
BEHAVIOR OF A THIN FLEXIBLE TWISTED WEB 
 

by 
 

Jerry L. Brown 
Essex Systems, Inc 

USA 

ABSTRACT 

In an earlier IWEB paper, “A New Method for Analyzing the Deformation and 
Lateral Translation of a Moving Web” [5], a nonlinear PDE model, suitable for use with 
low-cost FEA software, was developed. That work considered only in-plane deformation 
of a flat web. For a twisted web, something more is needed. Attempts to run a 
straightforward three-dimensional model on a 3D version of the FEA software were 
unsuccessful. It seems that adding an extremely thin third dimension causes serious 
convergence difficulties for the solver. Furthermore, the number of nodes increases 
dramatically, causing run times to increase from minutes to hours. More sophisticated or 
special-purpose FEA codes might be able to cope with the problems. However, one of 
the goals of this work is to develop methods that will run fast on low-cost software. So, 
attention is focused on creating a two-dimensional solution based on concepts similar to 
those used in large-deflection plate theory.  

This paper describes such a model. It incorporates the following features. 
 
1. It allows analysis of the effects of rollers that have both in-plane and out-of-

plane misalignment, including large rotations. 
2. Since the equations of equilibrium for the in-plane stresses are the same as those 

used in the [5], this model is a natural extension of that work.  
3. It incorporates the normal entry and normal strain boundary conditions for the 

downstream roller and can, therefore, include the effects of nonuniform webs 
and rollers. 

4. Nonlinear definitions of stress and strain incorporate the effects of large 
rotations. 

NOMENCLATURE 

E Modulus of elasticity, Pa 
D Flexural rigidity, N-m 
h Web thickness, m 
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L Length of span, m 
u Particle displacement in x direction, m 
ux Derivative of u with respect to x 
uy Derivative of u with respect to y 
v Particle displacement in y direction, m 
vy Derivative of v with respect to y 
vx Derivative of v with respect to x 
w Particle displacement in z direction, m 
wx Derivative of w with respect to x 
wy Derivative of w with respect to y 
Vu Surface velocity of upstream roller, m/s 
Vd Surface velocity of downstream roller, m/s 
εxy Shear strain referred to deformed coordinate system 
εxx Strain in direction of deformed x-axis 
εyy Strain in direction of deformed y-axis 
εxo Machine direction strain at entry of upstream roller 
μ Poisson’s ratio 
σyy Stress in direction of deformed y-axis, Pa 
σxx Stress in direction of deformed x-axis, Pa 
σxy Shear stress referred to deformed coordinate system, Pa 
σcr Critical buckling stress of a cylinder, Pa 
σyG CD compressive stress predicted by G-S model, Pa 
σyF CD compressive stress predicted by FEA model, Pa 
φcr Experimental value of angle at which twisted web develops wrinkle, degrees 
ψ Angle of tangent to particle trajectory of web (in relation to x-axis), radians 
ρo Density of relaxed web, Kg/m3 
i1 Unit vector in direction of fiber that was parallel to x-axis before deformation 
i2 Unit vector in direction of fiber that was parallel to y-axis before deformation 
i3 Unit vector in direction of fiber that was parallel to z-axis before deformation 

Subscripts  
u Upstream 
d Downstream 

INTRODUCTION 

An ideal model for a twisted web would include bending behavior so that wrinkling 
can be analyzed. Theodore von Karman developed a promising candidate. It is two-
dimensional and incorporates out-of-plane displacements as well as bending. 
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In these equations, w is the out-of-plane displacement in the z direction; σx , σy and 
σxy are the in-plane stresses, D is the flexural rigidity and h is thickness. The machine 
direction will be assumed to be aligned with the x-axis throughout this paper. Note that 
there is no differentiation relative to the z-axis. Relations {1} and {2} are the plane stress 
equilibrium equations. The left side of {3} is the familiar thin plate equation. The right 
side of {3} accounts for interaction of the mid-plane stresses and bending. If these 
equations are modified to incorporate nonlinear finite deformation theory, it becomes 
theoretically possible to accurately model large angles of twist, detect the onset of 
instability and then analyze the web in its buckled state. Unfortunately, the fourth order 
terms of these equations present almost as much difficulty as a full three-dimensional 
treatment. This is especially true when they are extended to large rotations using finite 
deformation theory. 

The problem becomes much easier if the model is required to work only up to the 
point of elastic instability. Most webs are so thin and flexible that they can be treated as 
membranes with no resistance to bending. This is true even when the web is twisted. 
Curvatures due to twisting are small and the bending moments are insignificant. It is only 
with the onset of buckling that large curvatures can develop in the form of narrow 
troughs. Therefore, the problem can be separated into two parts – unbuckled and 
buckled. 

This model will treat the unbuckled twisted web. 

