜆 + 3𝜇
𝜆 + 𝜇

 

 𝜇 = 𝐸
2(1+𝜐)

 {5} 

Note that 𝜅 is introduced to eliminate the first Lamé constant, 𝜆, from the equations as 
this simplifies subsequent results. Define the mean stress as: 

 𝑝 ≡ 𝑚𝑒𝑎𝑛 𝑠𝑡𝑟𝑒𝑠𝑠 = −1
3
�𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧� {6} 

From the first three of equations {4}, the dilatation and the mean stress are related by: 

 𝑝 = −𝜇(7−𝜅)
3(𝜅−1)

𝑒 = −𝜇(7−𝜅)
3(𝜅−1)

�𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦
� {7} 

Substitution of the stress/strain equations into the equilibrium equations with the results 
expressed in displacements gives Navier’s equations: 

𝜇∇2𝑢 +
2𝜇
𝜅 − 1

𝜕
𝜕𝑥

�
𝜕𝑢
𝜕𝑥

+
𝜕𝑣
𝜕𝑦
� = 0 

       𝜇∇2𝑣 + 2𝜇
𝜅−1

𝜕
𝜕𝑦
�𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦
� = 0 {8} 

If the first of the above equations is differentiated with respect to x and the second with 
respect to y and the two resulting equations added, we find that the dilatation and mean 
stress are harmonic, i.e.: 

 ∇2𝑝 = 0 {9} 

where ∇2 is the Laplacian operator given in rectangular coordinates by: 

 ∇2= 𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2
 {11} 

Applying the Laplacian operator to each of the Navier equations shows that the 
displacements are biharmonic: 
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 ∇4𝑢 = ∇4𝑣 = 0 {12} 

where the biharmonic operator in rectangular coordinates is given by: 

 ∇4= 𝜕4

𝜕𝑥4
+ 𝜕4

𝜕𝑥2𝜕𝑦2
+ 𝜕4

𝜕𝑦4
 {13} 

In the step that follows, equations {12} in conjunction with {4}, {8} and {9} will be used 
to develop the general displacement solution for a single layer. Before proceeding, it 
should be noted that this approach is applicable for any value of Poisson’s ratio including 
0.5. This is a consequence of the form of the stress/strain equations given by equations 
{4} where for each component, the right hand side is separated into dilatational and shear 
components. In general, alternate formulations do not handle the incompressible case. 

Step (b) – Transfer Matrix for Analyzing an Elastic Layer 
In this step, the solution to the elastic layer equations is given. The solution takes 

the form of a transfer matrix which relates the response of the layer at the top surface 
(𝑦 = 𝑡 ≡ 𝑙𝑎𝑦𝑒𝑟 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) to that at the bottom surface (𝑦 = 0). Separation of variables 
is used to solve the partial differential equation described by equation {12}. To proceed, 
assume the displacements can be separated as follows: 

𝑢(𝑥,𝑦) = 𝑢𝛼(𝑦) sin𝛼𝑥 

 𝑣(𝑥,𝑦) = 𝑣𝛼(𝑦) cos𝛼𝑥 {14} 

The validity of the separation depends on a corresponding separation of the stress 
components 𝜎𝑦𝑦 and 𝜎𝑥𝑦 given by: 

𝜎𝑥𝑦(𝑥,𝑦) = 𝜎𝑥𝑦𝛼 (𝑦) sin𝛼𝑥 

 𝜎𝑦𝑦(𝑥,𝑦) = 𝜎𝑦𝑦𝛼 (𝑦) cos𝛼𝑥 {15} 

As will be shown, these forms are fully consistent with the equations derived in step a. 
The parameter 𝛼 (divided by 2𝜋) in these equations represents the spatial frequency of 
the loading and displacement response. Thus, the loading is assumed to be infinite in 
extent in the 𝑥 direction. In step c, Fourier analysis will be used to develop a technique to 
examine the behavior of the elastic layer when the loading is finite. We are concerned 
here, however, with the solution for a single, arbitrary value of 𝛼. Substitution of 
equation {14} into equation {12} yields: 

�
𝑑4𝑢𝛼

𝑑𝑦4
− 2𝛼2

𝑑2𝑢𝛼

𝑑𝑦2
+ 𝛼4𝑢𝛼� sin𝛼𝑥 = 0 

 �𝑑
4𝑣𝛼

𝑑𝑦4
− 2𝛼2 𝑑

2𝑣𝛼

𝑑𝑦2
+ 𝛼4𝑣𝛼� cos𝛼𝑥 = 0 {16} 

The bracketed term must be identically equal to zero to satisfy the equality. The general 
solution for each case is given by: 
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𝑢𝛼 = 𝑎1 cosh𝛼𝑦 + 𝑎2 sinh 𝛼𝑦 + 𝑎3𝑦 cosh𝛼𝑦 + 𝑎4𝑦 sinh𝛼𝑦 

 𝑣𝛼 = 𝑏1 cosh𝛼𝑦 + 𝑏2 sinh𝛼𝑦 + 𝑏3𝑦 cosh𝛼𝑦 + 𝑏4𝑦 sinh 𝛼𝑦 {17} 

We now wish to determine each of the coefficients. Substituting 𝑢𝛼 and 𝑣𝛼  into equation 
{9} yields: 

 𝑏4 = −𝑎3,    𝑏3 = −𝑎4, {18} 

while substituting 𝑢𝛼 and 𝑣𝛼  into equation {8} yields after much algebra: 

 𝑏2 = −𝑎1 + 𝑎4
𝛼
𝜅,     𝑏1 = −𝑎2 + 𝑎3

𝛼
𝜅. {19} 

Collecting results gives for 𝑢𝛼 and 𝑣𝛼: 

