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A new method is presented for modeling the elastic behavior of webs conveyed over 
rollers. In addition to producing detailed descriptions of stress fields, it provides a new 
way of looking at problems that will help web process engineers form a better physical 
picture of web behavior. 

The new method is based on two fundamental boundary conditions that define web 
behavior at the point of entry of the web onto a downstream roller. One is a 
generalization of an existing geometric concept called the normal entry rule. The other, 
presented here for the first time, is based on application of the principle of conservation 
of mass. For reasons that will become apparent, it is called the normal strain rule. This 
paper will show that these two rules, together with a nonlinear version of the equations 
for two-dimensional plane stress enable the solution of a large class of unsolved web 
handling problems. Numerical solutions are calculated with a finite-element partial 
differential equation solver. 

The basic principles are developed and shown to produce results that are in agreement 
with published test results for two problems that have been solved by other means. 

I. Lateral displacement at a misaligned roller: Results are compared to Shelton's 
I 968 thesis [2]. 

2. Lateral displacement at a tapered roller: Results are compared to the 200 I 
!WEB paper by Markum and Good [4]. 

In both cases, the referenced studies used beam theory to predict lateral displacement. 
The experimental results are compared with predictions rrom the new method (P. D. E. 
model) and shown to be in excellent agreement. 
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Following a brief summary of the background of the problem, the new boundary 
condition is derived and other relevant equations summarized. Results are then computed 
and compared with results for the two cases mentioned above. 

NOMENCLATURE 

D Roller diameter, m 
G Shear modulus, Pa 
h Web thickness, m 
L Length of span, m 
Q; Mass flow rate per unit ofrelaxed area at upstream roller, Kg/s 
Q,, Mass flow rate per unit of relaxed area at downstream roller, Kg/s 
11 Particle displacement in x direction, m 
1~v Derivative of u with respect toy 
v Particle displacement in y direction, m 
Vx Derivative of v with respect to x 
J1

~" Velocity in the y direction, mis 
V, Velocity of web along axis of roller, mis 
V11 Surface velocity of upstream roller, mis 
T~, Surface velocity of downstream roller, mis 
Yxy Elastic shear strain 
£ Elastic strain 
s0 Longitudinal strain at entry of upstream roller 
,-, Deformed y coordinate, m 
0,, Angle of path of web particles relative to normal to roller axis (CCW 

positive), radians 
0, Angle of axis of misaligned roller relative to y-axis ( counterclockwise 

positive), radians 
µ Poisson's ratio 
I; Deformed x coordinate, m 
p,, Mass density of relaxed web, Kg/m3 

p,, Mass density of stressed web at upstream roller, Kg/m3 

Pd Mass density of stressed web at downstream roller, Kg/m3 

u Stress, Pa 
a,, Stress normal to a boundary, Pa 
r.i:i, Shear stress in XJ' plane, Pa 
'ff Angle of tangent to particle trajectory of web (in relation to x-axis), radians °" Elastic rotation in XJ' plane 

Subscripts 
11 Upstream 
d Downstream 
x Aligned with x-axis 
y Aligned with y-axis 
- Aligned with z-axis (normal to web plane) 
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INTRODUCTION 

Beam theory has been applied very successfully to many problems in web handling. 
Some, however, have resisted solution because they require the specification of unk.11own 
forces or moments. Furthermore, beam theory is limited in its ability to provide insight 
into details of deformations and displacements of the web, particularly at the web-roller 
interface. These deformations may be caused by non-uniformities such as, 

I. Variations in the roller diameter along its axis (Tapered, crowned and reverse
crowned rollers). 

2. Curvature in the roller axis (bowed roller) 
3. Cambered webs (Curvature along the longitudinal axis of the relaxed web). 

Beam theory models have many virtues. They provide closed form solutions. They 
permit quick estimates in a familiar engineering context. And they provide insight into 
the relationships of key parameters. However, they have two problems. First, in cases 
such as the cambered web, it has been difficult to define satisfactory boundary 
conditions. Beam theory requires four conditions. Two for the upstream end are usually 
easy and the normal entry rule provides one of the two needed for the downstream end. 
But, there is always difficulty in finding the fourth condition. Second, beam theory is 
poorly suited to addressing problems where details of the cross web deformation are 
desired. The approach taken in this paper is to look at the problem from the standpoint of 
elasticity theory. 