EARLIER WORK 

Good and Straughan [1] analyzed a twisted web by assuming that each fiber in the 
machine direction (MD) follows a straight path between the rollers. Based on this, the 
MD elongation at each cross web location was estimated as a function of the twist angle 
and from that estimate an MD stress profile was created. This profile was then applied to 
an ingenious Airy’s function model of a flat membrane to estimate the CD stress. Using 
Timoshenko’s theory of buckling of a cylindrical shell, they then predicted the angle of 
twist necessary to cause the onset of wrinkling and found good agreement with 
experiments. Their method circumvents the complications of analyzing a twisted 
geometry. However, it does not permit accounting for the effects of the normal entry and 
normal strain rules at the downstream roller and, as will be seen from this analysis, these 
have a significant effect near the downstream roller. 

Mockensturm [2] used fully nonlinear plate theory to analyze a twisted web. His 
method draws heavily on relatively recent work by Naghdi [3]. It allowed him to detect 
the onset of buckles and to predict their shape. I cannot speak with authority about the 
validity of the results because the mathematical methods are unfamiliar to me. However, 
it appears that his analysis, like Good and Straughan’s, did not account for the boundary 
conditions at the entrance to the roller.  In any event, it is a very interesting paper and 
illustrates the potential value of Naghdi’s methods to web mechanics. 

THE MODEL 

As mentioned before, the curvatures in a thin twisted web will be quite small in 
relation to its flexural rigidity. And since the MD tension tends be large compared to all 
other stresses it can be safely assumed that the curvature in the machine direction will be 
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virtually zero. This can be easily observed in a real web by holding the ends of a string 
against the web surface at the ends of a span. If the string is aligned with the machine 
direction it will be in full contact along its length, regardless of which surface of the web 
it is on. Thus, in the MD direction the web is neither concave nor convex. This is 
illustrated in Figure 1. This latex web is 5.5 inches wide and 0.030 mils thick. Tension is 
3.7 pounds. A thread has been passed under the bottom roller and is draped over the top 
with a weight on its end. It is in full contact all along its length. The same thing will be 
observed if the string is on the opposite surface. 

 

Figure 1 – Illustration of zero Curvature in the MD direction 

One consequence of zero MD curvature is that curvature in the orthogonal direction 
will also be zero.  This is easily observed by viewing twisted webs from the edge. 

Zero MD curvature allows equation {3} in von Karman’s model to be greatly 
simplified.  It becomes simply, 

 
2

2 0w
x

∂
=

∂
. {4} 

The next step in creating the model is to incorporate the features of finite 
deformation theory. Novoshilov [4] develops several versions of nonlinear theory that 
differ in complexity depending on the requirements. For problems with small strains and 
rotations the method described in Brown [5] is adequate. But, for large rotations it is 
necessary to move up a step in complexity. In the following development, the strains are 
still considered to be small compared to unity. This permits the use of a formulation that 
is midway in complexity between those used in [5] and the general finite deformation 
equations. 
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Novoshilov’s Small Strain, Large Rotation Equations  
One of the greatest difficulties in working with this particular formulation of finite 

deformation theory is that one must think about the problem from the standpoint of two 
coordinate systems – the x-y-z coordinate system in which the problem is defined and 
another coordinate system which rotates with the deformation of the web surface. The 
essence of the method is to define the strains and stresses of the deformed body in terms 
of the undeformed coordinates, x and y. This makes it very easy to lose sight of the 
physical meaning of the quantities being calculated. For example, u, v and w are defined 
as displacements in the undeformed coordinates, x, y and z. Their derivatives relative to 
x and y are then used to define strains that apply to the deformed coordinates. So, it is 
always necessary to keep in mind whether a particular quantity is to be interpreted in 
terms of undeformed or deformed coordinates and to also define the direction cosines 
that permit transformation from one coordinate system to the other. 

It should also be noted that the assumption of small strain makes it possible to 
assume that the deformed coordinate system remains orthogonal. Therefore, only 
rotations need be considered when transforming from one system to the other. 

Strain definitions. These define the strains relative to the deformed coordinates. 

Deformed x strain 
2 21

2xx
u u v w
x x x x

ε
2⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 {5} 

Deformed y strain 
2 2

1
2yy

v v u w
y y y y

ε
2⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

= + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 {6} 

Deformed shear xy
u v u u v v w w
y x x y x y x y

ε ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 {7} 

Equilibrium equations. The stresses, σxx , σyy and σxy are referred to the deformed 
coordinate system. The terms within square brackets are the projections of these stresses 
onto the undeformed coordinates. 

 1 1xx xy xy y
u u u u

x x y y x y
σ σ σ σ

⎡ ⎤ ⎡∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + + + +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣
0

⎤
=⎥

⎦
 {8} 

 1 1 0xy xx yy xy
v v v v

x y x y y x
σ σ σ σ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
+ + + + + =⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
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It might be less confusing if Novoshilov had used different subscripts for the stresses 
and strains that are referred to the deformed coordinate system. Since his work is so 
fundamental to this model, I’ve preserved his notation to avoid confusing those who may 
want to refer to it. In defense of Novoshilov, however, he does go to some pains to 
explain the physical interpretation of his equations at many points throughout his book. 

