
335 

ABSTRACT 

It is well known that non-ideal elements such as out-of-round/eccentric material rolls 
affect web tension. However, the mechanism through which these non-ideal components 
induce tension oscillations was not clear previously. In a companion paper (Modeling and 
Identification of the Source of Oscillations in Web Tension) it is shown that an out-of-
round/eccentric material roll produces length variations in the web span adjacent to the 
roll. These length variations are the main reason for oscillations in the tension signal; this 
was experimentally verified in the companion paper. In order to reproduce these tension 
oscillations in model simulations, it was necessary to include span length variations in the 
tension dynamics models. Given a generic profile for the out-of-round unwind roll, 
determination of the length of the adjacent span as a function of time as material is 
released from the roll is a formidable task. The focus of this paper is on finding a 
relationship between the shape of the out-of-round material roll and length of the span 
adjacent to it. 

The simplest case to analyze is the length variations due to an eccentric roller. 
Considering the geometry of the problem, it is possible to find an expression in closed 
form that gives the length of the web span as function of the angular displacement of the 
roller. The expression for the rate of change of span length as a function of angular 
velocity is obtained by direct differentiation of the closed form expression. Finding closed 
form expressions for length of the span adjacent to an out-of-round material roll even for 
simple cases, such as an elliptical roll, is not trivial. 

As a starting point, an elliptical material roll is taken into consideration. To find the 
length of the web span between the material roll and the idle roller it is necessary to find 
the line tangent to both of them. An analytical approach to the problem did not provide 
any insights into finding a closed form expression for span length as a function of angular 
displacement of the material roll. To overcome this problem a convex optimization 
problem is formulated and an efficient numerical approach is developed to obtain the 
common tangent to the material roll and the first idle roller. Once the common tangent is 
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obtained, span length and rate of change of span length can be found numerically as well. 
The algorithm and related pertinent discussions are given. Incorporation of this algorithm 
into web line model simulation software will enable better correlation of model and 
experimental tension data. 

NOMENCLATURE 

A Area of cross section of the web [m2] 
a  Ellipse major axis length [m] 
AB  Line segment with ending points A and B 

CBA ˆ  Angle between line segments AB  and BC  
b  Ellipse minor axis length [m] 
d  Distance between geometrical centers of rollers [m] 
d(t,C)  Distance between the line t and the point C [m] 

E  Modulus of elasticity (Young’s modulus) 





2m
N  

J  Optimization problem cost function 
L  Free span web length [m] 
R  Radius of the roller [m] 
Ti  Web tension in the i-th span [N] 
v  Web velocity (or peripheral velocity of the roller) [m/s] 
X  Abscissa in the Cartesian framework 
Y  Ordinates in the Cartesian framework 
ω  Roller angular velocity [rad/sec] 

Subscripts 
i  span or roller number 

INTRODUCTION 

In a companion paper [1] experimental validation of tension dynamic model was 
discussed. Analysis of the experimental data showed that the models are not able to 
predict some steady state oscillations. It was shown that these oscillations in web tension 
are due to non-ideal rollers such as eccentric idle rollers or out-of-round material rolls. 
The reason why non-ideal rollers cause tension oscillations is because they induce length 
variations the spans adjacent to them. This was not considered in many of the existing 
models and there was no analysis to determine the effect of span length variations on web 
tension. The model for web tension dynamics considering span length variations was 
derived and analyzed in [1] and is given by: 

  {1} 

Equation {1} shows how the tension dynamics is dependent on the derivative of the span 
length through the EA term, therefore even small span length variations are expected to 
induce tension oscillations. 

From a dynamic simulation stand point, given a non-ideal roller, in order to simulate 
the behavior of web tension in a span it would be necessary to obtain an expression for 
the derivative of the span length, L . The aim of this paper is to present the initial work 
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towards finding an algorithm that is capable of computing the span length, and its 
derivative, due to a non-ideal roller or an out of round material roll with different shapes.  

The simplest problem to address for a non-ideal roller is the case of an eccentric idler 
roller. For this case as shown in Section 2 it is possible to find a closed form expression 
for the length of the span as a function of the angular displacement of the roller. 
Moreover, assuming that the web velocity is known and in the absence of slippage 
between the web and roller, it is possible to obtain a time dependent expression for the 
angular displacement and hence a time dependent expression for the span length.  

