
ABSTRACT 

We consider three key issues in this study for low modulus webs. First, trans- 
port in the high strain region is considered when the materials exhibit nonlinear 
and viscoelastic behavior. Second, in-plane biaxial strain is considered in the de-
velopment of the governing equation for web strain in the transport direction. 
Governing equations for web strain and tension are developed and evaluated us- 
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ing parameter sensitivity analysis and both time and frequency domain computer
simulations under typical scenarios of transport and machine and environment in-
duced disturbing forces. Third, the effect of moisture and heat diffusion in fibrous
and porous non-woven webs on longitudinal web strain is considered. Moisture and
heat diffusion is studied using known non-Fickian models which better represent
the diffusion behavior in porous, fibrous materials.

NOMENCLATURE

A : Area of cross-section of web
B : Biot number of moisture diffusion
C : Moisture concentration in web
c : Heat capacity of web material
D : Moisture diffusion constant
E : Modulus of elasticity of web material
G : Transfer function
h : Thickness of web
Li : Length of ith web span
Ri : Radius of ith roller
S : Sensitivity function
s : Laplace variable
T : Temperature of web material
T∞ : Temperature of surrounding
t : Time parameter
ti : Actual web tension in ith web span
vi : Velocity of ith roller
w : Width of web
xi : Position of ith roller
y : Web thickness direction
α : Sorption rate of fiber
β : Desorption rate of fiber
εi : Actual web strain in ith web span
ν : Poisson ratio
ωi : Angular velocity of ith roller
φ : Porosity of web material
θ : Process parameter
ρ : Density of web material
σi : Web stress in ith web span

Subscripts:
i : Span index, i = 0,1,2, . . .
r : Reference value
u : Related to unstretch state
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INTRODUCTION

Web materials may be classified based on their modulus. All metals, such as
aluminum, copper, steel, and fiber glass are categorized as high modulus web ma-
terials with modulus of about 107 psi. Medium modulus webs, such as polyester,
polyethylene, Tyvek, have modulus around 105 psi. Tissues, rubber, and some
non-woven materials are categorized as low modulus materials and have signifi-
cantly lower modulus in the range 103 ∼ 104 psi. The study of transport behavior
of low modulus webs is considered in this paper.

The commonly used mathematical model for longitudinal web tension behavior
of a free web span is developed by taking into account various assumptions, such
as the web strain is small (much smaller than unity), prevalence of unidirectional
stress in the transport direction, web is treated as continuum material, etc. The
validity of some of these assumptions for low modulus webs is not well justified
because they are typically transported in the high strain region of the stress-strain
curve. An objective of this work is to obtain a governing equation for web strain
without the small strain assumption, and conduct subsequent model analysis to
compare it with the existing model.

There may be a significant change in dimensions when low modulus materials
are transported under high strain. In particular, web width may be significantly
reduced during transport. The commonly used longitudinal web strain equation
neglects cross machine directional stress effects and considers only uniaxial stress.
To develop an accurate governing equation for web strain for low modulus mate-
rials, Biaxial strain is considered in this paper.

A governing equation for longitudinal web strain is developed by relaxing small
strain assumption and considering in-plane biaxial stress in order to evaluate the
behavior of low modulus webs. Time and frequency domain simulations are con-
ducted to evaluate the new equations. A parameter sensitivity analysis is per-
formed on the linearized governing equations to observe the effect of system pa-
rameters on the process output (web tension).

Another related issue is the behavior of porous and nonhomogeneous low mod-
ulus non-woven webs in certain processes such as printing, coating, etc., which
require humid and heated environment. Non-woven materials are typically man-
ufactured by putting fibers together in the form of web and binding them with
processes such as air-laid, meltblown, and spunbound. Therefore, non-woven ma-
terials are bonded fiber networks with considerable porous space. Longitudinal
web strain is a complex function of applied stress, moisture and temperature. Si-
multaneous diffusion of moisture and temperature in low modulus, porous and
nonhomogeneous webs is studied using a non-Fickian law. A second order non-
Fickian and Fourier models are considered to obtain moisture concentration and
temperature distribution in non-woven webs.
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Figure 1: Web Span Between Two Rollers

WEB STRAIN GOVERNING EQUATIONS FOR LOW MODULUS

WEBS

The commonly used governing equation for web strain in a span of fixed length
has been derived from first principles under a number of simplifying assumptions.
The primary assumption being the small strain assumption. In this section, we
first present and discuss a governing equation for web strain without the small
strain assumption. We also present governing equations for web tension by con-
sidering three constitutive relations between web strain and web tension: (i) lin-
early elastic, (ii) nonlinearly elastic, and (iii) viscoelastic. Second, we present a
governing equation for longitudinal web strain that consider in-plane biaxial stress.

