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ABSTRACT 

Transverse vibrations of two translating strings interconnected by a Winkler elastic 
foundation, and subjected to axial loading are investigated. The natural frequencies are 
composed of two infinite sets, representing in-phase and out-of-phase vibrations of the 
two strings. The effects of the axial tension ratios of the two continuous media, as well as 
the effects of the elastic foundation stiffness are investigated. In general, it is found that 
the natural frequencies increase with increasing foundation stiffness. Different mass and 
tension ratios between the stings alter the critical translation speed, in contrast to 
presence of the elastic foundation. 

NOMENCLATURE 

Dimensional variables 
Fi  External force per unit length (N/m) 
k  Winkler foundation stiffness (N/m) 
mi  Mass per unit length (kg/m) 
pi  Axial tension (N) 
t  Time (sec) 
wi  Out-of-plane displacement (m) 
x  Spatial coordinate (m) 
L  Support separation distance (m) 
V  Axially translation velocity (m/s) 
 
Non-dimensional variables 
T = t(p1/m1L2)1/2  Non-dimensional time 
Ks = kL2/p1  Foundation stiffness for the string model 
Rm=m1/m2  Mass ratio 
Rp = p1/p2  Axial tension ratio 

( ) 212
11

−
λ=λ Lmps  Eigenvalue, ω=λ is  

νs=V(m1/p1)1/2  Axial translation speed 
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ω1n, ω2n Synchronous and asynchronous natural 
 frequencies 
X = x/L Spatial coordinate 
Wi = w/L  Out of plane displacement 
 
Subscript 
i = 1,2  Indicate string-1 or -2 

INTRODUCTION 

Axially translating strings/beams, have applications such as magnetic tape systems, 
fiber winders, power transmission belts, textile and paper web handling machinery [1]. 
Dynamics of an axially moving medium has gyroscopic components due to the 
appearance of convective acceleration components in its governing equations of motion 
[2]. Such a system can be modeled either as a string, or as a beam depending on the 
flexural resistance to out-of-plane deformation relative in-plane resistance. The 
eigenvalues of general discrete gyroscopic systems are purely imaginary, and the 
corresponding eigenfunctions are complex and speed dependent due to the convective 
acceleration components [2]. These eigenvectors can be obtained by casting the 
governing equations in state space, where the orthogonality of the eigenvectors are 
confirmed, and the solution can be established using the expansion theorem [3,4]. A 
closed form solution for the general axially moving continua problems, subjected to 
arbitrary excitations and initial conditions was given by Wickert and Mote [2]. It was 
shown that at supercritical critical translation speeds the eigenvalues of the system 
become real and divergence and flutter instabilities co-exist. 

The partial (or complete) elastic foundation is a distributed constrained layer, which 
could represent the effect of external pressure acting on the flexible structure [5,6]. The 
translating string on elastic foundation models dynamic systems including continuously 
supported conveyer belts, air-guided magnetic tapes, and translating paper pulp sheets 
supported by air jets [6,7]. The elastic foundation renders the translating string 
dispersive, and the propagation speed of traveling harmonic waves become frequency-
dependent [8]. Perkins found that an elastic foundation has no effect on the critical speed 
of the translating string, however, it could alter the vibration mode shapes and thus 
significantly influence the forced response of the string [9]. Parker showed that the 
supercritical stability behavior of elastically supported, translating string is considerably 
different than that of the unsupported case [10]. In general, any elastic foundation 
(distributed or discrete) leads to multiple critical speeds and a single region of divergence 
instability above the first critical speed, whereas the unsupported string has one critical 
speed and stable at all supercritical speeds. 

Practical applications of the string on an elastic foundation are in the paper making 
industry, where the sheets of pulp move between two pulleys and are supported on an 
elastic foundation formed by a sequence of air jets discharging at the underside along the 
length dimension [6]. Tan et al. used the fluid bearing forces as damping mechanism for 
the vibration and acoustic control of flexible elements [11]. They studied the vibrations 
of moving strings coupled with distributed hydrodynamic bearings by transfer function 
method. Both studies showed that the critical speed of the translating string is not altered 
by the presence of the bearing forces. Tan et al. studied the dynamic characteristics of a 
constrained string translating across an elastic foundation [12]. They investigated the 
mode localization, eigenvalue loci veering, and wave propagation aspects. Vibrations of 
translating string/beam systems guided by a single spring loaded guide have been 
reported in references [13-19] among others. 
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The use of two non-translating strings, connected by elastic foundation is common in 
engineering, and a variety of problems adopt it as a model [20]. The basic model uses a 
Winkler foundation, in which the strings are connected through closely spaced, but non-
interconnected linear springs. Oniszczuk studied the free and forced transverse vibration 
of elastically connected double strings interconnected by Winkler elastic foundation [21-
24]. Cabanska-Placzkiewicz studied the transverse vibration of double viscoelastic 
Voigt- Kelvin strings connected by viscoelastic foundation [20]. Cheng et al. studied the 
vibrations of an optical fiber coupler, used in telecommunications [25]. Oniszczuk 
studied the transverse vibration of a beam-string system interconnected by an elastic 
foundation [26]. 

