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ABSTRACT 

Free vibration analysis of a thin tensioned web, wrapped around a reverser was 
studied. The effect of helix angle was considered. The eigen-problem was formed using 
finite elements and solved numerically. Design parameters such as tension, radius of 
cylinder, wrap angle, width of the web, lengths of non-wrapped web and helical wrap 
angle were studied. It was seen that the free edges cause a frequency clustering of the 
lateral-modes about the dominant longitudinal-mode. It was also seen that the 
effectiveness of the plate-shell junction to act as a stiff support depends on problem 
parameters. Eigenmodes with same mode-shape numbers are observed in symmetric and 
anti-symmetric fashion about the center of the plate, for configurations with equally long 
unwrapped sections. The results also showed that the first natural frequency is reduced at 
large helical angles for the parameters studied. 

NOMENCLATURE 

b      Width of the web 
D    Eigenmodes in matrix form 

bD     Bending rigidity 
           ))1(12/( 23 υ−= EhDb

tD      In-plane stiffness 
)1/( 2υ−= EhDt
 

E  Elastic modulus of the web, Pa 
I              Second moment of area 
h             Web thickness, m 
L1, L2  Lengths of 

incoming/outgoing web, m 
[K] Global stiffness matrix 
[M]  Global mass matrix 

aM  Bending moment (a = x, y) 

p   Externally applied load 

( , )wR x yx y   Web radi  Web radius of curvature 
t Time (sec) 
T    Longitudinal external 

tension, N/m 
w     Out-of-plane web 

deflection (m) 
x,y       In-plane coordinate 

system 
z Transverse direction 
β     Helix angle 
λ,-λ,+λ System eigenvalue, 

       anti-symmetric, symmetric 
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ρ Mass density of the web 
θ   Wrap angle 
 

ν  Poisson’s ratio of the web 
4∇  Biharmonic operator

INTRODUCTION 

The manufacture of products in continuous web form benefits from models capable 
to predict their mechanical behavior under different conditions. This is necessary in order 
to suppress mechanical “failures” leading to product loss, and to improve the 
manufacturing speed. In a web handling application, such as photographic film or paper 
manufacturing, the running direction of a continuous web needs to change often. At 
certain process locations on the web-path, the web cannot be supported by rollers to 
change its direction, as contact could damage the product. Air reversers allow the web to 
float on a cushion of air, thereby protecting the web. An air reverser is a pressurized 
hollow drum with holes on the surface to provide the air cushion.  

The behavior of a flexible web supported by an air reverser has been studied by 
Müftü and Cole [1]. They introduced a mathematical model of the interaction between 
the web and the air cushion formed by the air reverser. The governing equations of large 
web deflection were given, and coupled to a modified form of the Navier Stokes 
equations. It was seen that by wrapping the web around the cylinder, the web was 
stiffened by the added curvature. A parametric study of the web deflection was 
performed to identify problematic situations in the design of air reverser. Recently, the 
mechanics of a web helically wrapped around an air reverser has been investigated by 
Müftü [2]. The introduction of the helical angle reduced the shell stiffness, leading to 
higher web clearances. 

The aspect ratio of the webs during manufacturing makes the process highly 
susceptible to transverse vibration. Raman et al. investigated the vibrations of paper webs 
[3]. Their work focused on an isotropic, linearly elastic, stationary and translating 
Kirchoff plate with a low stiffness-to-tension ratio. For stationary, uniformly tensioned 
plate with no fluid interaction, the cross span frequencies cluster to equivalent 
frequencies of a tensioned string. The frequency clustering leads to a dampening of 
vibrations in the center of a span and superposition of multiple modes at the free edges 
during excitation. At low and moderate transport speeds these frequency clusters remain 
distinct, but merge when translation is closer to the critical speed.  

The coupling of spans in vibration of axially moving members was studied by Ulsoy 
[4]. The equations of motion were derived and solved for a closed-loop belt, tensioned 
over two pulleys while neglecting dampening effects. It was assumed that the belt had 
zero displacement at the pulleys. Energy transfer between the two spans was provided by 
a spring support at one of the pulleys. The beating phenomenon observed at low 
transport velocities disappeared at higher velocities or tension difference.  

