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ABSTRACT 

Almost all winding models incorporate the assumption of small linear deformations 
and strain in development. As such these models treat the addition of a layer of web to a 
winding roll with linear analysis using linear strain theory. Some webs such as tissues and 
nonwovens are highly extensible in-plane and highly compressible through their 
thickness. Do the models which assume small deformations apply to these web materials? 

In this paper a winding model developed using large deformation theory will be 
presented.  The output of this model will be compared with the results of winding tests 
done in the laboratory and with the outputs of models which employ small deformation 
theory to answer the question posed. 

INTRODUCTION 

Material characteristics of webs play an important role on the final state of the wound 
rolls. Among other parameters which are dictating hardness of the roll, the radial 
compressibility of the web dramatically affects the physical state of the wound roll by 
controlling the radial pressures. Radial pressures between layers should be low enough to 
avoid material damage and collapse but also they must be high enough to maintain wound 
roll structural integrity and stability. Thus a precise knowledge of pressures is important. 
[5]  

Most web materials exhibit nonlinear characteristics in the radial direction. Material  
models incorporate this nonlinearity by defining radial modulus of elasticity dependent on 
radial pressure. One of the most widely accepted model is Pfeiffer’s [4]. He defined two 
material constants ( 1K , 2K ) to model the radial material response:  

 )( 12 KPKJ RR +=  {1} 

LARGE DEFORMATION WINDING MODELS 
 

By 
 

C. Mollamahmutoglu and J. K. Good 
Oklahoma State University 

USA 



56 

Here RP  and RJ  are the radial pressure which is taken positive and the tangent radial 
modulus, respectively. As seen from expression {1} the initial modulus is given as the 
product 21KK and the springiness is represented by 2K . As the parameters K1 and K2 
increase the hardness/rigidity will also increase. Nonlinear material models have been 
used with the linear equilibrium laws of elasticity in the development of wound roll 
models [1].  These models solve for the final solution state in several piecewise linear 
increments. Often the number of increments is equal to the number of layers in the roll.  
The incremental solutions produce increments in stress, strain, and deformation in each 
layer due to the addition of the most recent layer to the winding roll.  The increments in 
stress within each layer are used to update the total stress within each lap. The total 
pressure is then used to update the radial modulus JR prior to the addition of the next layer 
and incremental solution.  Within each incremental solution the radial modulus in each 
layer is assumed to remain constant.  

Linear equilibrium laws are always written and solved using the initial configurations 
of a mechanical system. When displacements and/or strains are small this type of 
formulation will provide accurate results. Linear elasticity or the so called small strain 
assumptions are considered to be valid for strains up to 1%. When strains exceed this 
value it is generally accepted that the solution formulation must account for the 
deformation of the body. This type of problem requires special considerations and is 
generally called a geometrically nonlinear problem. This is because the final geometry or 
the configuration of the mechanical system is not known a priori. This final configuration 
or deformed state is an additional unknown of the problem along with the stresses.  

Web materials with low 1K and 2K values exhibit significant radial compaction 
during winding. The total radial strain can exceed 1%.  The winding tension in 
conjunction with web material parameters such as JR(K1,K2) will be key in determining 
the total strain levels in the web layers and hence when a nonlinear wound roll model will 
be required to obtain an accurate solution.  In this study a simple and efficient finite 
element method which accounts for material nonlinearity as well as geometrical 
nonlinearity will be demonstrated. Existing approaches to the problem will be examined 
and finally the importance of the nonlinear wound roll models will be discussed.  

HISTORY OF THE PROBLEM 

Modeling the effect of compaction on the wound roll stress development began with 
the efforts of Good et al [2]. They found that, for soft web materials, the measured in-roll 
radial pressures were considerably lower than the stresses predicted by the well known 
Hakiel [1] model. Good et al argued that during winding the tension of the outer layer is 
decreased significantly because of the compressibility of the outside of the winding roll. 
They determined the ‘lost tension’ by estimating the radial deformation u of the outer roll 
surface during winding. The radial deformation is used to calculate a loss in tangential 
strain which was then used to calculate the winding tension loss. Finally they modified the 
outer boundary of the Hakiel winding model [1] by incorporating this lost tension: 