Transverse vibration of two axially moving media is encountered in web handling 
applications. Recently, the authors analyzed the moving media as a couple of translating 
beams [35]. In this paper the transverse vibrations of two translating, tensioned strings 
interconnected by an elastic foundation are analyzed. The two strings are of different 
masses and tensions. The model represents the coupled behavior of various bonded, 
multi-layer webs during manufacturing such as paper, diapers and others. 

 

Figure 1 – Double strings connected by elastic foundation. 

GOVERNING EQUATIONS 

The model of the system consists of two parallel and homogeneous strings joined by 
a Winkler foundation of stiffness k. The Winkler foundation is a simplified model for the 
capillary adhesion forces [34]. Both stings have the same length L between the two 
supports, fixed at their ends, axially translating with velocity V, and axially tensioned to 
p1 and p2. The out of plane acceleration of a medium moving axially with transport 
velocity V is expressed with the total time derivative of the out-of-plane displacements w, 
as follows: 
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The local acceleration of the strings is represented by the ∂2wi /∂t2 term; the Coriolis 
acceleration is represented by the 2V∂2wi /∂x∂t term; and, the centrifugal acceleration is 
represented by the V2∂2wi /∂x2 term. The coupled governing equations of the transverse 
vibrations of the system are given as written as (e.g. [34]): 

 ( ) 1212
1

2

12
1

2

1 fwwk
x
w

p
Dt

wD
m =−+

∂
∂

−  {2a} 

233 
 
 
 



 ( ) 2222
2

2

22
2

2

2 fwwk
x
w

p
Dt

wD
m =−+

∂
∂

−  {2b} 

The fixed support boundary conditions are: 

 ( ) ( ) 0,,0 11 == tLwtw  {3a,b} 

 ( ) ( ) 0,,0 22 == tLwtw  {3c,d} 

The two governing equations can be written in the following non-dimensional 
homogenous form: 
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with the non-dimensional variables defined in the nomenclature. The non-dimensional 
forms of the boundary conditions become: 

 ( ) ( ) 0,1,0 11 == TWTW  {5a,b} 

 ( ) ( ) 0,1,0 22 == TWTW  {5c,d} 

SOLUTION METHOD 

The Orthogonality of the Solution 
The system of equations given by equations {2} can be written in the form of a 

system of second order differential equations as: 

 MW’TT + GW’T + K*W = f {6} 

where a subscripted comma ,T indicates partial differentiation, and M, G, K*are the mass, 
gyroscopic and stiffness operators, respectively, and 
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The M, G, and K*matrices take on the forms given in Appendix A. 
The equations of motion can be expressed in state space representation as [28]: 

 AU’T + BU = q {8} 
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where the state and excitation vectors are: 

 { } { }TT
TT ffWWWW 00, 2121,2,1 == qU  {9} 

and the matrix differential operators are: 
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Equation {8} is the canonical form of the equation of motion {6}, where A is a 
symmetric and B is a skew symmetric matrix operator. Orthogonality of eigenfunctions 
with respect to each operator is guaranteed in the canonical form, when A and B are 
symmetric and skew symmetric, respectively [2,3,28,29]. The inner product of two 
vectors U1 and U2 is defined as: 

 ∫=
1

0
2121, dXUUUU T  {11} 

where the over bar denotes complex conjugation. The general solution of Eq. {8} is in 
the form: 