Throughout the remainder of this paper the subscripts x and y, when applied to the 
variables u, v, w, will indicate partial differentiation relative to that coordinate. 

Direction cosines. Table 1 lists the cosines of the angles between the unit vectors of 
the deformed and undeformed coordinates. 

 
 i1 (deformed x) i2 (deformed y) 

X 
1
1 2

x

xx

u
ε

+

+
 

1 2
y

yy

u

ε+
 

Y 
1 2

x

xx

v
ε+

 
1
1 2

x

yy

u
ε

+

+
 

Z 
1 2

x

xx

w
ε+

 
1 2

y

yy

w

ε+
 

Table 1 – Direction cosines 

The unit vectors i1 and i2 will be in the plane of the deformed web. Their direction 
will vary with x-y location.  Coordinate i3 will be orthogonal to the other two. It is not 
important to the analysis because a fundamental assumption in a two-dimensional model 
is that stresses perpendicular to the surface are zero. 

Definitions of stress. These stresses are referred to the deformed coordinate system. 
For example, σxx is not the stress in the x direction. It is in the direction of a fiber in the 
deformed body that was parallel to the x-axis before deformation.  

 (21
)xx xx

E
yyσ ε με

μ
= +

−
 {11} 

 (21yy yy xx
E )σ ε με
μ
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 {12} 
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Verification  
The mathematics was checked in the following way. Boundary conditions in the 

modeling software1 were configured to rotate a stretched membrane about the x-axis 
without altering the stretching. The arrangement is shown in Figure 2. 

While in the horizontal position, the ends parallel with the y-axis are clamped in the 
y and z directions [v = 0, w = 0]. In the x direction, the clamped edges are fixed at one 
end [u = 0] and displaced at the other [u = Δx]. The edges parallel to x are left free. After 
running this case and collecting the results, a rigid body rotation was applied by changing 
the displacements in v and w at the clamped ends [v = y⋅cos(θ) – y and w = y⋅sin(θ)]. 
Everything else was left the same. If the model works, the stress fields referred to the 
deformed coordinates should be the same. Results for σxx are shown in Figure 3. The 
membrane is ½ m by ½ meter by 0.1 mm thick, with a modulus of 109 Pa. The 
displacement, Δx is 1 mm. 

Figures 3 and 4 show identical stress fields as they should, because a rigid body 
rotation should not alter the stresses. The σyy stresses behave the same way. 

The inverse cosine of 
1
1 2

x

yy

u
ε

+

+
 in Figure 5 is within 0.13 percent of 30 degrees at 

all locations. This is also as it should be. 

   

Figure 2 – Test Case  

                                                 
1 FlexPDE 5.0.15 from PDE Solutions, Sunol, CA 
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Figure 3 – Rotated 0 degrees 

 

Figure 4 – Rotated 30 degrees 
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Figure 5 – The inverse cosine of 
1
1 2

x

yy

u
ε

+

+
 

Effect of twist on boundary shape. As pointed out in [1], the roller boundaries of a 
twisted web are not parallel to the roller axes. Twist causes the wrap to increase at one 
edge and decrease at the other. Careful examination of Figure 1 shows this. Calculating 
the points of intersection of the web edges with the rollers is a straightforward, albeit 
tedious, exercise in numerical analysis. An iterative procedure was used for this work 
(available on request). There is also a slight CD curvature of the boundaries, due to the 
helical path they follow on the roller surfaces. This will generally be very small and will 
be ignored for purposes of this analysis.2 The initial relaxed shape then becomes a 
parallelogram. 

 
Boundary defect.  If a web running under tension could be stopped, frozen, cut 

along the line of entry at a roller and then unfrozen, the cut edge of the relaxed web 
would not match the original boundary. In the case of twisted webs, the effect is small. 
But, since an FEA solver makes the correction easy, it will be included. The problem is 
first solved with the relaxed boundary the same as the line of entry. Then, information 
from the solution is used to adjust the boundary to match the line of entry after 
deformation.  

 

                                                 
2 This could be an important factor in more complex models that include wrinkling 
behavior because CD curvature at the boundaries may promote lateral instability in the 
presence of compressive stress. 
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Spans before and after the twisted span. This analysis will consider only a single 
span. To facilitate this, the previous span will be assumed to be in a state of pure MD 
stress. No attempt will be made to consider effects downstream of the span. Twisting a 
roller obviously twists both the upstream and downstream spans. So, eventually a two-
span study must be made. But, one span is enough for now.  

 
Boundaries. Figure 6 shows the general arrangement of boundaries and coordinates. 