 r s
r wr s r s
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 
 {2} 

Here Tw is the web tension in the winder tension zone, u is the radial deformation of the 
roll surface and is always negative so there is always a decrease in outer layer’s tension, s 
is the radius of the current outer lap of thickness h, and Jθ is the in-plane web modulus in 
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the machine direction. Good et al verified this model with experiments. This model was 
formed of two sub components. One component estimated the current radial deformation 
of the outer surface of the roll due to the addition of the most recent layer and the other 
component solved for the stress increments due to modified outer boundary condition 
{2}. These increments in stress were then used to update the total layer stresses and the 
layer material properties. Benson [3] unified these two separate features in a large 
deformation model. He proposed a continuum based large deformation formulation which 
simultaneously tracked the deformed shape of roll and calculated the in-roll stresses. One 
of the distinct features of his formulation was the use of new material constants. Benson 
employed different strain definitions which required him to employ different material 
constants (α , β ) to define the radial modulus instead of Pfeiffer’s constants ( 1K , 2K ). 
He did not propose a method to calculate his constants (α , β ) based upon given values 
of Pfeiffer’s constants ( 1K , 2K ). Benson verified his results by comparison to Good et 
al’s pressure test data which also compared well with results from Good et al’s tension 
loss model.  

The models developed by Good et al and Benson were one dimensional.  The output 
of one dimensional winding models are limited to radial and tangential stresses as a 
function of radius. Arola [6] was the first to extend large deformation calculations into a 
two dimensional winding model where stresses could vary both as a function of radius r 
and of CMD (z) location. He proposed a 2D large deformation model based on continuum 
mechanics. He solved the nonlinear equations using linearization and employing the finite 
element method. Arola produced results for the comparison with Hakiel’s model. His 
large deformation model produced pressure results that were about 10% less than those 
yielded by Hakiel’s small deformation model.  He also compared his results to Benson’s 
model but did not present the comparison. Arola reported that he got even better 
agreement with Benson’s model which is logical given that the results from two large 
deformation models should agree better. Although Arola gave extensive detail in the 
formulation of the mathematical structure he did not mention how to select consistent 
material properties for his stress and strain measurements. Also he did not present details 
of how he treated the outer boundary condition for the winding roll.  

Nonlinear formulations demand more in terms of computational time and since they 
generally use different strain definitions they also require different material models for 
consistency. In this study we propose an efficient and yet consistent model. Benson’s 
nonlinear model and Arola’s material model were coded for comparisons. Results from 
all codes are compared with winding experiments done on a spun-bond polypropylene 
non-woven web and on a bath tissue web which are much more compressible than the 
newsprint that Good et al wound in previous tests.  

NONLINEAR GEOMETRIC FORMULATION 

A one dimensional finite element will be developed which can model both geometric 
and material nonlinear behavior for axisymmetric wound roll analysis. The starting point 
of development is the virtual work expression. This can be stated as the equality of virtual 
internal and external works for all configurations: 

 extWW δδ =int  {3} 

For the current configuration the internal virtual work is the virtual work of the real or the 
Cauchy stress field acting through the virtual strains: 
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 ∫ −=
v

T dvW )( 0int σσδεδ  {4} 

Hereδε ,σ , 0σ are the virtual strain vector, the current Cauchy stress vector and the 
Cauchy counterpart of the initial stress vector, respectively. The integration is performed 
for the current configuration. The external virtual work the work of external forces acting 
through corresponding virtual displacements: 

 ∫∫ +=
a

T

v

T
ext daqudvbuW δδδ  {5} 

where q are the external distributed loads acting over the surface of an element and b is 
the body force component acting over the volume of the element. In nonlinear 
geometrical analysis there is a certain difference between the various configurations of the 
body. The deformation of the system must be accounted for and physical quantities must 
be defined according to the selected configuration. As mentioned above the virtual work 
expression {4}, {5} was written for the current configuration. Hence the stresses are 
Cauchy stresses and the strains are small displacement strain components which are the 
work conjugate of each other. One of the most common virtual work structures for the 
nonlinear finite element analysis is to write virtual work expression in terms of initial 
coordinates. Now the virtual work expressions can be converted to the following 
counterparts for the initial configuration: 