The present work investigates the behavior of the transverse vibrations of the 
tensioned web wrapped about a guide [2]. The model is represented by a plate-shell-plate 
configuration. It is assumed that the air cushion provided by the air reverser provides the 
gap in the shell area, but the fluid-structure coupling is not included in what follows. The 
stability of the system is studied. The FE method is used to investigate the influence of 
longitudinal tension (T), radius of the cylinder (R), wrap angle (θ ), width of the web (b), 
lengths of incoming/outgoing webs (L1, L2) and helical wrap angle (β). The web transport 
is assumed to take place at moderately low speeds therefore, the gyroscopic acceleration 
components due to web transport are excluded from this study. 

290 
 
 
 



GOVERNING EQUATIONS 

The formulation of this problem stems from the work by Müftü [2] where the 
differential equation, governing the mechanics of a web wrapped around a large 
cylindrical drum (Figure 1) under constant tension was derived. 

 

Figure 1 – The web and reverser with helical wrap. 

 

Figure 2 – (a) Drawing of web and reverser before application of bending moment, Mx. 
(b) Drawing of web and reverser after application of bending moment. 

This process causes bending moments, Mx, to be “stored” in the wrapped section of the 
web. The webs attains an initial curvature, but the problem is formulated in the plane of 
the web (Figure 2). The tension is assumed to be constant T. A variant of the air reverser 
is the turn-bar, where the web is helically wrapped about the cylinder at an angle (β), 
(Figure 1). The turn-bar allows the web to change direction by an angle 2β, allowing for 
more versatility in a manufacturing floor layout. The helical angle alters the mechanics of 
the web. Here the equilibrium of the helically wrapped web [2] is modified to include the 
dynamic effects as follows, 
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where, subscripted comma represents partial differentiation. Notice, that when the helical 
angle (β) is zero the original web equation developed in [1] is recovered. 
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SOLUTION METHOD 

A finite element solution was developed for the steady-state problem by Masters [5] 
using bilinear, quadrilateral, Mindlin elements. The eigenvalue problem to study the 
undamped, free vibration behavior of the web is defined as,  

 [ ] [ ]{ }{ } 02 =− DMK λ   {5} 

where, λ is the natural frequency and D  are the associated eigenmodes, by using 
{ } teDtyxw λ=),,( . 

The geometry of the analyzed web section is shown in Figure 3. The web consists of 
two thin plates, lengths L1 and L2, joined by a shell of radius R and length Rθ. The web is 
simply supported on opposite edges x=0 and x=L and free at the remaining two edges. 

 

Figure 3 – Geometry of tensioned web under study. Gray area highlights the shell area. 
Simply supported at two opposite edges Lx ,0= . 

In order to examine the effect of the mesh size on the solution, a study was 
conducted. The free vibrational response of a tensioned, cylindrically wrapped tape by 
Sundaram and Benson [6] was used to verify the natural frequencies and eigenmodes for 
both plate and shell solutions. This showed that the rate at which the error of the FE 
predictions grows depends on the eigenmodes of the frequencies. As the m-mode (x-
direction or longitudinal mode) is held constant and n-mode (y-direction or lateral mode) 
increases, the rate at which the error grows increases. Due to the presence of the free 
boundaries, more n-modes are present as compared to the m-modes. This calls for a 
denser mesh in the y-direction. From this study, we decided a mesh of at least 21 nodes 
in the x-direction and 101 nodes in the y-direction for each section of plate or shell. 

To test the ability of the model to predict plate-shell interaction, comparison was 
made with a tensioned-beam partially supported by an elastic foundation, shown Figure 
4. The elastic foundation provided the added stiffness due to curvature, with the stiffness 
parameter defined as k  from Equation {1}. In Appendix A, the governing 
equations and boundary conditions of the beam model are given. Comparison of the 
beam and FE models showed that the FE model predicts the longitudinal bending modes 
of the coupled plates-shell system with high accuracy. The simpler mechanical behavior 
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of the two-dimensional model will be utilized when discussing the results of the FE 
model. 

 

Figure 4 – Beam partially supported by an elastic foundation with simple support ends. 