Two-dimensional elasticity theory for web spans requires two boundary conditions at 
each edge. All of them are straightforward except for the two at the downstream roller. 
The normal entry rule is one, provided it is generalized for use in the context of elasticity 
theory. The second, which will be called the normal strain rule, is developed and 
presented here for the first time. It is based on the principle of the conservation of mass 
and has the same range of application as the normal entry rule. This paper will show how 
these concepts can be combined with a non-linear form of the two-dimensional equations 
of plane stress to solve many web handling problems, including those mentioned above. 

An important difference between the new method (P. D. E. model) and beam theory is 
that the boundary conditions at the rollers are expressed entirely in terms of 
displacements and strains. This requires a change in perspective from beam theory. 
Deformation is viewed as a cause rather than a consequence of the web's behavior. 

A general-purpose finite-element partial differential equation solver is used to 
generate detailed solutions for stresses and lateral translations throughout spans. The P. 
D. E. solver software for this work, running on an ordinary 2.8 GHz PC, produced 
solutions to problems in times ranging from I to IO minutes. 

ASSUMPTIONS 

For this analysis, air film effects are ignored and it will be assumed that friction 
controls traction between the roller and web. The usual assumptions are made about the 
behavior of the web when it is on the roller. At the entry point, fiiction locks it onto the 
roller surface in a stick zone. Any strains existing at the point of entry are then frozen in 
place and remain fixed relative to the roller surface until the web reaches a zone at the 
exit where it begins to slip from the roller under the influence of stresses downstream. 
Furthermore, the lines of contact at entrance and exit are assumed to be parallel to the 
roller axis. The turning torque of the roller is usually small in comparison to web tension 
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and the stick zone will be a large percentage of the contact area. Under these conditions, 
the stresses in the upstream span are isolated from changes downstream. 

Other assumptions: Viscoelastic and inertial effects are not significant. Thickness and 
material properties are constant in the longitudinal direction. 

THE NORMAL ENTRY RULE 

Line of contact/-' 
with roller 

e /..i~- i 
n Ii i dx 

--~ ! 
Path of -------
web particle · ~ ,,J 

Figure 1 
Normal entry rule 

dy 
Sn= -

dx 

Current beam models assume that a web acts as an ensemble of fibers whose 
orientation matches the neutral axis of the beam. The normal entry rule, illustrated in 
Figure I, then states that as a web moves onto a roller, it moves laterally at a rate 
proportional to the tangent of the angle between the neutral axis and the normal to the 
roller axis. Furthermore, the direction of the lateral motion takes the web toward a steady 
state condition in which the neutral axis is normal to the roller axis. This relationship is 
expressed in equation (I), 

J~ = tan(0,,)- VJ= 0,, · T~, (I) 

where T7,, is the web velocity along the roller axis, 0,, is the angle of the neutral axis and V, 
is the roller surface velocity. 1n the steady state, 0,, becomes zero. It departs from zero 
when there is a disturbance in the roller alignment or the lateral position upstream. In 
practice, 0,, is almost always small enough to use the approximation on the right. For 
uniform webs with good traction on uniform rollers, the validity of the normal entry rule 
was demonstrated by Shelton [2] in his dissertation. 

It is intuitively evident that uniform deformation cannot be assumed for all points 
across the web, especially in the case of non-uniform webs or rollers. It is, thus, unclear 
how 0,, should be defined for these cases. Later in this paper, a methodology will be 
developed that removes this difficulty. 

MASS FLOW 

There are many circumstances when the normal entry rule is not sufficient, by itself, 
to explain lateral web behavior. One such instance is the spreading action of a reverse
crown (concave) roller illustrated in Figure 2. lt is an established fact that such rollers 
have a spreading action. Swanson [I] describes a very convincing demonstration. 
Spreading can even be produced on a straight roller by wrapping a thin narrow band of 

42 



tape around the circumference of a roller just inside the web edges to produce a "stepped" 
concave roller. 

Experienced practitioners of web handling explain the spreading as follows. At the 
edges of the concave roller, material is transported faster from the span than at the center 
because the circumferential velocity is higher there (VI > V2). This alters the stress 
distribution across the span in such a way that the normal entry rule can be satisfied only 
if the web spreads laterally. 