 ∫ −=
V

dVESSW δδ :)( 0int  {6a} 

 ∫ −=
V

dVFPPW δδ :)( 0int  {6b} 

 ∫∫ +=
A

T

V

T
ext dAQudVBuW δδδ  {7} 

Here the capital indexes denote that the quantity is written in terms of initial 
coordinates (i.e. v is for current and V is for initial volume). Generally there are two forms 
for the initial counterpart of the internal virtual work expression. During the first 
transformation {6b} from current to initial coordinates the Cauchy stresses (σ ) are 
converted to 1st Piloa-Kirchoff stresses (P) and the small strains (ε ) are converted into 
the deformation gradient (F). The second transformation {6a} converts the Cauchy 
stresses to the 2nd Piloa-Kirchoff stresses (S) and the small strains to Green-Lagrange 
strains (E). These two transformations are identical to each other but they have own 
advantages. For example while first transformation allows simpler numerical formulations 
the second protects symmetry in numerical formulations.  In order to facilitate 
derivations, the internal work expression is now formed as an inner product of stress and 
strain tensors rather then the previous vector multiplication employed for the current 
configuration. Since the current configuration is unknown the virtual work expression is 
highly nonlinear in terms of displacements. In general it is impossible to find an analytical 
solution for the nonlinear virtual work expression so it is linearized in terms of 
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displacements and iterative techniques are employed. The linearization is carried out by 
means of a directional derivative which is based on a Taylor series expansion in multiple 
dimensions. Both the internal and external work may depend on the displacement field 
and also the constitutive relations may be nonlinear as in the example of web materials. 
Considering this the internal and external forces are written as a function of displacement 
field u: 

 int int

ext ext

W W (u)
W W (u)

δ = δ

δ = δ
 {8} 

Taking the directional derivative of )(int uWδ  and )(uWextδ  in the direction of u yields: 

 extuextu WDWWDW δδδδ ∆∆ +=+ intint  {9} 

Here the directional derivative is given as: 
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∆
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=

λλ
λδδ

d
uuWdWD u

 {10} 

After rearranging the virtual work expression, the linear form in terms of incremental 
displacement vector u∆ is obtained: 

 extextuu WWWDWD δδδδ +−=− ∆∆ intint  {11} 

The right hand side is known for a given configuration (i.e. for a given field u it will 
be shown explicitly that the left hand side is linear in terms of unknown incremental 
displacement vector u∆ ). This can provide a solution for the incremental displacements 
and after updating the total displacements a new configuration can be calculated 
progressing toward the final configuration of mechanical system. 

COMPACT AXISYMMETRICAL FORMULATION 

The wound roll is assumed to be an axisymmetric body which is formed by the 
accumulation of the concentric hoops. In this formulation the concept of an initial stress 
will be employed. It will be assumed that the hoops/layers are initially stressed due to web 
line stress. This initial stress will be the only source of load. In this case the external 
virtual work will vanish and the general linearized form incorporating the directional 
derivative is: 

 intint WWD u δδ −=∆  {12} 

Two nonlinear finite element models based on two different material models will be 
developed. These two models will share a common compact finite element formulation.  

Model II 
In the first model the material law proposed by Arola will be adopted which requires 

use of the first virtual work expression {6a}. The axisymmetric form of the first virtual 
work expression is: 
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 [ ] RdRdZESStrW
A

T∫ −= δδ ).( 0int
 {13} 

In the expression the factor of π2  is excluded due to axisymmetry. A compact finite 
element formulation will be developed in which the wound roll is assumed to exist in 
plane strain conditions. This assumption dictates that CMD (z) direction strains and shear 
strains all vanish. In this case the Green Lagrange strain tensor takes the form: 
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The variation of the Green Lagrange strain tensor with respect to the displacement field 
is: 
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Since all the shear strains and CMD strains vanish, the only virtual work will be done by 
radial and tangential stresses and thus the stress tensor takes the following form: 
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The initial stress tensor will have only one nonzero component. The initial tangential 
stress component is equal to the negative web line stress ( wT− ): 
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Now the variation of the internal energy {12} can be expressed as: 
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In the compact finite element formulation reduced quadrilateral elements have been 
employed with a unit thickness and as seen in Figures 1 and 2. A typical element has two 
degrees of freedom which include the radial displacements at the edges 1u  and 2u . 
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Figure 1 – The Axisymmetric Representation 

 

Figure 2 – The Compact Finite Element 

An isoparametric formulation was implemented with the well-known shape functions: 
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and thus the maps between the real coordinates and the natural coordinate η is: 
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2
hrr η+=  {21} 

where r and R are radial coordinates of the mid point of an element for the current and 
initial configurations, respectively. Similarly, as seen in Figure 2, h and H are the 
thicknesses of an element for the current and initial configurations, respectively. By 
employing the nodal displacements the geometric relations between initial and current 
configurations can be written as: 
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 12 uuHh −+=  {23} 