RESULTS AND DISCUSSION 

In this section, the influence of design parameters on the vibration response of the 
tensioned web wrapped around a cylinder is discussed. Table 1 lists the parameters 
tested. We focus on the impact of each parameter on at least the first fifteen frequencies 
and mode shapes. The strain energy storage capability of the web depends on its physical 
parameters. In order to better understand the effect of the physical parameters, the critical 
frequencies will be examined along with the eigenmodes in this paper 

 
R (m) 0.15 

θ (deg) 30, 180 
L1 (m) 0.2, 1 
L2 (m) 0.2, 1 
b (m) 0.25, 0.5 

h (um) 25, 50, 100  
T (N/m) 5,10, 50, 150 

β  (deg) 
0,5,10,22.5,4

5 

Table 1 – Design parameters varied for this study 

Effect of Plate Length (L1, L2) and Wrap Angle (θ ) 
In plate vibrations, the web dimensions affect the plate’s ability to resist transverse 

motion and its natural frequencies. An increase in the length of a plate or shell, causes a 
decrease in its effective stiffness and in its natural frequencies. Excitation of the plate and 
shell sections, for the cases studied here, remained largely independent due to the added 
curvature stiffness in the shell region. This difference in stiffness created an artificial 
spring support at the plate-shell boundary.  

For plates of equal length lengths (L1 = L2), there exist eigenmodes which have the 
same mode numbers but are symmetric and anti-symmetric about the center of the plate. 
In Figure 5, shows two modes with identical mode numbers m = 1 and n = 0. The order 
of appearance of the symmetric/anti-symmetric modes, and the magnitude of their 
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frequencies depend on the effectiveness of the plate-shell junction to act as a stiff 
support. The shell section stiffness can be likened to a plate on an elastic foundation 
(Appendix A). The overall rigidity of the shell section is therefore a combination of its 
dimensions (length and width) and its radius of curvature.  

In order to better illustrate the effectiveness of the plate-shell junction, Figure 6 
highlights the “shell” region’s modal response for different shell lengths, using the beam 
model. The length of the “shell” region is varied from L2 = 1 m to 0.5 m. in Figures 6a 
and 6b, respectively. These figures show that the case with the longer “shell” region act 
stiffer, and plate-shell junction acts as stiff constraint. In Figure 6a, only a small length of 
the shell beyond the plate-shell junctions reacts, regardless of being a symmetric or anti-
symmetric mode. As the length of the “shell” section decreases, the plate-shell boundary 
allows more deformation, as shown in Figure 6b. It should be noted that in Figure 6b 
anti-symmetric modes appear before symmetric modes, where +λ is slightly greater than –

λ. 
In Figure 7 and Figure 8 the results of the FE model are given, where the first 15 m = 

1 frequencies are shown for two wrap angles, θ =30 and 180 deg and two different web 
lengths L1 = L2 = 1, and 0.2 m, respectively. Both of these figures show that the larger 
wrap angle (180 deg) provides the stiffer plate-shell junction; and, the differences in 
frequencies of symmetric and anti-symmetric n-modes is negligible. As it was also noted 
in the beam model presented in Figure 6, by reducing the wrap angle, the antisymmetric 
n-modes (–λ) appear first.  

Notice in Figure 7, that while order in which modes appear may have shifted, the 
overall magnitudes of these first 15 modes did not vary. In Figure 8, the difference in 
stiffness between the plate and shell is reduced by shortening plate length. The frequency 
magnitude decreased for the first 15 modes when wrap angle was reduced, due to the 
lower difference in plate-shell stiffness.  

The case involving plate sections of different lengths (L1 ≠ L2) was also studied. 
While not shown here in this work, it was seen that the vibrational response of each plate 
or shell can be excited independently with only small excitation of the neighboring 
regions.  

 

Figure 5 – Examples of symmetric (left) and anti-symmetric (right) modes. Shown here 
m = 1, n = 0, +λ =103.03 Rad/s, -λ =103.02 Rad/s , where L1=L2= 1.0 m , b=0.5, h = 100 

μm, R = 0.15 m, θ = 180 deg and T =150 N.  
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b)  L2 = 0.5 m, +λ =238.48 Rad/s , -λ =238.37 Rad/s 

Figure 6 – Comparison of shell responses with varying stiffness during symmetric (+) 
and anti-symmetric (-) modes for beam model. Beam parameters are as follows L1 = L3 = 

