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ABSTRACT 

Axisymmetric wound roll models provide the greatest definition of wound roll 
internal stresses to date.  Simple one dimensional models can provide the user with radial 
profiles of pressure and circumferential stress as a function of radius.  These models later 
evolved into pseudo two dimensional models where for the first time the impact of web 
nonuniformities such as thickness and web length could be studied across the web width. 
These models are described as pseudo two dimensional models because they were a series 
of the earlier one dimensional models.  As such the outputs were limited to the pressure 
and circumferential stress outputs of one dimensional models but could also be used to 
predict the shape of the wound roll. Axisymmetric models provide outputs of pressure, 
circumferential stress, axial stress, and shear stress as a function of radius and cross 
machine direction location throughout a wound roll.  As such these models are capable of 
describing more types of roll defects than all previous winding models.  This paper will 
focus on the development of a new two dimensional axisymmetric wound roll model 
based upon a pre-stress formulation. The roll defects that axisymmetric models can be 
used to analyze will also be discussed. 

INTRODUCTION 

Winding models have greatly matured since their inception. One dimensional models 
became essentially mature when Hakiel developed his wound roll model based upon the 
theory of elasticity [1]. This model was the first to combine all of the important influences 
that govern the behavior of the winding of elastic web materials.  Similar to other one 
dimensional models Hakiel assumed that the spiral geometry of a web wound onto a core 
could be replaced by concentric rings of web material. This was the first model that 
accounted for stiffness of an elastic core and properly treated the web material properties, 
especially the radial modulus of the wound roll (Er) which is state dependent on pressure 
or radial strain.  This model was a second order differential equation written in terms of 
radial stress increments and the first and second derivatives of these stress increments 
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with respect to radius. The radial stress increments were due to the addition of the most 
recent web layer to the outside of the roll. 
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The coefficients in this differential equation included a non constant term (the radial 
modulus) and thus the differential equation could not be solved in closed form.  Instead it 
was solved many times, sometimes as many times as there were layers of web in the 
wound roll. Each time the equation was solved two boundary conditions were required 
since the equation was second order.  One boundary condition resulted from assumed 
knowledge of the winding tension from which the radial stress beneath the outer lap could 
be determined: 
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The second boundary condition was based on continuity in deformation at the core.  
The deformation of the outside of the core had to equal the deformation of the inside of 
the first layer of the wound roll. This resulted in a derivative boundary condition (radial 
stress with respect to radius) at the inside of the roll. 
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Each time the differential equation was solved the increment in radial stress in every 
web layer was known as a result of winding on the most recent layer. These increments in 
radial stress were summed within each layer to determine the total pressure. After each 
lap is added the total radial stress in each layer is used to update the values of the radial 
modulus (Er) in each layer.  After all layers have been wound onto the roll the final total 
radial stress as a function of radius is known in the wound roll. Using the equilibrium 
equation in polar coordinates the circumferential stress can be inferred as a function of 
radius as well: 
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σ
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After executing a model such as Hakiel’s a number of times it becomes evident that 
the winding tension that enters the model through the outer boundary condition is the 
most influential input parameter. No other input parameter influences the total roll 
pressures and the circumferential stresses output than the winding tension.  Thus it is 
important in winding models whether they are 1D or 2D models that the winding tension 
be known accurately and in the case of 2D models that it be distributed correctly across 
the web width. 

PSEUDO 2D WINDING MODELS 

Webs are produced and processed by manufacturing methods which cannot produce 
exact uniformity in thickness and length.  Both web thickness and length can vary across 
the web width. These variations may or may not be persistent in time and thus they may 
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change down the web length.  Both of these imperfections can affect the winding tension 
across the web width.  Again winding tension was the most influential winding parameter 
found with 1D models and now that parameter is found to vary across the roll width.  One 
dimensional models by definition were incapable of capturing the impact of these 
nonuniformities on the pressure and circumferential stresses.  Based on this need the first 
pseudo two dimensional wound roll models appeared [2,3]. The adjective pseudo is used 
here in that in both cases these first models were a series of one dimensional models. 
These models focus on the nonuniform allocation of winding tension across the web 
width to each the one dimensional models as a function of the outer lap radius across the 
web width. Hakiel [2] introduced the concept of a relaxation radius ro. This was the radius 
of a cylinder of web material in its relaxed state. This cylinder of web was then expanded 
and allowed to contract onto the outer surface of the wound roll.  The total winding 
tension was the sum of the tensions in the outer laps of the individual sectors represented 
by the one dimensional winding models.  The tension within each sector was dependent 
on the current outer radius of the roll in a sector, which was calculated by the winding 
models, and the relaxation radius (ro) per:  
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In this expression the ri were the outer radii of each of the one dimensional winding 
models after the last layer was added.  The deformed radius was not a primary output of a 
one dimensional winding model written as a second order differential equation in radial 
stress.  Given the incremental radial and tangential stresses however the incremental 
radial strains could be assessed and integrated to produce increments in radial 
deformation in each lap due to the addition of the most recent lap.  These incremental lap 
deformations could be summed within each lap to produce the total lap deformations 
which in turn could be used to establish the deformed radial location of all laps. 

