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ABSTRACT 

A pseudo 3D winding model that has considered orthotropic viscoelastic effects 
during winding and storage has been developed and implemented in a code revised from 
the 2D viscoelastic winding code developed by Qualls and Good [1]. The model 
discretizes the web into smaller segments of equal width, each having a constant web 
thickness within a segment. Tension is assigned to each segment using Hakiel's approach 
[2]; the tension is updated after the winding of each lap based on the deformed radius of 
the segment relative to the relaxed radius profile of that lap. In each segment, a 2D 
winding model is applied. The pseudo 3D model is capable of dealing with (1) a varying 
thickness profile in both CMD (cross machine direction) and MD (machine direction); 
(2) winding tension variation with the winding laps; and (3) varying core stiffness in the 
CMD. Moreover, with the consideration of viscoelastic behavior in the web the effects of 
winding conditions, such as winding speed and tension, on the wound roll stress can be 
determined. The model is especially suitable for viscoelastic materials with relatively 
short characteristic relaxation times, such as plastic webs with glass transition 
temperature close to room temperature. Numerical methods were used to determine the 
stress distributions in the wound roll. The pseudo 3D viscoelastic winding model was 
validated by comparing results on the dimensional changes of a web in three situations. 
They include (1) the formation of cambered web (in-plane imperfection) due to linearly 
varying thickness; and (2) the formation of localized baggy lanes due to an edge burr 
following slitting; and (3) the formation of baggy web (out-of-plane imperfection) due to 
increased web thickness in the middle of the web.  Simulation results compare favorably 
with experimental data. 

NOMENCLATURE 

A      the amplitude of wavy edge, m 
b      the width of  a web, m 
h      the average web thickness, m 
i     the lap numbers within the roll 
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j     widthwise position 
)(tJ r     the radial creep function, 1/Pa 
)(tJθ     the circumferential creep function, 1/Pa 
)(tJ rθ ,    the Poisson’s creep function, 1/Pa )(tJ rθ

Lengthburr     the length of deformed web at burr area, m 
Lengthrest     the length of deformed web at location other  
     than the web edge, m 
M      total number of widthwise locations 

),( jir     the widthwise distribution of radius to the  
     inside surface of  lap i, j is the widthwise  
     position, m 
rc      the outer radius of the core, m 

)(0 iR     the relaxation radius of the lap i, radius at 
     which the lap wound be stress free, m 
T      the tension at the current lap, Pa  
Tc      the tension at the core, Pa  
Tf      the tension taper factor  

)(iT     the actual winding tension force at lap i, N 
)(iTθ     the predicted winding tension force at  

     lap i, N 
),( jiρ     widthwise radius distribution of wound roll,  

     i is the lap number and j is the widthwise  
     position, m 
λ      the wave length, m 
τ       the torque at current lap, N-m 

cτ       the torque at the core, N-m 

ξ      the retardation time in generalized Kelvin  
     Model, seconds 

INTRODUCTION 

Research focusing on stress analysis of wound rolls has received attention over 
decades. Most early winding models are two-dimensional elastic models. Detailed 
analysis of stresses in a 2D linear elastic wound roll perhaps began with the work of 
Gutterman [3] in 1959. Altman [4] followed Gutterman’s work and presented an 
analytical solution to the linear elastic winding problem, including assumptions used and 
detailed derivation. The elastic model was extended by Yogoda [7] who included the 
potential for material orthotrophy and Pfeiffer [5, 6] who was the first to incorporate a 
radial modulus that was state dependent on pressure. In 1987, Hakiel [8] developed a 
practical numerical method that incorporated the advantages of the previous works. 
Moreover, in the Hakiel model both the state dependent radial modulus and orthotropic 
material properties were considered in formulation, and numerical solution was provided.  

In order to investigate the viscoelastic effects in a wound roll, Tramposch [9, 10] 
introduced a 2D viscoelastic winding model in 1965. The web material was considered to 
be an isotropic viscoelastic material in his work. Lin and Westmann [11] extended 
Tramposch’s work in viscoelastic winding mechanics by taking into account of histories 
for winding, winding-pause, and winding-pause-unwinding. Qualls and Good [1] 
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developed a solution for viscoelastic analysis that has considered viscoelastic effects 
after winding and the thermal effects on viscoelastic winding. The material in the Qualls-
Good model is orthotropic with a nonlinear radial stiffness depending upon interlayer 
pressure.  