0.5 m, b= 0.01 m, h = 0.01 m, R = 1 m and T = 150 N. Shell length changed to vary 
stiffness. 
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Figure 7 – First 15 m=1 frequencies for case where L1=L2= 1.0 m, b=0.5, h = 100 μm, R 
= 0.15 m, θ = 30, 180 deg and T =150 N.  
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Figure 8 – First 15 m=1 frequencies for case where L1=L2= 0.2 m, b=0.5, h = 100 μm, R 
= 0.15 m, θ = 30, 180 deg and T =150 N. 
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Effect of Tension 
It is expected that the web tension would have a strong effect on the magnitude of 

the natural frequencies as it provides a resistive (restoring force) for out-of-plane web 
deflection. This effectively stiffens the web. We find this stiffness increases the 
magnitude of the natural frequencies, and retards the appearance of higher m-modes. The 
magnitude of this effect varied depending on the other design parameters of the cases 
tested, but the increase in frequency applied to all cases. Frequency clustering, seen by 
Raman et. al., is the grouping of n-modes around a dominant m-mode with frequencies 
equivalent to a tensioned string [3]. This clustering effect is increased for higher tension 
due to the suppression of higher m-modes. In Figure 9, the natural frequencies of the first 
six anti-symmetric (-) n-modes of m = 1 and the first m = 2 mode are shown for varying 
tensions. Due to the significant effect a small variation in tension has on mode shapes, a 
case with tension equal to 5 N has also been included. Notice that both the clustering 
effect for the first m = 1 modes and the natural frequencies increased for higher tensions. 
While all natural frequencies increased, the natural frequency for the first m = 2 mode 
increased at a much higher rate. In order to capture the detail in Figure 9, the magnitude 
of the natural frequency for the first m = 2 mode when T = 150 N (-λ =206.38 Rad/s) was 
omitted, since it is twice that of the first m = 1 mode (-λ =103.02 Rad/s). 
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Figure 9 – Frequencies of first 6 anti-symmetric (-) n-modes of m = 1 and the first m = 2 
mode, for case where L1=L2= 1.0 m, b= 0.5 m, h = 100 mμ , R = 0.15 m, θ = 180 deg 

and varying tensions. 

Effect of Width (b) and Wrap Angle (θ ) 
It was stated before that the web dimensions influence its stiffness. It is expected that 

the narrower webs respond in a stiffer manner. Next the effect of the width of the web on 
the natural frequencies of the plate/shell system is investigated for b= 0.25 and 0.5 m. 
Figure 10 and Figure 11 show the change in frequency due to changing the web width, 
for different wrap angles θ = 180 and 30 deg, respectively. While frequency clustering 
for the lower modes can be observed for both wide and narrow webs, in both of these 
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figures, the added stiffness in the y-direction reduces the clustering effect for the higher 
n-modes.  

These figures also show the effects of the web width and wrap angle on the the 
ability of the plate/shell junction to act as a stiff constraint. By changing the width, the 
order in which the symmetric and anti-symmetric modes appear follows that of a plate 
with stiffer support. From this information and explanation of Figure 6, it is concluded 
that decreasing the width of the web increases its constraining ability at the plate-shell 
junction.  
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Figure 10 – First 15 m=1 frequencies for case where L1=L2= 0.2 m, b=0.25 and 0.5 m, 
h = 100 um, R = 0.15 m, θ = 180 deg and T =150 N.  
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Figure 11 – First 15 m=1 frequencies for case where L1=L2= 0.2 m, b=0.25 and 0.5 m, 
h = 100 μm, R = 0.15 m, θ = 30 deg and T =150 N. 
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Effect of Helix Angle (β) 
The implementation of a helix angle for a turn-bar system alters the dimensions of 

the incoming and exiting rectangular plates by elongation or contraction of the free edges 
to form a trapezoidal plate, as well as changing the shell stiffness [2]. The change in 
geometry affects the vibrational behavior described in previous sections. To examine the 
behavior of a turn-bar system, helix angles of β =0°, 5°, 10°, 22.5° and 45° were applied 
to a configuration with rectangular plates having initial dimensions of 1 m ×  0.5 m. The 
helix angle was applied halfway across the width of the plate, so there to enable equal 
length changes at the opposite longitudinal edges, given as 

 
2

)tan(βbx =Δ .  {26} 

As before, tension was varied for each model.  
The previous sections have shown the effect of the stiffness of the shell region on 

the frequency and response of the plate sections. It was shown that increasing helix angle 
reduces the shell stiffness [2]. In order to provide a comparison for the effect of shell 
stiffness, the free vibrational response of a trapezoidal plate with simple-simple, free-free 
boundary conditions was solved using the ANSYS FEM package (ver.10.0, Canonsburg, 
Pennsylvania) for a small guide (R = 0.15 m). Figure 12 shows a comparison of our FE 
solution with the trapezoidal plate solution given by ANSYS. This shows that the shell 
stiffness still remains dominant despite the introduction of the large helical angle (β = 
45), providing a stiff support at the plate-shell junction.  
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Figure 12 – First 8 frequencies for cases where L1=L2= 0.5 m, b=0.5, h = 100 μm, R = 
0.15 m, θ = 180 deg, varying T =10, 50 and150 N with helical angle β = 45°. 