The value of ro in expression (4) was iterated until the sum of the web tensions in the 
individual segments was equal to the applied winding tension.  Kedl [3] apportioned the 
winding tension across the roll width by noting that the wound roll has a constant angular 
velocity across its width. His first estimate was of the form: 
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and Ravg is the average radius of the wound roll. The Ri were the outer radii of all the 
outer laps computed by the one dimensional models.  Typically if these first estimates are 
summed for all of the sector models across the roll width, the sum is less than the total 
web tension (Tw). This is because the Ri values decrease during the addition of a new 
layer to the wound roll due to roll deformation. Also the value of Ravg is too high because 
it was computed based upon the undeformed radius of the wound roll.  Thus as with Cola 
and Hakiel’s model [2] some iteration is required before the sum of the sector tensions do 
equal the web tension. 

The output of the pseudo two dimensional models developed by Cole and Hakiel [2] 
and Kedl [3] were limited to the outputs of the one dimensional models they employed.  
Thus the outputs of these models were the radial and circumferential stresses which were 
now known as a function of radius and across the web width in sectors represented by the 
series of one dimensional models. When modeling web thickness variation across the web 
width the web would be divided into sectors of equal width.  Thickness profiles would 
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then be averaged within the sector to provide a sector web thickness which could be input 
to the one dimensional winding model for that sector.  If these average thicknesses were 
rearranged the stresses output would be identical but also rearranged. Thus the value of 
the pseudo two dimensional models was in determining the maximum and minimum 
pressures and circumferential stresses within a roll and then relating these stresses to 
associated defects.  For instance localized blocking could be predicted due to localized 
pressures in excess of the blocking pressure.  Local yielding of the web could be 
predicted if the circumferential stresses exceeded the yield stress of the web. An artifact 
of employing multiple one dimensional models was that the radial continuity of a web 
layer was not ensured between the sectors. The deformed radial locations of the layers 
computed were at assumed to exist at the widthwise center of each sector.  Hakiel 
designed a segmented core in which each segment was instrumented with strain gages 
such that the pressure between the first lap and the core could be monitored throughout 
the wind.  He also developed a device for measuring the radial location of an outer lap 
across the width of a roll. The segmented core was a deviation from the cores used 
commercially that are continuous across the roll width.  It could be argued that a 
segmented core was the best means of verifying a pseudo 2D model. As mentioned 
previously these models provided no assurance of radial continuity of a layer but nor did 
they assume continuity of the core. 

WOUND ROLL PRE-STRESS FORMULATION 

A new axisymmetric wound roll model formulation will follow.  A key element that 
must be accommodated is the proper distribution of the web tension across the width of 
an outer layer whose radius is varying due to web thickness variation.  The web tension 
may vary across the web width as well due to web length nonuniformity. 

A Pre-Stress Finite Element Formulation 
The concept of a pre-stress type formulation will be introduced. In the wound roll 

model development the incoming layer has an initial stress called the web line stress. A 
key feature of a pre-stress type formulation is to incorporate this stress as a source of load 
for the general roll structure system. The formulation begins with basic concepts of stress 
and strain relations in linear elasticity: 

 0 Mσ − σ = ε  

Here σ, σ0, ε are vectors including ordered components of final stress, initial stress 
and the strain that result from the stress state difference (σ – σ0) between initial and final 
configurations respectively. M is the symmetric orthotropic material stiffness matrix 
which relates the axisymmetric stresses to the corresponding strains. An energy 
expression which defines the total potential energy of the system will be developed. In the 
derivation of the total potential energy generally there are two sources. One source is the 
potential energy produced by the internal forces (stresses) and while the second is the 
potential of the external forces. There is not an explicit external force for the wound roll 
winding process. The total potential energy arises only from internal forces. The strain ε 
which resulted from the stress difference σ – σ0 will perform work. For a unit volume of 
the body the elastic potential energy produced by the stress difference can be given as: 

 ( )T1 0
1PE
2

= σ − σ ε  {6} 
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The factor of ½ results from the linear dependency of the strains on the stress 
difference.  There will also be work performed by the strains ε and the initial stresses σ0. 
Since the initial stressesσ0existed prior to the development of the strains which resulted 
from the stress difference there is no factor of ½ : 

 T
2 0PE = σ ε  {7} 

The total potential produced in a unit volume will be: 

