
ABSTRACT 

In roll-to-roll (R2R) manufacturing the presence of non-ideal elements, such as out-
of-round or eccentric rolls, induces periodical oscillations in the web tension signal. 
Model simulations based on ideal elements do not exhibit these tension oscillations but 
can only follow the measured tension signal in an average sense. In order for the models 
to predict these measured tension oscillations due to non-ideal elements, the derivation 
of governing equations must consider a mechanism to include the correct behavior of the 
non-ideal transport elements. Continuing with our previous work on this topic presented 
at previous IWEBs, we present additional results that provide improvements to the web 
span tension governing equation which can better predict measured tension signals. In 
particular, this work is useful for tension control in the unwind section of the web line 
when the unwind material roll is often out-of-round. 
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that are not associated with an imbalance in material flow. Second, the material flow
rate is not proportional to the peripheral velocity of the web on the out-of-round roll and
must be computed explicitly. Given a measure of out-of-roundness of the roll, due to
the complexity of the problem it is difficult to derive a closed form expression for the
material flow rate as a function of the roll position and velocity. A numerical algorithm
for the computation of the material flow rate is presented in the paper. Based on the
computation of the material flow rate and the algorithm for the computation of the span
length adjacent to an out-of-round roll which was presented in the previous IWEB, a new
governing equation for web tension is developed. Using this new governing equation
a dynamic model for an experimental web line is developed and model simulations are
conducted. To corroborate the model, experiments are conducted on the web line with
an out-of-round unwind material roll. Comparison of the results from model simulations
and experiments are presented and discussed.

NOMENCLATURE

A Area of cross section of the web [ft2]
CG Geometric center of the roller
CR Center of rotation of the eccentric roller
dex Distance between the center of rotation and the web exit point

on the roller [ft]
dCGCR Distance between the center of gravity and the center of rotation

of the roller [ft]

E Modulus of elasticity (Young’s modulus)
[

lbf
ft2

]

g Gravitational acceleration
L Free span web length [ft]
ℓ Length of material leaving the material roll [ft]
J Roller inertia [lb ft2]
m Roller mass [lb]
R Radius of the roller [ft]
Ti Web tension in thei-th span [lbf]
v Web velocity (or peripheral velocity of the roller) [FPM]
V Material roll volume [ft3]
w Web width [ft]
ω Roller angular velocity [rad/sec]
θ Roller angular displacement [rad]
τu Roller friction torque [lbf ft]
ρ Web density [lb/ ft3]

INTRODUCTION

The presence of non-ideal elements introduces periodical oscillations in web tension
and web velocity that are not reproduced by computer simulations based on the models
of the ideal elements, examples of modeling of web transport with ideal elements can be
found in [1–3]. In our previous work [4] we showed that using the frequency content of
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the measured tension signal, sources of tension and velocity oscillations can be identified
and that the periodical oscillations may be paired with specific non-ideal rolls in the line.
One key aspect highlighted in [4] is the fact that in the presence of a non-ideal roller the
length of the web span adjacent to the non-ideal roller is time varying. In the derivation of
the governing equation for web tension in a span adjacent to an ideal roller, it is assumed
that the web span length is constant. In the case of a non-ideal roller this assumption
is not true, and incorporation of this aspect leads to the following modified governing
equation [4]:

Ṫi =
vi(EA−Ti)− vi−1(EA−Ti−1)+ L̇i(EA−Ti)

Li
{1}

In order to numerically solve the differential equation an expression for the span length
and span length derivative are needed. Algorithms for the computation of the span length
in the presence of eccentric and out-of-round rollers are presented in [5]. The complete
analysis, modeling and validation of the governing equation for web transport in the
presence of eccentric rollers is presented in [6]. This paper covers the analysis, modeling
and validation of web transport in the presence of an out-of-round material roll.