Governing Equation with Small Strain Assumption (Model 1)

Considering the assumption such as small strain assumption (εi ≪ 1,1/(1+
εi)≈ 1− εi), adjacent rollers to be stationary (ẋi = 0, ẋi−1 = 0), and uniform strain
along the length of the span, that is εx(x, t) = εxi(t) = εi(t), we obtain the strain
equation

ε̇i =
vi(1− εi)− vi−1(1− εi−1)

Li
. {1}

Assuming the web to be linearly elastic (ti = EAεi), the governing equation for web
tension is given by

ṫi =
vi(EA− ti)− vi−1(EA− ti−1)

Li
. {2}

Governing Equation without Small Strain Assumption (Model 2)

Relaxing the small strain assumption and considering the rollers to be sta-
tionary and uniform strain along the length of span, the strain equation can be
expressed as

ε̇i =
vi(1+ εi)− vi−1

1+εi−1
(1+ εi)

2

Li
. {3}
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Assuming the web to be linearly elastic (ti = EAεi), the web tension equation
is given by

ṫi =
vi(EA+ ti)− vi−1

EA+ti−1
(EA+ ti)2

Li
. {4}

Typical stress-strain behavior of low modulus material under the application
of load is shown in Figure 2.
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Figure 2: Low Modulus Material Behavior

Assuming, the web behavior to be nonlinear elastic (assume parabolic behavior;
ti = EAε2

i ), web tension dynamics is given by

ṫi =
2vi

√
ti(
√

EA+
√

ti)− 2vi−1
√

ti√
EA+

√
ti−1

(
√

EA+
√

ti)2

Li
. {5}

Note that the equation {5} is used as Model 2 in further analysis.

Effect of Viscoelastic Behavior of Web Material (Model 3)

Low modulus materials also show viscoelastic behavior during transport on
rollers. A constitutive relation between strain and tension may be developed
by assuming the web to exhibit linear viscoelastic behavior. Assuming a Maxwell
model and a linear spring in parallel as shown in Figure 3, the stress-strain relation
for the viscoelastic effect is given by

p0σ+ p1σ̇ = q0ε+ q1ε̇ {6}

where σ =
ti
A
, p0 =

1
b
, p1 =

1
k
, q0 =

k1

b
, and q1 = 1+

k1

k
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Figure 3: Viscoelastic Model

By substituting the viscoelastic relation {6} into equation {3}, one can write
the governing equation for tension as

ṫi =− p0

p1
ti +

Aq0

p1
εi +

Aq1

p1Li
(vi(1+ εi)−

vi−1

1+ εi−1
(1+ εi)

2). {7}

Effect of In-Plane Biaxial Stress (Model 4)

The cross machine direction dimensional stability is significantly affected for
low modulus materials when subjected to stress in longitudinal direction. The
change in web width is more significant compared to that of thickness. Therefore,
the two dimensional in-plane stress is considered for developing a new governing
equation for web strain.

We assume the following relation between strains in machine and cross-machine
directions:

εz =−νεx {8}
where εx is web strain in the longitudinal direction (x), εz is web strain in the
cross-machine direction (z), ν is Poisson’s ratio.

The cross section area of a small infinitesimal web element in stretched condi-
tion, neglecting the change in thickness, is given by

A = d × h = [(1+ εz)du]× h {9}

By substituting equation {9} in the mass balance equation {33} (given in the
Appendix), we get

d
(1+ εx)(1+ εz)

dx =
ρui−1hui−1di−1vi−1(t)

(1+ εxi−1)(1+ εzi−1)
− ρuihuidivi(t)

(1+ εxi)(1+ εzi)
. {10}

Assuming uniform strain along the length of the span, and the density of the web
material and cross section area are constants for the web material, the longitudinal
strain dynamics in the ith span is given by

ε̇i =
−vi−1[(1+ εi)(1−νεi)]