 ( )T T
0 0
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2

= σ − σ ε + σ ε  {8} 

and the total potential energy for the entire body can be given by the following volume 
integral: 
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This can be solely expressed in terms of the strain and the known initial stress by 
using constitutive properties which relate the stress difference and the strain (XX).  
Substituting yields: 
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where M is the symmetric matrix representing orthotropic material behavior. The final 
energy expression is potential energy of a system with initial stress applied only. 
Equilibrium will be satisfied when the first variation of the potential energy vanishes with 
respect to strain. Substituting yields: 

 ( )T T
0

V
TPE M dV 0δ = δε ε + δε σ =∫    {11} 

The finite element method will be used to form a numerical solution of these 
equations. In the finite element method the body will be divided into sub-bodies with 
simple geometric characteristics and the unknown variables (displacements herein) will be 
defined only for the nodes on the boundaries of the sub bodies. These sub bodies are 
called elements. The total displacement field within the element is then represented by 
interpolation of the unknown nodal values over the domain of the elements. The same 
interpolation equations (called shape functions) will be used for all elements. A typical 
element will have N nodes on the boundary of element. Every node will have a certain 
number of degrees-of-freedom (dof) required by the mathematical model. For example for 
the wound roll models based on axisymmetrical considerations there will 2 dof for each 
node of the element in the (r,z) coordinate system. These dofs will correspond to the u 
and w displacements of each node. The displacement vector within the domain of an 
element will be defined as: 

 [ ]Te e eu u (r,z) w (r,z)=
  {12} 
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It is assumed that there are N representative points or nodes on the boundary of the 
element. In order to represent the elemental displacement field as an interpolation of the 
nodal values the unknown vector of nodal displacements is first defined: 

 [ ]T*
e 1 1 N Nu u w ....... u w=
  {13} 

The interpolation or shape functions will be denoted as φi(r,z) i=1,…,N, thus the 
deformation anywhere within the domain of an element can be written in terms of the 
nodal deformations as: 

 *
e eu  u= Φ
   {14} 

The same shape functions are commonly used to interpolate both the u and w 
deformations and thus: 

 φ φ 
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These functions must satisfy some conditions. First the elemental deformation should 
yield the nodal deformation at the nodal locations.  This is ensured by forcing the shape 
functions to take a value of unity at the node they are associated with and zero at all other 
nodes. This can be stated mathematically as: 

 i j j ij(r ,z )φ = δ  for j=1,…,N {16} 

where δij is the Kronecker delta. The second condition is that the shape functions should 
be as sufficiently smooth as the mathematical model requires. The second condition 
ensures that derivatives exist in the discrete numerical representation of the mathematical 
model. Now the strain components can be derived from displacements. Using the 
differential operator D the element strain vector is:  

 e eDuε =


    (17) 
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Since the nodal values of deformation are not functions of position the strains can be 
written in terms of nodal displacements as: 

 *
e e(D )uε = Φ

  (19) 

In this situation the variation of the strain will be simply given with the variation of 
the nodal displacements: 

 *
e e(D ) uδε = Φ δ

 , [ ]T*
e 1 1 N Nu u w ....... u wδ = δ δ δ δ
  {20} 
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The potential energy expression is written for whole body. Since we are working with 
finite elements we simply assume that total potential is the sum of the potential energies 
of the individual elements: 
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Here for the sake of simplicity every element is assumed to have the same initial 
stress. If we substitute these discretized strain and its variation into variation of potential 
energy for a typical element the discretized form of equilibrium is obtained: 
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Here B is the matrix which includes the derivatives of the interpolation functions: 

 B D= Φ  {23} 

The matrix vector form of elemental equations can be written in terms of element 
stiffness matrix and element nodal force matrix: 
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The elements are connected together at boundaries by the nodes. A model of the 
body can be developed using the general finite element assembly procedure. The global 
stiffness matrix, global displacement vector and global force vector replace the 
summation over elements: 

 ( ) ( )T* *W u Ku F 0δ = δ − =
   {25} 

Finally since the variations are arbitrary, equilibrium can be satisfied by forcing 
FuK *  to vanish.  Thus the famous general system of equations for the finite element 

formulation: 

 *Ku F=
  {26} 

A Pre-Stress Axisymmetric FEM Wound Roll Model 
The general finite element equations for the pre-stress formulation of an 

axisymmetrical solid body have been written. The axisymmetrical wound roll formulation 
is based on the accumulation of the web layers as concentric hoops. To solve the 
complete winding problem as the roll is wound from the core to the final radius requires 
the solution for the incremental strains and stresses that resulted from the addition of each 
layer. These increments are summed within each layer to produce the total strains and 
stresses in that layer. Most web materials have a radial modulus which is dependent on 
pressure that requires the material properties to be updated as a function of the total 
pressure after a layer is added. A general geometric view of wound roll model is given in 
Figure 1. Identical rectangular elements aligned along the z direction for represent a layer. 
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Since all elements in this case are identical this configuration would correspond to a 
uniform thickness case. By employing elements with different side heights in the radial 
direction, a non-uniform web thickness case across z direction can be modeled. 