 

Figure 6 – Boundaries of the model 

All of the twisting is done at the upstream boundary. The downstream boundary is 
kept parallel to the y-axis with w = 0. This choice was made because the downstream 
boundary conditions are the most complicated and it seemed easier to avoid mistakes by 
keeping that boundary in the x-y plane. However, in a real world situation the 
circumstances would likely be reversed with the upstream end horizontal and the 
downstream end of the span rotated. This is an arbitrary choice, because it doesn’t 
change the results, provided that all the previous spans are assumed to be in a state of 
pure MD stress and rotated (without twisting) into alignment with the upstream 
boundary. 

At the upstream end, the v and w displacements will be used to twist the web through 
an angle, θ, while u is kept fixed. 

Since there are three variables, u, v and w, three boundary conditions are required at 
each edge. 

 
Lateral edge boundary conditions. The lateral edges are free of constraint. So, 

there will be zero normal stress and zero tangential shear. Therefore, the terms in the 
square brackets of the y derivative terms of {8} and {9} are set to zero. 

 1 xy y
u u
x y

σ σ∂ ∂⎛ ⎞ 0+ + =⎜ ⎟∂ ∂⎝ ⎠
 {14} 
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 1 yy xy
v v
y x

σ σ
⎛ ⎞∂ ∂ 0+ +⎜ ⎟∂ ∂⎝ ⎠

=  {15} 

There is no y derivative in {10}. This implies that the y variation in w is completely 
determined by the x derivative in {10} and the conditions at the other boundaries. In 
other words, {10} and the boundary conditions on w at the rollers define a surface to 
which the membrane conforms. It is possible with FlexPDE to specify this requirement 
and allow it to solve for the surface. 
 

Upstream boundary conditions. At the upstream roller, where the rotation will be 
established, it is necessary to specify all three boundary conditions in terms of 
displacements, u, v, and w. Displacement u is easy, it is fixed at zero. So, 

Boundary condition 1 0u = . {16} 

Displacements v and w require careful treatment because they are, by definition, 
referred to the undeformed coordinate system and yet they depend on the MD strain in 
the previous span (because it contracts in width), which is defined in terms of the 
deformed coordinate system. It will be assumed that the MD stress in the previous span is 
known to be equal to some value, σxo. Then the MD strain there will be εxo = σxo/E , and 
the CD strain will be εyo = -μεxo. In a linear elasticity analysis, the displacement v at the 
upstream boundary could now be calculated as v = y⋅(-μεxo). This is not possible in the 
case of nonlinear analysis. The CD strain is defined by equation {6}. Therefore, 

 
2 2 2

1
2 xo

v v u w
y y y y

με
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

+ + + = −⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎥  {17} 

This is an ordinary differential equation that can be solved for v. It will be solved 
with the web in a horizontal position and then the rotation will be applied. The second 
term in the square brackets is zero because u = 0. The third term in the brackets is also 
zero because the web is in a horizontal position (zero slope along y). Therefore, 

 1 1 2 xo
dv
dy

με= − + −  {18} 

Figure 6 illustrates how rotation affects v. From this it is apparent that, 

Boundary condition 2 ( )1 2 cosxov y yμε θ= − −  {19} 

and 

Boundary conditon 3     1 2 sin( )xow y με= − θ  {20} 
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Figure 7 – Finding v and w 

Downstream boundary conditions. At the downstream roller the z-axis 
displacement is zero. So, 

Boundary condition 1 0w =  {21} 

The normal strain and normal entry rules provide the other two conditions. The 
normal entry rule states that: in a steady state, the path of a particle in the web aligns 
itself with the direction of the roller surface velocity (normal to the axis of the roller). In 
the undeformed state, the particle paths will be parallel to the x-axis. So, the vector 
defining the direction of the path in the deformed state is the direction of the unit vector 
for i1. Since all the quantities in the calculation must be referred to the undeformed 
coordinate system, i1 must be expressed in terms of the undeformed unit vectors, x

r
, y
ur

. 

Using the direction cosines of Table 1, the vector P
ur

 for the particle path will be, 

 
1
1 1

x x

x x

u v
P x

E E
+

= +
+ +

y
ur r ru

 {22} 

Therefore, the tangent of the entry angle, ψ, (which must become zero in the steady 
state) is, 

Boundary condition 2 ( )tan 0
1

x

x

v
u

ψ = =
+

 {23} 

Equation {23} is the second boundary condition for the downstream roller and is 
identical to the result found in reference [5], using a completely different approach. 

The fact that the lines of contact with the rollers are not parallel with the roller axes 
has no effect on the application of the normal entry rule. 

