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ABSTRACT 

This article proposes a process direction dynamic model for closed loop belts and 
open loop webs used in high precision transport systems such as those found in printers 
where micron level registration is required. It gives the detailed derivation of the lumped 
parameter-based, elastically-stretchable dynamic model and shows that the angular 
velocities of the rolls, instead of the surface velocities of the belts/webs, should be the 
variables directly used in the governing equations. It discusses the effects of traction as 
well as disturbance sources such as roll eccentricities and the drag from stationary rolls 
(backer-bars). The focus of this article is on the enhanced inertia compensated tension 
rolls (dancers) which may be used in either open loop webs or closed loop belts (US 
patents pending). The design formula of the enhanced inertia compensated tension rolls 
takes into consideration the belt/web elasticity, belt/web tension and wrap angle. 
Validation of the model by other numerical methods and experiments is also discussed at 
the end of this article. 

NOMENCLATURE 

Ai angle of wrap of web/belt at a roll 
b belt/web thickness 
Bvi viscous (damp) constant of a roll  
Di drag force applied at a stationary roll 
E  belt/web Young’s modulus of elasticity 
ei radial eccentricity amplitude of a roll 
Ji  moment of rotational inertia of a roll 

                                           
1 The author would like to thank Barry Mandel, William Nowak, Bin Zhang, Elias 
Panides and his other Xerox colleagues for their many valuable suggestions and 
discussions and he would like to particularly thank William Nowak, Roger Leighton and 
Thomas Wyble for their work in the validation experiments. 
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K electromotive force constant of a DC motor 
Kdm  torsion spring stiffness of the driving shift  
ki tensional spring constant at a tensional roll 
L  electric inductance in a motor  
Li belt/web span length between two rolls 
Mi mass of a roll 
Ni  normal force on a roll 
Qi applied torques at a roll 
R  electric resistance in a motor 
ri  external radius of a roll 
Ri  external radius of a roll plus half belt thickness (Ri = ri +b/2) 
Si  belt/web tangential displacement at the inner surface of a roll along belt moving 

direction 
Ti belt/web Tension with a span 
w belt/web width 
α belt/web entrance and exit angles at a tensional roll 
ω  angular velocity of a roll 
θ  rotation angle of a roll 
µ  frictional coefficient between belt/web and roll external surface 

INTRODUCTION 

Both closed loop belts and open loop webs are commonly used in high precision 
transport systems such as printers where micron level registration is required. In a printer, 
for example, closed loop belts may be used as photoreceptors to develop images which 
either transfer the images directly to media (paper) or transfer the image to another belt or 
roll. Closed loop belts may also be used as intermediate belts which are intermediate 
carriers for the images, and they can also serve as escort belts to transport media 
precisely. Open loop webs are usually the media itself which are continuously fed to one 
or more image stations to be imaged and transported out to receive different kinds of 
finishing procedures. 

The motion quality of belts/webs in high precision transport systems includes 
components in both the process (longitudinal) direction and the cross-process (lateral) 
direction and this article will concentrate on the process direction while the study of the 
cross-process direction dynamics will be published in another paper. It should be pointed 
out that both process and cross-process direction dynamics in web handlings have been 
studied by various authors. For example, in 1993, K. Reid and K. Lin presented their 
study on the time domain response in process direction for a dancer subsystem when a 
sinusoidal disturbance is applied at one of the rolls [1]; in 1995, J. Ries published his 
results on the longitudinal dynamics of a winding zone [2];  and in 1997 B. Boulter 
showed research results on the effect of speed loop bandwidths and line speed on a 
system eigenvalues in multi-span web transport systems (without a dancer or tension roll) 
[3].  

GOVERNING EQUATIONS OF BELT/WEB DYNAMICS 

Let’s start with one rotational roll (roll # i) in the web/belt system, and assume en
iT  

and ex
iT  are the tension forces applied at the entrance and exit places of the rotational roll 

( en
TiQ and ex

TiQ  are the applied torques by the corresponding tension forces), ωi is the roll 
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angular velocity, θi is the rotational angle, and Ji is the moment of rotational inertia of the 
roll. We have 

 

Figure 1– Belt Moving around a Roll 
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where Bvi is the viscous constant representing the dampening effect of the roll assembly to 
the motion, Qi is the combined toque applied by: 1)the driving motor, 2) other 
dragging/action mechanism, and/or 3) the eccentric force if the geometric center of the 
roll is off the rotational center.  