 

Figure 1 – Modeling of Wound Rolls with Axisymmetric Finite Elements 

Most webs are quite thin and the assumption that the stresses are nearly constant 
throughout the element is reasonable. Quadrilateral elements are optimum in terms of 
computational time and accuracy and thus were chosen. A typical element has 4 nodes at 
the corners with linear sides connecting them. Instead of defining the element in the (r,z) 
coordinate system a natural coordinate system (η,ξ) will be employed which simplifies 
numerical integration. An isoparametric formulation was employed. This means that the 
shape functions used to map the element deformations are identical to the functions which 
define the transformation from original to natural coordinate system.  A general 
quadrilateral element in (r,z) and its mapped counterpart in (η,ξ) coordinates are shown in 
Figure 2. The related mathematical operations are briefly defined below. 
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Figure 2 – Actual r-z and Natural ηξ Coordinates for an Axisymmetric Finite Element 

The actual coordinates of a point within the element are expressed in terms of nodal 
coordinates and shape functions. The (r,z) coordinates of the nodes are:  

 [ ]T1 2 1 1 2 2r r ,r ,r h ,r h= + +
  {27} 

 [ ]T1 1 1 1z z ,z w,z ,z w= + +
  {28} 

The (r,z) coordinates of a point inside the domain of the quadrilateral element are: 
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For quadrilateral elements the shape functions are easily written in terms of the 
natural coordinates: 
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With shape functions defined the Jacobian J and its inverse J-1 can be formed. 
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Components of the inverted Jacobian are used for the transformation of derivatives in 
the D matrix. 
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The transformation of the integral for the element stiffness matrix is completed by 
substituting D* instead of D and converting the infinitesimal volume element dVe to the 
natural coordinates. 

 *B D= Φ  {35} 

 edV 2 det[J]rd d= π η ξ  {36} 

 1 1 T
e e

1 1
K 2 B M Bdet[J]rd d

− −
= π η ξ∫ ∫  {37} 

These elemental stiffness terms will be evaluated by employing numerical 
integration. In this case Gauss Quadrature with 2X2 Gauss points was used for 
computational efficiency and accuracy. Here the (p,s) component of 8x8 axisymmetrical 
quadrilateral element stiffness matrix is shown: 

 ( ) ( ) q jq j q j

2 2 t
e q j e (g ,g )pk(g ,g ) ls(g ,g )ps klq 1j 1

K 2 B M B r( , )det[J]
= =

= π ω ω η ξ∑ ∑  {38} 
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where ωq and ωj are the Gauss weights for the qth Gauss point in the ηdirection and jth 
Gauss point in the ξdirection, respectively. The parenthesizes denote the associated value 
is calculated at the (gq, gj) Gauss point.  A similar calculation is carried out for the 
elemental force vector. 

 1 1 t
e 0

1 1
F 2 B det[J]rd d

− −
= − π σ η ξ∫ ∫  {39} 

 ( ) ( ) q jq j

2 2 t
e q j 0 (g ,g )pk(g ,g )p kq 1j 1

F 2 B r( , )det[J]
= =

= − π ω ω σ η ξ∑ ∑  {40} 

Web materials also exhibit state dependent behavior. The radial modulus of elasticity 
Er is a function of the radial stress σr. One of the most common constitutive relations used 
is the model of Pfeiffer. He proposed to establish the the following expression for Er: 

 r 2 r 1E K ( K )= −σ +  {41} 

Here K2 and K1 are Pfeiffer’s material constants which are obtained via stack 
compression experiments for a particular material.  Hakiel employed an expression for Er 
of the form: 

 r 2/K
r 1E K (1 e )σ= −  {42} 

Here K1 and K2 are different than Pfeiffer’s constants for a given web, the point 
being that the dependency of Er on radial stress has been modeled using more than one 
expression. Taking into account Maxwell relations, the elastic compliance matrix C which 
is the inverse of M can be given explicitly as:  

 { } [ ]{ }
r r rz z r r

z rz z z z z

rz rz rz

r z

1/ E v / E 0 v / E
v / E 1/ E 0 v / E

C
0 0 1/ G 0

v / E v / E 0 1/ E

θ θ

θ θ

θ θ θ θ θ θ θ

ε − − σ    
    ε − − σ    ε = = = σ    γ τ    
    ε − − σ    

 {43} 

 1M C−=  {44} 

Each finite element will have a different radial modulus Er depending on the radial 
stress in that element. This situation makes the problem nonlinear and requires utilizing 
linearization techniques. Rather than using more complicated and processor time 
consuming Newton-Raphson methods an ad-hoc approach which is very compatible and 
sufficient assumes Er of all elements remain at constant levels during the addition a layer. 
The system of linear finite element equations can be solved and the incremental stresses 
due to the addition of the most recent layer can be calculated. Finally the stress state of all 
elements was updated using the incremental stresses and using the updated stresses Er for 
all elements is updated prior to the addition of the next web layer. 
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This completes the finite element formulation of the problem. Now the appropriate 
initial stress vector for the simulation of the winding must be defined. Figure 3 shows a 
typical instance during a winding simulation of a nonuniform thickness web. 