The normal strain rule states that: in a steady state, the ratio of the stretched lengths 
of an infinitesimal patch of the web at two successive rollers is proportional to the 
respective ratios of the web velocities at the two rollers. In other words, if the web speeds 
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up by 1% relative to the previous roller, it will have to elongate by 1% to insure that the 
mass flow is the same at the two locations. Mathematically, this may be stated as, 

 
1
1

xu u

xd d

V
V

ε
ε

+
=

+
 {24} 

Where εxu and εxd are the strains in the direction of the surface velocities of the 
rollers (normal to the axes of the rollers) and Vxu and Vxd are the respective velocities 
(also normal to the axes of the rollers). It is shown in reference [5] that the cross sectional 
area and density change by precisely the right amount to make this happen at each point 
across the web and that, furthermore, it must happen in order to satisfy the principle of 
conservation of mass. The requirement that the strains be the components normal to the 
roller axis is insured by the normal entry rule. Referring to Table 1, if vx is zero then the 
angle between the deformed axis, i1, and y must be 90 degrees. 

Equation {24} makes it possible to define the strain, εxx at the downstream roller in 
terms of the strain at the entry to the upstream roller, εxo and the ratio of the 
circumferential velocities, Vu upstream and Vd downstream. 

Boundary condition  3 ( )1u
xx xo

d

V
V

ε ε 1= + −  {25} 

Equation {25} is the third boundary condition for the downstream roller3. Since the 
strains are the values in the deformed web and are defined in terms of the undeformed 
coordinates, {25} needs no further transformation. 

TYPICAL RESULTS 

Typical results are illustrated for a PET web described in Good and Straughan’s 
paper [1]. Test parameters are shown in the captions. 

Figures 8 and 9 show contour plots of the principal stresses. The principal minimum 
stress (CD) in Figure 9 is compressive for almost the entire area of the span. [The 
principal angle relative to the x-axis varies from -4 to 4 degrees]. The principal maximum 
stress (MD) shows the expected parabolic profile, except near the roller where the normal 
entry and normal strain rules have must be satisfied. 

Figures 10 and 11 show contour plots for the same PET web with a longer span. As 
the span lengthens, the CD compressive stress is localized at the roller, becoming zero in 
the middle section. The MD stress has a parabolic profile throughout its length. This is 
quite different than the flat web model. In the flat web, St. Venant’s principle causes the 
MD profile to become uniform at cross sections that are not near the ends. Persistence of 
the profile in the FEA model is not an artifact of the analysis method. The topology of 
the 3D surface causes the MD strain profile to be distributed unchanged along the length.   

                                                 
3 Equation {25} is different than the result presented in reference [5]. In the earlier work 
an unnecessary approximation was used. It had no material effect on the results, because 
it produces nearly identical values for εxx . See Appendix A for an explanation. 
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Figure 8 – Principal minimum stress (CD) PET web 
Twist = 5 degrees. length = 0.108 m, width = 0.152 m, thickness = 23.4e-6 m, modulus = 

4.13e9 Pa, tension = 26.7 N, μ = 0.3, roller diameter = 0.0736 m.  

 

Figure 9 – Principal maximum stress (MD) – Same web as in Figure 8 
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Figure 10 – CD Stress for same web as in figure 8 except L – 0.432 m 

 

Figure 11 – MD Stress – web same as figure 8 except L = 0.432 m 
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COMPARISON WITH AN EXPERIMENT 

Good and Straughan [1] performed a series of excellent experiments in which they 
increased the angle of twist until wrinkles occurred. The span length and tension were 
varied. In the paper they also developed a model based on the assumption that the 
stresses of a twisted web could be approximated in a flat web by applying an 
appropriately shaped MD stress profile to the ends. This was used in conjunction with 
Timoshenko’s [6] critical stress, σcr, for buckling of a cylinder to predict the angle of 
wrinkling, φcr. In the following discussion, this will be called the G-S model. It will be 
interesting to compare the experimental data with the results of the G-S model the FEA 
model of the present paper.  

The G-S model was organized to predict the angle of wrinkling, which was then 
compared with the observed angle. To facilitate inclusion of the FEA model in the 
comparison, the equations were rearranged to calculate the CD stress, σy, existing at the 
observed angle of wrinkling, φcr. The headings in the tables are: L = span length; σxx = 
Nominal MD stress;  φcr = Observed angle of twist at which wrinkles appeared; σcr = 
Theoretical CD stress at which a cylinder will buckle; σyA  = Theoretical CD stress from 
the G-S model;  σyF = Theoretical CD stress from FEA model with the same inputs as the 
G-S model; σyA/σyF = Ratio of the G-S and FEA models CD stresses; φcr/L = Ratio of the 
observed critical angle of twist to the span length. All of the CD stresses were peak 
values at the roller. 

The last entry in Table 3 is a calculation to check the rearranged math. Unlike the 
other rows, the angle used for φcr was the value predicted by the G-S model rather than 
the observed value. This resulted in σyG being equal to σcr  as it should have.  

 L 
(m) 

σxx 
(Mpa) 

φcr 
(Deg.) 