This work also showed that applying the helical angle (about the midpoint of the 
width) stiffens half the plate while making the other half more compliant compared to the 
corresponding rectangular plate. Recall that the natural frequencies of the n-modes 
change faster than the m-modes due to the effect of the free-free lateral boundary 
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conditions. This variation of stiffness produces a set of “half” n-modes not present before 
in the rectangular modes, as shown in Figure 13a. These half n-modes appear during the 
transition of excitation of the more compliant half to the stiffer side for a given m-mode. 
Eventually, at higher natural frequencies the n-mode completely extends across the width 
of the plate resembling the rectangular plate modes and becoming a full n-mode, example 
shown in Figure 13b.  

 
 
          a)     half n-mode, m=1                                               b)     6th n-mode, m=1 

Figure 13 – Half and full n-mode comparison found for trapezoidal plate. Initial 
rectangular plate L1 = L2 = 1 m, b = 0.5 m, h = 100 µm, R = 0.15 m, θ = 180 deg, and  

β = 22.5 deg, T =150 N. 

Comparing the natural frequencies of the helically wrapped webs and rectangular 
web (β =0 deg), the effect of helical wrap could be further analyzed. Figure 14 shows the 
percentage of frequency change with respect to the β = 0 deg case as a function mode 
number with varying helix angles. Note that positive change corresponds to higher 
natural frequencies compared to a rectangular plate. The opposite is true for negative 
values. For the smaller helical angles, the natural frequencies increased. This indicates 
that the stiffer (shorter) side of the plate dominates the response. The difference in 
natural frequency increases for higher modes reaching a peak. The difference then 
decreases approaching zero. The peak change coincides with the disappearance of the 
half n-modes, as the whole plate is excited. As helical angle is increased, the longer, 
more compliant half of the trapezoidal plate is easier to excite, and the shell stiffness is 
lower, leading to lower natural frequencies. Again, the trend continues to positive 
difference peaking at the disappearance of the half n-modes. Figure 15 shows the 
frequency change due to varying tension for constant helical angle β = 45 deg. 
Increasing tension delays the n-mode at which the half n-modes disappear, and frequency 
change peaks. Also note that the natural frequency is about 10% lower when the web is 
wrapped helically.  
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Figure 14 – Frequency change of (m=1,-n) modes as a function of helical angle. Initial 
rectangular plate L1 = L2 = 1 m, b = 0.5 m, h = 100 μm, R = 0.15 m, T=150 N,  

θ = 180 deg. Helical angle varied β =5, 10, 22.5, 45 deg. 
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Figure 15 – Frequency change of (m=1,-n)modes as a function of tension. Initial 
rectangular plate L1 = L2 = 1 m, b = 0.5 m, h = 100 μm, R = 0.15 m, θ = 180 deg. Helical 

angle β = 45 deg. Tension varied T =10, 50 and 150 N. 
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Effect of Radius (R) 
In the previous sections, it has been shown that the difference in stiffness between 

the shell and plate section of the web stiffens the plate-shell junction, which in turn 
affects the coupling of the plates, and frequency magnitude. In previous cases the radius 
of the shell was kept constant at R = 0.15 m, and provided a much stiffer shell region 
when compared to the plate sections. Previously, the plate-shell junction was adjusted by 
varying the web dimensions, such as L1, L2, θ and b. The effect of changing the shell 
stiffness by using different guide radii is discussed using the beam model given in 
Appendix A.  