All these models are 2D winding models and cannot be used to calculate the stress 
profile along CMD directly. In a wound roll, the stress and strain usually vary in both the 
radial and CMD directions. In some cases, the thickness variation becomes large enough 
that defects in the wound roll result. To account for the web thickness variation in a 
wound roll, three-dimensional winding models are needed for analysis of stress and 
strain for characterization of dimensional changes associated with defects such as 
cambered webs and non-flat (baggy) webs. Numerals 3D elastic winding models have 
been developed in the past. Hakiel [2] and Kedl [12] developed 3D winding models. 
They partitioned a roll into small strips or segments so that each segment can be 
considered as a 2D winding model. Hoffecker [13], and Lee and Wickert [14] developed 
3D FEM elastic winding models to predict the width-wise variation of stresses in wound 
rolls and have compared the results with those obtained from previous models.  

In this paper, a pseudo 3D viscoelastic winding model is presented. The variations in 
thickness and length in the CMD can be considered in this model. Viscoelastic effects 
during winding and storage have been considered in this model. Results and discussion 
will be given on the effects of thickness variations along CMD and winding tension 
variation with the winding laps. Some results are compared with the experimental data 
for validation. 

PSEUDO 3D WINDING MODEL 

In our work, we use the approach by Hakiel [2] to partition a 3D wound roll into a 
number of 2D segments. Some modifications will be made to the Hakiel model and the 
orthotropic material behavior will be considered. 

 

Figure 1 – Exaggerated view of a wound roll with thickness variation, Hakiel [2] 

As shown in Figure 1, before the lap i is wound on the roll, the widthwise radius 
distribution of the wound roll is ),1( ji −ρ . Consider that the surface of wound roll is no 
longer cylindrical due to thickness variation and the winding tension is not high enough 
nor is the radial modulus low enough to result in large deformations. The lap i may or 
may not be in full contact with the wound roll surface. In the areas where the contact is 
made between the lap i and the wound roll, the radius of inside surface of lap i is 
equal to the radius of the previous wound roll surface 

),( jir
),1( ji −ρ . In the areas where there 

is no contact, it will be assumed that the radius of inside surface of lap i  is 
constant and is equal to the relaxation radius which is assumed as the inner radius of 

),( jir
)(0 iR
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a non-stretched part of the web. In order to determine the relaxation radius, the 
summation of tension applied on all segments at the current outer lap is set to be equal to 
the web tension.  

 )()( iTiT =θ  {1} 

The predicted winding tension force is equal to the summation of tension force in all 
the widthwise positions. 

 }
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Usually, equation {1} cannot be satisfied the first time. However, in an iterating 
process, the relaxation radius  can be determined by extrapolating over previous 
estimates until the calculated winding tensile force is equal to the applied tensile force at 
the current radius and the tension in each widthwise position can be determined.  

)(0 iR

The inner radius of the lap being wound on is  

  {3} },...1);(),,1({),( 0 MjiRjiMaxjir =−ρ=

The widthwise radius distribution of wound roll is  

 Mjjhjirji ,...1);(),(),( =+=ρ  {4} 

Based on equations {1} ~ {4} the widthwise distribution of radius and tension can 
be determined at a designated wound roll radius. After that, the wound roll can be 
divided into several small segments at each layer. In each segment, a 2D viscoelastic 
winding model is applied to determine the time-dependent stress distributions in the 
segment. The models for the winding and storage will be discussed in the following 
sections separately. 

VISCOELASTIC EFFECTS DURING WINDING 

In this section, viscoelastic effects during winding will be considered and discussed. 
For viscoelastic materials with relatively short characteristic relaxation times, comparable 
to the time it takes to wind a roll, it is necessary to consider the viscoelastic effects 
during winding.  

This part of work is based on the 2D viscoelastic winding model developed by 
Qualls and Good [1]. In the Qualls-Good model viscoelastic effects are considered after 
winding is finished. Their model has been extended in this paper to allow the 
consideration of viscoelastic effects from the beginning of the winding. With the 
consideration of viscoelastic effects during winding, some winding conditions, such as 
the winding velocity and winding tension as a function of radius or time can be 
considered. 