σcr 
(Mpa) 

σyG 
G-S 
Flat 

(Mpa) 

σyF 
FEA  

Twisted 
(Mpa) 

σyG/σyF φcr/L 
(Deg./m) 

1 0.108 15 4.1 -1.59 -1.85 -0.86 2.2 38 
2 0.108 30 4.6 -1.59 -2.33 -1.1 2.1 43 
3 0.464 15 10 -1.59 -2.0 -0.27 7.4 22 
4 0.464 30 9.8 -1.59 -1.92 -0.27 7.0 21 

 
Table 2 – PET 

Width = 0.152 m, thickness = 23.4e-6 m, modulus = 4.13e9 Pa, μ = 0.3, 
roller diameter = 0.0736 m, uncoated aluminum surface 
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 L 
(m) 

σxx 
(Mpa) 

φcr 
(Deg.) 

σcr 
(Mpa) 

σyG 
G-S 
Flat 

(Mpa) 

σyF 
FEA  

Twisted 
(Mpa) 

σyG/σyF φcr/L 
(Deg./m) 

14 0.127 13 1.7 -0.96 -0.65 -0.22 3.0 13.5 
15 0.127 26 2.1 -0.96 -0.99 -0.25 4.0 16.5 
16 0.127 40 2.7 -0.96 -1.63 -0.58 2.8 20.5 
17 0.584 13 6.5 -0.96 -1.00 -0.16 6.3 11.1 
18 0.584 26 7.8 -0.96 -1.44 -0.23 6.3 13.4 
19 0.584 40 7.9 -0.96 -1.48 -0.24 6.2 13.5 

 
Table 3 – PET  

Width = 0.152 m, thickness = 17.8e-6 m, modulus = 4.13e9 Pa, μ = 0.3,  
roller diameter = 0.0736 m, high friction coating on roller 

 L 
(m) 

σxx 
(Mpa) 

φcr 
(Deg.) 

σcr 
(Mpa) 

σyG 
G-S 
Flat 

(Mpa) 

σyF 
FEA  

Twisted 
(Mpa) 

σyG/σyF φcr/L 
(Deg./m) 

14 0.127 13 1.7 -0.96 -0.65 -0.22 3.0 13.5 
15 0.127 26 2.1 -0.96 -0.99 -0.25 4.0 16.5 
16 0.127 40 2.7 -0.96 -1.63 -0.58 2.8 20.5 
17 0.584 13 6.5 -0.96 -1.00 -0.16 6.3 11.1 
18 0.584 26 7.8 -0.96 -1.44 -0.23 6.3 13.4 
19 0.584 40 7.9 -0.96 -1.48 -0.24 6.2 13.5 

 
Table 4– PEN 

Width = 0.152 m, thickness = 6.6e-6 m, modulus = 8.87e9 Pa, μ = 0.3, 
roller diameter = 0.0736 m, high friction coating on roller 

 L 
(m) 

σxx 
(Mpa) 

φcr 
(Deg.) 

σcr 
(Mpa) 

σyG 
G-S 
Flat 

(Mpa) 

σyF 
FEA  

Twisted 
(Mpa) 

σyG/σyF φcr/L 
(Deg./m) 

20 0.127 3.9 3.5 -0.28 -0.11 -0.036 3.1 27.6 
21 0.127 13.1 5.0 -0.28 -0.21 -0.076 2.8 39.4 
22 0.584 3.9 13.5 -0.28 -0.17 -0.025 6.8 19.7 
23 0.584 13.1 15.0 -0.28 -0.20 -0.032 6.3 22.4 

 
Table 5 – Polyethylene 

Width = 0.152 m, thickness = 50.8e-6 m, modulus = 0.34e9 Pa, μ = 0.3, 
roller diameter = 0.0736 m, high friction coating on roller 

CONCLUSIONS 

1. The FEA model shows significantly lower levels of CD compressive stress at the 
critical angle than the G-S model. They are 1/3 to 1/7 as large. 
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2. With the exceptions of tests 1, 2 and 16, the FEA model produced CD stresses that 
varied less with tension and span length. 

3. The ratio of the stress magnitudes between two models changes with span length. 
For a given length, the ratio is approximately the same across all the tests. This may 
be due to the difference in the behavior of the MD stress profiles in the two models. 
The FEA model tends to have a parabolic stress profile throughout its length 
whereas the G-S model does not. The difference becomes more significant for long 
spans. 

4. If the FEA model is more accurate in predicting the CD stress, then a new buckling 
criterion must be developed. Something along the lines of the criterion used by 
Good, Kedl and Shelton [7] for shear wrinkling may be appropriate. 

5. Both models show very little change in CD stress levels with tension. 
6. Until someone solves the problem of measuring stress levels in thin webs, the 

wrinkling threshold will probably remain the best validity test for twisted web 
models.  

7. There is nothing in the FEA modeling technique to detect CD elastic instability. 
More work should be done to incorporate the features of the von Karman equations. 
 