A summary of the algorithm for the computation of the span length for a convex
shaped material roll will be presented first since the results from the algorithm will
be used in several places throughout the paper. Then the necessary modification to
the governing equation of web velocity will be presented. This includes three main
adjustments to the governing equation derived using ideal behavior. First, the center
of mass of the roll may not coincide with the center of rotation. In this case an additional
torque due to gravity has to be included in the model. Second, the arm length of the
torque due to the tension in the first span is not equal to the radius of the roll; it is time
varying and must be computed for solving the velocity equations. Lastly, the expression
for the roll inertia needs to be obtained and it differs from the case of the ideal roll.
After including the modifications to the governing equations of web tension and web
velocity, results from a series of experiments are shown to verify the proposed model. A
discussion of the results obtained from the comparison of the experimental data with data
from model simulations is given; since this comparison shows poor correlation between
the two data, it is evident that the model needed further improvements and this is the
motivation for the modification of the governing equation of web tension described in the
second part of the paper. To understand the reasoning for this last modification one has
to revert back to the first principles derivation of governing equations. In particular, the
governing equation for web tension is obtained applying the law of conservation of mass
for the control volume containing the web span, i.e., at any instant in time the variation of
mass in the control volume is equal to the difference of entering and exiting material flow
rate. In the case of an ideal roll it can be shown that the peripheral velocity of the web on
the neighboring rolls is proportional to the material flow rate. A discussion about how in
the presence of a non-ideal roll the peripheral velocity and the material flow rate are not
proportional is given. An explicit expression for the material flow rate has to be computed
instead, without relying on it being proportional to the peripheral velocity. The paper is
concluded with a discussion of the comparison of the data from model simulations and
experiments after an explicit expression for material flow rate is included in the model.
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Figure 1: Characterization of a generic shaped material roll.

COMPUTATION OF SPAN LENGTH FOR CONVEX SHAPED MATERIAL
ROLL

The problem of computing the length of a web span between a convex shaped material
roll and a perfect idle roller is considered in this section. This problem may be divided
into three sub-problems. First, given a convex shaped roll it is necessary to find a method
to characterize the roller, which is to find a way to associate a parametric equation that is,
at the same time, accurate enough to describe the surface of the roller but simple enough
to allow the computations necessary for the subsequent steps. Second, once the equation
describing the shape of the roller is obtained, it is necessary to obtain an equation for the
tangent of the roller as a function of the angular displacement. Finally, an optimization
problem must be formulated to find the equation for the line tangent to the convex shaped
roller and the idle roller.

To describe the shape of the roller it is assumed that a list of all the maximum and
minimum radii of the roll and their angular position with respect to a fixed coordinate axis
is known; an illustration of this characterization is shown in Fig. 1. Note that the positions
of the radius maximum and minimum are functions of the angular displacement of the
roll θ. The algorithm for the computation of the span length is derived assuming that the
roll is fixed. The modifications to the algorithm to account for the movement of the roll
are discussed later in the section.

One possible approach to characterize the convex shape is to find a single function
that can describe the entire profile of the roll; this approach leads to undue complexity.
In fact, finding such a function is non-trivial and, moreover, the resulting function
will be either a highly nonlinear function or a function with many parameters; this
would also result in numerical implementation of subsequent steps to be more compu-
tationally intensive. To avoid this problem the characterization of the shape is done
in intervals, that means a different function is used to describe the shape of the roller
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between each minimum and maximum. In other words, given the list of the locations
(φm1,φM1,φm2,φM2, . . . ,φmn,φMn) and the values of minima and maxima of the radius
(rm1,rM1,rm2,rM2, . . . ,rmn,rMn,), the function takes the form:

r(φ) =



















r1(φm1,φM1,rm1,rM1,φ) if φm1 ≤ φ ≤ φM1;
r1(φM1,φm2,rM1,rm2,φ) if φM1 ≤ φ ≤ φm2;

...
r2n(φMn,φm1,rMn,rm1,φ) if φMn ≤ φ ≤ φm1.

{2}

To guarantee that each junction point is an extreme point and in order to avoid any kind
of discontinuity, each functionri must be such that

ri(φm j) = ri+1(φm j) = r(φm j),

r′i(φm j) = r′i+1(φm j) = 0.
{3}

The resulting interpolation function is:

r(φ) = (r(φM)− r(φm))

[

−2
(φ−φm)

3

∆φ3 +3
(φ−φm)

2

∆φ2

]

+ r(φm). {4}

Note that the same function may be used for intervals starting in a maximum and ending
in a minimum by simply switchingφm with φM.