Consider an orthotropic viscoelastic material with radial modulus depending on 
radial stress in 2D case in polar coordinates. The equilibrium equation is  

 0=σ−σ+
∂
σ∂

θr
r

r
r  {5} 
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The strain compatibility in the rθ dimensions is given by: 

 0=−+
∂

∂
rr

r εε
ε

θ
θ  {6} 

It should be noted that there is no strain compatibility enforced between segments. 
The constitutive equations for an orthotropic viscoelastic material are 
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 {7} 

By solving equation {5}, θσ  can be expressed in terms of  as shown in equation 
{8}. 

rσ

 r
r

r
r σ+

∂
σ∂

=σθ
 {8} 

We next insert equation {8} into equation {7} to eliminate θσ , and then substitute 
, in equation {6} to obtain θε rε
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 {9} 

Qualls and Good [1] suggested that both  and  are radially independent. 
Moreover

θJ rJθ

θθ = rr JJ , therefore the equation {9} can be simplified as 

 
0)()()()()(
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where ; )()(1 ttJttF ′−=′− θ

)(3)(2 ttJttF ′−=′− θ ; 

)()()(3 ttJttJttF r ′−−′−=′− θ . 
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rJ  and  follow the generalized Kelvin model. It should be noted that  is also a 
function of the radial pressure. The generalized Kelvin model is expressed as 

θJ rJ

  {11} )1()( /

1
0

it
N

i
i eJJtJ ξ−

=
∑ −+=

In order to solve equation {10}, a general form is assumed. 

 td
t
fttFI

t
′⋅

′∂
∂′−= ∫0

)(  {12} 

As shown in Figure 2, for a wound roll with n laps we divide the entire winding time 
into n time steps. We have  after winding lap k (radiusktt = krr = , njk ≤<≤1 ). 

Therefore, at the current outer layer, lap j, jtt = .  

 

Lap n, t=tn 

Lap j, t=tj 

Lap k, t=tk 

Figure 2 – Viscoelastic effects during winding 

For the case of constant velocity 0)( vtv = , the time increment from tj to tk can be 
derived as follows.  

Since , we have dtvhdRR
tr

r

j

k

⋅=⋅π ∫∫
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0 02
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hv

rr
ttt kj
kj

0

22 −⋅π
=−=Δ  {13} 

And the integral I can be written as  

 kkjjjjjjjj fttFfttFfttFI Δ⋅−++Δ⋅−+Δ⋅−= −−−− )()()( 1121 L  {14} 

where . Thus  are already known when1−== −=Δ jtjtj fff kjj fff ΔΔΔ −− ,,, 21 K jtt = . And 

)( 1−,( ),(), 21 −− −−− jjj ttFt kj ttj FtF K  can be calculated at any radius using the formula 
for the creep compliance. Thus the only unknown is jfΔ  . 

Comparing equation {10} and {12}, we can find that the function f could be either 

2

2
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∂
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∂
σ∂ , or . Therefore rσ jfΔ  (the increment of f from 1−= jtt  to ) jtt =
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can be expressed in terms of 
2

2
2

r
r r
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σΔ∂  or rσΔ , where Δ  refers to the 
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Then the general form I in equation {12} can be represented by 
. At radius

)1(, −σΔ kr)1( +σΔ kr krr = , equation {10} will be represented by a 

general form. 
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m ttF
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Equation {16} can be written for each radial location within the wound roll. 
When t there are j-1 simultaneous algebraic equations with j+1 unknowns. After 

both the outer and inner boundary conditions at t  are applied, this system of 
equations can be solved. 

jt=

mf

VISCOELASTIC EFFECTS AFTER WINIDNG 

After winding process is finished, the total number of laps is n. For radius , at 

time t , the integral I can be written as  
krr =

=
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formula for the creep compliance. Thus the unknown is mf  only when mtt = . Δ
Substitution of the finite difference approximation gives 

 
2

)1()1(
2

2 2

hr
krrkrr −+ σσΔ−σΔ

≈
∂

σΔ∂ )(k Δ+  

 
hr

krr

2
)1( + −σΔ

≈ kr )1( −σΔσΔ∂  {18} 
∂

99 
 
 
 



Similarly, at radius , the relation among krr = )1()()1( ,, −+ σΔσΔσΔ krkrkr can be written in 

terms of a general form as follows: 

 0),,( )1()()1( =σΔσΔσΔ −+ krkrkrkH   (k=1,2,…n-1) {19} 

Equation {19} can be written for each radial location within the wound roll. At 
, there are n-1 simultaneous algebraic equations with n+1 unknowns. When both 

the outer and inner boundary conditions at 
mtt =

mtt =  are applied, this system of equations 
can be solved. 