2

Li(1+ εi−1)(1−νεi−1)(−ν+1−2νεi)
+

vi(1+ εi)(1−νεi)

Li(−ν+1−2νεi)
. {11}
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Assuming parabolic behavior for the stress-strain curve in the high strain re-
gion (ti = EAε2

i ), the governing equation for tension is given by

ṫi =
−2vi−1

√
ti[(

√
EA+

√
ti)(

√
EA−ν

√
ti)]2

Li(
√

EA+
√

ti−1)(
√

EA−ν
√

ti−1)(−ν
√

EA+
√

EA−2ν
√

ti)

+
2vi

√
ti(
√

EA+
√

ti)(
√

EA−ν
√

ti)

Li(−ν
√

EA+
√

EA−2ν
√

ti)
. {12}

COMPARISON OF DIFFERENT MODELS VIA NUMERICAL SIM-

ULATIONS

Numerical simulations in time and frequency domains are conducted to evalu-
ate and compare the new and existing governing equations for tension. The follow-
ing parameter values are considered for model simulations: tr = 25 lbf (high strain
region); modulus constant, E = 6930psi; web width, w = 4.75 in; web thickness,
h = 0.0045 in; reference speed, vr = 850 fpm; Poisson’s ratio, ν = 0.25 and 0.45;
sinusoidal disturbance: amplitude 5 fpm, frequency 2 Hz.

Time Domain Simulation Results

For time domain simulations, a non-ideal situation is considered by injecting
a sinusoidal disturbance in web transport velocity. Three different transport con-
ditions are considered: (i) constant line speed, (ii) line acceleration, and (iii) line
deceleration.

The tension response of the developed models (with and without small strain
assumption) is shown in Figure 4. Simulation results show that the model without
the small strain assumption (Model 2) has higher amplitude and slightly increased
frequency of oscillations compared to the model with the small strain assumption
(Model 1) to sinusoidal disturbance. Model 2 is more sensitive to disturbances in
the high strain region. Figures 5 and 6 show comparison of tension response of
both models to acceleration and deceleration of the web line. The amplitude of
oscillations increases during deceleration and decreases during acceleration.

Model 2 is more sensitive to speed disturbances compared to Model 1. Behavior
similar to Model 2 is exhibited when considering viscoelastic webs without the
small strain assumption (Model 3) and, therefore, results are not presented.

Numerical model simulations are performed for the model considering in-plane
biaxial stress (Model 4). The tension response of Model 1 and Model 4 are shown
in Figure 7. Model simulation results indicate that cross-machine direction stresses
significantly affect longitudinal behavior when low modulus webs are transported
in the high strain region.

Frequency Domain Simulation Results

The frequency response study is performed for low modulus web material to
verify the linearized model developed without the small strain assumption and
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Figure 4: Tension Response; Constant Web Line Speed
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Figure 5: Tension Response; Accelerated Web Line Speed
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Figure 6: Tension Response; Decelerated Web Line Speed

considering cross machine direction strain. The new governing equations affect
the resonant frequencies of a system of idle rollers and spans that is analyzed in
this study.

For the purpose of simulation, the unwind section of the Euclid Web Line
(EWL), shown in Figure 8, is considered.
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Figure 7: Cross Machine Direction Strain Effect; Tension Response at Constant
Web Line Speed; Left: Poisson’s Ratio = 0.25, Right: Poisson’s Ratio = 0.45
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Figure 8: Euclid Web Line Unwind Section

Frequency response simulations are performed for the models 1, 2, and 4.
Sinusoidal disturbance is injected into the velocity reference of the S-wrap roller
and the web tension output is recorded. The bode magnitude plot of the transfer
function from the velocity input to the tension output is shown in Figure 9. The
peaks in the plot indicate resonant frequencies. It is evident that the minimum
resonant frequency is higher for Model 2 compared to Model 1. When we consider
biaxial stress (Model 4), the minimum frequency is increased further. Frequency
response numerical simulations with medium modulus webs for the various models
did not indicate any appreciable change in the resonant frequencies.

PARAMETER SENSITIVITY ANALYSIS

Parameter sensitivity analysis is performed to analyze the effect of web system
parameter variations on web tension (system output). For this analysis we consider
linearized governing equations with and without small strain assumption and the
web material to be elastic. Sensitivity functions are obtained and studied in
frequency domain to understand the effect of web transport system parameter
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Figure 9: Bode Plot of Tension Dynamic Models; Low Modulus Material

variation on the plant output response.