It should be emphasized that the G-S model is still the best tool available for the 

predicting the onset of wrinkling with twist. It may overestimate the magnitude of the CD 
stress. But if that is the case, the buckling criterion must be doing the same thing because 
the results agree well with experiment.  

A Hypothesis to Explain CD Compressive Stress with Twist 
Both the experiments and the models indicate that the compressive stress doesn’t 

change much with the MD tension? One likely explanation is that the compressive CD 
stress is primarily due to the effect of the normal entry rule at the roller.  

 

Figure 12 – Projection of deformed boundaries on x-y plane 

Figure 12 shows the shape of the deformed web projected on the x-y plane. The 
twist has been increased to 10 degrees and the y displacement scaled up so that the shape 
is easier to see. The upstream twist has caused the particle paths to become curved in the 
vicinity of the downstream boundary. Keep in mind that the downstream boundary is in 
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the x-y plane. So, there is “real” curvature there. The curvature causes the normal entry 
rule to create the lateral compression (the slanted web boundary caused by its 
parallelogram shape has nothing to do with this). If traction permits, the web is 
compressed laterally until the particle paths are bent into alignment with the velocity 
vector of the roller surface. 

To check this hypothesis, the model was modified at the downstream boundary to 
eliminate the normal entry condition in two different ways. First, a boundary condition 
for displacement v was applied, matching that at the upstream roller. Displacement, w 
was zero as before. Displacement u was chosen to create a uniform MD tension prior to 
twisting. So, the model was equivalent to a web running under tension between parallel 
rollers that is then stopped and twisted. Under these conditions additional MD stress 
produced by the twisting causes the web to neck down at the roller, producing tensile CD 
stress. Next, the model was changed so that there would be no axial traction at the 
downstream roller – a free edge in the y direction. The other boundary conditions were 
the same as the first case. There was compressive CD stress at the roller. But, it was an 
order of magnitude smaller than with the normal entry condition active 

Slipping 
In almost all of the tests described in [1] the critical angle of twist did not change 

significantly with tension. There were some cases where this was not true.  

 

Figure 13 – Friction and stress rates at 26.7 N 
Twist = 5 degrees. length = 0.108 m, width = 0.152 m, thickness = 23.4e-6 m, modulus = 

4.13e9 Pa, tension = 26.7 N, μ = 0.3, roller diameter = 0.0736 m. 

If the tension was low, it sometimes took much more twist (as much as two times) to 
create a wrinkle than at higher tensions. In a graph with critical twist angle on the 
ordinate and tension on the abscissa, the twist angle would start high and then become 
asymptotic to a horizontal line as the tension increased. The authors suggested that low 
friction between the web and roller might have allowed troughs to flatten at the roller. 
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This conclusion is supported by Figure 13, which shows a plot of the magnitude of the 
stress and friction rates at each point across the web.  

 
The values in Figure 13 were computed as part of the FEA analysis, based on 

unpublished work by the author. The stress rate (rate in terms of distance, Pa/m) is the 
combined effect of the axial and circumferential stresses that are available to overcome 
friction. The friction rate is the maximum value of the radial stress (normal to the web 
surface) times the coefficient of friction divided by the radius of curvature of the roller 
surface. [The direction of the maximum friction rate is not necessarily circumferential. 
So, the radius of curvature is usually larger than the cylinder radius.] At any location 
where the stress rate is larger than the friction rate, local slipping may occur. The friction 
rate in Figure 12 is based on a friction coefficient of 0.3. It is evident that the edges can 
slip and that it would take only a slight change in either coefficient or stress for any of 
the other points to slip. In all of the other cases where this behavior was observed, the 
FEA analysis produced data like Figure 13 or worse (with the friction curve below the 
stress curve). In all other cases where “normal” behavior was observed there was ample 
separation between the stress and friction rate curves. 
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APPENDIX A 

Alternative Derivation of Normal Strain Rule 
and an Unnecessary Approximation 
 

In the diagram below, the web is assumed to be running in a steady state with good 
traction on the rollers.  
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Figure 14 

At the entry to the rollers, the normal entry rule requires that the particle paths be normal 
to the axis of rotation of a roller surface. The shaded area at the entry to the upstream 
roller represents an infinitesimal area with sides parallel to two particle paths. The shaded 
area at the entry to the downstream roller is the same portion of web at the moment that it 
enters the roller there. The roller surface velocities are Vu and Vd. Δx is the relaxed length 
of the area in direction x. εxu is the strain normal to the upstream roller. εxd is the strain 
normal to the downstream roller. Conservation of mass requires that the mass flow into 
and out of the span for any portion of web between two particle paths be constant. 
Otherwise, material would accumulate in the span and a steady state would not exist. For 
this to be true, each area must travel past the line of roller contact in the same length of 
time. Therefore, 