𝑢𝛼 = 𝑎1 cosh𝛼𝑦 + 𝑎2 sinh 𝛼𝑦 + 𝑎3𝑦 cosh𝛼𝑦 + 𝑎4𝑦 sinh𝛼𝑦 

𝑣𝛼 = −𝑎1 sinh 𝛼𝑦 − 𝑎2 cosh𝛼𝑦 − 𝑎3 �𝑦 sinh 𝛼𝑦 −
𝜅
𝛼

cosh𝛼𝑦� 

 −𝑎4 �𝑦 cosh𝛼𝑦 − 𝜅
𝛼

sinh 𝛼𝑦� {20} 

To solve for 𝑎1 through 𝑎4 we relate the behavior at the top of the layer (𝑦 = 𝑡) to that at 
the bottom of the layer (𝑦 = 0). In our application, we are interested in surface 
displacements 𝑢𝛼(𝑦 = 𝑡) ≡ 𝑢𝛼𝑡 and 𝑣𝛼(𝑦 = 𝑡) ≡ 𝑣𝛼𝑡  arising from surface loads 
𝜎𝑦𝑦𝛼 (𝑦 = 𝑡) ≡ 𝜎𝑦𝑦𝛼𝑡 and 𝜎𝑥𝑦𝛼 (𝑦 = 𝑡) ≡ 𝜎𝑥𝑦𝛼𝑡. These are the variables which we wish to 
relate to their corresponding values at 𝑦 = 0. To do this the stress components must first 
be expressed in terms of 𝑎1 through 𝑎4. Substitution of equations {20} into the second 
and fourth of equations {4} gives the relationships: 

𝜎𝑥𝑦𝛼 = 𝜇{𝑎1(2𝛼 sinh𝛼𝑦) + 𝑎2(2𝛼 cosh𝛼𝑦) + 𝑎3(2𝛼𝑦 sinh 𝛼𝑦 − [𝜅 − 1] cosh𝛼𝑦) 

+𝑎4(2𝛼𝑦 cosh𝛼𝑦 − [𝜅 − 1] sinh𝛼𝑦)} 

𝜎𝑦𝑦𝛼 = 𝜇{𝑎1(−2𝛼 cosh𝛼𝑦) + 𝑎2(−2𝛼 sinh 𝛼𝑦) + 𝑎3([𝜅 + 1]sinh𝛼𝑦 − 2𝛼𝑦 cosh𝛼𝑦) 

 +𝑎4([𝜅 + 1] cosh𝛼𝑦 − 2𝛼𝑦 sinh 𝛼𝑦)} {21} 

At the bottom of the layer, we now have: 

𝑢𝛼(𝑦 = 0) ≡ 𝑢𝛼0 = 𝑎1 

𝑣𝛼(𝑦 = 0) ≡ 𝑣𝛼0 = −𝑎2 + 𝑎3
𝜅
𝛼

 

𝜎𝑥𝑦𝛼 (𝑦 = 0) ≡ 𝜎𝑥𝑦𝛼0 = 2𝜇𝛼𝑎2 − 𝜇(𝜅 − 1)𝑎3 
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Inversion of these equations yields the coefficients in terms of the variables at the bottom 
of the layer: 

𝑎1 = 𝑢𝛼0 

𝑎2 =
𝜅 − 1
𝜅 + 1

𝑣𝛼𝑜 +
𝜅

𝜇𝛼[𝜅 + 1]𝜎𝑥𝑦
𝛼0 

𝑎3 =
2𝛼
𝜅 + 1

𝑣𝛼𝑜 +
1

𝜇[𝜅 + 1]𝜎𝑥𝑦
𝛼0 

 𝑎4 = 2𝛼
𝜅+1

𝑢𝛼𝑜 + 1
𝜇[𝜅+1]

𝜎𝑦𝑦𝛼0 {23} 

Substitution into equations {20} and {21} gives the transfer matrix relating the value of 
the variables at the top of the layer to the value of the variables at the bottom of the layer: 

⎩
⎨

⎧𝑢
𝛼𝑡

𝑣𝛼𝑡
𝜎𝑦𝑦𝛼𝑡

𝜎𝑥𝑦𝛼𝑡⎭
⎬

⎫
=

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝐶 + 2𝛼𝑡

𝜅+1
𝑆

𝜅−1
𝜅+1

𝑆 − 2𝛼𝑡
𝜅+1

𝐶

− 4𝜇𝛼2𝑡𝑆
𝜅+1

4𝛼𝜇
𝜅+1

(𝑆 + 𝛼𝑡𝐶)

𝜅−1
𝜅+1

𝑆 + 2𝛼𝑡
𝜅+1

𝐶

𝐶 − 2𝛼𝑡
𝜅+1

𝑆
4𝛼𝜇
𝜅+1

(𝑆 − 𝛼𝑡𝐶)
4𝜇𝛼2𝑡𝑆
𝜅+1

𝑡𝑆
𝜇[𝜅+1]

𝜅𝑆
𝜇𝛼[𝜅+1]

− 𝑡𝐶
𝜇[𝜅+1]

𝐶 − 2𝛼𝑡
𝜅+1

𝑆

− 𝜅−1
𝜅+1

𝑆 + 2𝛼𝑡
𝜅+1

𝐶

𝜅𝑆
𝜇𝛼[𝜅+1]

+ 𝑡𝐶
𝜇[𝜅+1]

− 𝑡𝑆
𝜇[𝜅+1]

−𝜅−1
𝜅+1

𝑆 − 2𝛼𝑡
𝜅+1

𝐶

𝐶 + 2𝛼𝑡
𝜅+1

𝑆 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎨

⎧𝑢
𝛼0

𝑣𝛼0
𝜎𝑦𝑦𝛼0

𝜎𝑥𝑦𝛼0⎭
⎬

⎫
 {24} 

where 𝐶 ≡ cosh𝛼𝑡 and 𝑆 ≡ sinh𝛼𝑡. We now proceed to step c where a Fourier analysis 
technique is developed which enables loading of finite extent in the 𝑥 direction to be 
considered. The technique uses the transfer matrix developed above which considers the 
behavior of the layer subject to periodic loading of infinite extent in the 𝑥 direction. 