 ( ) ( ) ( ) ( ) ( ){ }TTTT eXeXeXeXTXU λλλλ φφλφλφ= 2121
ˆˆˆˆRe,  {12} 

where the eigenvalues ( ωi=λ )  are purely imaginary, with i = √-1, and the 

eigenfunctions  are complex. jφ̂
 
Natural Frequency Analysis 

In order to obtain the natural frequencies and the mode shapes of the system, the 
response of string-2 is expressed in terms of the response of the string-1, from equation 
{2} as follows: 
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Equations {2a} and {2b} are then combined into a single fourth-order partial differential 
equation: 
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The constant coefficients A1 – A7, given in Appendix B, depend on the system 
parameters. Considering the solution given in Eq. {12} in the above equation, the 
eigenfunction for string-1 becomes: 
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where ck are constant coefficients, and γk are the roots of the characteristic equation of 
Eq. {14}. This characteristic equation is obtained by substituting TXki ee λγ  into Eq. {14}. 
The roots of this equation are obtained using MathematicaTM, but they are omitted here 
due to space limitations. The eigenfunction for string-2 is found by substituting Eq. {15} 
into Eq. {13}, and becomes: 
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In order to obtain the eigenvalues for the double-string system, boundary conditions, in 
Eq. {5} are evaluated using Eqs. {15,16}. This results in four homogeneous algebraic 
equations, which are represented in matrix form as: 

 ( ) 0. =λ cD  {18} 

where c = {c1 c2 c3 c4}T is the coefficient vector, and D is the matrix of coefficients. In 
order to have a nontrivial solution, the determinant of matrix, det(D) = 0. This gives the 
characteristic equation of the system. The natural frequencies are determined from the  
solution of the characteristic equation. A computer program using MathematicaTM is 
developed to determine these complex natural frequencies. The mode shapes are then 
calculated from Eqs. {15} and {16} and normalized using the real parts of the complex 
mode shapes with respect to the symmetric matrix operator A as mm

R
n

R
mA δ=φφ , . 

RESULTS AND DISCUSSION 

Mode Shapes and Natural Frequencies for Non-Translating System 
It is instructive to investigate the dynamics of the non-translating, vs = 0, system 

[26]. The closed form formulas given below are useful for interpreting the results of the 
translating string problem. When, vs = 0, Eq. {2} reduces to: 
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This boundary value problem is subjected to the boundary conditions given in Eq. 
{5}, and it can be solved using the Fourier series method by assuming the mode shape 
function as [24]: 
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This assumes that the natural frequencies of the double string system are divided into odd 
and even sets of fundamental frequencies, ω1n and ω2n. In general, when the two strings 
are identical, the free vibrations are described by synchronous and asynchronous 
vibrations, with ω1n and ω2n, respectively. The natural frequencies of the double string 
system can be expressed in closed form as: 

 baωbaω nn +=−= 21 ,  {21} 

where ω1n and ω2n are the in-phase and out-of-phase natural frequencies, respectively, 
and, 
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If Rm = Rp = 1, formulae for natural frequencies are reduced to: 

 π=ω nn1  {23} 

 ( ) sn Kn 22
2 +π=ω  {24} 

Note that in this case, the synchronous natural frequencies w1n of the double string 
system are identical to those of a single string with the same boundary conditions. This is 
because when the two strings are moving in synchronous mode, the elastic foundation 
does not experience any deformation; the two strings vibrate with the same amplitude 
and direction. On the other hand, the asynchronous natural frequencies ω2n are identical 
to those of a single string on an elastic foundation of stiffness 2Ks [9]. The asynchronous 
frequencies increase with increasing Ks as shown in Eqn {24}. 

In more general cases, Eqs. {21,22}show that the natural frequencies depend on the 
ratio Rm/Rp, parameter Ks and the product KsRm. Close inspection of the ratio Rm/Rp 
shows that it is the square of the wave speed ratio in the strings Rm/Rp = (c2/c1)2. Next, the 
effect of the tension parameter Rp will be investigated. Changing Rp is equivalent to 
changing the tension p2 while all other non-dimensional parameters are kept constant. 

Figure 2a shows the effect of axial tension ratio Rp on the natural frequencies for Ks 
= 0, 0.5, and 2, Rm = 1. Considering that Rp = p1/p2, increasing Rp values cause a decrease 
in the natural frequency as expected. Figure 2a shows that in the range 0 ≤ Rp < 1, the 
natural frequencies decrease as p2 decreases. In this range p2 > p1 and p1 dominates the 
lowest natural frequency. At Rp = Rm (=1), the wave speeds in the two strings are 
identical, i.e. c1 = c2. Further decrease in p2 (increase in Rp) causes a sharp change in the 
behavior of the curve. In the range Rp > 1, p1 > p2 and p2 determines the lowest natural 
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frequency. Thus at Rp = Rm the string with the critical frequency switches from string-1 to 
sting-2, or vice-versa. 