Now the variation of the Green Lagrange strain components can be approximated as: 
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Inserting the above expressions into the variation of the internal energy {18}, accounting 
for the unit thickness and rearranging yields: 
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Now the directional derivative can be incorporated directly by taking differentials of 
the stress components RS and θS : 
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The differentials for the directional derivative can be expressed as Taylor series 
expansions and if only the linear terms are retained: 
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where the term wuTD∆  vanished because it is independent from the displacements and the 
expressions simplified because: 

 1// 21 −=∂−∂=∂∂ uhuh  {29a} 

 2/1// 21 =∂∂=∂∂ urur  {29b} 

Inserting differentials into expression {27} and rearranging produces the following 
linearized form of the virtual work expression in terms of the incremental displacements 
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Since the virtual displacements are arbitrary and to satisfy the linearized form of virtual 
work it is required that: 
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If we rearrange again and use matrix notation we obtain element stiffness equations: 

 eIIeII FuK =∆  {32} 
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where: 
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and [ ]Tuuu 21 ∆∆=∆ . 

Here eII K and eII F are the 2x2 element tangent stiffness matrix and the load vector, 
respectively. The left superscript II indicates that the quantities are derived for 2nd Piola 
Kirchoff stresses. Now the finite element formulation is ready to implement a material 
model. The first material model which will be employed is due to Arola. Here a simplified 
version of Arola’s model will be employed which is suitable for plane analysis. 
Furthermore the Poisson ratios other than the in-plane ratios are omitted because they are 
reported to be small in the literature. Arola never mentioned it explicitly but as seen from 
his formulations and calculations he assumed a constitutive law which relates the 2nd Piola 
Kirchoff stresses and Green Lagrange strains identical to small strain theory. Thus Arola’s 
radial material model directly comes from Pfeiffer: 

 ))exp(1( 21 RR EKKS −−=  {35a} 

The plane strain counterpart (with only nonzero in-plane Poisson ratio) of his tangential 
material model is: 
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where θJ , CMDJ  and θνCMD  are the tangential and CMD modulus of elasticity and the in-
plane Poisson ratio, respectively, and they are measured using nominal stresses and linear 
strains. 1K and 2K are Pfeiffer’s constants. Although using small strain constants with 
Green Lagrange strains is inconsistent the material model will be used for comparison. 
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The material model can be written explicitly in terms of nodal displacements by using the 
definitions of the Green Lagrange strains: 
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Using the chain rule and taking derivatives of the stresses with respect to the nodal 
yields: 
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Inserting these derivatives {37} into the stiffness terms {33} and integrating will 
complete the complete nonlinear finite element formulation of a typical element. If 
constant strain is assumed throughout the element and thus after setting 0=η  the 
following simplified form for the element tangent stiffness matrix and element force 
vector is obtained: 
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Model I 
The second formulation, which uses a different material model, begins with the 

second virtual work expression {6b} which in an axisymmetric form is:  
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The plane strain assumption dictates that CMD direction strains and shear strains all 
vanish as previously and in this case the deformation gradient tensor simplifies to: 
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Taking the variation with respect to displacement field yields the variation of deformation 
gradient tensor: 
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Again in the case of plane strain all shear strains and CMD strains vanish and the 
virtual work will be done only by the radial and tangential stresses. Thus the 1st Piola 
Kirchoff stress tensor takes the following simplified form: 
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As before, the initial stress tensor will have only one nonzero component: the initial 
tangential stress component which is directly equal to negative of web line stress wT− : 
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Now the inner product of variation of internal energy in expression {38} can be 
expanded: 
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Employing the same isoparametric formulation the following expression for the variation 
of the virtual work is produced: 
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Linearization will be carried out similarly to the first formulation. Derivatives are taken 
with respect to nodal displacements and only the linear terms are retained: 
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Inserting these differentials and rearranging yields the following linearized form of 
the virtual work expression in terms of the incremental displacements 1u∆ , 2u∆ : 
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Invoking the principle of virtual work it can be concluded:  
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These equations can be arranged in the matrix form as previously: 

 eIeI FuK =∆  {49} 

where: 
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Here eI K , eI F are the 2x2 element tangent stiffness matrix and the load vector, 
respectively. The left superscript I indicates that the quantities are derived for the 1st Piola 
Kirchoff stresses. The material model proposed uses the 1st Piola Kirchoff stresses and the 
linear strains. This is convenient because in the material characterization experiments 
(stack compression and MD modulus tests) the stresses are always calculated over initial 
dimensions of the specimens. Thus the stresses used to model material behavior are the 
nominal stresses or simply the 1st Piola Kirchoff stresses used in the analysis. The 
material model thus has become: 