To consider the stretch of the web/belt, we need to establish the relationship between 
the belt tension and belt displacement and roll angular velocity. To derive this 
relationship, we will make the assumption that the belt has no mass. This assumption 
should be quite a realistic one since the belt mass is usually much smaller than the roll’s 
mass. For a mass-less belt, within a span connecting two rolls, the belt displacement 
follows the standard stress and strain law. 

Let’s assume Si is the belt displacement at the belt center between the inner and 
external surfaces on roll i along belt moving direction, and  Li is the span length between 
the rotational roll i and the rotational roll i+1. Assume also there is one stationary 
roll/backing bar (so a drag force is applied there, and assuming roll ik  denotes the kth 
stationary roll along belt span i) or one other kind of drag force located between rotational 
roll i and i+1 (Figure 2); assume Dik is the drag force applied at this stationary 
roll/intermediate location; and assume o

ikL  and i
ikL  are the span lengths between the 

stationary roll to rotational roll i+1 and rotational roll i ( o
ik

i
iki LLL += ). We can find 

that the belt tension and displacement have the following relationship according to 
elasticity theory: 

Ti
ex 

 

Ti
en 

ωi 
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Figure 2 – Drag or Frictional Force at Stationary Roll ik 
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Summing up equation {3} and {4}, noting equation {2} and o
ik

i
iki LLL += , and 

taking a derivative with respect to time (the need to take a derivative is such that the belt 
speed is easily related to the angular velocity of the rotational roll, which will become 
apparent later.), we have: 
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Note from equation {5} and {6}, the tension at the exit point of roll i is identical to the 
tension at the entrance point of roll i+1 if there is no stationary roll (or there is no friction 
on the stationary roll surface) and if there is no drag force applied between the two 
rotational rolls. 

If the drag force is due to the friction between the stationary roll and the belt/web, 
assuming the normal force is Nik, the frictional coefficient is µfk, and the wrap angle at the 
stationary roll is Aik, the frictional drag force is 
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Combining Equation {5} to {7}, and defining a frictional force influence coefficient 
as: 
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we have: 
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If along the span between rotational roll i and i+1, there is more than one friction 
force from stationary rolls and/or more than one dragging force which may not be 
expressed in equation {7}, equations {5}, {6}, {9} and {10} should be modified to be 
generalized as: 
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where  
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To solve equation {1}, we still need to establish a relationship between the belt speed 
and the roll angular velocity. This relationship, however, depends on how we treat the 
contact interface between the roll’s external surface and the belt’s inner surface. 
Depending on the contact conditions, we may generalize the contact interfaces into two 
kinds of assumptions and thus we have two sets of relations, i.e. two versions of 
algorithms to solve the belt dynamical problems. 

 
A) Assume belt is inextensible on the belt/roll contact segment and belt has exactly 

the same speed at the inner surface as the roll’s external surface all over the 
contact zone: 

 
In this case, if we assume Ri is the roll external radius plus half of the belt thickness, 

i.e. Ri = ri +b/2 if we define  ri  as the roll radius (when there is eccentricity, the roll radius 
will be different at different locations at different times and we will use en

iR , bi
iR and 
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ex
iR to denote the roll radii (plus half belt thickness) at the belt entrance, the bisector and 