Step (c) – Influence Coefficient Method for Analyzing One or Several Layers 
The purpose of this step is to develop a technique whereby the response of the layer 

to arbitrary, finite load distributions in the 𝑥 direction can be obtained. To do this, the 
boundary conditions of the elastic layer must be considered. Suppose that at 𝑦 = 0. the 
layer is attached to a rigid surface such that 𝑢𝛼0 = 𝑣𝛼0 = 0. Further, assume that at the 
surface, the only applied load is 𝛼𝑦𝑦𝛼𝑡  and that the shear load 𝛼𝑥𝑦𝛼𝑡 = 0. Rewriting equation 
{24} in simplified form as: 

 

⎩
⎨

⎧𝑢
𝛼𝑡

𝑣𝛼𝑡
𝜎𝑦𝑦𝛼𝑡

𝜎𝑥𝑦𝛼𝑡⎭
⎬

⎫
= �

𝐴11
𝐴21
𝐴31
𝐴41

𝐴12
𝐴22
𝐴32
𝐴42

𝐴13
𝐴23
𝐴33
𝐴43

𝐴14
𝐴24
𝐴34
𝐴44

�

⎩
⎨

⎧𝑢
𝛼0

𝑣𝛼0
𝜎𝑦𝑦𝛼0

𝜎𝑥𝑦𝛼0⎭
⎬

⎫
 {25} 

we then have from the first two equations of {25}: 

𝑢𝛼𝑡 = 𝐴13𝜎𝑦𝑦𝛼0 + 𝐴14𝜎𝑥𝑦𝛼0 

 𝑣𝛼𝑡 = 𝐴23𝜎𝑦𝑦𝛼0 + 𝐴24𝜎𝑥𝑦𝛼0 {26} 
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𝜎𝑦𝑦𝛼𝑡 = 𝐴33𝜎𝑦𝑦𝛼0 + 𝐴34𝜎𝑥𝑦𝛼0 

 0 = 𝐴43𝜎𝑦𝑦𝛼0 + 𝐴44𝜎𝑥𝑦𝛼0 {27} 

By inversion: 

 𝜎𝑦𝑦𝛼0 = 𝐴44𝜎𝑦𝑦𝛼𝑡

𝐴33𝐴44−𝐴34𝐴43
,     𝜎𝑥𝑦𝛼0 = − 𝐴43𝜎𝑦𝑦𝛼𝑡

𝐴33𝐴44−𝐴34𝐴43
. {28} 

Substituting equation {28} into {26} gives: 

𝑢𝛼𝑡 =
𝐴13𝐴44 − 𝐴14𝐴43
𝐴33𝐴44 − 𝐴34𝐴43

𝜎𝑦𝑦𝛼𝑡 = 𝐵�(𝛼)𝜎𝑦𝑦𝛼𝑡 

 𝑣𝛼𝑡 = 𝐴23𝐴44−𝐴24𝐴43
𝐴33𝐴44−𝐴34𝐴43

𝜎𝑦𝑦𝛼𝑡 = 𝐵�(𝛼)𝜎𝑦𝑦𝛼𝑡 {29} 

Equation {29} gives the normal and tangential displacements of the layer at the 
surface when a normal load is applied to the surface. Both the displacements and the 
applied load are periodic according to equations {14} and {15}. The layer is rigidly 
attached at the lower boundary and has no applied shear load at the surface. 

Equation {29} can be used to determine the response of the layer to arbitrary normal 
loads. To do this, we introduce the concept of an interpolating function and an influence 
coefficient. Suppose an arbitrary load is applied to the elastic layer as shown in Figure 3. 
Further suppose that we wish to determine the response of the layer at the equally spaced 
points shown along the surface where some points fall in the load zone and some fall 
outside the load zone. One way to determine the response is to use the principle of linear 
superposition. This says that if we know the response to two separately applied loads, 
then the response when both loads are simultaneously applied is just the sum of the 
individual responses. Thus, if we decompose the general load into a set of functions, each 
of the same form but centered at a different point, and determine the response to each 
load at every point of interest and add them, then we have the general response. A general 
function which achieves this goal is called an interpolating function. The relationship 
between the load at one point (in this case the interpolating function) and the response at 
another is called an influence coefficient. In this paper, a Sinc function has been selected 
for the interpolating function. It has the following form: 

 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ≡ 𝐹𝐼 = 𝜎0(𝑥′)
𝑠𝑖𝑛

𝜋�𝑥−𝑥′�
𝑐

𝜋�𝑥−𝑥′�
𝑐

 {30} 

where 𝑐 is the spacing between interpolation points and 𝑥′ is the point the interpolating 
function is centered about. This particular function was selected for several nice features 
which it possesses. First, arbitrary loading is identically reproduced at each interpolation 
point since the function is equal to 𝜎0 at the interpolation point and zero at all others. 
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Figure 3 – Arbitrary Finite Normal Load 

Thus, at each load point, the particular value of 𝜎0 is just the value of the arbitrary load at 
that point. Second, an arbitrary load is very accurately reproduced when several points 
(10 or more) are used to describe it. To illustrate these features, the decomposition of a 
parabolic load is presented in Figure 4. Shown in this figure are three approximations to 
the original curve, each based on the number of points used to interpolate the function. 
Also shown are the individual interpolation functions for the case where 11 terms were 
used to approximate the parabolic load. As is indicated and shown in Figure 5, the 
approximation very closely resembles the original function. 