 

Figure 3 – Treatment of the Outer Lap using a Pre-Stress Formulation 

The nonuniform web thickness in the cross machine direction (CMD) results in 
nonuniform profile in radius across the roll width.  This radius profile will vary as the 
wound roll is wound.  Wound rolls may be comprised of hundreds to thousands of layers 
and if the widthwise web thickness variation persists in the machine direction (MD) large 
variations in the radius of the outer lap across the roll width can occur.  Thus the tension 
will vary in the outermost layer depending on the CMD position. CMD positions with 
higher radial profiles should be subject to greater tangential stress and vice versa. In order 
to simulate this effect in a mechanically consistent manner the notion of a relaxation 
radius, first coined by Hakiel, will be employed. If it was possible to extract the outer 
layer from a wound roll and allow it to relax to a stress free state, the radius of the 
undeformed cylinder of web would be the relaxation radius. Given the relaxation radius 
for a given roll profile the corresponding strains for all CMD positions can be computed.  
In a first attempt to calculate the relaxation radius for a given roll profile and web line 
stress Tw the mechanical equilibrium of the outer winding layer is established: 
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Here Aj and Eθj are the area and tangential modulus of elasticity for the jth sector, 
respectively. The integrand is the strain of a radial position in the jth sector so multiplying 
by Eθj and integrating over the sector gives the total tangential force contribution of jth 

sector. Aj and the integral can be expressed explicitly as below: 
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Here the width of a typical sector is denoted as w and it is taken constant. rr is the 
unknown relaxation radius which is assumed to satisfy tangential mechanical equilibrium 
of the winding layer. After algebraic manipulations the relaxation radius rr is obtained as 
below: 
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This calculated relaxation radius then can be used to calculate the initial stresses of 
each sector. Here the initial stress vector is obtained and is shown to depend on the 
calculated relaxation radius as a function of radial position in terms of natural 
coordinates: 
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This initial stress in a vector form is for the jth sector. It can be used in the calculation 
of corresponding nodal load forces using the elemental force vector:  

 ( ) ( )
= =

= − π ω ω σ∑ ∑ q j q jq j q j

2 2 t
e q j 0 (g ,g ) (g ,g )pk(g ,g )p k(g ,g )q 1j 1

F 2 B r det[J]  {50} 

This procedure is applied to all elements (sectors) of the winding layer and the 
resulting elemental load vectors are assembled into a system force vector using the direct 
stiffness assembly method. The resulting system of equations is solved and the 
corresponding unknown incremental displacements are obtained for all layers in the roll 
structure. Incremental strains and stresses are then computed for the addition of the most 
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recent layer. Since there was no assumed radial compaction of the roll structure when the 
relaxation radius was computed, the resulting average tangential stress will be lower than 
the input Tw. This is the result of tension loss. The outer winding layer loses some of its 
tangential stress as the roll deforms inward beneath it.  The degree to which this occurs 
depends on the radial modulus of the web being wound and the winding tension level.  
Webs with a high radial modulus will exhibit very little tension loss and the average 
tangential stress in the outer lap will approach the web line stress Tw. 

If it is desired to force the average tangential stress in the outer lap to equal the web 
line stress Tw a procedure to iterate the relaxation radius of the outer lap is required. The 
first calculated relaxation radius will be denoted rr1. The first average tangential stress of 
the outer winding layer calculated via finite element equations will be denoted Tθ1. A 
smaller relaxation radius than rr1 will result in greater average tangential stress so that a 
second iteration for the relaxation radius, rr2, can be given as: 

 
θ

= w
r2 r1

1

Tr r
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After the second relaxation radius rr2 is used in the finite element calculations as rr1 
and solving the resulting equations the average tangential stress Tθ2 for rr2 can be 
obtained. Finally using the first and second approximations for the relaxation radius linear 
interpolation can be used to solve for the third relaxation radius which would be expected 
to produce an average tangential stress in the outer layer in the tangential direction equal 
to the web line stress: 
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θ θ
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When the third relaxation radius is input to the finite element code it is found that the 
average tangential stress is approaching the web line stress (i.e. cTT 3w ≤− θ   and c is 
typically on the order of 10-4x Tw). 