I m 

I 

Line of 
contact 

r=-==i 

Tension ~~rn 
profile t=~ 

,-'-'cf, 
i-:c-=:::', 
:=:=:c=-, 

§~~\ 

L V-' -

~~~- j-~-+=~ 
Figure 2 

Concave Roller 

I 

Concave 
roller 

Although this concept has been used for many years to provide an intuitive 
explanation of wrinkling and spreading (Notably, by Feiertag in the Web Handling 
Center's semiannual Web Handling Seminar) no one has, so far, found a way to 
incorporate the concept into a comprehensive quantitative model. 

EARLIER WORK 

Shelton [2], (Pg. 29) recognized the role of conservation of mass in his 1968 
dissertation when he derived the steady-state elastic curve of a web moving onto a 
misaligned roller. One of the boundary conditions required for the solution is that the 
moment acting on the end of the span at the line of contact between it and the 
downstream roller is zero_ He determined this condition through experimentation and a 
process of elimination. At the end of his derivation, he pointed out that the normal entry 
rule had been confirmed by his experiments and then he gave an intuitive proof of the 
zero moment condition that was essentially equivalent to stating that the mass flow of a 
uniform web, at all points across the line of contact with a misaligned uniform roller, had 
to be constant. It is clear from this that Shelton saw a connection between mass flow and 
the zero moment boundary condition. 

Swanson [3] in his 1997 paper on web spreading devices recognized that mass flow 
and the normal entry rule interact to produce spreading on a concave roller. To prove that 
the roller actually spread the web, he positioned a slitting blade immediately before the 
span he was observing. He used this to separate an inch of the web (0.8 mil PET) at the 
edge and measured the displacement of this piece at the downstream roller. To explain 
the observed displacement, he made calculations using a beam model. The calculations 
show that he recognized the importance of the cross-web tension profile. But, there was 
no recognition in the paper of the possibility of using mass flow in the way that is 
proposed here. 
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Markum and Good [4] developed a beam model that could provide an indication of 
the spreading effect of a contoured roller by slitting the web at the upstream roller in a 
manner similar to Swanson [1 ]. Since only the separation of the two halves was 
calculated, this was actually an analysis of web behavior on a tapered roller and provided 
no insight into the details of stress distribution of an unslit web along the roller axis. In 
their analysis they recognized a connection between mass flow rate and longitudinal 
strain and then used it to develop an estimate of end moment for a beam model. But, as 
with Swanson [I], they treated the relationship as an approximation. Experiments were 
made that showed their model made estimates of lateral displacements that were in the 
range of 5 to 20% of measured results. Data from these tests can be used as a test of the 
model proposed here. 

DEFINITIONS AND A FRAME OF REFERENCE 

The first step in analyzing the problems described in the introduction is to establish 
terminology and a frame of reference. 

First the terminology for plane stress will must be defined. This will include a two
dimensional version of Novoshilov's nonlinear equations of equilibrium for small 
rotations. 

Two other issues also require attention. First, there is the fact that elasticity theory 
usually treats static problems. But, the web is moving. Second, elasticity theory usually 
treats problems in which the boundaries are specified for the relaxed state. But, the 
upstream and downstream boundaries of a web are specified for the deformed state. 

Plane Stress Definitions 

Tiie following equations for plane stress are taken from Novoshilov's [5] simplified 
nonlinear theory for small rotations. 

Displacements from the relaxed coordinates x and y are u and v, respectively. Strains 
are defined as follows. 

Strain in the x direction 

Strain in they direction 

Shear strain 

(5) 

au 1 ., au 
& =-+-m-::::.

.r ax 2 = -ax 
ovl,ov 

e =-+-w_- =
Y ctv 2 - 0, 

av au 
r~-=ax+0, 

av 
V =

:r ax 

-µ 
Strain in the z direction c, = --(c, + cy) 

1-µ 

Rotation in x,y plane 

Deformed coordinates are 
(=x+u (9) 

m. = __l__(iJv _ 811) 
·2axoy 

'I =y+v 

(2) 

(3) 

(4) 

(6) 

(7) 

(8) 

(10) 

Assuming Hook's Law, the stresses may be expressed in terms of strains, Poisson's 
ratio,µ, and modulus of elasticity, E, as follows. 
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The x-axis stress is: 