 )))1(exp(1( 21 −−−= RR FKKP  {52a} 
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where 1K and 2K are Pfeiffer’s constants, θJ , CMDJ and θνCMD are the tangential and CMD 
modulus of elasticity and in-plane Poisson ratio, respectively. These material constants 
are measured with nominal stresses (here 1st Piola Kirchoff stresses) and linear strains. 

RF and θF are the deformation gradient components for the radial and tangential direction, 
respectively, and they are simply related to the corresponding linear strain components 

Rε and θε : 
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In order to complete the finite element formulation requires the derivatives of material 
relations with respect to the nodal displacements. Using the chain rule:  
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Inserting these derivatives into the stiffness terms {50} completes the nonlinear finite 
element formulation of a typical element for the material modal I. Again for the sake of 
simplicity constant strain is assumed throughout the element and setting 0=η yields the 
following forms for the element tangent stiffness matrix and element force vector: 
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NUMERICAL PROCEDURE 

The finite element formulations developed above can now be implemented into 
wound roll algorithms. Since the tangent stiffness matrices are 2x2 and symmetric the 
usual finite element assemblage procedure results in a very compact form, especially 
when stored in rectangular matrices. The wound roll model will include the core structure. 
The core structure is easily modeled with stiffness terms similar to the web structure but 
with different material constants. In calculations herein the core is considered to be 
composed of a linear orthotropic material. The general frame work of algorithm is shown 
in a flow chart in Figure 3. The key for the algorithm is the definition of a state during 
calculation. State (j,i) in the algorithm is defined as the state (configuration, material 
properties) of the system for ith. iteration step during the addition of the jth. layer. After 
convergence to a desired accuracy is obtained for the addition of a layer the code 
determines whether there is enough space for the next layer prior to achieving the final 
wound roll radius. If there is adequate space then the code calculates the initial 
coordinates of a new layer and places it at the top of current configuration and the 
iteration procedure will start again. A linear form of the nonlinear model can be obtained 
if the iteration decision is omitted. In this case for every lap there will be only single 
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iteration. In fact for hard materials with low radial compressibility the nonlinear code 
indeed executes only for a few iterations prior to convergence. For very soft materials 
there may be no convergence so there is a limit (imax = 100) on the iteration counter i. If 
the code attains this limit the process will be terminated. The material model proposed 
herein (the model with left superscript I) exhibits a much more stable and computationally 
efficient character while solving the winding problem for some imaginary very soft 
materials. The second model (model II) which is sharing the same compact finite element 
formulation but based on Arola’s material assumptions requires iteration limiters for 
avoiding infinite loops. 

RESULTS AND DISCUSSION 

In this section the results of the nonlinear models (model I and II) (which are denoted 
as PK1 and PK2 in the graphs), the linear models (which are denoted as LINEAR and 
LINEAR TL), Benson’s large deformation model and Hakiel’s classic model will be 
compared. The results from models will also be compared with experimental results 
which were collected in winding tests of spun-bond nonwoven polypropylene and bath 
tissue webs that are fine examples of webs with very high radial compressibility. Finally 
results were compared with the previous experimental work done on newsprint by Good 
et al [2]. Before the comparison can precede the details of linear models and Benson’s 
material model require review.  

The results for simple linear models which are based on the same compact finite 
element formulation but derived for small strain assumptions will also be compared. 
Model results with a “LINEAR TL” tag corresponds to small strain version of PK1 and it 
can be easily obtained if the actual PK1 allowed iterating only for once per model layer. 
Here TL stands for “tension loss” which is a feature built in the model instinctively 
because of the pre-stress formulation. In this situation the final tension of a winding layer 
will be lower than the web line stress as expected. The model with “LINEAR” tag is 
basically same with the “LINEAR TL” but it iterates for the winding layer’s tension in 
order to obtain the web line tension level. In this situation the final tension of a winding 
layer will be equal to the web line stress after iteration. Since the material properties are 
kept constant during addition of a layer the “LINEAR” model needs only one solution and 
than a factor can be computed such that when multiplied with incremental strains and 
stresses desired configuration can be obtained.  