Other Axisymmetric Winding Models 
With one axisymmetric winding model described fully other models can be described 

more easily. 
All of these models employ the finite element analysis for solution. These codes were 

all written as standalone codes, they do not employ commercial solvers. Typically 
problems that require creation of elements and have state dependent material properties 
evaluated at intermediate solution steps are not efficiently solved by commercial codes. 
Of the axisymmetric models reported in the literature Cole and Wickert [4] and Hoffecker 
and Good [5] have incorporated the use of the small deformation theory and linear strains 
whereas Arola and von Hertzen [6] incorporated large deformation assumptions. 
Mollamahmutoglu and Good [7] have conducted a thorough analysis of this topic and 
found that linear models that accommodate tension loss in the outer lap produce results 
that are identical to the large deformation models, even for highly compressible web 
materials such as paper tissues and nonwovens.  The Pre_Stress model with no iteration 
(T=Tθ1) will yield results that are similar to a large deformation model. The Pre_Stress 
model with iteration (T=Tθ3) will yield results similar to a small deformation model.  The 
final strains, in particular the radial strain εr, are of a magnitude such that it might appear 
that large deformation analyses were required.  However the increments in strains in the 
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layers due to the addition of the most recent layer are small.  The largest incremental 
radial strain is in the outer lap and if the influence of this strain is allowed to decrease the 
winding tension then the most significant impact of large deformations can be 
incorporated into a small deformation model. 

Both the Wickert and the Arola models do not account for the interaction between 
the radius profile of the outer lap and the widthwise distribution of winding tension for the 
next lap.  The Hoffecker model does account for this but does so very differently than the 
prestress model described herein.  Hoffecker and Good [5] used a concept similar to that 
of Cole and Hakiel [2].  The outer lap is formed as a cylinder of constant relaxed radius 
but with the potential for nonuniform web thickness as shown in Figure 4. Multipoint 
constraint equations were then used to expand the outer lap cylinder over the outside of 
the laps that had previously been wound onto the roll. 

 

Figure 4 – Hoffecker’s Treatment of the Outer Lap 

The constraint equations were of the form: 

 i r r i
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 {53} 

These equations were enforced using the Lagrangian constraint method. Typically the 
finite element stiffness matrix for repeating structures is tightly banded about the major 
diagonal which allows banded solution routines to efficiently solve the set of equations.  
The Lagrangian constraint equations are added to the set of equations that are solved and 
destroy the compact bandwidth of the stiffness matrix.  This serves to markedly increase 
solution time.  This is one of the benefits of the Pre_Stress method developed herein in 
that the outer lap is not defined separately. In fact the nodes on the outside of the current 
lap are common to the nodes on the inside of the new layer being added. This serves to 
keep the set of equations to be solved as compact as possible.  The prestress levels in each 
element affect only the force vector and no equations of the form of the Lagrangian 
constraints shown above are required. 

BENCHMARKING THE CODES 

To benchmark the current axisymmetric codes a comparison with 2D model and test 
data reported by Cole and Hakiel[2]. The model results are taken from a code developed 
based on those described by Cole and Hakiel [2]. The test data consists of core pressure 
data and profilometer data taken to establish the variation in the outer lap radius.  The 
core pressure data was taken on a core composed of ring segments.  The segments were 
composed from aluminum and were 2.54 cm (1 in) wide and had an inside radius of 6.03 

i j 

r s 

ri 
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cm (2.375 in) and an outside radius of 6.35 cm (2.5)”.  Each ring segment was supported 
on pins such that the ring could deform inward axisymmetrically and also transmit the 
torque required to wind the roll.  The ring segments were instrumented with strain gages 
and these strain measurements allowed the applied core pressure to be inferred. The web 
used in these tests was a 25.4 cm (10 in) wide polyester film which was nominally 101.6 
m (0.004 in) thick.  There were two samples, Case A and B, each having a unique 
thickness variation across the web width.  The traces for the thickness for each Case are 
shown in Figures 5 and 6.  The modeling will employ 20 elements of uniform width and 
thus the thickness is estimated at 21 positions equally spaced across the web width as 
shown in Figures 5 and 6. 
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Figure 5 – Hakiel and Cole – Thickness Case A 
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Figure 6 – Hakiel and Cole – Thickness Case B 

The remaining parameters required to run the models are given in Table 1. All of 
these parameters were extracted from Cole and Hakiel [2] except for the in-plane value of 
Poisson’s ratio (νθz) which was assumed and the shear modulus of rigidity Grz.  The shear 
modulus was assumed to be state dependent on radial stress through the radial modulus 
(Er) as shown.  This assumption was proven valid in other research [8]. 