We consider the classical definition of parameter sensitivity which is defined as
the ratio of the change in the system transfer function to an incremental change in
a process parameter of interest. Let the open loop transfer function of the process
be

G(s,θ) =
N(s,θ)
D(s,θ)

{13}

where θ is the process parameter of interest. The sensitivity function with respect
to θ is given by

SG
θ =

∂G/G
∂θ/θ

{14}

The parameters of interest are elastic modulus (EA), span length (Li), reference
velocity (vir), and roll radius (Ri). Frequency response of the sensitivity functions
is obtained and used to compare the derived tension models.

The tension equation derived with and without small strain assumption are lin-
earized around the reference values of tension and velocity. The transfer function
from velocity to tension with the small strain assumption is given by

Gs(s) =
Ti

Vi
=

EA−tir
vir

Li
vir

s+1
{15}

The transfer function without the small strain assumption is given by

Gw(s) =
Ti

Vi
=

EA+tir
vir

Li
vir

s+ 2vi−1r(EA+tir)
vir(EA+ti−1r)

−1
{16}
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The denominator term of the transfer function Gw reflects the effect of the
downstream roller velocity (vi−1r). Therefore, it can accurately model the process,
such as a velocity draw in consecutive driven tension zones.

The transfer function between tension variation Ti and velocity variation Vi can
be expressed in terms of the radius parameter of the roll by replacing the reference
velocity vir with the relation:

vir = Riωir

The sensitivity functions for the transfer function Gs and Gw with respect to
parameters EA, Li, vir, and Ri are given in Table 1.

Web Parameter SGs SGw

EA
EA

EA− tir

EA
EA+ tir

−
EA

(

2vi−1r

EA+ ti−1r
− 2vi−1r(EA+ tir)

(EA+ ti−1r)2

)

Lis− vir +
2vi−1r(EA+ tir)
(EA+ ti−1r)

Li
−Lis

Lis+ vir

−Lis

Lis− vir +
2vi−1r(EA+ tir)
(EA+ ti−1r)

vir
−vir

Lis+ vir

vir

Lis− vir +
2vi−1r(EA+tir)
(EA+ti−1r)

Ri
−Riωir

Lis+Riωir

Riωir

Lis−Riωir +
2vi−1r(EA+ tir)
(EA+ ti−1r)

Table 1: Sensitivity Functions of Web Parameters

The sensitivity functions of the model Gw are more involved compared to model
Gs. The additional terms reflect the draw as well the reference web tension for
neighboring web spans which are not reflected in the sensitivity functions of Gs.

The transfer function between output span tension Ti and input velocity Vi

is formulated for the linearized web tension dynamics derived considering cross
machine directional stress. In this analysis, the parameter of interest is Poisson’s
ratio. For simplicity, consider the case with no draw and equal reference tension
for all web spans. The transfer function with the small strain assumption and
considering cross machine direction stress is

Gsv =
Ti

Vi
=

(EA−tir)(EA+νtir)
(EA−EAν+2νtir)

Lis+ vir
. {17}

The transfer function without the small strain assumption and considering cross
machine direction stress is

Gwv =
Ti

Vi
=

(EA+tir)(EA−νtir)
(EA−EAν−2νtir)

Lis+ vir
. {18}
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The sensitivity functions for the transfer function Gsv and Gwv with respect to
Poisson’s ratio ν are given in Table 2.

Sensitivity Function ν

SGsv ν
(

tir(EA−EAν+2νtir)
EA+νtir

+(EA−2tir)
)

SGwv ν
(

−tir(EA−EAν−2νtir)
EA−νtir

+(EA+2tir)
)

Table 2: Sensitivity Functions for Poisson’s Ratio

The sensitivity functions are analyzed through the frequency response in the
following subsection.