In the presence of a roll with a generic shape, the problem of finding a time function 
for the span length is a difficult task. As a starting point, in Section 3 the case of an 
elliptic material roll was considered. Even for this simple shape there is no known 
procedure for finding a closed form expression for the length of the span. Instead a 
numerical algorithm based on the solution of an optimization problem has been developed 
and implemented. In this case a numerical approximation of the derivative of the span 
length can also be determined. 

LENGTH OF THE SPAN ADJACENT TO AN ECCENTRIC IDLE ROLLER 

Derivation of the length of the web span as a function of time due to the presence of 
an eccentric idle roller is discussed in this section. In particular, a web span with an ideal 
entry roller and an eccentric exit roller is considered. An idle roller is said to be eccentric 
whenever its rotational center does not coincide with its geometric center; the distance e 
between the geometric center and the center of rotation denotes the amount of eccentricity 
and is considered to be known. Also, the distance d0 between the centers of rotation of the 
two idle rollers is assumed to be known. Finally, for simulation purposes, the initial 
angular displacement θ0 of the eccentric idle roller is assumed to be known. It is also 
assumed that the line speed is constant and there is no slippage between the web and 
rollers. 

By exploiting the geometry of the roller it is possible to find a closed form expression 
for the length of the span. The following analysis is divided into two cases (see Fig. 1), 
the first refers to the under-wrap configuration and the second to the over-wrap 
configuration. 

As a first step in obtaining the closed form expression for the length of the span, it 
will be shown that, given two circles, the length of the segment tangent to both circles is 
only a function of the radius of the circles and the distance d between their geometric 
centers. Exploiting this property, and considering that the distance d between the 
geometric centers of the idle rollers will be time varying because of the eccentricity of the 
second roller, the closed form expression for the length of the web span is obtained. 
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Figure 1 – Idle roller configurations. 

The under-wrap configuration shown in Fig. 1(a) is considered first. Since the line 
segment ED  is tangent to both rollers, the two right-angle triangles AEB and ADC are 
similar. Therefore, angles EBA ˆ  and DCA ˆ  and angles EAB ˆ  and DAC ˆ  are equal. These 
observations can be used to set up a system of equations to find the length of the segment 
DE . 

First, because EBA ˆ  and DCA ˆ  are equal their sines are equal, hence: 

  {2} 

Also, the distance between the center of the idle rollers can be written as: 

  {3} 

solving {2} and {3} results in: 

  {4} 

The angle DCA ˆ  as function of AC  is given by: 
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  {5} 

Given the Cartesian coordinates for B ≡ (XB,YB) and C ≡ (XC,YC), the coordinates for 
D(d) and E(d) are: 

  {6} 

and the span length is: 

  {7} 

When dealing with an eccentric idle roller the distance d between the geometric 
centers of the idle rollers is time varying because the center of the eccentric idler will be 
rotating. In order to use the previous procedure it is necessary to determine the value of 
d(t). Let d0 be the distance between the centers of rotation and e be the eccentricity (see in 
Fig. 2). The expression for d(t) is 

  {8} 

Under the assumption of constant web velocity v and with no slippage between the web 
and rollers and assuming θ(0) = 0, it is possible to write: 

  {9} 

Hence the time dependent equation for d(t) is 

  {10} 

Clearly, because d is time varying so is L (see {7}). The closed form expression for L(t) 
can be found by substituting the expression of d(t) into {7}. Also, once the analytical 
expression for L(t) is obtained ˙L (t) is simply obtained by differentiation. 

Analogously, in the case of over-wrap it is possible to reach a similar result. As 
before the first step would be to find an expression for the length L as function of the 
distance between the geometric centers of the rollers, refer to Fig. 1(b). In this case the 
angles EAB ˆ  and DAC ˆ  are equal and since the triangles AED and ADC are right-angled it 
is possible to find the cosine of the angle EAB ˆ : 

  {11} 

Solving the previous equation for AC  gives 
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  {12} 

From ( )dAC  it is possible to find the angle DCA ˆ : 

  {13} 

 

Figure 2 – Eccentric idle roller: C geometric center of the eccentric roller, C′ center of 
rotation of the eccentric roller, e eccentricity of the roller, d0 distance between the center 
of rotation of the two rollers, d(t) distance between the geometric centers of the two 
rollers. 