It now remains to determine the response of the layer to the interpolation function 
(or correspondingly to determine the influence coefficients). For this, we use equation 
{29} and Fourier analysis. As already described, equation {29} gives the response of the 
layer to a normal load which is infinite in extent and sinusoidal with spatial frequency, 
𝛼/2𝜋. Using Fourier analysis, the interpolating function can be readily decomposed into 
a finite spatial frequency spectrum. Multiplying this frequency spectrum by the response 
given by 𝐵�(𝛼) and 𝐵�(𝛼) in equation {29} and integrating over the finite frequency range 
then yields the general response of the layer to the interpolating function. These ideas are 
developed mathematically as follows. First, the interpolating function is expanded in a 
Fourier cosine integral (since the Sinc function is even or symmetric about 𝑥 = 𝑥′): 

 𝐹𝐼(𝑥 − 𝑥′) = ∫ 𝐹𝐼�
∞
0 (𝛼) cos𝛼 (𝑥 − 𝑥′)𝑑𝛼 {31} 

where from the inverse Fourier cosine integral the Fourier spectrum is: 

 𝐹𝐼� (𝛼) = 2
𝜋 ∫ 𝐹𝐼

∞
0 (𝑥∗ − 𝑥′) cos𝛼 (𝑥∗ − 𝑥′)𝑑𝑥∗ {32} 

 𝐹𝐼� (𝛼) = 𝑐𝜎0
𝜋

⎩
⎪
⎨

⎪
⎧0 𝑖𝑓 𝛼 >  𝜋

𝑐
1
2

 𝑖𝑓 𝛼 =  𝜋
𝑐

1 𝑖𝑓 𝛼 <  𝜋
𝑐

 {33} 
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Figure 4 – Decomposition of a Normal Load Using the Sinc Function 

 

Figure 5 – %Error Using the Sinc Function 

Thus, the spectrum of the interpolating function is finite and further is constant over its 
nonzero region. In equation {29}, 𝜎𝑦𝑦𝛼𝑡 can be considered as representing a discrete point 
of the interpolating function spectrum and the left hand side the corresponding response. 
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To obtain the response to the entire spectrum, integration according to the form of 
equation {14} gives: 

𝑢(𝑥 − 𝑥′, 𝑡) =
𝑐𝜎0
𝜋
� 𝐵�
𝜋
𝑐

0
(𝛼) sin𝛼 (𝑥 − 𝑥′)𝑑𝛼 

 𝑣(𝑥 − 𝑥′, 𝑡) = 𝑐𝜎0
𝜋 ∫ 𝐵�

𝜋
𝑐
0 (𝛼) cos𝛼 (𝑥 − 𝑥′)𝑑𝛼 {34} 

Equation {34} gives the response at any point 𝑥 when the interpolating function is 
centered at 𝑥 = 𝑥′. The influence coefficients representing the displacements at one point 
due to a unit normal load at another are given by: 

𝐼11(𝑥, 𝑥′) ≡ 𝐼11(𝑀,𝑁) =
𝑣(𝑥 − 𝑥′, 𝑡)

𝜎0
=
𝑐
𝜋
� 𝐵�
𝜋
𝑐

0
(𝛼) cos𝛼 (𝑥 − 𝑥′)𝑑𝛼 

  𝐼21(𝑥, 𝑥′) ≡ 𝐼21(𝑀,𝑁) = 𝑢(𝑥−𝑥′,𝑡)
𝜎0

= 𝑐
𝜋 ∫ 𝐵�

𝜋
𝑐
0 (𝛼) sin𝛼 (𝑥 − 𝑥′)𝑑𝛼 {35} 

where 𝑥 = 𝑐𝑀 and 𝑥′ = 𝑐𝑁 and 𝑀 and 𝑁 are integers representing the locations of the 
response and load points respectively. 

We now have attained the goal of this step; i.e., creating influence coefficients for 
the elastic layer. The influence coefficients can now be used to form the elements in a 
general matrix which relates displacements and loads at the surface of the layer. This is 
the mathematical implementation of the principle of linear superposition. Using this 
approach, arbitrary loads can be applied to the layer and its corresponding behavior 
determined. In the next step, we will show how these concepts are used to solve for nip 
load, nip footprint and creep in terms of nip engagement. 

Before proceeding, we first note that up to now, only one layer has been considered. 
If however, there are many layers, the approach described above is easily extended. In 
fact, the only change is in the form of 𝐵�(𝛼) and 𝐵�(𝛼). Suppose we have multiple layers 
which are attached at the interfaces and satisfy the same boundary conditions at the inner 
and outer surfaces as before {(𝑢𝛼0)1 = (𝑣𝛼0)1 = 0 and (𝜎𝑥𝑦

𝛼𝑡𝑃)𝑃}. The additional indice 
denotes the layer location and thickness. The geometry for this case is shown in Figure 6. 
Each layer will now have its own transfer matrix similar to the form of equation {25} and 
written in matrix form as: 

 {𝑠}𝑡𝑝 = [𝐴]𝑝{𝑠}0𝑝 {36} 

where 𝑠 is the array of responses 𝑢𝛼 , 𝑣𝛼 ,𝜎𝑦𝑦𝛼  and 𝜎𝑥𝑦𝛼 ,𝐴 is the transfer matrix and 𝑝 
identifies the particular layer across which the transfer matrix acts. In order to get the  
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Figure 6 – Multiple Layer Elastic Strip 

complete transfer matrix from the bottom of the first layer to the top of the outermost 
layer, we use matrix multiplication to give: 