The next step is to find an expression for the line tangent to the perimeter of the roller
for any given point on the perimeter identified in polar coordinates by the pair(φ,r(φ)).
Given the functionr(φ) in {4} rearranged in the form:

r(φ) = δφ3+ γφ2+βφ+α, {5}

the expression for the slope of the line tangent to the pair(φ,r(φ)) can be shown to be

m =
n3φ3+ n2φ2+ n1φ+ n0

d3φ3+ d2φ2+ d1φ+ d0
,

n0 = αsinφ−βcosφ, n1 = βsinφ−2γcosφ,
n2 = γsinφ−3δcosφ, n3 = δsinφ,
d0 = αcosφ−βsinφ, d1 = βcosφ+2γsinφ,
d2 = γcosφ+3δsinφ, d3 = δcosφ.

{6}

This expression will be used in the next step to setup the optimization problem that will
be used to find the equation for the common line tangent to the material roll and the idle
roller.

Among all the tangents to the convex shaped roller, the one which is tangent to the idle
roll is the one having the distance to the center of the idle roller equal to the radius. This
aspect may be exploited to setup an optimization problem to find the common tangent.
Given a generic point on the surface of the material roll described in polar coordinates by
(φ,r(φ)), the line tangent to the surface at that point is given by

y = r(φ)sinφ+m(x− r(φ)cosφ),
t(φ) : y−m(φ)x+m(φ)r(φ)cosφ− r(φ)sinφ = 0

{7}
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P = (φex,r(φex))

C

Q =

(

xc − cos(φex)
yc − sin(φex)

)

R

Figure 2:Computation of the web span extreme points. Because of the similarity of the
trianglesCuRP andCRQ, the angles inCu andC are equal.

with m as given in{6}.

The distance between the tangentt and the center of the rollerC is

d(t(φ),C) =

√

|αxc +βyc + γ|
α2+β2 {8}

whereα =−m(φ), β = 1 andγ = m(φ)r(φ)cosφ− r(φ)sinφ.

By solving the optimization problem

φex = min
φ

J(φ) = min
φ
(d(φ)−R)2, {9}

a point (φex,r(φex)) is found on the generally shaped roller perimeter whose tangent
distance from the center of the idle roller is equal toR. Notice that the optimization
problem has two solutions, one corresponding to the over-wrap on the idle roller and the
other to the under-wrap. A modified cost functionJp(φ) which has only one solution may
be derived [5].

Once the optimization problem is solved, the coordinates of the exit point of the web
on the rollP = (φex,r(φex)) are determined. The polar coordinates forP can easily be
converted into Cartesian coordinates. Also, the coordinates of the contact point of the
web on the downstream roller can be obtained as shown in Fig. 2. With the expressions
for the extreme pointsP andQ of the web span, the computation of the length of the span
is straight forward:

L = ||P−Q||. {10}

As explained earlier in the section, the algorithm has been derived without consid-
ering the movement of the roll. When the roll moves the positions of the minimum and
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maximum radius on the roll change. Specifically, assuming that the original list of radius
minima and maxima{(φm1,rm1),(φM1,rM1), . . . ,(φmn,rmn,),
(φMn,rMn)} is given for the initial displacement of the rollθ(0) = 0. Once the roll
moves to a new positionθ(t) the position of the radius minima and maxima will shift
by an angle equal toθ(t). Therefore, the list of radius minima and maxima changes to
{(φm1 + θ(t),rm1,),(φM1 + θ(t),rM1), . . . ,(φmn + θ(t),rmn,),(φMn + θ(t),rMn)} and the
algorithm for the span length can be applied to the new list. Therefore, for any given
angular displacement of the rollθ(t) the corresponding span lengthL(θ(t)) can be
computed.

Because it is not possible to obtain a closed form expression for the web span
length, the inclusion of the effects of an out-of-round roll in the computer simulation
is more complex compared to the case of the eccentric roller. The optimization problem
can only be solved off-line before the computer simulation starts, but the optimization
problem is completely defined only when the angular displacement is known. The angular
displacement of the roll is obtained from the integration of the dynamic equation of the
roll once the simulation starts. Moreover, the span length derivativeL̇(t) that is required
to solve the governing equation of tension cannot be obtained analytically, therefore, a
numerical approximation foṙL(t) is required.