RESULTS AND DISCUSSIONS 

As mentioned in previous sections, the pseudo 3D viscoelastic winding model is 
capable of dealing with the thickness variation in both CMD and MD directions, as well 
as winding tension variation with the winding laps. In this section, some validation 
results will be presented for the pseudo 3D viscoelastic winding model.  

We created CMD thickness variations in the winding experiment by adding a stack 
of web strips of the same web material being wound at every nth lap [17]. In addition, in 
the numerical calculation all the extra thickness and related volume are assumed to be 
allocated evenly in these n laps. Therefore, in these several laps, the thickness varies only 
in the CMD direction and the thickness profile is persistent in the MD direction. In this 
part, three special cases have been considered: (1) The formation of cambered web due to 
linearly varying thickness; (2) The formation of localized baggy lanes due to edge burr 
following slitting; and (3) The formation of baggy web due to thickness increment in the 
middle of the web. The simulation results using the pseudo 3D viscoelastic winding 
model will be compared with experimental data and the deformation results from pseudo 
3D viscoelastic winding model. The dimensional changes estimated by numerical 
simulations will be compared with measured data.  

After the pseudo 3D viscoelastic winding model is validated by three special cases. 
We will focus on the second aspect, winding tension variation with the winding laps 
only. The tension taper factor was introduced based the work by Shelton [15] and 
Feiertag [16] and implemented into pseudo 3D viscoelastic winding code. For each 
tension taper factor, the winding tension and torque are varying with the winding laps. 
The stress results will be given for the tension taper factor from 0 to 1. The effect of 
winding tension variation can be determined based on the numerical results. There are no 
experimental results available for this part. 

The material used in the three cases is polyethylene web of 63.5 µm (2.5 mil) thick 
and 15.24 cm (6 in) wide. The in-plane and out-of-plane creep compliance data are taken 
from Qualls and Good [1]. The out-of-plane creep compliance follows 
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where  has units of psi, t is in seconds and is in 1/psi in these in-plane and out-of-
plane creep compliance data. 

rσ )(tJ r
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Case One: Formation of a Cambered Web 
A CMD thickness variation was created during winding by adding a stack of 3 

inserts of equilateral triangular webs at every fourth lap. The schematic of this insertion 
is shown in Figure 3. While using the pseudo 3D winding model, the web was divided 
into ten small segments. Since the pseudo 3D winding model is an axisymmetric model, 
it is assumed that for each 2D segment the extra thickness and associated volume will be 
allocated evenly in these four laps respectively. From location #1 to #10, the thickness 
increases linearly.  

 

Equilateral- triangular web
On average, a thinner edge 

On average, a thicker edge 
Location #10 

15.24 cm  
(6 in)  

17.78cm 
(7 in) 

Location #1 

Figure 3 – Schematic diagram for inserting a triangular web for every four plies for use 
in the investigation of formation of a cambered web 

The pseudo 3D viscoelastic winding model has been used to simulate this 
viscoelastic winding problem. The winding speed is 1.31 m/min (4.3 ft/min) and winding 
tensile stress is 2.99 MPa (433.3 psi). The total wound roll length is around 22.2 m (72 ft 
10 in) and the number of laps is 110 layers. The storage time is 86400 seconds (24 
hours). The length of deformed web at the ten locations is obtained using the pseudo 3D 
winding model and is plotted in Figure 4.  
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Figure 4 – The length of deformed web at ten locations 

From the data shown in Figure 4, we can find that the length of deformed web 
changes linearly along the CMD direction as shown in Figure 5I.  Since the web edges 
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are straight in a cambered web, results in Figure 5I can be plotted as shown in Figure 5II, 
with the use of an appropriate radius and central angle as shown in Figure 5III.  