In his study Benson used true strain with the Cauchy stresses. Benson started with 
Pfeiffer’s famous radial material model: 

 ( )12
1 −= RKBenson

R eKP ε  {55} 

Here Benson
RP  and Rε  are the compressive Cauchy stress and compressive linear strain in 

radial direction. Using the initial and current thickness (H and h respectively) the linear 
strain is given as: 
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Figure 3 – Flow Chart of Nonlinear Codes 
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Benson assumed a similar radial material law such that: 

 ( )1−=
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RePBenson

R
βεα  {57} 

where α and β are material constants Benson employed instead of 1K and 2K because of 

his choice of strain measure. Here NL
Rε is the true strain and it is given as: 
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Inserting the true strain expression and after algebraic operations Benson obtained: 
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Benson’s material model in the tangential direction is the usual small strain material 
model. He also omitted the Poisson ratios by arguing that they are small. His formulation 
assumed plane stress conditions so there is no coupling between the CMD and 
θ directions either. The relation between 1K , 2K and α , β does not allow any analytical 
solution and Benson did not propose any method to obtain α , β  based upon known 
values of 1K and 2K . One solution would be to perform stack compression experiments 

and curve fit with the relation written in terms of NL
Rε which involves α  and β . This is 

not practical since the 1K , 2K type measurement has been adapted widely in radial 
modulus characterization so a numerical conversion algorithm was developed. The 
development begins by defining the inverse of the compaction ratio of a stack of material 
which has an initial thickness H: 

 
h
Hy =  {60} 

where h  is the thickness under the pressure level SCTP . The superscript SCT stands for 
Stack Compression Test. For a given material the relation between SCTP and y is known 
if 1K and 2K  are known for that material: 
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Taking the derivative of this expression {59} relation with respect to y yields: 
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This relation can be used to produce n data points by defining iy : ith. step of compaction: 
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where ih is the ith. normalized stack height. It can be given as: 

 100/)1(1 −−= ihi   {64} 

The ith. derivative of the compressive pressure ( ) i
SCTP ′ can be obtained which 

corresponds to the normalized stack height ih by substituting iy into expression {62}: 
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This is repeated for i = 1 to n and thus n data points are obtained: 
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The counterpart relation for Benson’s model is: 

 )1( −= βα yPSCT  {67} 

If the derivative is taken as before: 
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A given functional relation written in terms of known 1K and 2K constants has been 
discretized in order to obtain data points for a least square fit of a functional relation 
written in terms of α  and β  which are unknown. Taking the logarithms of both sides 
yields: 
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Now linear regression can be employed over the ( ) 



 ′SCTPln  and [ ]yln terms to obtain 

Benson’s material model coefficients β and α: 
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Both models were coded. The stresses presented for the models developed here are 
the Cauchy stresses since they are the actual stresses measured. For the 1st Piola Kirchoff 
radial stresses the Cauchy stresses are calculated as: 

 RR
I P

r
R

=σ   {71a} 

From the 2nd Piola Kirchoff radial stresses the Cauchy stresses are calculated as: 

 RR
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=σ  {71b} 

The results are calculated for plane stress case by simply taking the in plane ratio 
zero. This is done in order to compare with the Benson’s and Hakiel’s models which were 
developed for plane stress case. In the charts that follow the Cauchy stresses are plotted 
versus the final radial positions of layers ( r ).  The first comparison was performed on a 
spun-bond non-woven polypropylene material which was 0.152 mm in thickness. The 
geometric and web material data are provided in Table 1. The test and model results are 
shown for web line stress level (Tw) of 115 KPa in Figure 4.The pressure data was 
collected in all cases by winding in pull tabs that extended over the width of the roll and 
protruded out both sides of the roll.  These tabs consist of steel shim enveloped in brass 
shim to provide a low coefficient of friction. The tabs were inserted in stacks of the non-
woven and tissue web. The stacks were subjected to varied pressure and the force 
required to cause the steel shim to slip within the brass shim was measured. In this way 
calibration curves were developed for each pull tab. The pull tabs were then wound into 
test rolls and after winding completed the force required to cause each pull tab to slip was 
measured and from the calibration charts the pressure was then known at that roll radius. 