From these observations it is clear that in order to implement in model simulations
the effects of the presence of the out-of-round roll, it is necessary to have a discretization
of the angular displacement of the roll. By doing so, the optimization problem can be
solved off-line before the simulation starts, and a look-up table can be used on-line
to approximate the web span length when the simulation is running. Suppose the roll
displacement is discretized withN equally distributed points, then the finite set of angular
displacements is given by:

Θ = {θ1, . . . ,θN}, θi = (i−1)δθ, δθ =
2π
N

. {11}

The web span length for each angular position inΘ can be computed using the algorithm
described in this section. The pairs(θi,L(θi)) will constitute a look-up table that can
be used during the execution of the simulation to compute an approximation of the web
span length and its derivative. In particular, suppose that at simulation timetk the angular
displacementθ(tk) is obtained from the integration of the governing equations of velocity
with θi ≤ θ(tk)< θi+1, θi,θi+1 ∈ Θ, then the span length and span length derivative may
be approximated with:

L(θ(tk)) = L(θi)+
θi+1−θ(tk)

θi+1−θi
(L(θi+1)−L(θi)),

L̇(θ(tk)) =
L(θ(tk))−L(θ(tk−1))

tk − tk−1
.

{12}

In summary, becauseof the presence of the out-of-round material roll, the governing
equation for web tension should include the effect of the time varying web span length.
Therefore, equation{1} must be used to simulate the effect of the presence of the
non-ideal roll. The span length and its derivative cannot be computed in closed form,
a numerical approximation is used instead and a procedure to obtain this numerical
approximation was described in this section.
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Figure 3: Sketch of the out-of-round roll and torques acting on it. Note:CR is the center
of rotation of the roll andCG is its center of gravity.

MODIFIED GOVERNING EQUATION FOR WEB VELOCITY

In the presence of an out-of-round material roll the governing equation for web
velocity needs to be modified as well. This is mainly due to three reasons: the location of
the center of rotation may not coincide with the center of mass of the roll, the expression
for the time varying inertia is different, and the torque due to web tension is not equal to
RuT1. The necessary corrections to the governing equation for web speed to account for
these aspects will be discussed in this section. A sketch of the out-of-round roll and all
the torques acting on it is shown in Fig. 3. The new governing equations for the roll are

θ̇ = ω,
Juω̇ =−τ f − dCGCR mgsinθ− dexT1− J̇uω+ τu

{13}

whereτ f is the friction torque,dCGCR is the distance between the center of gravity and the
center of rotation,m is the mass of the roll,g is the acceleration due to gravity,dex is the
distance between the exit point of the webP and the center of rotation of the rollCR, Ju

is the total roll inertia andτu is the input torque. The remainder of the section explains
how each term in{13} is derived.

First, because of the out-of-roundness of the roll, it is possible that the center of mass
of the roll is different from its center of rotation. In this case an extra torque term due to
gravity needs to be added to the governing equation of the angular velocity. The equations
to compute the center of gravityCR of the roll are

x̄ =

∫∫
xρdA
m

=

∫∫
r2(φ)cos(φ)ρ(θ)drdφ

m
,

ȳ =

∫∫
yρdA
m

=

∫∫
r2(φ)sin(φ)ρ(θ)drdφ

m

{14}
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wheredA = r(φ)dφdr, ρ is the roll density, andr(φ) describe the roll in polar coordinates
as described in the previous section. The lever arm of the torque due to gravity is given
by the distance between the center of rotationCR and the center of gravityCG = (x̄, ȳ).

The computation of the roll inertia is also more complex compared to the case of an
ideal roll. The total moment of inertia is given by the sum of the core inertia, shaft inertia
and the inertia due to the web. To obtain the component of the inertia due to the webJw,
it is necessary to start from the general expression for the computation of the moment of
inertia:

Jw =

∫∫∫
V

ρd2(φ)dV = ρ
∫ ww

0
dℓ

∫∫
S

d2(φ)dS

where the infinitesimal volumedV = dSdℓ. Since the functiond(φ) does not vary along
the width of the web, the integral along the width may be separated resulting in

Jw = ρww

∫∫
S

d2(φ)dS = ρww

∫ 2π

0

∫ r(φ)

Rc

d2(φ)d(φ)dφdd

where the infinitesimal areadS = d(φ)dφdd(φ) giving

Jw =ρww

∫ 2π

0

∫ r(φ)

Rc

d3(φ)dd dφ = ρww

∫ 2π

0

r4(φ)−R4
c

4
dφ

=ρww

[

n−1

∑
j=1

∫ φM j

φm j

r4
2 j−1(φ)−R4

c

4
dφ+

∫ φm j+1

φM j

r4
2 j(φ)−R4

c

4
dφ

]

+ρww

[∫ φMn

φmn

r4
2n−1(φ)−R4

c

4
dφ+

∫ φm1

φMn

r4
2n(φ)−R4

c

4
dφ

]

.