Case Ks = 0 plotted with dotted lines, represent the limit condition Ks → 0 for Eqs. 
{21} and {22}, in Figure 2. On the other hand when Ks > 0 the two strings are coupled 
and the two modes move apart from each other at Rp = Rm region. This figure shows that 
the coupling due to elastic foundation causes the natural frequencies to increase. Figure 
2b shows the first six natural frequencies of the double string system, for Ks = 10 as a 
function of Rp, where the natural frequencies are shifted to higher values, relative to Ks = 
0 case. 

 

a) K = 0, 0.5, 2 

 

b) K = 10 

Figure 2 – The synchronous (solid) and asynchronous (dashed) natural frequencies 
versus axial tension ratio, Rp for Rm = 1, v = 0 a) Ks=0, 0.5, and 2, b) Ks=10. 
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Figure 3 – The first four complex mode shapes; the real (solid) and imaginary parts 
(dashed) for Ks = 10, v = 0.5, Rm = Rp = 1. 

Mode Shapes and Natural Frequencies of Translating System 
 The translating double string system also displays the in-phase and out-of-phase 

behavior seen in the non-translating system. In case where Rp = Rm = 1 closed form 
formulas for ω1n and ω2n of the translating system can be obtained [33]: 

 ( )2
1 1 sn vn −π=ω  {25} 

 ( )[ ]( )222
2 12 ssn vKn −+π=ω  {26} 

If the elastic foundation stiffness between the two strings is very small, i.e., Ks → 0, then 
the ω2n  → ω1n. For the case of non-identical double string system, a MathematicaTM code 
is developed to solve det(D) = 0, in Eq. {18}. 

The natural frequencies of the translating double string system are distinguished by 
two fundamental odd and even sets ω1n and ω2n, where the subscript n = 1, 2, … This 
distinction becomes clear in Fig. 3 where the first for mode shapes, corresponding to the 
first four natural frequencies are plotted, for the parameters Ks = 10, ν = 0.5, Rm = Rp = 
1. As expected the mode shapes have real and imaginary parts. However, the odd 
numbered modes ω1, and ω3 show synchronous deflection, and even numbered modes ω2, 
and ω4 show asynchronous deflections. It can easily be deduced that the elastic 
foundation is not stretched for the synchronous modes, and it is stretched for the 
asynchronous vibration modes. This figure also shows that the mode shapes are not 
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symmetrical with respect to the mid-span of the strings; this distortion is due to the 
effects of translation, as was also observed by Wickert and Mote [2]. The separation of 
mode shapes into out-of-phase (asynchronous) and in-phase (synchronous) behaviors is 
the result of the coupling of the two strings by the Winkler foundation, and it is observed 
for non-translating string systems (e.g., [21-24,26,30-32]). In case the strings are not 
identical, the vibration of the two strings still show in-phase and out-of-phase 
characteristics, for odd- and even-modes, respectively, however the mode shapes are not 
parallel to each other. This effect is observed for other Rm values as well as Rp values, 
and symmetry and anti-symmetry of the modes further deteriorate with decreasing values 
of Rm, and Rp [33,35]. 

 

a) v = 0.0 (dashed) and 0.1 (solid) 

 

b) v = 0.0 (dashed) and 0.5 (solid) 

Figure 4 – Comparison of the effect of axial tension ratio on the natural frequencies for 
different velocities, for K = 10, Rm = 1. 
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The effect of translation speed and axial tension Rp on a double string system with K 
= 10 and Rm = 1, is investigated in Fig. 4. In particular in Fig. 4a the translation speed 
values of 0 and 0.1 are compared. This figure shows that at this relatively slow 
translation speed the natural frequencies are nearly the same as compared to the non-
translating string. However, when the case of ν = 0.5 is considered, in Fig. 4b, it is seen 
that the natural frequencies drop significantly both for in-phase and out-of-phase modes. 
Frequency clustering is observed on this figure near the intersection points of the in-
phase and out-of-phase curves for ν = 0 case. 