Simulation Results

The two roller system shown in Figure 1 is considered and frequency response
is obtained for models with and without small strain assumption for low modulus
and medium modulus webs. The following parameter values are considered for
model simulations: tr = 25 lbf (high strain region); modulus constant, EA = 150
lbf (low modulus web) and EA = 2800lbf (medium modulus web); reference speed,
vr = 850fpm; draw: 5%. The Bode magnitude plots for the two derived models (Gs

and Gw) are shown in Figure 10. The two models differ in terms of the magnitude
for the low modulus webs, while the response is almost similar for the medium
modulus webs.
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Figure 10: Transfer Function Bode Plot; Left: Low Modulus Web, Right: Medium
Modulus Web

The frequency response of the sensitivity functions for a low modulus web
is shown in Figure 11. The sensitivity function response slightly differ for both
the models. The effect of modulus change (which may be due to humidity or
temperature) is the same across all frequencies.

The frequency response of the sensitivity functions to span length (Li) is shown
in Figure 12. The transfer function is more sensitive to length changes in high
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Figure 11: Low Modulus EA Sensitivity Function Bode Plot; Left: With Small
Strain Assumption, Right: Without Small Strain Assumption

frequency region. The sensitivity to Li is prominent in the vicinity of the corner
frequency. This can be evident from the fact that tension is affected substantially
by the rate of change of length due to an out-of-round or an eccentric roll.
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Figure 12: Low Modulus Li Sensitivity Function Bode Plot; Left: With Small
Strain Assumption, Right: Without Small Strain Assumption

The velocity reference may change continuously due to the correction signal
provided by the outer tension controller in a speed-based tension control system.
The frequency response of the sensitivity functions to velocity reference (vir) is
shown in Figure 13. In the low frequency region, the tension transfer function is
sensitive to variations in the reference speed. Both the sensitivity functions and
transfer functions roll-off at around the vicinity of the corner frequency.

The change in roll radius affects tension output. The frequency response of the
sensitivity functions to roll radius (Ri) is shown in Figure 14. In the low frequency
region, the tension transfer function is sensitive to variations in the radius.

The frequency response of the sensitivity functions corresponding to Poisson’s
ratio (nu) for both models (Gsv and Gwv) is shown in in Figure 15. It is evident
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Figure 13: Low Modulus vir Sensitivity Function Bode Plot; Left: With Small
Strain Assumption, Right: Without Small Strain Assumption

10
0

10
1

10
2

10
3

10
4

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

M
ag

ni
tu

de
 (

dB
)

Bode Plot for the Sensitivity to R
i

Frequency  (rad/sec)

R
i
= 3in

R
i
=5 in

R
i
=7 in

R
i
=9 in

R
i
=11 in

S
R

i

G
w

R
i
=11

in

R
i
= 3

in

EA=150 lbf

Figure 14: Low Modulus Radius Sensitivity Function Bode Plot for Model With-
out Small Strain Assumption

that the transfer function Gwv is highly sensitive to changes in Poisson’s ratio.
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EFFECT OF MOISTURE AND TEMPERATURE ON TRANSPORT

BEHAVIOR OF LOW MODULUS WEBS

Both moisture content and temperature significantly affect the transport be-
havior of low modulus, non-woven webs. Non-woven webs consists of fibers,
bonded together to form a porous random network as shown in Figure 16.

Fibers

Void Space

Figure 16: Fiber and Porous Structure in Non-woven Webs

The geometrical distortion observed in webs due to these effects is a complex
function of web structure and hygro-thermal elastic properties of fibers. Absorp-
tion of moisture causes swelling of fibers. The fiber network transfers the resulting
stress in machine and cross-machine directions which leads to web expansion or
contraction. The dimensional changes due to the change in the relative humidity
and temperature of the surrounding atmosphere and the process is called hy-
groexpansivity and thermoexpansivity and the resultant strain is referred to as
hygroscopic and thermal strain.

Heat diffusion and moisture diffusion are studied by using the relations de-
veloped by Fourier for heat conduction and similar theory by Fick for moisture
diffusion. Roisum (1993) proposed the use of Fick’s law to study moisture process
in wound rolls. Pagilla et al. (2007) used a second-order Fick’s law for moisture
diffusion as given in equation {19} and developed a governing equation for web
span tension to evaluate moisture effect on web tension.

D
∂2C
∂y2 =

∂C
∂t

{19}

where C is the moisture concentration and D is the diffusion constant.