The angle DCA ˆ  is also equal to EAB ˆ  by the triangle similarities, and hence it is possible 
to find the coordinates of the points D(d) and E(d): 

  {14} 

Note that d(t) in the over-wrap case is also given by {3}. Substitution of d(t) obtained 
using {3} into {14} gives the time dependent coordinates of D and E. Once these 
coordinates are obtained, the length can be found using {7}. 

For both cases once the closed form expression for L(t) is obtained its derivative can 
be analytically obtained and used in the web tension model. 

It has to be notice that an eccentric idle roller would cause length variations to both 
the web span that precedes the roller (as shown in this section) and the one that succeeds 
the roller. Therefore, for both the web spans preceding and succeeding the eccentric roller 
the model in {1} has to be used and for each web span the length variations need to be 
computed as explained in this section. 

The material of this section is summarized in Algorithm 1. 

LENGTH OF THE SPAN ADJACENT TO AN OUT-OF-ROUND MATERIAL 
ROLL 

This section considers the case of an out-of-round material roll. Similar to the case of 
an eccentric idle roller, to simulate the effect of the out-of-round roller on web tension it 
would be necessary to determine an expression for L(t) and ˙L. Given a generic shape for 
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the roll, finding an analytical expression for L(t) may not be possible in general. For this 
reason the case of an elliptical roll has been analyzed first. 

Consider the case of an elliptical unwind roll, and suppose that the major axis of the 
ellipse coincides with the y axis of the Cartesian reference frame as shown in Fig. 3(a). In 
order to compute the length of the span, the line tangent to both the ellipse and the first 
roller must be found. As introduced earlier, when the material roll rotates by an angle 
φ (see Fig. 3(b)), the point of release of the material changes and so does the length of the 
span, which is a function of φ. Finding an analytical expression for L(φ) is not a trivial 
problem since the system of equations that must be solved is nonlinear. In fact, it is 
difficult to find a solution in closed form even for this simple shape. One way the problem 
can be approached is as follows: given a point P0 on the ellipse, find the line t tangent to 
the ellipse at that point. If the distance between the line t and the center of the idle roller 
is equal to the radius of the idle roller, then the line t is tangent to both the ellipse and the 
roller and hence it is the desired line. Once the tangent t is found, finding the length L is 
simple. An illustration of how this construction works is shown in Fig. 4. The same figure 
shows that there are two tangents t2 and t3 which satisfy the previous condition; this will 
cause an additional difficulty when the problem is solved numerically. The procedure is 
explained in more detail in the following. 

 

Consider an ellipse e, representing the material roll, centered at the origin of the 
Cartesian reference frame with equation: 

  {15} 

Note that this equation only describes an ellipse centered at the origin with major and 
minor axes along the axes of the Cartesian coordinate system. Also consider a circle 
centered at C ≡ (xc,yc) of radius R, representing the first idle roller. The problem is to find 
the equation of the line tangent to both the ellipse and the circle, which will represent the 
first web span. For any given point Pe ≡ (xe,ye) on the ellipse, satisfying the equation in 
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{15}, it is possible to find the equation for the tangent to the ellipse at the point Pe, which 
is 

  {16} 

 

Figure 3 – Example of an out-of-round material roll. 
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Figure 4 – Procedure to find the length of the span. 