{15}

The last expressionfor Jw in {15} is obtained from the previous integral by using the
definition of r(φ) given in{2}. Note that equation{15} is obtained by consideringJw

constant in time. The shape of the roll is defined using the location of the minimum
and maximum radius{(φm1,rm1),(φM1,rM1), . . . ,(φmn,rmn,),(φMn,rMn)}, as the web is
released the value of the radii decreases makingJw in {15} time dependent. To obtain
Jw(t) it is necessary to obtain the interpolation functionsri(φ) as in{4} where nowr(φm)
andr(φM) are functions of time, and then explicitly solve the integral in{15}. However,
since obtaining the time dependance ofr(φm) andr(φM) is not practical, it is assumed that
the web line is simulated for a short period of time such that the inertia can be considered
constant and the terṁJu in {13} can be neglected.

The last modification to the governing equation of the angular velocity of the roll is to
consider the changes in the arm length of the torque due to the tension, which is not equal
to the radius of the roll but changes with time and depends on the point where the web
leaves the roll. Clearly the arm length depends on the angular displacement of the roll
and, similar to the web span length, derivation of a closed form expression is not feasible.
The optimization problem described in the previous section to compute the span length
can also be used to determine the arm length of the torque due to web tension. In fact,
once the solution of the optimization problemφex is obtained the arm length is simply
given bydex(θ) = r(φex(θ)). From the implementation point of view, a look-up table may
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be used for the arm length similar to the one for web span length. The same discretization
of the angular displacement in{11} is used to obtain the look up table fordex(θ).

The equations presented in this section are used to conduct model simulations in the
presence of an out-of-round material roll. The next section describes the experiments that
were performed to validate the model that includes only the time varying span length and
the modified governing equation for web velocity.

EXPERIMENTS AND MODEL SIMULATIONS WITHOUT EXPLICIT COMPU-
TATION OF MATERIAL FLOW RATE

Roll imperfections are commonly seen in the web handling industry, these include,
for example, a flat spot due to the roll being laid on the floor for an extended period of
time, or an elliptically shaped roll as a consequence of holding a heavy roll on mandrels
causing the bottom portion of the material to bulge due to gravity or improper winding in
a process line. In order to verify the proposed model with a roll that clearly contains a flat
spot, a material roll was made by winding material on top of a wooden insert as shown
in Fig. 5. The wooden insert was designed so that the resulting out-of-round roll would
mimic a roll with a flat spot. The profile of the wooden insert is shown in Fig. 4(a). The
equations that describe the profile of the wooden insert in Cartesian coordinates are































y = (r+ t f )

√

1−
(

x−ℓ f /2
r−ℓ f /2

)2
, −r ≤ x ≤−ℓ f/2,

y = r+ t f −ℓ f /2≤ x ≤ ℓ f/2,

y = (r+ t f )

√

1−
(

x+ℓ f /2
r−ℓ f /2

)2
, ℓ f /2≤ x ≤ r,

y =−
√

r2− x2, −r ≤ x ≤ r

{16}

wherer is the inner radius of the wooden insert,ℓ f is the length of the flat spot, andt f is
the thickness of the wooden insert. The resulting out-of-round roll is shown in Fig. 4(b).
In order to use the procedure described in the previous section for the computation of the
span length and its derivative, it is required to obtain the list of maximum and minimum
radii in order to divide the profile in segments. Normally one would measure the roll
radius to identify the maxima and minima, in this case since the roll is made artificially
out-of-round this information can be obtained analytically by transforming the Cartesian
coordinates of the roll profile in equation{16} into polar coordinates. A plot of the profile
in polar coordinates is shown in Fig. 5(a), from the plot the list of the radius minima and
maxima can be easily established. Figure 5(b) shows a comparison between the real
profile of the flat spot and the interpolation obtained using the suggested procedure, the
interpolation closely approximates the real profile.