the exit locations around the contact zone between belt and roll), the belt speed at a 
regular non-tensional roll is: 
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At a tension roll, the tension spring displacement St will contribute to the effective 
span elongation as shown in Figure 2, and the effective velocity, assuming the tension roll 
is roll ti, becomes: 
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Note also the applied torques from the belt tensions are: 
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Figure 3 – Tension Spring 
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If we define an effective torque/force derivative due to drags as: 
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and the derivative of all the applied force/torque as: 
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Using equations {11}, {12}, {13} and {15}, we can rewrite the dynamic equation {1} for 
a roll which is not next to a tension roll (after taking a derivative with respect to time) 
into: 
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Assuming the tension roll is roll ti, from equations {11} and {12}, and using equations 
{14} and {15}, we have the dynamic equation at the tension roll as: 
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Similarly, the dynamic equations for rolls just before and after the tension roll are: 
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Assuming the tension roll mass is Mt, the translational motion of the tensional spring is: 
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Using equations {11} and {12}, and defining an effective force derivative due to 
drags as: 
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we have the equation governing the disturbance component of the translational motion of 
the spring: 
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B) Assume belt’s inner surface has exactly the same speed as the roll’s external 
surface at the bisector of the contact zone and all belt segments follow the stress 
and strain relation elsewhere: 

 
In this case, if we assume there is eccentricity in (rotational) roll i (Figure 4), and Ai 

is the wrap angle, and r
eiS ( dt

dSV
r
eir

ei = ) is the transversal displacement (velocity) (in roll 

radial direction along the wrap bisector line) of the belt at the bisector on roll i due to 
eccentricity (positive displacement is pointing away from the belt loop), the belt speeds at 
the belt entrance and exit places on a regular non-tensional roll are: 
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At a tension roll, as discussed before, the tension spring displacement St will contribute to 
the effective span elongation as shown in Figure 2, and the effective velocity, assuming 
the tension roll is roll ti, becomes: 
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Replacing equations {13} to {14} with equations {24} and {25} in the roll and 
tension spring dynamic equations {17} to {23}, we shall arrive at a set of similar 
equations which are the dynamic equations in contact condition Case B. The equations 
are not listed here to save space, but a simple way to get that set of equations from 
equations in Case A is by replacing all radii at entrance and exit points with the radius at 
the bisector and adding an equivalent drag force from the effect of the radial/transversal 
velocity component due to the eccentricity at the end of each equation. The equivalent 
drag torque from the effect of the radial velocity component due to the eccentricity at all 
the rolls is: 
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Figure 4 – Eccentricity 

And for the tensional spring, the added equivalent drag force from the effect of the radial 
velocity component at the neighboring rolls due to the eccentricity is: 
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ECCENTRICITY CONDITION 

When there is eccentricity on a roll like what is shown on Figure. 4, the effective 
radius ri (which is location and time dependent) is related to the geometric radius r0i by: 
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Or since the eccentricity ei is much smaller than the radius ri and roi, we have: 
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Equation {29} shall be used in finding out the instantaneous radii at the entrance, at 
the bisector and at the exit of each of all the rolls when eccentricities are presented, and 
similarly, equation {30} shall be used in finding out the equivalent drag force in equation 
{26} and {27} when the contact condition Case B is adapted. 

ACTION FORCES/TORQUES 

The derivatives of all the effective action torque applied at each of the rolls can be 
separated into three components:  
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where the first component Qmi is supplied by the motor so that it is non-zero only at the 
driver roll. If we assume dmK  is the torsion spring of the driving shaft, mdθ and dθ  are 
the rotational angles at the shaft’s two ends: one attached to the motor and the other to the 
driver roll (note if we assume mθ  is the motor, mdG is the gear ratio of the motor to driver 

roll angular velocities, mdθ  can be expressed as 
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1 ), we 

have: )( dmddmmi KQ θθ −= . The second component Qai is due to drag because of some 
dragging action mechanism including impact from any disturbance sources. The last 
component Qei is due to torque generated by the gravity force when rolls have 
eccentricity. Assuming the roll mass is M, the eccentricity component is  

 )cos( 0iiiiei tgeMQ ψ+Ω=  {32} 

Note equation {31} does not include the equivalent drag force/torque given by 
equations {26} and {27} which are equivalent drags from the radial/transversal velocity 
due to the eccentricity. This item exists only in contact condition Case B where the belt 
and roll surface are assumed to have the same speed at the contact bisector (same process 
velocity at the bisector). 

DRIVER CONDITION 

Assuming mθ  is the rotational angle of the motor, the motion of a DC motor can be 
described by the following equation: 

 KiK
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J dmddm
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m
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2

θθ
θθ  {33} 

where J is the moment of inertia of the motor assembly (equivalent inertia up to the driver 
shift), bm is the mechanical damping coefficient for the motor, K is the electromotive 
force constant, and i is the armature current of the motor. 