 {𝑠}𝑡𝑃 = [𝐴]𝑃[𝐴]𝑃−1 … [𝐴]2[𝐴]1{𝑠}01 ≡ [𝐺]{𝑠}01 {37} 

From the first two equations of {37}: 

(𝑢𝛼𝑡)𝑃 = 𝐺13(𝜎𝑦𝑦𝛼0)1 + 𝐺14(𝜎𝑥𝑦𝛼0)1 

 (𝑣𝛼𝑡)𝑃 = 𝐺23(𝜎𝑦𝑦𝛼0)1 + 𝐺24(𝜎𝑥𝑦𝛼0)1 {38} 

Following similar steps used to derive equation {28}, we find the stress components at 
𝑦 = 0 in terms of the nominal stress at 𝑦 = 𝑡1 + 𝑡2 + ⋯+ 𝑡𝑃−1 + 𝑡𝑃: 

 (𝜎𝑦𝑦𝛼0)1 = 𝐺44(𝜎𝑦𝑦𝛼𝑡)𝑃

𝐺33𝐺44−𝐺34𝐺43
,     (𝜎𝑥𝑦𝛼0)1 = − 𝐺43(𝜎𝑦𝑦𝛼𝑡)𝑃

𝐺33𝐺44−𝐺34𝐺43
. {39} 

Substitution of equation {39} into {38} yields: 

(𝑢𝛼𝑡)𝑃 =
𝐺13𝐺44 − 𝐺14𝐺43
𝐺33𝐺44 − 𝐺34𝐺43

(𝜎𝑦𝑦𝛼𝑡)𝑃 = 𝐵�(𝛼)(𝜎𝑦𝑦𝛼𝑡)𝑃 

 (𝑣𝛼𝑡)𝑃 = 𝐺23𝐺44−𝐺24𝐺43
𝐺33𝐺44−𝐺34𝐺43

(𝜎𝑦𝑦𝛼𝑡)𝑃 = 𝐵�(𝛼)(𝜎𝑦𝑦𝛼𝑡)𝑃 {40} 

The components of the complete transfer matrix 𝐺 are given by: 

 𝐺𝑖𝑗 = ∑ 𝐴𝑖𝑘𝑃4
𝑘=1  ∑ 𝐴𝑘𝑙𝑃−14

𝑙=1  ∑ 𝐴𝑙𝑚𝑃−24
𝑚=1 … ∑ 𝐴𝛾𝛽34

𝛽=1  ∑ 𝐴𝛽𝜆24
𝜆=1  𝐴𝜆𝑗1  {41} 

The influence coefficients for the multiple layer response can now be calculated using 
equation {35} where the form of 𝐵�(𝛼) and 𝐵�(𝛼) is given in Equation {40}. 

Step (d) – Application of the Elastic Layer Solution to the Nip Mechanics System 
In previous steps, a method was derived for analyzing the response of a single or 

multiple layers to a normal finite distributed load. The solution approach, derived in 
rectangular coordinates, uses a matrix of influence coefficients which relate the surface 
displacements to the surface normal loads. In order to adapt this solution to the nip 
mechanics problem, we use the fact that for small displacements, geometric equivalence 
can be developed between the elastic layer formulation and the nip roller system. 
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response of these two rollers under vertical loading can be developed from the solutions 
presented in the previous sections by imposing geometric compatibility and normal stress  
boundary conditions that exist in the nip roller system onto the elastic layer solution. 
Consider the system to be loaded such that the two nip rollers engage by an amount 𝛿0. 

 

Figure 7 – Geometric Equivalence between Elastic Layer and Nip Roller System 

From geometry, the amount of engagement will be a function of 𝑥 in the nip zone 
and can be expressed as: 

 𝛿(𝑥) = 𝛿0 − 𝑥2

2𝑟1
− 𝑥2

2𝑟2
= 𝛿0 − 𝑥2

2𝑟
 {42} 

where 𝑟 equals the equivalent radius and is given by: 

 r = r1r2
r1+r2

 {43} 

Inside of the nip zone, the vertical displacement of the two layers at the surface will be 
equivalent to the nip engagement and the normal forces will be equal: 

 {𝛿(𝑥)} = 𝑣1𝑡𝑃(𝑥) + 𝑣2𝑡𝑃(𝑥),     𝜎𝑦𝑦1𝑡𝑃 (𝑥) = 𝜎𝑦𝑦2𝑡𝑃 (𝑥), {44} 

where the integer subscripts refer to roller number. Outside of the nip, the normal stresses 
will be equal to zero: 

 𝜎𝑦𝑦1𝑡𝑃 (𝑥) = 𝜎𝑦𝑦2𝑡𝑃 (𝑥) = 0 {45} 

Dispensing with the subscripts and superscripts while retaining subscripts indicating 
roller number, we can now write the results from equation {35} into matrix form as: 

 �𝑣𝑢�1,2
= �𝐼11 𝐼12

𝐼21 𝐼22
� �
𝜎𝑦𝑦
𝜏𝑥𝑦�1,2

 {46} 
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Our solution derived in step c has determined 𝐼11 and 𝐼12. The influence coefficients 
resulting from a unit shear load have not been derived but could be following the same 
procedure as outlined in step c. 