Using the model proposed in this chapter a computer model simulation is set up to
simulate a large web line running with the unwind roll shown in Fig. 4(b). The results
from the experiment are shown in Fig. 6; it is evident there is little correlation between the
two data. This clearly shows that some effects are neglected in the model simulation and
provided a motivation for the need for additional analysis of the model in the presence of
an out-of-round roll. One key issue that is responsible for this discrepancy in the data is
discussed in the next section.
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(a) Wooden insert profile. (b) Resulting out-of-round roll.

Figure 4: Design of the wooden insert to mimic a flat spot. The values chosen for the
design arer =5.5in ,ℓ f =3in andt f =0.5in
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(a) FFT of the experimental data.
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(b) FFT of the simulated model data.

Figure 6: Comparisonbetween experimental and simulation data at 200 FPM with
wooden insert simulating a flat spot.

COMPUTATION OF MATERIAL FLOW RATE IN THE PRESENCE OF AN
OUT-OF-ROUND MATERIAL ROLL

The derivation of the web tension governing equation in{1} is based on the
conservation of mass in the control volume defined by the web span. In the governing
equation for web tension{1} it is assumed thatvi−1 andvi, the peripheral velocities of
the web on the entry and exit rollers of the span, are proportional to the material flow rate
entering and leaving the control volume. It can be shown that this assumption may not
hold in the presence of a non-ideal roll.

Consider the extreme situation of a square roller as shown in Fig. 7. When the roller
moves from the position in Fig. 7(a) to the position in Fig. 7(b) there is clearly no material
transfer into the control volume of the web span, however, the peripheral velocity of the
web on the roller is not zero. It is clear that in this situation the peripheral velocity of
the web on the roller cannot be used to describe the material flow from the roller to the
control volume of the web. The mass balance equation for the control volume can be
expressed in its most general form is:

d
dt

∫ xi(t)

xi−1(t)
ρ(x, t)A(x, t)dx =

dmin

dt
− dmout

dt
{17}

where now the material flow rate in the right hand side appears explicitly instead of the
peripheral velocity. For an ideal roller, the relationship between the material flow rate
and the peripheral velocity can be obtained in a straight forward manner as:

dm
dt

=
d
dt

(ρV (t)) = ρ
dV
dt

= ρ
d
dt

(Aℓ(t)) = ρA
dℓ
dt

= ρA
d
dt

(Rθ(t)) = ρARθ̇ = ρAv(t)

{18}
wheredℓ is the length of the infinitesimal segment of materialdm that moved from the
surface of the roller into the control volume in the infinitesimal time intervaldt. The
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(a) Span with square roller at timet. (b) Span with square roller att +dt.

Figure 7: Example ofaspan with a square roller. In this situation the square roller rotates
from the position at timet to the position at timet + dt but there is no material flow into
the span from the square roller.

Fa

F r

θφ

Figure 8: Definition of the absolute frameFa and the relative frameF r.

reason for using the peripheral velocity for ideal rollers to describe the material flow rate
is the relationship betweendℓ and the angular displacementdθ. For a non-ideal roll the
relationship betweenℓ andθ is not as simple as in the case of the ideal roll.

Assuming the shape of a roller is given in polar coordinates(r(φ),φ), then a procedure
to find an expression for the material flow rate can be obtained. Two coordinate frames
must be defined first. The first coordinate frameFa is absolute and time invariant; this
is the coordinate frame with respect to which the angular displacement of the roller is
measured. The second coordinate frameF r is a relative coordinate frame that moves
together with the roller; this is the coordinate frame in which the polar coordinates of the
roller are defined. An example of these two coordinate frames for a non-ideal roller is
given in Fig. 8. The reason for requiring two coordinates frame will be clarified later.
Note that the angular displacement of the roller is indicated byθ whereasφ is used to
denote the angular position of a point on the perimeter of the roller in its polar coordinates
in the frameF r.