Fick’s law assumes the web material to be homogeneous and non-porous. Fick’s
law does not consider absorption and desorption phenomenon in the fibers. The
interaction of moisture diffusion between porous space and fibers must be consid-
ered for non-woven materials. Several studies (Lescanne (1992), Hellen (2001)) in
literature have shown that moisture diffusion in porous paper webs is non-Fickian.
Several researchers have derived simultaneous moisture and temperature transport
models for paper webs with porous structure. Nordon et al. (1967) and Foss et
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al. (2003) modeled heat and moisture transport in a paper sheet in response
to variations of relative humidity and temperature surrounding the sheet. Green
(1981) studied the effect of moisture, temperature, and stress on paper dimensions
by observing the recoverable and nonrecoverable strains. Uesaka (1994) derived
general formula for the hygroexpansion of paper.

In this paper, based on existing research, we present governing equations for
moisture concentration and temperature, which will be subsequently used to ob-
tain hygral and thermal web strains. The pore space of non-woven web is denoted
by subscript p and solid fiber matrix by subscript f . The fiber and porous space
may not necessarily be in equilibrium during web processing and hence the humid-
ity inside fiber and porous space need to be evaluated separately. The production
of moisture in porous space and fiber is assumed to be negligible. The mass bal-
ance of water vapor inside the pore space using a non-fickian moisture diffusion is
given by

∂Cp(y, t)

∂t
= Dp

∂2Cp(y, t)

∂y2 − (1−φ)km

φ
(Ceq(Cp,T )−C f ) {20}

where Cp is moisture concentration in porous space, C f is moisture concentration
in fiber space, Ceq is equilibrium moisture concentration in web, and y is thickness
direction, Dp is moisture diffusion constant in pore space, φ is web porosity, km

is interphase (pores to fibers) mass transfer coefficient. The second term in the
right side of equation {20} represents the moisture interphase between fiber and
porous space. The equilibrium moisture concentration is a function of moisture
in pore space and temperature of web. Lescanne (1992) shows that moisture
transport thorough the pore spaces is much more rapid compared to the fibers.
Hence, neglecting diffusion in fiber and assuming there is just an exchange of water
between porous space and fibers, the mass balance of water vapor in the fiber is
given by

∂C f (y, t)

∂t
= km(Ceq(Cp,T )−C f ) {21}

The initial conditions are usually taken as, the porous space in equilibrium with
the surrounding air and fiber is considered to be in equilibrium with porous space.

Cp(y,0) =C∞(0)

C f (y,0) =Ceq(y,0)

where C∞ is moisture concentration in surrounding air.

When the web is exposed to the same humidity condition on both sides, there
is symmetry plane at the center of web

∂Cp

∂t
|y=0= 0
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The boundary conditions on the surface of the web for moisture transfer are

∂Cp

∂y
|y= h

2
= Bm(C∞(t)−Cp(

h
2
, t)),

∂Cp

∂y
|y=−h

2
= Bm(C∞(t)−Cp(

−h
2

, t))

where Cp(
h
2, t) =Cp(

−h
2 , t) = φC∞ and Bm is Biot number for moisture mass transfer.

The heat absorption by the web is a function of the moisture content in the
fiber. Assuming the temperature of porous space and fiber to be equal (Tp = Tf =
T ), the heat balance in the web material can be expressed as

[φρpcp +(1−φ)ρ f c f ]
∂T
∂t

= ke f f
∂2T
∂y2 − (1−φ)ρ f Habs

∂C f

∂t
{22}

where T is the web temperature, cp is the heat capacity of the porous medium, c f

is the heat capacity of fibers, ρp is the density of porous space, ρ f is the density of
fiber, ke f f is the effective thermal conductivity, and Habs is the heat of absorption.
The term φρpcp +(1− φ)ρ f c f represents volumetric heat capacity of web. The
second term in the right side of equation indicates the effect of moisture content
on web temperature.

At the surface of web, the temperature boundary conditions are given by

∂T
∂y

|y= h
2
= BT (T∞(t)−T(

h
2
, t)),

∂T
∂y

|y=−h
2
= BT (T∞(t)−T (

−h
2

, t))

where T∞ is surrounding temperature, BT is Biot number for heat transfer.