We now use the boundary conditions in combination with the influence coefficient 
matrix to solve for nip footprint, nip load and creep in terms of nip engagement. To 
proceed, we recognize that we only need to consider the first relationship in matrix 
equation {46}: 

 {𝑣}1,2 = [𝐼11]1,2�𝜎𝑦𝑦�1,2
 {47} 

We now partition normal displacements and loads into two components – those in the nip 
and those outside of the nip: 

 {𝑣}1,2 = {𝑣𝑖𝑛}1,2, {𝑣𝑜𝑢𝑡}1,2 {48} 

 �𝜎𝑦𝑦�1,2
= �(𝜎𝑦𝑦)𝑖𝑛�1,2

, �(𝜎𝑦𝑦)𝑜𝑢𝑡�1,2
 {49} 

Substitution of these into Equation {45} yields the expanded form for the 1,1 component: 

 �
𝑣𝑖𝑛
𝑣𝑜𝑢𝑡�1,2

= �𝐼11
1 𝐼112

𝐼113 𝐼114
� �

(𝜎𝑦𝑦)𝑖𝑛
(𝜎𝑦𝑦)𝑜𝑢𝑡

�
1,2

 {50} 

Expansion of equation {50} gives: 

 {𝑣𝑖𝑛}1,2 = [𝐼111 ]1,2�(𝜎𝑦𝑦)𝑖𝑛�1,2
 {51} 

 {𝑣𝑜𝑢𝑡}1,2 = [𝐼113 ]1,2�(𝜎𝑦𝑦)𝑖𝑛�1,2
 {52} 

Equation {51} can be inverted: 

and the second nip boundary condition used to develop a relationship between the normal 
displacements at the surface of the outermost layers of each roller: 

 [𝐼111 ]1−1{𝑣𝑖𝑛}1 = [𝐼111 ]2−1{𝑣𝑖𝑛}2 {54} 

This expression can be solved for the normal displacements at the outermost layer of the 
first roller in terms of the second: 

 {𝑣𝑖𝑛}1 = [𝐼111 ]1[𝐼111 ]2−1{𝑣𝑖𝑛}2 {55} 

We now apply the first nip boundary condition to give: 

 {𝛿(𝑥)} = [𝐼111 ]1[𝐼111 ]2−1{𝑣𝑖𝑛}2 + {𝑣𝑖𝑛}2 = {[𝐼111 ]1[𝐼111 ]2−1 + [⋱]}{𝑣𝑖𝑛}2 {56} 

where [⋱] is the identity matrix. This equation can now be inverted to yield the normal 
displacements at the outermost layer of the second roller: 
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 {𝑣𝑖𝑛}2 = {[𝐼111 ]1[𝐼111 ]2−1 + [⋱]}−1{𝛿(𝑥)} {57} 

Back substitution into equation {55} gives the displacements of the first roller: 

 {𝑣𝑖𝑛}1 = [𝐼111 ]1[𝐼111 ]2−1{[𝐼111 ]1[𝐼111 ]2−1 + [⋱]}−1{𝛿(𝑥)} {58} 

The normal loads can be found from equation {55} and the normal displacements at the 
outermost layers of both rollers outside of the nip from equation {52}. The tangential 
displacements within the nip region can be found from the second relationship of matrix 
equation {46} where the 𝐼21 is partitioned similar to 𝐼11: 

 {𝑢𝑖𝑛}1,2 = [𝐼211 ]1,2�(𝜎𝑦𝑦)𝑖𝑛�1,2
 {59} 

Finally, the 𝑥 direction displacements can be differentiated and averaged through the nip 
region to give an approximate estimate of creep (𝜀 as defined in reference [1]): 

where 𝐴 is the nip width [1]. The tangential strain, 𝜕𝑢
𝜕𝑥

= 𝜀𝑥, is computed using a finite 
difference approximation accurate to second order: 

 �𝜕𝑢
𝜕𝑥
�
1,2

= 𝑢𝑖𝑛,1,2(𝑥+𝑐)−𝑢𝑖𝑛,1,2(𝑥−𝑐)

2𝑐
 {61} 

For a given amount of nip engagement, equations {57} and {58} are used to 
compute normal displacements at the outermost surfaces of rollers 1 and 2 inside of the 
nip. Equation {53} is used to compute the normal loads while equation {60} is used to 
compute the creep. Since the nip width is not known a priori as a function of nip 
engagement, the solution must be obtained iteratively by guessing a point where the nip 
ends and then calculating loads in the nip and normal displacements outside of the nip. If 
either condition is violated (e.g., loads are tensile in the nip or normal displacements 
outside of the exceed the geometric limit imposed by equation {42}), the end point is 
appropriately modified and loads and normal displacements recomputed. This process 
continues until both sets of boundary conditions are satisfied. 

The entire process described in steps (a) through (d) has been programmed to enable 
computation of nip footprint, nip load and creep as a function of nip engagement for user 
specified material and geometric inputs. The program allows the nip roller cover to have 
up to eight layers with independent material (Young’s modulus and Poisson’s ratio up to 
0.5) and geometric (thickness) properties. 

Results from the new model are shown in Figure 8 through 10. Inputs to the model 
can be found in Table 1and Table 2 (systems 1 and 2) from reference [1]. Figure 8 
presents nip  
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Figure 8 – Nip Load vs. Engagement, Model vs. Experiment 

 

Figure 9 – Nip Width vs. Nip Load, Model vs. Experiment 
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Figure 10 – Creep vs. Nip Load, Model vs. Experiment 

load versus engagement, Figure 9 presents nip width versus nip load and Figure 10 
presents creep versus nip load. In each case, comparisons between theory and experiment 
are presented for two systems (single layer/hard roller and dual durometer [2 layers]/hard 
roller). Very good agreement is seen in all cases between the experiment and model 
results. 