Four different motor driver conditions have been considered in this analysis:  
1) The motor keeps constant angular velocity; 
2) The motor keeps constant torque, i.e. the armature current of the motor is 

kept constant; 
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3) The motor is controlled by a servo and its armature current/voltage is a 
function of the speed or displacement measured at an encoder: a) If the 
current is directly controlled by the servo, equation {33} may be used 
directly to analyze the motor motion; b) if the voltage is specified instead, 
the following equation is required to find the relationship between the 
current and the voltage. 

 dt
dKVRi

dt
diL θ

−=+
 {34} 

where L is the electric inductance, R is the electric resistance, and V is the 
voltage of the driving motor. 

4) The motor is a stepper and its motion is controlled by the servo which used 
the speed or displacement measured at an encoder as its input. 

BOUNDARY CONDITIONS IN OPEN LOOP WEBS 

An open loop web differs from a closed loop belt in that there are two end rolls in a 
web and there the belt is not constrained by the previous/next rolls. We can simply 
simulate the web by a closed loop belt if we assume the next/previous roll for one end roll 
is the other end roll located an infinite distance away. 

NUMERICAL SOLUTION METHODS 

The set of dynamic equations in this analysis are second (or third) order differential 
equations. When there is no frictional force (we assume no frictional force in calculating 
system eigen-values and eigenvectors, i.e. assume the influence to the system eigen-values 
and eigenvectors due to the frictional force is small), the stiffness matrix is symmetric and 
the mass matrix is diagonal and therefore, the general Jacobi transformation method [4] 
may be used to find the eigen-values (resonance frequencies) and eigenvectors. To solve 
for the time responses, the fifth order Runge-Kutta method with an adaptive step size 
control algorithm [5] has been used and no extra assumptions about the magnitudes of the 
frictional and other drag forces have been introduced. In this numerical method (the fifth 
order Runge-Kutta method with an adaptive step size control algorithm), the step size is 
reduced until the solution converges according to the specified tolerance and the first try 
of the next step size is chosen by the error size of the previous step. 

INERTIA COMPENSATED ROLL 

U.S. Patent 3,659,767 to J. R. Martin discloses a "dancer" roll used in web 
transportation [6].  The dancer roll is a roller over which the web/belt passes as it is being 
transported from a roll (medium source side) to another roll and a dancer roll is supported 
by a linear spring and may move translationally in addition to rotationally and a dancer 
roll is used to regulate belt tension so a dancer roll may also be referred to as a tensional 
roll. The dancer roll attenuates and insulates motion disturbances from reaching the 
motion crucial areas of the web; and if designed according to T.R. Martin’s formula, the 
dancer roll is supposed to perform the best. The dancer roll was originally meant to be 
used in the open loop web transportation (the open loop web system may be simply 
referred to as a web), but its area of application may be expanded to include closed loop 
belts (simply referred to as belts in this article) as explained later in this paper.  
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Assuming no web stretch and no resistance from the bearing, and further assuming 
the web wrap angle of the dancer roll is 180 degrees, Martin [6] found that no tension 
disturbance can be transported from one side to the other side of a dancer roll if the 
dancer roll is designed according to the following formula: 

 
2r

JM =  {35} 

where M is the dancer roll mass, J is the moment of inertia and r is the external radius of 
the dancer roll. While this formula gives good guidance for dancer roll design, it is based 
on simplifications which significantly reduce its effectiveness. Specifically, the 
assumption that the wrap angle is 180 o makes it virtually impossible to be used in a 
closed loop belt. Based on the governing equation given above in this article (either the 
contact condition Case A or Case B, a more general design formula for the dancer roll can 
be given as the following [7, 8]: 

 )2/(sin)1( 2
2 A

Ebw
T

r
JM −=  {36} 

where T is the belt/web nominal tension, E is the belt/web Young’s modulus, b is the 
belt/web thickness, w is the web/belt width and A is the wrap angle of the dancer roll.  