Changes in web moisture content and temperature result in dimensional change
of fibers, each fiber transmits those changes to adjacent fibers in its network. The
structure of the fiber network affects the degree of transfer of dimensional changes.
The composite model for the length change can be expressed as

L = L0+ f (σ−σi,T,C, t) {23}
where L is the deformed length of web, L0 is the original length of web, σ is the
applied stress, σi is the internal stress, C is the moisture concentration in web,
and t is the time parameter. In the case of non-woven webs, which is transported
at high tension, the internal stress is small compared to applied stress and can
be neglected. Hence, the deformation is a function of applied stress, moisture
content, temperature, and time. The total web strain in longitudinal direction
may be expressed as

ε = εe + εh + εt {24}
where εe is the elastic strain induced by the applied stress, εt is the thermal strain,
εh is the hygral strain.
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For low humidity levels, there is a linear relationship between hygral strain
and moisture concentration. But for higher humidity levels, the relationship is
nonlinear and may be expressed by the following relation (Uesaka, 1994)

εh = γeξ(C f −C∞) {25}

where γ and ξ are constants.

Assuming a linear relationship between thermal strain and web temperature,

εt = δ(T −T∞) {26}

where δ is constant.

Moisture content and web temperature also affect the elastic modulus. The
modulus of web decreases with increase in moisture content and web tempera-
ture. The non-woven web elastic modulus under stress is a function of elastic
strain, moisture content, web temperature (E = f (εe,C,T )). The total strain can
substituted into the strain dynamics to obtain a governing equation for tension.

SUMMARY AND CONCLUSION

Governing equations for web strain and tension for low modulus webs are de-
veloped by relaxing the small strain assumption and considering in-plane biaxial
strain. Numerical simulation results show that there is substantial difference in
behavior between the model with small strain assumption and the one without,
and by considering in-plane biaxial stress. A similar conclusion is reached af-
ter conducting a parameter sensitive analysis. Simultaneous diffusion of moisture
and heat in the web material is studied for non-woven webs by taking into ac-
count moisture diffusion process to be non-Fickian. The governing equations for
moisture concentration and temperature are presented and used to obtain hygral
and thermal web strains. Future work will consider experimental validation of the
new governing equations.
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APPENDIX

The derivation of the strain dynamic model is based on conservation of mass
in a control volume: the change of web mass in a span is equal to the difference
between the amount of web mass entering the span from the previous span and
the amount of web mass leaving for the next span. The law of mass conservation
can be expressed as

d
dt

∫ xi(t)

xi−1(t)
ρ(x, t)A(x, t)dx = ρi−1Ai−1vi−1−ρiAivi {27}
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where xi−1(t) and xi(t) are the web positions on the (i−1)th and ith rollers, vi−1

and vi are the web velocities on the (i−1)th and ith rollers, ρ is the density of web
material, and A is the cross-section area of web.

Consider an infinite element of the web in the longitudinal direction. The
length, width, and thickness of the element are given by

dx = (1+ εx)dxu, {28}
w = (1+ εw)wu, {29}

h = (1+ εh)hu {30}

where εx is the strain along the length of the web, εw is the strain along the width
of the web, εh is the strain along the thickness of the web, and the subscript u
denotes the unstretched state of the web.

The mass of the infinitesimal element of the web can be expressed as

dm = ρ(x, t)A(x, t)dx = ρu(x, t)Au(x, t)dxu {31}

Substituting the right side of {28} into {31} results in:

ρ(x, t)A(x, t)
ρu(x, t)Au(x, t)

=
dxu

dx
=

1
1+ εx(x, t)

{32}

Therefore, the mass conservation equation can be expressed as

d
dt

∫ xi

xi−1

ρu(x, t)Au(x, t)
1+ εxi−1(x, t)

− ρui(x, t)Aui(x, t)vi(t)
1+ εxi(x, t)

{33}

Under the assumption that the density of the web material and cross section area
are constants for the unstretched material, that is ρu = ρui−1 = ρui and Au = Aui−1 =
Aui , equation {33} can be simplified to

d
dt

∫ xi

xi−1

1
1+ εx(x, t)

dx =
vi−1(t)

1+ εxi−1(x, t)
− vi(t)

1+ εxi(x, t)
{34}

The integral term in the equation {34} is evaluated by applying the Leibnitz rule
with time dependent limits,

d
dt

(∫ ψ(t)

φ(t)
f (x, t)dx

)

=

∫ ψ(t)

φ(t)

∂ f (x, t)
∂t

dx− dφ
dt

f (φ(t), t)+
dψ
dt

f (ψ(t), t), {35}
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