 
Core Diameter 12.7 cm 
Finish Roll Diameter 38.1 cm 
Eθ, Ez 4.339 GPa 
Er r 2/K

r 1E K (1 e )σ= −  
K1 2.4949 GPa 
K2 8.6496 GPa 
νrθ, νrz 0.01 
νθz 0.3 
Grz 2Er 
Tw, nominal winding stress 6.863 MPa 

Table 1 - Winding Model Input Parameters 

Core Pressure Comparison 
The model results that will be compared include results from Hakiel and Cole’s 

formulation and the Pre-Stress formulations presented herein.  These results will be 
compared to the core pressure test results presented by Cole and Hakiel [2]. 
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Figure 7 – Core Pressure Comparison – Case A 
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Figure 8 – Core Pressure Comparison – Case B 

The Pseudo 2D code developed were developed based upon papers written by Cole 
and Hakiel [2].  When comparing the core pressures predicted by the models it should be 
noted that all models compare reasonably well with the core pressure test data.  If the core 
rings that compose the core were deflecting appreciably this comparison would not be 
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legitimate.  This is because the axisymmetric wound roll models assume the core is a 
cylinder which is continuous over the web width.  The Pseudo 2D models assume a 
segmented core and a segmented web. The reality of the test was a segmented core and a 
web that was continuous over its width. For Case A all the models yield less pressure than 
the test values in the 10 to 17 cm range of CMD location. As a measure of performance of 
the models compared to the test data the mean absolute error was evaluated and the 
results are shown in Table 2.  Overall the axisymmetric Pre-Stress solutions compared the 
best with the test data.  This polyester film has a very high radial modulus and only a 
small amount of tension loss would be expected. Thus the results from the Pre-Stress T1 
and T3 solutions should not have been appreciably different.  It is interesting that the 
Pseudo 2D model and the axisymmetric Pre_Stress yield results that are so similar given 
that the model developments are so different. 

 
Model Pseudo 2D Pre_Stress  Tθ1 Pre_Stress  Tθ3 
Case A 0.83 0.73 0.72 
Case B 0.45 0.31 0.51 

Table 2 – Mean Absolute Errors 

Outer Lap Comparison 
A comparison of the radius variation with respect to the cross machine direction is 

presented in Figures 9 and 10 for Cases A and B, respectively.  The model results all 
agree quite well with one another. The model results show the same trends as the test data 
but the range of radius from the model results is nearly twice that of the test data for Case 
A although there is better agreement for Case B. 

It is also interesting to compare the model results in Figures 9 and 10 with the 
thickness traces presented for Cases A and B in Figures 5 and 6, respectively.  Note the 
trends in measured thickness follow the trends in the outer lap radius predicted by the 
models.  Based upon use of the models alone this might lead to the conclusion that the 
outer lap radius is entirely dependent on the web thickness variation across the web width.  
If the trends in measured thickness in Figures 5 and 6 are compared to the measured outer 
lap radius in Figures 9 and 10 less correlation is apparent.  There are some features in the 
outer lap radius data that appear to repeat with a period close to 2.54 cm, the width of the 
core rings.  It is possible that the independent deformations of the core rings had some 
impact on the outer lap radius variation across the web width. 
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Figure 9 – Outer Lap Radius Comparison – Case A 
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Figure 10 – Outer Lap Radius Comparison – Case B 
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AXISYMMETRIC STRESSES 

The stresses computed by the axisymmetric model include radial, tangential, axial 
and shear stress components. For Hakilel and Cole’s Case B these stresses are shown in 
Figures 11,12,  13, and 14. 
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Figure 11 – Pressure (-σr) – Case B 

The pressures witnessed by this roll peak at 7.64 MPa (1110 psi).  Whether these 
pressures result in roll and web defects are determined largely by the web surface 
characteristics and the coatings.  Pressures of this magnitude could certainly cause core 
failures in fiber cores.  One of the benefits of an axisymmetric winding model is that a 
model of an axisymmetric orthotropic core is readily incorporated.  
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Figure 12 – Tangential Stress – Case B 

The peak tangential stress is 15.4 MPa (2240 psi) in the outer lap.  The yield stress of 
polyester is approximately 55 MPa (8000 psi).  Thus this stress level may be acceptable 
as long as the roll is not stored at elevated temperature.  The peak tangential stress would 
have become higher had the roll been wound to a larger radius.  The 15.4 MPa peak stress 
was due to the variation in the outer lap radius that was shown in Figure 10.  Had the roll 
been wound to a larger final radius the variation in the outer lap radius across the roll 
width would have increased and resulted in an even higher peak tangential stress.  Thus 
these models are useful for determining how large a roll can be wound for given thickness 
variation prior to subjecting the web to tangential stresses that will induce inelastic 
deformation or web breaks.  Inelastic deformation is undesirable because that deformation 
will be nonuniform and will peak wherever the tangential stresses peak.  When this web is 
unwound a baggy center will appear. 