To validate the effectiveness of the dancer roll designed according to equation {36}, 
we may use a four roll closed loop belt system shown in Figure 5 as an example. In this 
belt system, roll 1 is driven by a “perfect” roll and roll 3 is a dancer roll, and to simulate 
various disturbances, we will apply a sinusoidal drag force of unit amplitude with 
different frequencies at roll 2 and check if these disturbances will pass through the dancer 
roll to reach roll 4 (since the driver is assumed to be “perfect”, no disturbance can be 
passed there. The only place the disturbances may be passed through is at the dancer roll). 
The results of the analysis are shown in Figure 5. 
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Figure 5 – Four Roll Closed Loop Belt System Using the Inertia Compensated Dancer 
Roll 

The results in Figure 5 are obtained by changing the value of the moment of inertia of 
the dancer roll (roll 3) while keeping everything else constant. The peaks in the modeling 
results in Figure 5 actually correspond to the system resonance frequencies (which varies 
slightly as we change the moment of inertia of the dancer roll). From the results in Figure 
5, we can see the motion error at roll 4 due to a unit amplitude sinusoidal force applied at 
roll 2 varies greatly as the moment of inertia of the dancer roll changes. When the ratio of 

2Mr
J changes from 0.5 (a regular solid roll) to approaching 2.002 [inertia compensated 

roll governed by equation {36}], the velocity error is greatly reduced from 2.77mm/sec to 
0.38mm/sec. This shows how a carefully designed dancer roll may attenuate and insulate 
motion disturbances from reaching the motion crucial areas of a web/belt system. 

MODEL VALIDATION 

Extensive validation works have been performed on this web/belt dynamic model and 
its numerical solution methods. First, a simple two rotational roll belt system was studied 
using a commercial FEA package (by Bin Zhang of Xerox Corp.) and the time domain 
solution when an eccentricity was inputted on the driver was found to be bounded by the 
two results given by the two contact conditions Case A and Case B of this model. The 
model and the results are shown in Figure 6. 
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Figure 6 – Two Roll belt model FEA Validation  

An experiment was conducted (by Bill Nowak and Tom Wyble of Xerox Corp.) on a 
multiple roll closed loop belt module to validate the system resonance analysis. The 
comparison between the model prediction and experiments for a transfer function defined 
as the belt’s velocity error at a particular roll’s surface due to unit belt’s velocity error at 
the driver) is shown in Figure 7 and it showed good correlation. 
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Resonance Frequency Validation*Resonance Frequency Validation*

• Models predicted the belt system had a resonance frequency at 71-85Hz (the 
range was due to modeling the top 4 back rolls as either rotational or stationary 
rolls), and experiment confirmed the resonance frequency at 78.25Hz.

• Experiment suggested there was another resonance frequency at around 120Hz  
the model did not predict. This resonance frequency seemed to come from the 
structure supporting the belt (Frame vibration was noticeable). This model did 
not consider the structural vibration.

• The default damping ratio of 0.1 used in the model seemed to work quite well. 
However, changing the damping ratio to 0.13  did make the modeling and the 
experiment results a little bit more closely correlated. 

*Experimental results are from Bill Nowak
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Figure 7 – Validation of Resonance Frequency Analysis 

SUMMARY 

Two versions of belt/web dynamical models in the process direction based on the 
contact conditions between the belt/web and the roll external surface have been proposed 
in this paper. Case A (Sticking Model) assumes there is no slippage between the belt and 
roll interfaces along the entire contact ranges and Case B (Slipping Model) assumes the 
belt and the roll surface have the same speed at the bisector points of the contact zones 
over the belt roll interfaces (slippage may occur at all points other than the bisectors). 
While the sticking model should more closely match systems where the roll/belt interface 
has full strong traction and the slipping model should simulate a system where the 
roll/belt maintains only a minimum traction to ensure safe motion transaction, these two 
versions seems to give the actual operative range for all true belt/web systems when 
process direction dynamics is considered. An enhanced inertia compensated 
dancer/tension roll working equally well for either open loop webs or closed loop belts 
has been proposed based on the model given in this paper and numerical analyses such as 
FEA and experiments conducted at Xerox laboratory seem to have validated the modeling 
work of this article. 
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