Consider a non-ideal roller and a span adjacent to it as shown in Fig. 9. LetA be
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the point at which the web makes contact with the roller at time t and the corresponding
angle beφen(t) with respectto F r as shown in Fig. 9(a). At timet + dt, let B be the web
entry point on the roller andφen(t + dt) be the angle ofB with respect toF r. When the
roller rotates from the position in Fig. 9(a) at timet to the position in Fig. 9(b) at time
t +dt, the infinitesimal segment of materialdm that leaves the control volume of the web
span is given by

dm = ρdV = ρAdℓ {19}

wheredℓ is the web length between the pointsB andA as shown. The lengthdℓ can be
computed by using the formula for the perimeter of a curve in polar coordinates. Given
the curveC ≡ (r(φ),φ) in polar coordinates, the arc lengthℓc between the two points
(r(φ1),φ1) and(r(φ2),φ2) is given by

ℓc =

∫ φ2

φ1

√

r2(φ)+
(

dr
dφ

)2
dφ. {20}

Note that to use the expression in{20} the curve is required to be time invariant. This is
the reason why the relative reference frame needs to be introduced, otherwise the curve
would be varying with time in the absolute reference frame and it is not possible to
computedℓ. Using{20} to compute the lengthdℓ gives

dℓ=

∫ φen(t+dt)

φen(t)

√

r2(φ)+
(

dr
dφ

)2
dφ. {21}

Equation{21} is the mostgeneral expression to compute length change which can be
used to compute the rate of web material entering and exiting the web span.

One can verify whether the expression in{21} for dℓ is valid for the ideal roller case.
An ideal roller in polar coordinates is described byr(φ) = R. Moreover, since the point
where the web makes contact with the roller does not change in the absolute reference
frame,φen(t + dt) can be easily obtained as

φen(t + dt) = φen(t)+ dθ.

Substituting this expression in{21} gives

dℓ=

∫ φen(t+dt)

φen(t)

√

r2(φ)+
(

dr
dφ

)2
dφ =

∫ φen(t)+dθ

φen(t)
Rdφ = Rdθ

which leads to the same expression fordℓ that was obtained in{18}.

From the discussion in the previous paragraph it is clear that in the governing equation
of web tension{1}, the peripheral velocity of the web on the rollvi must be replaced by
dℓi/dt with dℓ as in{21} whenever the rolli is a non-ideal roll. The correct form of
equation{1} is

Ṫi =
dℓi/dt(EA−Ti)− dℓi−1/dt(EA−Ti−1)+ L̇i(EA−Ti)

Li
. {22}
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(a) Non-ideal roller at timet.
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(b) Non-ideal roller at timet +dt.

Figure 9: Example of an out-of-round roller showing the length (dℓ) of web leaving the
span in timedt.
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Figure 10: Construction of the interpolation function for∆ℓ.

In order to solve equation{22}, the value ofdℓ/dt is required. Bothφen(t) andφen(t +
dt) in equation{21} depend on the angular displacementθ(t) and they are computed
numerically by solving the optimization problem introduced earlier in the paper. Hence,
the integral in{21} cannot be solved off-line. For this reason it is necessary to develop
an approximation of equation{21} that uses a discretization of the angular displacement
θ in a similar manner to what was done for the computation of the span lengthL. In
particular, the same discretization forθ in {11} used for the computation ofL is used
for the computation of the approximation fordℓ. For every pointθi in the setΘ the
corresponding value ofφi can be obtained from the solution of the optimization problem.
For every pair(θi,θ j) ∈ Θ with j > i, the length of the span∆ℓ entering the control
volume when the roll moves fromθi to θ j can be computed by

∆ℓ(θi,θ j) =

∫ φ j

φi

√

r2(φ)+
(

dr
dφ

)2
dφ. {23}

Note that for all pairs (θi,θ j) with j < i, ∆ℓ(θi,θ j) = −∆ℓ(θ j,θi). The value obtained
from equation{23} can be arranged in a table where the element∆ℓ(i, j) = ∆ℓ(θi,θ j).
This table can be used during the simulation to compute an approximate value fordℓ/dt.

Assuming that at simulation timetk−1 the value of the angular displacement isθk−1

with θi < θk−1 < θi+1 and that at timetk the angular displacement isθk with θ j < θk <
θ j+1, since no value for the movement fromθk−1 to θk is defined in the table for∆ℓ, it is
necessary to define an interpolation function to define the value of∆(θk−1,θk) given the
discretized values∆ℓ(i−1, j−1), ∆ℓ(i−1, j), ∆ℓ(i, j−1) and∆ℓ(i, j) in the∆ℓ table.