The comparison is made between a beam partially supported by an elastic 
foundation, and a simply-supported beam of length L1 = L3 as defined in Figure 4. The 
elastic foundation stiffness is calculated as . The results are reported in 
relative change of frequencies. The change in the first natural frequency is shown in 
Figure 16 and Figure 17 for L1 = L3 = 1 and 0.2 m, respectively. These figures show that 
increasing the radius, weakens the shell region, and the effectiveness of plate-shell 
junction to act as a stiff support; leading to lower eigenvalues.  
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Increasing Tension 

Figure 16 – Percent change in the first natural frequency of the two-dimensional 
tensioned beam partially supported by an elastic foundation compared to with that 

simply-supported tensioned-beam. L1 = L3 = 1 m, b = 0.5 m, h = 100 μm, θ = 180 deg. 
Tension varied T =10, 50 and 150 N. Radius varied R = 0.15, 0.25, 0.5, 0.75, 1, 2 and 

5 m. 
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Figure 17 – Percent change in the first natural frequency of the two-dimensional 
tensioned beam partially supported by an elastic foundation compared to that with 

simply-supported tensioned-beam. L1 = L3 = 0.2 m, b = 0.5 m, h = 100 μm, θ = 180 deg. 
Tension varied T =10, 50 and 150 N. Radius varied R = 0.15, 0.25, 0.5, 0.75, 1, 2 and 

5 m. 

SUMMARY 

In this work, the free vibration analysis of a thin tensioned web wrapped around a 
reverser providing non-contact support analysis was performed. The eigen-problem was 
formed using finite elements and solved numerically. Design parameters such as tension 
(T), radius of cylinder (R), wrap angle (θ ), width of the web (b), lengths of non-wrapped 
web (L1, L2) and helical wrap angle (β) were studied.  

It was seen that the free edges cause a frequency clustering of the lateral n-modes 
about the dominant longitudinal m-mode, as also described by Raman et al. [3]. It was 
also seen that the effectiveness of the plate-shell junction to act as a stiff support depends 
on problem parameters. The results of this work can be summarized as follows: 

 
• Plate Length (L1, L2) and Wrap Angle (θ ): modify the effectiveness of the plate-

shell junction as a stiff support. When L1 = L2, eigenmodes with same mode-
shape numbers are observed in symmetric and anti-symmetric fashion about the 
center of the plate. Changes in plate-shell junction stiffness affect the 
appearance of symmetric and anti-symmetric modes and magnitude of the 
natural frequencies.  

• Tension: has a strong effect on the magnitude of the natural frequencies, as it 
provides a resistive (restoring) force for out-of-plane web deflection. Higher 
tension suppresses the appearance of higher m-modes and causes increased 
frequency clustering. 

• Web Width (b): The plate-shell junction acts as a stiffer support for smaller width. 
Reduced frequency clustering was observed for narrower webs.  
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• Helix Angle (β): Increasing the helix angle reduces the shell stiffness. While the 
shell stiffness is still dominant, the effective stiffness of the plate region is also 
modified, due to modified lengths of the free edges. Vibration modes, termed 
“half” n-modes, which are clustered near the longer edge are observed on the 
plate sections. The first natural frequency is reduced at large helical angles.  

• Radius (R): The effectiveness of modeling the plate-shell junction as a stiff support 
improves for smaller guide radii. 
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APPENDIX A 

In order to verify the accuracy of the interaction of the plate-shell interfaces, we 
solve the dynamic response of a beam partially supported by an elastic foundation, 
shown in Figure 1. 

 

Figure 18 – Beam partially supported by an elastic foundation with simple support ends. 

We begin by examining the governing equation for dynamics of a tensioned beam on 
an elastic foundation 

 
2 2 2 2

2 2 2 2 0w w wEI T kw m
x x x t

⎛ ⎞∂ ∂ ∂ ∂
− + + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 {6} 

where E is the elastic modulus, I is the moment of inertia, T is the tension in N/m, m is 
the mass per unit length, k is the stiffness of the elastic foundation and w is the deflection 
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of the beam. To find natural frequencies of the equation we use separation of variables to 
represent the deflection as separate functions of time,  and displacement , such 
as  

)(tS )(xW

 ( , ) ( ) ( )w x t W x S t= × . {7} 

The differential characteristic equation is found by substituting equation {7} into 
equation {8} as; 

 
2

, , 0xxxx xx
T k mW W W
EI EI

λ−
− + =

4

. {8} 

This equation {8} has the following solution, 

 ,  {9a} 31 2
1 2 3 4( ) r xr x r x r xW x C e C e C e C e= + + +

 
2 2

1,2,3,4
1 4
2

T T mr k
EI EI EI

λ −⎛ ⎞= ± ± +⎜ ⎟
⎝ ⎠

. {9b} 

We now represent the beam as three separate smaller beams, where for L1 and L3 
have no elastic foundation present (k = 0) and L2 has an elastic foundation with a 
stiffness parameter 