Tests and simulations were also conducted for a bath tissue which was 0.182 mm in 
thickness.  Note the inputs required to execute the models are provided in Table 2.  Also 
note that the tests and simulations were conducted for two winding tensions. Results for a 
web line tension of 92.4 KPa are presented in Figure 5 and results for a web line tension 
of 59.2 KPa are presented in Figure 6. 
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Core inner radius 1.27 cm JCMD 16550 KPa 

Core outer radius 5.08 cm Jcore 6.9 10^8 KPa 

Roll final radius 24.1 cm νcore 0.3 

K1 1.32 KPa α 2.25 KPa 

K2 13.39 β 9.6 

Jθ 55160 KPa Tw 115 KPa 

Table 1 – Material and geometric properties for Spun-bond Non-Woven Polypropylene 
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Figure 4 – Radial Pressures for Spun-bond Non-Woven – Tw=115 KPa 

Core inner radius 1.27 cm JCMD 3337 KPa 

Core outer radius 4.45 cm Jcore 6.9 10^8 KPa 

Roll final radius 19 and 22.9 cm νcore 0.3 

K1 0.258 KPa α 0.44 

K2 13.474 β 9.67 

Jθ 3337 KPa Tw 59.2 and 92.4 KPa 

Table 2 – Material and geometrical properties for Bath Tissue 
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Figure 5 – Radial Pressures for Bath Tissue– Tw=92.4 KPa 
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Figure 6 – Radial Pressures for Bath Tissue– Tw=59.2 KPa 

The material and geometrical data for the newsprint which was 0.071 mm in 
thickness is given in Table 3. Newsprint results are shown for two levels of web line 
stress: 5.17 and 3.45 MPa in Figures 7 and 8 respectively.  
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Core inner radius 1 cm JCMD 3.37GPa 

Core outer radius 4.45 cm Jcore 6.9 10^8 KPa 

Roll final radius 13.35 cm νcore 0.3 

K1 1.175 KPa α 1.54 KPa 

K2 45.14 β 39.72 

Jθ 3.37 GPa Tw 3.45, 5.17 MPa 

Table 3 – Material and geometrical properties for Newsprint 
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Figure 7 – Radial Pressures for Newsprint– Tw=5.17. MPa 
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Figure 8 – Radial Pressures for Newsprint– Tw=3.45 MPa 
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Mean absolute error tables have been produced for the cases shown here in order to 
clearly understand the models prediction capabilities in comparison to the test data. 
Tables 4, 5 and 6 are calculated for the spun-bond non-woven, the bath tissue and 
newsprint, respectively. 

 
Spun-bond Mean Absolute Error (KPa) 

Models Tw=115. (KPa) 
PK1 0.124 

Linear 0.139 
Linear TL 0.122 

PK2 0.094 
Benson 0.120 
Hakiel 0.139 

Table 4 – Mean Absolute Error for Spun-bond Non-Woven 

Bath Tissue Mean Absolute Error (kPa) 

Models Tw= 92.4 (kPa) Tw=59.2 (kPa) 

PK1 0.653 0.140 

Linear 0.701 0.132 

Linear TL 0.585 0.152 

PK2 0.610 0.455 
Benson 0.530 0.189 
Hakiel 0.689 0.180 

Table 5 – Mean Absolute Error for Bath Tissue 

Newsprint Mean Absolute Error (kPa) 
Models Tw= 3.45 (mPa) Tw=5.17 (mPa) 

PK1 8.81 13.0 
Linear 19.7 51.5 

Linear TL 13.6 30.5 
PK2 16.7 34.0 

Benson 17.0 31.2 
Hakiel 22.0 54.8 

Good TL 12.5 41.9 

Table 6 – Mean Absolute Error for Newsprint 

In Table 6 we have also included results from Good’s tension loss model (Good TL) 
[2]. 
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CONCLUSIONS 

Based on comparison of error levels from tables from all the nonlinear models for all 
web materials studied it cannot be said that one nonlinear model is superior to another. 
From Table 4 it is seen that PK2 is best for Spun-bond Nonwoven , from Table 5 its is 
seen that PK1 and Benson’s models predicted better for bath tissue and finally from Table 
6 it is clear that PK1 works better for newsprint. It can be concluded that all these 
nonlinear models produced similar results.  