NIP WIDTH MODEL 

The purpose of this section is to investigate the behavior of the nip roller system in 
the axial direction. The intent is to build off of work previously reported by Good [3] 
where his results indicated that a two dimensional formulation that treats the stiffness of 
the rubber coverings as a Winkler foundation and the deflection of the roller shells as an 
Euler beam provides an excellent framework to study the axial behavior of a nip system. 
In this paper, a model that incorporates these features was derived by developing and 
solving the governing fourth order differential equation: 

 𝑑4𝛿
𝑑𝑧4

+ 𝑘𝑟
𝐸𝐼
𝛿 = 𝑘𝑟

𝐸𝐼
𝛿𝑖  {62} 

subject to appropriate boundary conditions (see Figure 11 for system geometry): 
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𝑎𝑡 𝑧 = 0,𝑚𝑜𝑚𝑒𝑛𝑡 = −𝐹𝐵 ⟶
𝑑2𝛿
𝑑𝑧2

(𝑧 = 0) =
𝐹𝐵
𝐸𝐼

 

𝑎𝑡 𝑧 = 0, 𝑠ℎ𝑒𝑎𝑟 = 𝐹 ⟶
𝑑3𝛿
𝑑𝑧3

(𝑧 = 0) =
𝐹
𝐸𝐼

 

𝑎𝑡 𝑧 = 𝑤, 𝑠𝑙𝑜𝑝𝑒 = 0 ⟶
𝑑𝛿
𝑑𝑧

(𝑧 = 𝑤) = 0 

 𝑎𝑡 𝑧 = 𝑤, 𝑠ℎ𝑒𝑎𝑟 𝑓𝑜𝑟𝑐𝑒 = 0 ⟶ 𝑑3𝛿
𝑑𝑧3

(𝑧 = 𝑤) = 0 {63} 

 

Figure 11 – Analytic Model of a Rubber Covered Roller System 

The foundation stiffness can be determined from the previous solution and can be 
approximated by linearizing about the nominal average distributed load, 𝑞 = 𝐹/𝑤. This 
approach simplies the analysis while still retaining the ability to develop a more detailed 
understanding of the behavior of the nip system. The solution to the differential equation 
takes the following form: 

 𝛿(𝑧) = 𝑒𝜂𝑧{𝑔1 cos 𝜂𝑧 + 𝑔2 sin 𝜂𝑧} + 𝑒−𝜂𝑧{𝑔3 cos 𝜂𝑧 + 𝑔4 sin 𝜂𝑧} + 𝛿𝑖 {64} 

where 𝜂 = � 𝑘𝑟
4𝐸𝐼

4
 is a parameter that represents the relative contribution of the rubber 

stiffness versus the flexural rigidity of the shell and the coefficients are constants of 
integration. It should be noted that this model can simulate a wide range of scenarios 
including the cases considered in the previous section. Application of the boundary 
conditions yields the following matrix expression for the integration constants (where 
𝑐 ≡ cos 𝜂𝑤 and 𝑠 ≡ sin 𝜂𝑤): 

⎣
⎢
⎢
⎡ 0

−2𝜂3
𝜂𝑒𝜂𝑤(𝑐 − 𝑠)

−2𝜂3𝑒𝜂𝑤(𝑐 + 𝑠)

2𝜂2

2𝜂3
𝜂𝑒𝜂𝑤(𝑐 + 𝑠)

2𝜂3𝑒𝜂𝑤(𝑐 − 𝑠)

0
2𝜂3

−𝜂𝑒−𝜂𝑤(𝑐 + 𝑠)
2𝜂3𝑒−𝜂𝑤(𝑐 − 𝑠)

−2𝜂2

2𝜂3
𝜂𝑒−𝜂𝑤(𝑐 − 𝑠)

2𝜂3𝑒−𝜂𝑤(𝑐 + 𝑠)⎦
⎥
⎥
⎤
�

𝑔1
𝑔2
𝑔3
𝑔4

� =

⎩
⎪
⎨

⎪
⎧
𝐹𝐵
𝐸𝐼
𝐹
𝐸𝐼
0
0⎭
⎪
⎬

⎪
⎫

 {65} 
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Equation {65} can be inverted to give the integration constants from which the final 
solution can be written by substitution into equation {64}. For the work that follows, two 
metrics of interest are defined: (a) 𝑑𝑒𝑙𝑡𝑎 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 ≡ 𝛿𝑑𝑒𝑙 = 𝛿(0) − 𝛿(𝑤) and (b) 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 ≡ 𝛿𝑎𝑣𝑒 = 𝛿(0)+𝛿(𝑤)

2
: 

 𝛿𝑑𝑒𝑙 = {1 − 𝑒𝜂𝑤𝑐}𝑔1 − 𝑒𝜂𝑤𝑠𝑔2 + {1 − 𝑒−𝜂𝑤𝑐}𝑔3 − 𝑒−𝜂𝑤𝑠𝑔4 {66} 

 𝛿𝑎𝑣𝑒 = {1+𝑒𝜂𝑤𝑐}𝑔1+𝑒𝜂𝑤𝑠𝑔2+{1+𝑒−𝜂𝑤𝑐}𝑔3+𝑒−𝜂𝑤𝑠𝑔4
2

+ 𝛿0 {67} 

Others can be chosen but these are adequate to illustrate our analysis method. With the 
solution in hand, we now desire a way to investigate the behavior of the system in a more 
systematic way. For this purpose, we appeal to dimensional analysis as a means to 
identify the minimum number of nondimensional groupings of the variables of the 
problem. Following procedures presented by Szirtes [4], we determine that since there are 
six dimensional variables (e.g., 𝛿𝑑𝑒𝑙  or 𝛿𝑎𝑣𝑒 ,𝑤,𝐵, 𝜂,𝐸𝐼,𝐹) and two dimensions (e.g., 
𝑁,𝑚), there must therefore be four linearly independent products of dimensional 
variables. Following Szirtes [4], we find the following four to be especially useful: 