First, the space for the interpolation inR3 is defined by the coordinatesL ≡
(θn,θ f ,∆ℓ) where θn is the initial angular displacement,θ f is the final angular dis-
placement, and∆ℓ is the length of the span entering the control volume when the roll
moves fromθn to θ f . Given the pair(θk−1,θk), using the table for∆ℓ four points
in L are defined: SW ≡ (θi−1,θ j−1,∆ℓ(i − 1, j − 1)), NW ≡ (θi−1,θ j,∆ℓ(i − 1, j)),
SE ≡ (θi,θ j−1,∆ℓ(i, j − 1)) andNE ≡ (θi,θ j,∆ℓ(i, j)), see Fig. 10(b). For simplicity
and to ensure continuity of the interpolation function, a linear interpolation is chosen.

496



However, given four independent points in a three dimensional space it is not possible
to find a single plane that contains all the points. For this reason the square defined by
(θi−1,θ j−1),(θi−1,θ j),(θi,θ j−1),(θi,θ j) is split into two zones (see Fig. 10(a)). If the
combination(θk−1,θk) belongs to zone 1, then the interpolation is from the plane defined
by the points{SW,SE,NE}, otherwise the interpolation is from the plane defined by the
points{SW,NW,NE}, see Fig. 10(b). Once the three points{P1,P2,P3} that define the
plane are determined, the vector orthogonal to the plane is given by

n ≡





nx

ny

nz



= (P2−P1)× (P3−P1). {24}

All the points on the plane defined by{P1,P2,P3} satisfy the equation

x(nx −P1x)+ y(ny −P1y)+ z(nz −P1z) = 0. {25}
Therefore, the value of the interpolation function for(θk−1,θk) is

∆ℓ(θk−1,θk) =− 1
nz−P1z

[

θk−1(nx −P1x)+θk(ny −P1y)
]

. {26}

This procedure canbe used to compute an on-line approximation ofdℓ/dt in {22} during
the execution of the model simulation.

A new computer model simulation was implemented for the EWL with the initial
governing equation for tension{1} replaced by the new governing equation{22}. The
objective of this new simulation is to verify if the modified governing equation leads to a
better correlation between the experimental and the model simulation data. The results of
the new simulation are shown in Fig. 12. With the modified governing equation for web
tension there is a better correlation between the two data.

Moreover, it can now be explained why the results from the simulation in Fig. 6(b)
show larger oscillations compared to the experimental data. First Fig. 11(a) shows the
difference between the peripheral velocity of the web and the material flow rate, the
peripheral velocity has small variations while the material flow rate has large variations
in proximity of the flat spot area. Figure 11(b) shows the span length variations which
show similar variations in proximity of the flat spot. Note that the tension oscillations are
a result of both the effects of span length variation and incoming/outgoing material flow
rate. In the first simulation the governing equation for tension uses the peripheral velocity
and the span length variations, while the second simulation uses the equivalent material
flow rate and the span length variations. Figure 11(a) and Fig. 11(b) indicates how some
of the span length variations are compensated by an increase in the equivalent material
flow rate. When using the the peripheral velocity this compensation does not take place
which explains the higher amplitude in the oscillations. This further demonstrates why
one must use the equivalent material flow rate instead of the peripheral velocity in the
governing equation of tension in order to appropriately simulate the system.

CONCLUSIONS AND FUTURE WORK

The derivation of the governing equations for web tension and roller angular velocity
in the presence of an out-of-round material roll is described in this paper. Results from
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(a) Peripheral velocity vsdℓ/dt.
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(b) Span length variations.

Figure 11: Example ofhow the use of the peripheral velocity neglects a significant
amount of material flow in the case of a roll with a flat spot.
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(a) FFT of the experimental data.
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(b) FFT of the simulated data.

Figure 12: Comparison between experimental and simulation data at 200 FPM with
wooden insert simulating a flat spot using modified governing equation for web tension.
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previous work are used for validation of the governing equation for web transport in the
presence of an out-of-round material roll. Apart from the inclusion of the span length
variation in the governing equation of web tension, another aspect had to be considered.
The derivation of the governing equation for web tension is based on the conservation of
mass in the control volume encompassing the span. For an ideal roll the material flow rate
in the control volume is proportional to the peripheral velocity of the web on the roll; this
is not true for an out-of-round material roll. A closed form expression for the material
flow rate could not be found, a numerical algorithm was presented.

The proposed model for the out-of-round roll was validated by comparing the data
from model simulations with experimental data from the Euclid Web Line platform.

Analysis, modeling and validation of other primitive elements such as accumulators
or other non-ideal elements will be the focus of the future work.
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