Now, consider a generic line  : αx + βy + γ = 0 and a point P0 ≡ (x0,y0), the equation that 
gives the distance between the line and the point is: 

 
 

{17} 

For this line to be a tangent t of the ellipse: 

  {18} 

Therefore, the distance between the tangent t and the center of the roller C is 

  {19} 

Note that since xe and ye are on the ellipse, they are not independent. In fact, they can be 
parameterized in the following way: 

  {20} 

with θ ∈  [0,π/2], a and b being the length of the minor and major axes of the ellipse, 
respectively. Hence the distance d(t(xe(θ),ye(θ)),C) = d(θ) is a function of the parameter 
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θ only. This distance will equal R only for the two tangents t2 and t3 in Fig. 4. Therefore 
the cost function 

  {21} 

will be positive everywhere except for the two values of θ corresponding to the tangents 
t2 and t3 in Fig. 4, for which it will be zero. Hence, solving the optimization problem: 

  {22} 

the desired θ can be found, which when substituted into {20} and {16} will give the 
equation for the tangent. In order to avoid the possibility that the numerical algorithm 
gives the solution corresponding to the tangent t3 it is possible to constrain the numerical 
algorithm to search in the interval [0,θ0] instead of [0,π/2], where θ0 is the value of θ for 
which the tangent to the ellipse passes through the center C of the idle roller. More 
specifically, θ0 solves the equation: 

  

This equation can be easily solved analytically and its solution is 

  {23} 

Note that restricting the search between [0,θ0] not only avoids the problem of getting the 
undesired solution but it also results in achieving a faster convergence time of the 
numerical algorithm. In fact, the objective function J(θ) is a strictly convex function in the 
interval [0,θ0] and numerical algorithms for minimum search are extremely efficient when 
applied to convex functions. Once the equation of the tangent t2 is obtained, finding the 
length of the span is trivial. 

Note that the equation for the tangent to the ellipse in {16} is valid only if the major 
and minor axes of the ellipse are aligned with the fixed coordinate system . If the major 
and minor axes of the ellipse are not aligned with the fixed coordinate axes, one can 
perform appropriate transformations to resolve this issue. Let the major axes be rotated by 
an angle ωt with respect to the fixed coordinate system . Given a point P0 ≡ (x0,y0) on 
the surface of the rotated material roll, the problem of finding the tangent t to the material 
roll at the point P0 needs to be solved. Now consider a second coordinate system 

having its axes along the major and minor axes of the elliptical material roll. The 
coordinates of point P0 in  are 

  {24} 

In  since the major and minor axes of the ellipse are aligned with the coordinate axes, 
{16} can be used to find the equation of the tangent t. So {16} in  can be written as 
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{25} 

To transform t back to the coordinate system , the following change of coordinates 
must be performed: 

  {26} 

By substituting {26} into {25} the equation for t in  is obtained. This equation can be 
used instead of {16} to set up the optimization problem when the major and minor axes of 
the ellipse are not aligned with the axes of the fixed coordinate system . It should be 
noted that as a consequence of {24}, {25} and {26}, d is also function of wt. Therefore, 
the new optimization problem is 

  {27} 

The implementation algorithm that finds the length L(t) is given in Algorithm 2. 
Algorithm 3 gives a basic implementation for the cost function J(θ,ωt) that defines the 
optimization problem. 

CONCLUSION AND FUTUREWORK 

Algorithms to compute the length of a web span in the presence of non-ideal rollers 
such as eccentric idle rollers or elliptically shaped material rolls are developed in this 
paper. These algorithms are required in tension model simulations which include the 
effects of the two non-ideal elements. These two algorithms are expected to form a basis 
for addressing more general shapes for material rolls such as flat spots which will be 
considered in the future. 
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 Computation of Span Length Variations 

Due to Out-of-Round Material Rolls 
C. Branca, P. R. Pagilla, & 
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Name & Affiliation Question 
Clarence Klassen, 
KlassENgineering 

I have a question about something nonsymmetrical, like 
your elliptical roll. Do you have any idea regarding the 
change of mass when we raise the heavy side of the roll and 
the effect on velocity?  How would that affect tension? 

Name & Affiliation Answer 
C. Branca, Oklahoma State 
University 

We are working on an algorithm for those effects and we 
have some results. When any roller is not perfectly round, it 
will produce span length changes. The process to address a 
general shape is more complicated. The algorithm we have 
developed will address general shape. 

Name & Affiliation Comment 
Mark Weaver, Rockwell 
Automation 

You discussed a case where you may have a non-symmetric 
mass distribution.  You may have more mass on one side of 
a roller for instance.  That will appear as a velocity 
disturbance and of course there will be a tension 
disturbance as well.  