 

II 

I 

III

Figure 5 – Numerical transformation for cambered web 

 Maximum Bow  

Figure 6 – Maximum bow length 

In Figure 5, b1, b2, ..., b10 represent the lengths of segments. a1, a2, …, a10 stand for 
the distances from inner edge to the upper edge of these segments. They satisfy the 
following equations 

  {20} 
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bar
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In this case, the numerical simulation gives the results r =10.18 m (400.83 in) and θ 
= 24.18 degrees (0.422 radians). Therefore, we can obtain the maximum bow length as 
shown in Figure 6 is around 0.226 m (8.89 in). The value of maximum bow length from 
experiment is 0.191 m (7.5 in). The deformed shapes of web at ten locations are 
simulated and shown in Figure 7. The numerical results and experimental data are in 
same order of magnitude though there are still some errors. 
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Figure 7 – Deformed shape after storage 

Case Two: Formation of a Wavy Edge  
A web with a wavy edge is primarily the result of winding a web with an edge burr 

following slitting. The setup is shown in Figure 8. The segment close to one edge is 
thicker than the other segments. The web sample cross-section was viewed observed 
under a microscope to acquire the image of the web edge and is also shown in Figure 8. 
The thickness profile is assumed to be persistent along MD.    

 

edge burr 

Figure 8 – Formation of wavy edge 

The pseudo 3D viscoelastic winding model was used to simulate this wavy edge 
problem. As mentioned before, the material used is polyethylene web of 63.5 µm (2.5 
mil) thick and 15.24 cm (6 in) wide. The height of edge burr is 20.4 μm (0.803 mil) and 
the winding tensile stress is 2.07 MPa (300 psi). The number of laps is 80. The storage 
time is 86400 seconds (24 hours). The length of deformed web at ten locations is plotted 
in Figure 9.  
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Figure 9 – The length of deformed web at ten locations 

As shown in Figure 9, the deformation in the edge burr area is much larger than the 
rest of the web. The deformations in the rest of the web are constant. In the experiment, 
we observed the wavy edge and found that the wavy edge follows approximately a 
sinusoidal oscillation. Therefore, we assume that the deformed shape follows equation 
{21} at the edge burr, and the deformation of web can be converted from shape I into 
shape II as depicted in Figure 10.  

 )2sin(
λ
π

⋅=
xAy  {21} 

where λ is the wave length, A is the amplitude of wavy edge. These two parameters 
can be determined in numerical simulation and measured in experiment. Then the shape 
of wavy edge can be simulated and examined.  

Lengthburr 

Lengthrest 

I II 

  

Figure 10 – Numerical transformation for wavy edge 

In the experiment, the wave length and amplitude have been obtained through image 
analysis. λ is 2.34 cm (0.923 in) and the A is 0.794 mm (31.26 mil). In the numerical 
simulation, the wave length (λ) and amplitude (A) were extracted from equation {22}. 
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It is assumed that the wavy edge has the same wavy length as that in the experiment 
to determine the amplitude. Based on equation {22}, the amplitude of wavy edge can be 
determined. In this numerical simulation, the amplitude is determined as 0.939 mm 
(36.96 mil) based on the deformation results from the pseudo 3D winding model and 
wavy length data from experiment. The numerical results and experimental data are in 
the same order although there are still some errors. 

Case Three: Formation of Baggy Web 
In this case, CMD thickness variation was generated by adding a stack of 6 inserts of 

strip webs at every sixth lap. The example setup is shown in Figure 11. In the pseudo 3D 
winding model, the web was divided into forty segments. Since the pseudo 3D winding 
model is an axisymmetric model, it is assumed that the extra thickness and volume will 
be allocated evenly in these six laps at each location respectively. The segments at the 
middle of web are thicker that the rest.   

 

 

a stack of 6 inserts; width is 2.54 cm (1 in); 
length is equal to the 

circumference at location of insertion

15.24 cm 
(6 in) 

Figure 11 – Formation of baggy web 

The pseudo 3D viscoelastic winding model has been used to simulate this baggy web 
problem. The winding speed is 1.31 m/min (4.3 ft/min) and the winding tensile stress is 
2.30 MPa (333.3 psi). The number of laps is around 50. The storage time is 108000 
seconds (30 hours). The lengths of deformed web at forty locations determined from 
simulations are plotted in Figure 12.  
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Figure 12 – The lengths of deformed web at forty locations 

From results shown in Figure 12, the lengths of deformed web reach the maximum 
value at the middle segments. Results are quantified in this example in terms of h as 
shown in Figure 13, a measure of the out-of-plane deformation of the web that resulted 
from the thickness variation. The amplitude of h is expressed by equation {23}. 
Numerical solution for h, based on the model results was 0.948 mm. The experimental 
result for h is 0.7 mm. The numerical results and experimental data are within the same 
order of magnitude. Based on the numerical solution, the deformed shape of wound roll 
is shown in Figure 14.  