The y-axis stress is: 

The shear stress is: 

CTI =~[cI+µey] 
1-p 

o-Y =~[cy+µcx] 
1-p 

'~ 2(l!p)[:: + :] 

The equations of equilibrium are: 

![u,-wJ0 ]+ !Jr~ -w,u,]=0 

(I 1) 

(12) 

(13) 

(14) 

(15) 

Classical linear elasticity theory is based on the assumption that rotation w, is so small 
that its effect is negligible. This is not true in web handling problems where both 
curvature and longitudinal tension are significant. Without w,cr, in the equation of 
equilibrium (15) the effects of longitudinal tension on the elastic curve will not be 
reflected in the results. Its net effect in web analysis is very similar to the second tenn in 
Shelton's differential equation for the elastic curve of a web under tension at a misaligned 
roller[2], (Pg. 58). 

The effect of rotation may be safely ignored in the definitions of e., and e,, in equations 
(2) and (3), because it appears by itself to the second power and it is of the same order of 
magnitude as the elongations and shears. 

The transformations from undeformed to deformed coordinates are 

d<;'=(l+e,)d<+u,Av d7]=v,d<+(1+e)')dy (16) 

Web Motion 

In the steady-state, the shape of a deformed web span is stationary, even though 
material is constantly moving through it. If a series of marks are made across the web, 
they will follow curved paths as they move down the span. By definition, the existence of 
a steady-steady state means that another series of dots, made at the same positions at a 
later time, will follow the same curves. These curves are, therefore, the trajectories of 
individual particles, similar to streamlines in a flowing fluid. Observations show that so 
long as traction is maintained on the rollers, the curved trajectories are independent of 
web velocity (assuming no inertial effects). Therefore, the web can, in principle, be 
brought to a complete stop without altering its shape and be analyzed as though it is a 
fixed, elastic sheet with boundary conditions that were established while it was moving. 

Boundaries and Orientation of the Relaxed Web 

First, consider a uniform web that is moving under tension over a series of perfectly 
aligned rollers, as illustrated in Figure 3. Under these conditions a web will be observed 
to have uniform width and zero stress in the y direction. The width is reduced by 
Poisson's ratio and there is no "neck down" region near the end points of the span. It will 
be seen later that this is consistent with a rigorous definition of the normal entry rule. 
Thus, the web is in pure tension. 
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Contact 
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Boundary "a" L Relaxed, Web , LJ Boundary "b" 

Figure 3 
Reference geometry for a simple case 

If it is now cut along the lines of contact with the downstream and upstream rollers, 
the web will relax into a rectangular sheet The length will be reduced and there will be a 
small width increase due to Poisson's ratio. When the web is under tension, defonnation 
at boundary "a" is determined by conditions in span I. Therefore, when the effects of 
changes in boundary conditions at "b" are studied, the web may be modeled as though it 
is anchored at "a" with zero x displacement. TI1e y displacement will be due solely to 
conditions at the entry of the upstream roller. If span 1 is in pure longitudinal tension, this 
will be due only to Poisson's ratio. Furthermore, changes in span 2 will not affect span I 
because of the isolation provided by traction on the upstream roller. So, at boundary "a", 

ll = 0 (17) v=-µs,,y. 
Therefore, assuming the tension in span 2 is e.w, the relaxed dimensions are, 

L(1-s,) by W(l+µs,). 

(18) 

(19) 

And since the mass flow at each point along boundary "a" is the same, the longitudinal 
axis of the relaxed web will be aligned with the x-axis. 

Next, consider what happens when conditions are changed at boundary "b". Take, for 
example, the case of a misaligned roller, illustrated in Figure 4. It is known that at a 
misaligned roller the web will advance laterally until it reaches a steady state position at 
which its direction of motion is normal to the roller axis. A particle starting at boundary 
"a" will follow a curved trajectory. And since the boundary conditions at "a" are exactly 
the same as the simple case of Figure 3, the longitudinal axis of the relaxed web will 
again be aligned with the x-axis. And all particles that follow curved trajectories in the 
deformed web will follow straight lines in the relaxed web. Now that the frame of 