 𝜋1 = 𝛿𝑑𝑒𝑙
𝑤

 𝑜𝑟 𝛿𝑎𝑣𝑒
𝑤

, 𝜋2 = 𝐵
𝑤

, 𝜋3 = 𝜂𝑤, 𝜋4 = 𝐸𝐼
𝐹𝑤2 {68} 

The set of nondimensional variables given by equation {68} is complete meaning that 
since there is a relation between the physical variables: 

 𝜓1{𝛿𝑑𝑒𝑙  𝑜𝑟 𝛿𝑎𝑏𝑠,𝑤,𝐵, 𝜂,𝐸𝐼,𝐹} = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 {69} 

 𝜓2{ 𝜋1,𝜋2,𝜋3,𝜋4} = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 {70} 

We can simplify equation {70} by recognizing from the solutions presented in equations 
{66} and {67} that the displacements are linear functions of loading and thus the constant 
in equation {70} is equal to zero and further: 

 𝜋1 = 𝜋4−1𝜓2{𝜋2,𝜋3} {71} 

Finally, we have: 

 𝜋1𝜋4 = 𝜓2{𝜋2,𝜋3} {72} 

Thus, the dependent variable 𝜋1𝜋4 is an unknown function of one nondimensional 
variable, 𝜋3, where 𝜋2 can be treated as a parameter. Equation {72} can be rewritten in 
terms of dimensional variables as follows (where the average distributed load, 𝑞 = 𝐹

𝑤
 

replaces the end load): 

 𝛿
𝑞
𝐸𝐼
𝑤4 = 𝜓2 ��

𝑘𝑟𝑤4

4𝐸𝐼

4
, 𝐵
𝑤
� {73} 
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Figures 12 and 13 present results from equation {73} for delta displacement and average 
displacement as a parametric function of 𝜋2 = 𝐵

𝑤
. These results were obtained by solving 

equations {66} and {67} over the following range of dimensional variables: 

 1.75𝑥104 < 𝑘𝑟 < 3.5𝑥105 𝑁
𝑚

, 2.87𝑥104 < 𝐸𝐼 < 2.87𝑥105𝑁𝑚2, 

 0.1016 < 𝑤 < 1.106𝑚, 8.897 < 𝐹 < 1779𝑁,𝐵 = 0, 0.0254, … , 0.127𝑚 

 

Figure 12 – 𝜋1(𝛿𝑑𝑒𝑙)𝜋4 versus 𝜋3 as a function of 𝜋2 

Figures 12 and 13 concisely present the results for the radial deflection of the nip roller 
system. Several observations can be seen by careful examination of these two figures. 
First, relative displacement is affected more significantly by journal length (𝐵) compared 
to average displacment. This is indicated by the increased spread between curves for the 
former compared to the later and would be expected as increasing moment at 𝑥 = 0 does 
not affect the total load. Second, reduction in 𝜋3 (by decreasing the rubber stiffness, 𝑘𝑟) 
results in a relatively small increase in relative displacement (Figure 12) but a much more 
significant increase in average displacement (Figure 13). For example, for the two nip 
roller systems modeled previously, one finds that to achieve the same average 
displacement in the dual durometer system (𝜋3 = 0.69) requires a loading that is 13% of 
that for the single durometer system (𝜋3 = 1.21). Accounting for this reduction in 
loading results in a delta displacement for the dual durometer system that is 16% of 
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Figure 13 – 𝜋1(𝛿𝑎𝑣𝑒)𝜋4 versus 𝜋3 as a function of 𝜋2 

that of the single durometer system. This assessment assumes that the user desires that 
the nip system engagement be held constant between the two systems. This might be 
desired, for example, if the nip process requires constant dwell time for process 
invariance. Third, it is evident from the two figures that the space the dual durometer 
system occupies is significantly more flexible compared to the single durometer system. 
This implies that the axial distribution of nip force is tending to become more uniform. In 
the limit at 𝜋3 = 0, it can easily be shown that the constant in Figure 12 becomes equal to 
5
24

= 0.208 and that the curves for increasing 𝐵 increment by 0.5 since this solution is 
identically equal to that of a uniformly centrally loaded simply supported beam. 
Observation of Figure 12 confirms that indeed these are the ordinal values at 𝜋3 = 0. 

This methodology is illustrative and can readily be extended to other metrics deemed 
useful from a design standpoint. Other examples include designing for uniform pressure, 
minimal creep and minimal differential creep. 

CONCLUSIONS 

A theoretical model that predicts nip footprint, nip load and creep as a function of 
nip engagement has been presented. The model is developed by first formulating the 
exact solution to a linear elastic strip and then using equations of kinematic and force 
constraint to apply the solution to nip systems. Formulation of the plane strain model in 
terms of dilatational and deviatoric stress components enables the elastomeric covering 
material to be modeled as incompressible. It was further demonstrated how to extend the 
model to coverings comprised of multiple layers. The model was applied to results 
presented by Cole [1] and correlation between theory and experiment was shown to be 
very good. An axial effects model was then presented and dimensional analysis used to 
develop graphical solutions that enable a more coherent means to understand and design 
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nip roller systems. It was shown that single durometer nip systems occupy a different 
physical space compared to single durometer systems owing to the increased cover 
flexibility of one such system. Depending on the requirements of the nip process, this 
difference must be accounted for to ensure that performance objectives are met. 
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