 
2

E hbk
R

= . {14} 

The solution takes the form 

  {15| 
⎪
⎩

⎪
⎨

⎧

≤≤
≤≤
≤≤

=

oL

L

L

LxxW
xxxW
xxW

W

2

21

1

3

2

1
0

where, 

  {16a} )cos()sin()cosh()sinh()( *
44

*
33

*
22

*
111

rCrCrCrCxWL +++=

  {16b} 31 2

2 5 6 7 8( ) r xr x r x r x
LW x C e C e C e C e= + + + 4

 . {16c} )cos()sin()cosh()sinh()( *
1212

*
1111

*
1010

*
993

rCrCrCrCxWL +++=

Note that for L1 and L3 , k = 0 and the roots  from {9b} are adjusted accordingly, 
denoted by (*). 

4,3,2,1r
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To solve for the twelve constant coefficients we use the boundary and continuity 
conditions. Four boundary conditions come from the simple supports at the ends,  

 
1
(0) 0LW =  {17a} 

 0)0(,1
=xxLW  {17b} 

 
3
( ) 0L oW L =  {17c} 

 
3 , ( ) 0L xx oW L =  {17d} 

We can better accommodate boundary condition {17c} and {17d} by applying a 
different coordinate system on the third segment of the beam, L3. The origin for the third 
segment is moved to simple support on this segment. Boundary conditions then reduce 
the deflection equations for L1 and L3 to 

  {18a} )sin()sinh()( *
33

*
111

rCrCxWL +=

  {18b} )sin()sinh()( *
1111

*
993

rCrCxWL +=

The other eight boundary conditions come from the requirement that deflection, 
slope, shear and moment at junctions x1 and x2 are equal. Expressed in terms of 
deflection, these give continuous 

)()( 21 21
xWxW LL =  {19a}  

)()( 2,1, 21
xWxW xLxL =  {19b}  

)()( 2,1, 21
xWxW xxLxxL =  {19c}  

)W ()( 2,1, 21
xWx xxxLxxxL =  {19d}  

)()( 32 32
xWxW LL =  {19e}  

)()( xWxW 3,2, 32 xLxL =  {19f} 
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 )()( 3,2, 32
xWxW xxLxxL =  {19g} 

)()( 3,2, 32
xWxW xxxLxxxL = . {19h}  

These eight boundary conditions lead to a set of eight homogenous equations which 
can represented in matrix form 

[ ] { } 08888 =xx CB . {20} 

where, {C} contains the vector of unknown coefficients. A non-trivial solution is only 
possible when 

[ ] 0=B . {21}  Det

Defining all parameters of the problem (i.e. k, T, E, etc.) the determinant is solely a 
function of frequencies (λ). Frequencies (λ) which satisfy equation {18} are the 
fundamental or natural frequencies. To plot eigenmodes, we input the natural frequency 
in Equation {20} and solve for the 8 coefficients in terms of one coefficient. We can then 
plot each individual section of the beam and normalize the eigenmode. 
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 Free Vibration Analysis of Thin, Tensioned, 

Cylindrically Wrapped Webs Using 
Mindlin-Reissner Finite Element Method 
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USA 

 
 
Name & Affiliation Question 
Herong Lei, Eastman 
Kodak 

It appears that air is not modeled in the equation you are 
trying to resolve.  You did mention that the tension 
changes the frequency? 

Name & Affiliation Answer 
E. Lopez, Northeastern 
University 

When you add resistance to the out-of-plane deformation 
by increasing your tension, a higher natural frequency 
results. 

Name & Affiliation Question 
Herong Lei, Eastman 
Kodak 

Are you talking about the vibration frequency of the web, 
up and down in that direction? 

Name & Affiliation Answer 
E. Lopez, Northeastern 
University 

Correct, these are transverse vibrations. 

Name & Affiliation Question 
Herong Lei, Eastman 
Kodak 

Do you have a rough estimate on what frequency would be 
associated with a tension level of 5 n/m? 

Name & Affiliation Answer 
E. Lopez, Northeastern 
University 

At 5 n/m of tension the frequency was 22 radian/second. 
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