 

a) Rp = 1, K = 10 

 

b) Rm = 1, K = 10 

Figure 5 – The critical speed of the double string system for different a) Rp, and b) Rm 
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Critical Speeds 
The natural frequencies of this system as a function of the non-dimensional 

translating speed are shown in Fig. 5. In particular Fig. 5a shows the effect of the mass 
ratio Rm and Fig. 5b shows the effect of the tension ratio Rp on the natural frequencies at 
different translation speeds. Figs. 5a and 5b show that for Rm = Rp =1, similar to a single 
axially moving string analyzed in reference [9], the natural frequency vanishes at the 
critical translation speed ns = 1. This result is expected, as the odd numbered natural 
frequencies are not affected by the presence of the Winkler foundation. Hence, the onset 
of divergence instability for the double string system analyzed here is identical to the 
case of the single string, and the elastic stiffness does not alter the divergence instability 
[10]. The critical speed curves are plotted for different for Rm and Rp in Figs. 5a and 5b, 
respectively. As expected, when the mass ratio decreases, or the mass of the second 
string increases, the natural frequencies and the critical speed drops. On the other hand, 
when the axial tension ratio decreases the natural frequencies are elevated but still have 
the same critical speed. 

SUMMARY AND CONCLUSIONS 

The free transverse vibration of an elastically connected axially loaded, translating 
double string system is analyzed. In general, the natural frequencies of the system are 
composed of two infinite sets, w1n and w2n. When the two strings are identical, the free 
vibrations are described by synchronous and asynchronous vibrations, with ω1n and ω2n, 
respectively. The vibrations still show in-phase and out-of-phase characteristics, as the 
parameters of the strings change. The mode shapes are distorted by increasing the 
translating speed, and become more significant when the two strings are not identical. 
The  synchronous mode shapes stem from the fact that the two continuous media are 
vibrating with the same amplitude and direction anti-symmetrically, with respect to an 
axis passing through the mid-thickness of the system. On the other hand, the 
asynchronous mode shapes are vibrating with the same amplitude but in opposite 
directions symmetrically with respect to the mid-thickness. It is found that the natural 
frequencies increase with increasing elastic stiffness K of the foundation. Frequency 
clustering is observed for the natural frequencies as a function of the tension ratio Rp, 
when K is not zero. Divergence instability occurs at the same critical speed of a single 
traveling string; and, the frequency-velocity relationship is similar to that of a single 
traveling string. The elastic foundation for identical system does not alter the critical 
speed, and different for each mass ratio. 
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 Vibration of Two Axially Translating Media 

Interconnected by Winkler Elastic 
Foundation 

M. Gaith & S. Müftü, Al-
Isra Private University and 
Northeastern University, 
USA 

 
Name & Affiliation Question 
Unknown You may wish to consider an extension to this problem 

where the aerodynamic damping is considered. The surface 
area is large and the forces due to damping could be quite 
large. The permeability of the web and the wire are going 
to be quite different. 

Name & Affiliation Answer 
S. Müftü, Northeastern 
University 

We were inspired by industry on this problem.  We 
decided to work on this problem and demonstrate what we 
can do and then work towards bigger problems.  So that’s 
why we started with the common engineering assumptions 
I mentioned. Now we understand the solutions based upon 
the original assumptions and we can start to consider 
suggestions of the sort you have offered. 

Name & Affiliation Question 
Unknown You have shown us these waves which are coupled with a 

critical speed.  I didn’t understand how the coupling occurs 
and what produces the excitation?  I also didn’t catch how 
the critical speed impacted operations. 

Name & Affiliation Answer 
S. Müftü, Northeastern 

University 
I didn’t talk about the waves here, these are the mode 
shapes.  So if you were to excite the webs, this is what you 
would see.  The importance of the critical speed is this.  As 
I run the media faster and faster, I am reducing the effect 
of tension in the system.  A motivation for this work is that 
as webs are transported at higher speeds, the natural 
frequencies decrease and eventually the system becomes 
completely unstable. 

Name & Affiliation Question 
John Shelton, Oklahoma 
State University 

Several years ago Keith Good and Ron Markum put 
together a linear tape drive system to demonstrate that 
webs could be transported under no tension.  In this setup 
they pulled 1 inch wide magnetic recording tape from an 
unwinding roll with a nip. The web exited the nip and was 
unsupported thereafter. At high speeds the web would 
travel several feet horizontally and unsupported after it 
exited the nip. The web then went into a sinusoidal 
standing wave that increased exponentially in amplitude. 
The drag forces of course increased with amplitude and the 
web would drop to the floor.  The point was that the web 
has mass and inertia and could be transported (in this case 
thrown) from one point to another under no tension. This 
in fact happens in paper machines where the web is thrown 
from one felt to the next. 
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Name & Affiliation Answer 
S. Müftü, Northeastern 

University 
Yes, there are situations where you can transport webs 
beyond that critical velocity, but those velocities are very 
high.  
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