 

r1 r2 

h 

L1 L2 

Figure 13 – Numerical transformation for baggy web. 
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Figure 14 – Deformed shape of a wound roll after storage 
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The dimensional changes estimated by numerical simulation are compared favorably 
with measurement data. However, there are still some issues in the pseudo 3D 
viscoelastic winding model. Similar to most of existing winding models, the pseudo 3D 
viscoelastic winding model is an axisymmetric model. Asymmetric local deformation 
cannot be considered using this winding model. As mentioned in the previous three 
examples, it is assumed that the extra thickness and volume will be allocated evenly in 
several related laps at each location respectively. In some situations, this assumption 
might have resulted in errors.  

Consideration of Varying Tension Histories  
In this section, we investigate the effects of varying tension histories. The winding 

tension can be represented in terms of tension taper factor based on the work by Shelton 
[15] and Feiertag [16]. The code allows for easy handling of tension history in winding. 
Stress distribution was determined for ten different tension profiles (ranging from 
constant tension Tf =0 to constant torque Tf =1) for a roll wound out to 1000 laps. The 
number of laps can be increased based on the capacity of the computer memory. 

The variations in tension and torque follow equations {24} and {25}, respectively. 

 )-1(-1
r
rT

T
T c

f
c

=        (Taper of tension) {24} 

 
ff
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TT

r
r

+=
τ
τ )-1(     (Taper of tension by control of torque) {25} 

where r is the radius of current outer lap; rc is the radius of core; T is tension at 
current lap; Tc is tension at the core; Tf is tension taper factor; τ  is torque at current lap; 

 is torque at the core. cτ
Using on the above equations, the history of tension and torque are plotted in Figure 

15 and Figure 16, respectively.  Both tension and torque decrease with the increase of Tf. 
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Figure 15 – Tension history 
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Figure 16 – Torque history 

Using the pseudo 3D viscoelastic winding model, the pressure was obtained and 
plotted in Figure 17. The zoom-in results for ten different tension profiles are plotted in 
Figure 18. In Figure 18, it can be observed that the stress increases by 300% when Tf 
decreases from 1 to 0.  
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Figure 17 – Radial stress for ten different tension profiles  
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Figure 18 – Radial stress (Zoom-in) for ten different tension profiles  

The initial tension used in this model is 100 psi and the tension is constant in the 
CMD. The results obtained right after the winding process was finished. This is a simple 
case we used to find the effect of winding tension variation. This method will be used to 
find the effect of winding tension along the time later. 

CONCLUSION 

A pseudo 3D winding model that has considered viscoelastic effects during winding 
and storage has been developed and implemented in a code. The following conclusion 
can be drawn.  

1) The pseudo 3D transient viscoelastic winding model is capable of dealing with (1) 
a varying thickness profile in both MD and CMD direction; (2) a winding tension 
variation with the winding laps; (3) varying core stiffness in the width direction. 
Moreover, the viscoelastic effects built in this model allow the consideration of winding 
conditions, such as winding speed and tension. The model is especially suitable for 
viscoelastic materials with relatively short characteristic relaxation times, such as plastic 
webs with glass transition temperature close to room temperature. 

2) The pseudo 3D transient viscoelastic winding model has been used to analyze 
three baggy lane problems for validation. They are (1) the formation of cambered web 
(in-plane imperfection) due to linearly varying thickness; and (2) the formation of 
localized baggy lanes due to an edge burr that resulted from slitting; and (3) the 
formation of a baggy web (out-of-plane imperfection) due to thickness increment in the 
middle of the web. Simulation results are compared with the experimental data, and 
reasonably good agreement was reached. 

3) A pseudo 3D transient viscoelastic winding model has been developed to provide 
a methodology for analyzing viscoelastic winding problems of a wound roll with a finite 
width. The effects of varying tension history on stress distribution are considered as an 
example of application of the transient viscoelastic winding model. 
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