reference has been established, it is possible to state clearly what the normal entry rule 
means in the context of the theory of elasticity. 

Boundary Defect 

If a web that is running onto a roller under tension could be stopped and then cut 
along the line of entry, the cut edge of the relaxed web would not match the original 
boundary. In most cases, this effect is so small that it can be ignored. But, for very short 
spans involving nonuniform rollers it can become a significant fraction of the average 
downstream displacement. One way to deal with it is to solve a problem recursively. First 
it is solved with the relaxed boundary the same as line of entry. Then, information from 
the solution is used to adjust the boundary so that it will be match the line of entry after 
deformation. This can be done efficiently with a P. D. E. solver. 
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THE NORMAL ENTRY RULE IN THE CONTEXT OF ELASTICITY THEORY 

The normal entry angle must be redefined so that it can be used at each point across 
the width of an elastically deformed web. It is apparent that something more is needed 
than "orientation of the neutral axis" or aaverage orientation of longitudinal fibers". 

y 

Segment a,b after 
displacment 

Figure 5 
Normal Entry Angle 

Referring to Figure 5, a,b is an infinitesimal segment of a particle trajectory in a 
relaxed web. Segment a,b is the same segment after the web has started moving, but 
before it has reached a steady state. The quantities u1, v1 and u2, v2 may be interpreted as 
elastic displacements that at any instant of time obey equations (14) and (15). The roller 
surface velocity controls the speed and direction of web particles very close to the roller. 
So, all particles on a',b' will move in the direction of VJ. Thus the location of b' will 
move along the roller face with velocity V,, equal to, 

r~ = V, tan(0, -\//) (20) and if V, = 0 0, =\//. (21) 

This motion will continue until a steady-state condition is reached where (0,-111) = 0. 

The angle\// defines the orientation of a vector that is tangent to the particle trajectory. 
In the deformed coordinates this is, 
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(22) 

Equations (16) may now be used to define the tr~jectory direction in terms of the x, y 
coordinates. 

f// = tan·' ([ v,dt+ (I+,-,.) dy][ (1 + c,) da+ 11,.c(1J
1 l = 0, (23) 

For a uniform web, the relaxed particle trajectories are defined by y = constant. In that 
case dy = 0 and equation (23) becomes, 

1/f = tan-1 
l\. (l+exr

1 
=vx. 

(24) 
And for uniform web, equation (21) becomes, 

tan-117.r(] + c_J-1 
:::::: vx =er. (25) 

A NEW BOUNDARY CONDITION: CONSERVATION OF MASS AND THE 
NORMAL STRAIN RULE 

It will be shown here that application of the principle of conservation of mass, in the 
context of elasticity theory, leads to a boundary condition that is equal in importance and 
generality to the normal entry rule. 

-- -------L ... --··--···-···- . -

Figure 6 
Steady-State Mass Flow 

As described earlier, particles traversing a deformed span in a steady state, as 
illustrated in Figure 6 must follow fixed trajectories. For a uniform web, the trajectories 
will be straight when it is relaxed. Therefore, if it is marked by a series of such 
trajectories before deformation, the mass flow rate, Q, between any pair of such curves 
must be constant. This concept will now be developed using the theory of elasticity. 

Let Q, represent the mass flow rate at the beginning of a path that has a width, dy in 
the relaxed web. Then, 

_ dm _ 7 ,( ) Q- dt -r 11 d.J l+ej1, h(l+c=11 )p11 
(26) 

where J/11 is the circumferential velocity of the upstream roller, c:111 and E::u are the strains 
in they and z directions at the entry to the upstream roller, h is the web thickness in its 
relaxed state and p,, is the density of the web at the entry to the upstream roller. The 
density is, 

P = P, 
" (l+c"')(l+c,,,)(l+c0 ,) 

(27) 

where """ is the strain at the entry to the upstream roller and p,, is the relaxed density of 
the web. So, Q, is, 
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Q, =1~,(£tv)(h)(p,,)(1+cwr' ,eJ~,(<tv)(h)(p,,)(1-c"'). (28) 

Following the same reasoning, the mass flow at the downstream end of the path is, 

Q,, =1~,(<tv)(h)(p,,)(1-c,,,) (29) 

where T7i1 is the circumferential velocity of the downstream roller and e.ri1 is the strain in 
the x direction at the downstream roller. Equating Q,, and Q, and solving for Exd, 

811 I ,~. c,,, =-;;- =1-,(1-cw). 
ox xcci. Tu 

(30) 