 ( )1 xu ux V tεΔ + = Δ   {26} 

and 

 ( )1 xd dx V tεΔ + = Δ   {27} 

Equating {26} and {27} and solving for εxd 

 
( )1 1d

xd xu
u

V
V

ε ε= + −
 {28} 

Equation {28} is not the same as that developed in “A New Method for Analyzing the 
Deformation and Lateral Translation of a Moving Web” [5]. However, the two equations 
are numerically equivalent for small strains. In the method of derivation used in [5], 
separate expressions were developed for the mass flows at the upstream and downstream 
rollers. For example, the mass flow upstream is, 

( )( )( )
( ) 1

u o
i

xu

V dy h
Q

ρ
ε

=
+  {29} 
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where dy is the increment of width, h is the thickness and ρo is relaxed density. The strain 
in the denominator looked like a potential nonlinearity. So, the approximation, 

 ( ) (11 1 )xu xuε ε−+ ≈ −  {30} 

was used. This led to the relationship, 

 
( )1 1u

xd x
dV u

V
ε ε≈ − −

. {31} 

Although {31} is algebraically different than {28}, the numerical difference in εxd is 
insignificant so long as εxu is very small and Vu/Vd is close to 1.  Both of these 
requirements are met in any practical web handling problem. Note that when Vu/Vd =1 
they are exactly equivalent and that was the value assumed for all the examples in the 
paper. Nevertheless, the concern about a nonlinearity was misguided. Leaving {29} 
alone, along with its companion expression downstream, would have led to {28} which 
is exact and linear. 
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 Behavior of a Thin Flexible Twisted Web J. L. Brown, Essex 

Systems, UK 
 
 
Name & Affiliation Question 
Tim Walker, TJ Walker 
and Associates 

Could you go back to a table, with the φcritical/L?  The one 
with the critical twist?  What’s the far right column? 

Name & Affiliation Answer 
J.L. Brown, Essex Systems This is the twist per unit of length.  It’s interesting; it’s 

pretty much the same for all of these.  This is the angle at 
which the web went into wrinkling divided by the length of 
the web, and it’s pretty constant. 

Name & Affiliation Question 
Tim Walker, TJ Walker 
and Associates 

I was confusing that, I know sometimes the critical angle 
of twist is described as when the center of the web 
becomes slack and that’s not the case here.  Your work and 
the work by Keith before, I think that’s one of the biggest 
eurekas to me of this work. The old advice, for the 
displacement guide, might find that the web center doesn’t 
go slack until 20 degrees of twist. And your work and 
Keith earlier work might find that only 5-10 degrees of 
twist are required to generate wrinkles. So the critical twist 
may be associated with wrinkling that occurred prior to the 
slack web center. 

Name & Affiliation Answer 
J.L. Brown, Essex Systems Yes, well, John Shelton indicates he’s not aware of any 

cases where displacement guides limited to 5 degrees of 
twist wrinkled webs.  But if you twist a web enough it will 
wrinkle.  My machine is a great wrinkle maker.  It would 
be good for studying wrinkles. 

Name & Affiliation Question 
Tim Walker, TJ Walker 
and Associates 

I have seen displacement guides in plants and they are 
cocked to one side constantly and they’re making wrinkles.  
I believe it is because the web coming into it is laterally 
offset.  I think the solution is to just go back and move the 
sensor on the unwind, remove the offset, and you’d get rid 
of the wrinkles. 

Name & Affiliation Question 
Neal Michal, Kimberly 
Clark 

Good work.  Your work here is all fairly small angles.  
Would this also apply to larger twists, like if you 
intentionally wanted to twist a web, say 90 degrees? 

Name & Affiliation Answer 
J.L. Brown, Essex Systems I think it can.  This particular set up, that I had running on 

my computer, when it got to the twist angles of 45 degrees, 
I began to run into some difficulties that had to do with the 
principle angles, but I see no reason why it can’t.  You can 
have arbitrarily large rotations with this model.  As long as 
the strains don’t get ridiculous, the rotations can be as large 
as you want. 
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Name & Affiliation Comment 
Keith Good, Oklahoma 
State University 

From our previous work I know there are failures other 
than wrinkles that can occur at large twist angles. What we 
called a fold over is an example. In this case the web 
would collapse upon itself in the test span before it would 
produce a wrinkle at the downstream roller.   
 
We have to remember that displacement guides are not the 
only source of twist in web lines. It is commonly done 
when a new web is introduced part way through a web 
process machine. You may have an unwind stand sitting to 
the side of the web process line. The unwinding web may 
twist 90 degrees, wrap a vertical idler, and then twist +/-90 
degrees again depending on which side of the web needs to 
be up. Then it may be laminated with the other web(s) 
coming through the web line.  Displacement guides have 
no need to twist a web more than 5 degrees because if the 
next roller in the guide is 1 meter downstream we could 
produce 90 mm of lateral correction downstream which is 
ample. But there are cases where webs need to undergo 
considerable twist and the analyses such as Jerry has 
developed and the closed form expression we developed in 
the earlier work help you determine what web length is 
required to prevent instability. 

 