An important question would be why do the results of the nonlinear models and the 
linear model that accounts for tension loss agree so well? When a layer of web material is 
added to the outside of a winding roll the majority of the deformation occurs in an outer 
few laps. Both the nonlinear Model I and the linear model are pre-stress formulations that 
allow the loss of tension in the outer layer reported by Good et al [2].  It must be 
concluded that the interaction between stress and deformation in the layers beneath the 
outer lap are inconsequential on the final stress or pressure distributions in the roll. Still 
intriguing are the levels of radial strain wound into these rolls.  To demonstrate the total 
radial strain for the spun-bond non-woven, computed using the nonlinear Model I, is 
shown in Figure 9.  As shown these strains are much in excess of the 1% that is 
conventionally held as the limit for linear small strain analyses.  Although it is possible 
that nonlinear models may show benefit for materials with yet lower K1 and K2 values it 
must also be said that the spun-bond non-woven and tissue webs for which results were 
reported herein have some of the lowest K1 and K2 values the authors have ever witnessed 
among a host of web materials.  So it is unknown if yet more compressible webs exist that 
would require the use of a nonlinear wound roll model.  That being said all the wound roll 
models discussed herein account for material nonlinearity. 
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Figure 9 – Total Radial Strain from Model I for Spun-Bond Non-Woven – Tw=115 KPa 

The findings herein are important as wound roll models have already evolved to 2D 
axisymmetric codes such that the effects of thickness and length nonuniformities can be 
examined.  This has caused a dramatic increase in problem size and if nonlinearity was 
important iteration would be required and huge investments of computation time would 
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be required to solve problems where the web compressibility was high.  The finding that 
linear models that account for tension loss (such as the pre-stress axisymmetric code - 
described herein as Linear TL) produce accurate results for even these highly 
compressible materials will help to greatly reduce computational time in the 2D codes. 
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 Large Deformation Winding Models C. Mollamahmutoglu & J. 

K. Good, Oklahoma State 
University, USA 

 
Name & Affiliation Question 
Balaji Kandadai, 
Kimberly-Clark 
Corporation 

You have shown results where K2 is very low and hence the 
radial modulus is small. Have you tried to model webs that 
have really low machine direction modulus as well as low 
K2 values? 

Name & Affiliation Answer 
C. Mollamahmutoglu, 
Oklahoma State University 

For bath tissue the MD modulus is very low, it is about 
3.337 MPa. The results we have shown are for real webs 
with low radial and machine direction modulus.  We 
elected to show results for the newsprint because it was 
used in two previous publications regarding tension loss 
and nonlinear wound roll models.  We then produced 
results for the bath tissue and the non-woven webs because 
these were the lowest modulus webs available and should 
provide a true test of the value of a nonlinear model. 
 
Certainly it would be possible to run these models for 
imaginary webs with even smaller modulus values than 
those studied thus far.  We elected to show results for 
existing webs. 

Name & Affiliation Comment 
J. K. Good, Oklahoma 
State University 

If you look at the spun-bond materials in Table 1, the K2 
values are not all that different than the bath tissue in Table 
2. The big difference between the spun-bond and the bath 
tissue is that in the MD modulus Jθ are really quite a bit 
different. This is part of the reason we showed the results 
for these two materials. Why do the linear models which 
employ tension loss work so well in these cases for these 
materials which are some of the lowest K2 that we have 
measured? Part of my explanation for this is that these 
materials are incapable of reacting much web tension prior 
to failure. If you could subject these webs to greater 
winding tension without failing them, perhaps you would 
see a greater benefit of the nonlinear models.  If webs are 
developed that have low MD and radial modulus and can 
be subjected to high winding tension we could see benefit 
from the nonlinear winding models.  My experience is that 
these properties are mutually exclusive however. 

Name & Affiliation Question 
Dilwyn Jones, Emral Ltd. You have shown that the linear and nonlinear models are 

similar in the predictions for the pressure, have you looked 
at the circumferential stresses to see if they are similar? 

Name & Affiliation Answer 
C. Mollamahmutoglu, 
Oklahoma State 
University. 

Yes, we looked at them and yes they are similar. 
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Name & Affiliation Question 
Balaji Kandadai, 
Kimberly-Clark 
Corporation 

It appears the linear tension loss model accounts for the 
majority of the nonlinearity in the winding roll.  Since this 
type of model produces results that are essentially the same 
as the nonlinear models does this mean the nonlinear 
behavior of the inner layers of the wound roll is small and 
inconsequential? 

Name & Affiliation Answer 
C. Mollamahmutoglu, 

Oklahoma State 
University 

Yes, you are correct. 

 