Name & Affiliation Question 
Bob Lucas, Winder 
Science 

In your earlier example, where you were dealing with an 
eccentric idler roll, I was wondering if that model was 
complete. In reality, you have an eccentric flywheel – it’s a 
friction limited flywheel application – where you have web 
tensions on both sides trying to drive it.  There will be a 
variation of angular velocity of the roller if you have a 
difference in radius of the roll. This the influence the 
accelerating and decelerating of the roll as it rotates. Your 
basic model of the web behavior has to consider that you 
have some mass in that roll that has to be constantly 
accelerated and decelerated in the rotation. Your model is 
fine assuming that the inertia of your idler roll is zero. You 
have shown this as a fixed speed, a constant speed. There 
must some interplay between the varying surface velocities 
of the roll and the web tension. That is not part of your 
model.  

Name & Affiliation Comment 
Mark Weaver, Rockwell 
Automation 

This is a preliminary work. We wanted to explore what 
happens when you must deal with these flat sided wound 
rolls.  These rolls have been sitting on the floor ahead of 
the unwinder for hours. We know they’re not elliptical, we 
know they’re not egg-shaped, we know that they are strange 
in shape. If you were to get the signal of the disturbance, 
could you determine the shape of the roll? Is that possible? 
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Name & Affiliation Answer 
P. R. Pagilla, Oklahoma 

State University 
If the velocity of the web on the roll surface is known then 
this is reflected in the tension model. 

Name & Affiliation Question 
Tim Walker, T. J. Walker 
& Associates 

I understand how a non-concentric roller has a difference in 
radius at the entrance and exit. But the web on the roll or 
roller, if it is not slipping, is unaffected by a change in 
radius while it is on the elliptical shape. It enters at a 
certain radius and that radius changes as the non-concentric 
roll rotates. A change in tension does not occur unless the 
web slips in the machine direction. I have a question for 
you, Mark: If you want the machine to tell you how bad the 
roll is, what method of feedback might be considered? 
Would you use the tension inferred from a load cell, given 
the demand on the torque in the motor? 

Name & Affiliation Answer 
Mark Weaver, Rockwell 
Automation 

My first choice would be infer the roll shape from the 
torque signal. That torque signal and the angular position of 
the roll are available inside the drive. 

Name & Affiliation Question 
Tim Walker, T. J. Walker 
& Associates 

Would you be driving a roller in a speed loop trying to 
control constant speed? 

Name & Affiliation Answer 
Mark Weaver, Rockwell 
Automation 

I would want to decouple this as much as possible. Let us 
say the objective was to maintain constant surface speed 
velocity.  We would typically have a disturbance observer 
that would inject a disturbance torque estimate into the 
torque summing junction so that you would not disturb the 
velocity regulator.  

Name & Affiliation Question 
Mark Weaver, Rockwell 
Automation 

How did you distort the rolls, did you run into them or hit 
them with a hammer? 

Name & Affiliation Answer 
C. Branca, Oklahoma State 
University 

I wound a rod in between the roll layers. 

Name & Affiliation Comment 
Mark Weaver, Rockwell 
Automation 

So the rod established the angular position of the 
eccentricity. These eccentricities often occur in pairs 
because wound rolls are often compressed between clam 
shell grips when roll trucks lift the rolls to move them from 
one location to another. 

Name & Affiliation Question 
Bob Lucas, Winder 
Science 

In paper mills rolls often set supported by their cores on 
rails.  In this case there are no flat edges but due to the dead 
weight of the wound roll there can be settlement that results 
in an eccentric roll. There is an eccentric mass and there 
will be difficulty in unwinding such rolls at high or even 
moderate speeds depending upon how long that roll has 
been sitting and the degree of eccentricity. To deal with 
that, the angular backlash in couplings and crossover 
through backlash transfer functions requires that that we 
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slow down the machine. 
Name & Affiliation Answer 
Mark Weaver, Rockwell 
Automation 

We also slow down for those events usually. But the point 
is if you have a drive system that has the capability where 
you are not driving the torque to saturation and the 
necessary response is available you could maintain perfect 
angular velocity. The surface velocity is going to vary with 
the radius and will create a tension disturbance. 

 