The axial stresses are shown in Figure 13.  Axial stresses cannot be computed using 
Pseudo 2D models because each of the 1D sector models employ plane stress assumptions 
(i.e. σz=0).  Note for the example given that the peak stresses are negative and are seen in 
the vicinity of the core.  This is a case where the lateral growth of the web is being 
confined by the core.  If the web and the core had properties that were more similar the 
peak negative axial stresses near the core would decrease and become less negative.  
Again these models are valuable in deciding what core properties are optimal.  Another 
minimum is seen closer to the surface of the roll.  The web width in the free span 
upstream of the winder is contracted due to the Poisson effect and web tension.  After that 
web enters the wound roll and becomes the outer layer the circumferential stress 
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decreases as more layers are wound onto the roll, refer to Figure 12.  As the tangential 
stresses decrease the web width attempts to expand in the cross machine direction but is 
constrained by the frictional contact between layers and hence compressive axial stresses 
develop. If these stresses become to negative axial buckles or corrugations can appear 
which may be detrimental to roll quality. 
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Figure 13 – Axial Stresses – Case B 

It is possible to develop 1D winding models using plane strain assumptions that could 
develop axial stresses and could be incorporated into a Pseudo 2D model.  The difficulty 
is establishing a criterion that would determine when plane stress conditions exist and 
when plane strain conditions exit.  One of the benefits of the axisymmetric finite element 
wound roll models is that no such assumptions need to be made.  Note that in Figure 13 
that the axial stresses dissipate to zero at the roll edges (i.e. CMD=0 and 25.4 cm) as 
dictated by surface equilibrium.  Elements which border the edges are subject to near 
plane stress conditions. Elements in the interior region do attain various levels of axial 
stress (σz) but are not necessarily under plane strain conditions unless the axial strain (εz) 
is zero. Most of the elements in the interior are not in either plane stress or plane strain 
conditions. 
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Figure 14 – Shear Stresses – Case B 

The shear stresses associated with this example are shown in Figure 14.  They too 
cannot be calculated using the Pseudo 2D models, again due to the plane stress 
assumption which forces all stress components with an axial or z direction to be zero (i.e. 
σz=0, τrz=0).  The shear stresses are largest in the vicinity of the core, again due to the 
vast difference in material properties between the core and the web.  They dissipate to 
near zero levels at the roll edges and at the final lap as is dictated by surface equilibrium. 

CONCLUSIONS 

The results of Pseudo 2D model and the axisymmetric Pre_Stress model agree very 
well in terms of core pressure and the variation in radius of the outer lap.  Both models 
compare nicely to the core pressure measurements taken by Cole and Hakiel[2]. Both 
models capture the trends but not the detail of the measured variation in radius of the 
outer lap.  Additional tests should be performed on web with thickness variation wound 
on non-segmented cores to determine if the core ring deformations were responsible for 
the discrepancy. 

The Pre_Stress axisymmetric model formulation is optimal because only one solution 
step is required to achieve results where tension loss is allowed to occur. If one wishes to 
impose the constraint that the web line stress be equivalent to the average tangential stress 
in the outer lap then a three step solution process is required. 

The stress results from axisymmetric models are important not because they are 
necessarily more accurate than that of previous models but because the additional stresses 
computed can allow other types or roll defects to be studied and prevented. 
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 Axisymmetric Wound Roll Models C. Mollamahmutoglu & J. 

K. Good, Oklahoma State 
University, USA 

 
Name & Affiliation Question 
Jon Erik Olsen, SINTEF 
Materials and Chemistry 

What computing times are required in this modeling? What 
would the benefit of a nip been? 

Name & Affiliation Answer 
J. K. Good, Oklahoma 
State University 

In the results produced for this paper every layer in the 
wound roll was modeled.  I was probably using more laps 
than needed but I wanted to ensure that we presented a 
converged result. 
 
What would the benefit of a nip been? We are presenting 
outer lap tangential stresses here that are varying as a 
function of the varying outer lap radius across the width of 
the winding roll. What if that web had instead been 
wrapping the nip roll prior to entry to the winding roll? 
Would it have leveled out the winding tension across the 
web? This is one of the benefits of the nip roll. 

Name & Affiliation Question 
Tim Walker, T. J. Walker 
& Associates 

With the point you just made, how do you balance out the 
uniformity from lack of diameter radiations going in with 
the tension changes you are going to get on the nip that are 
now pressing on the hard band? 

Name & Affiliation Answer 
J. K. Good, Oklahoma 
State University 

The CMD locations with higher outer lap radius will 
experience the highest contact pressures and local nip load 
levels. A simple wound-on-tension expression would 
incorporate the nip-induced-tension as a function of the 
product of the coefficient of friction and the local nip load. 
So there will be more nip-induced-tension in the CMD 
locations with high outer lap radius. The result is that 
winding with the nip will produce a wound roll that is more 
cylindrical in shape at the expense of inducing high 
tangential stress and roll pressures in the CMD locations 
that would have had high outer lap radius. This model can 
be used to model such behavior. It could be used in nip roll 
design and to study how nip load should be limited to 
prevent gage bands from occurring. 

 
 