Thus, the unremarkable fact that the mass of a piece of web doesn't change when it is 
deformed leads to a boundary condition that seems quite surprising when viewed from 
the standpoint of elasticity theory. From equation (30) it is evident that: 

At the point of contact with a roller, the steady state component of strain 
normal to the roller axis is a function only of the ratio of the circumferential 
velocities of the rollers at the ends of the span and of the longitudinal strain at 
the entry to the upstream roller. 

In the case of non-uniform rollers, 1~1 , Vr , H.:m and e_-.:J are taken to be at the 
corresponding deformed coordinates (v + v) at the respective rollers. 

An illustration will clarify the meaning of (30). Take the case of two spans in which 
the middle roller is concave and the ones before and after it are identical and uniform. 
Assume that at the same cross web locations the web velocities are, from first to last V1, 

V1, and V1 • If the longitudinal strain entering the first roller is e1, the strain at the middle 
roller will bee, = I - (V/V2)(1 - s1) • Applying the same rule to the third roller, the strain 
will be e3 = I - (V/V1)(1 - s,J = e1• One way to view this is that the longitudinal strain e., 
at each roller adjusts to keep the longitudinal mass flow constant. The other strains, s,. and 
e, also change. But, they factor out of the relationship because of their affect on density. 

For cases where the roller surface velocity is not aligned with the x-axis, the normal 
strain rule still applies, provided the coordinate system is rotated with the roller. 
Referring to Figure 7 , 

Line of contact 
with RoUer 

Figure 7 

'11 

' 
'L=-c--:-.=::.:°§ 

Coordinate transformation for normal strain 

the strain nomial to the roller axis, s,• will be, 

&x' = [ix cos2 Br + [il' sin2 Br + 2J'.,y sin Br cos Br 
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An expression like (3 I) is not a problem for a general-purpose P. D. E. solver. For 
simplified models it is usually adequate to use the small-angle approximation, 

(32) 

A SUMMARY OF THE BOUNDARY CONDITIONS AT A DOWNSTREAM 
ROLLER 

Boundary conditions for steady-state at the entry to a roller may now be summarized 
as, 

tan·'[v,dr+(l+s,,)0•][(1+s,)dr+11,,0•r =0, (33) 

V 
s=l--"-(1-s). (34) 

X i,~ 0 

And for a uniform web, (33) reduces to, 

tan-' v,(l+s,r' =v, =0,. (35) 

f~1 and V, are, respectively, the downstream and upstream roller surface velocities and it 
is understood that these may be a function ofy. c, is the longitudinal strain at the entry to 
the upstream roller and may also be a function of 0• + v) if that roller is nonuniform. 

It is now apparent that so long as traction is maintained, the controlling conditions at 
the entry to a roller are fundamentally geometric with stresses only playing a secondary 
role in controlling the relationships between the strains. This explains why it has been so 
difficult to find the fourth boundary condition for beam models. 

A CONJECTURE ABOUT THE INTERACTION OF THE NORMAL ENTRY 
AND THE NORMAL STRAIN RULES 

The analysis presented here addresses only a steady state condition that meets the 
boundary conditions (33) and (34). It says nothing, though, about how the web gets there. 
It is reasonable to ask, therefore, whether there could ever be an initial condition that 
would cause the web to move away from them - particularly when the web or roller is 
not uniform. It is conjectured, based on experience that for all of the cases studied in this 
paper the web always moves from setup conditions toward this state. 

PROFILE DISPLACEMENT 

In cases where the web is displaced laterally on a nonuniform roller, the lateral 
translation must be taken into account in determining the effect of the profile. This is 
called profile displacement. The problem may be eliminated in some FEA solvers by 
using y + v directly in the defmition of VJ in equation (34) . When this is not possible, a 
recursive calculation may be used in which the displacement caused by the profile is used 
to recalculate the relative profile location. 

APPLICATION TO A MISALIGNED DOWNSTREAM ROLLER 

Shelton [2] in his 1968 dissertation provided experimental verification of a very 
effective beana theory model for a misaligned roller. Comparison with his results should, 
therefore, provide an excellent test of the P.D.E. model. 
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Boundary 11d" Relaxed web Boundary "b" 

Boundarv Conditions 

Figure 8 
Misaligned downstream roller 

Two boundary conditions will be needed for each of the four sides. 

Referring to Figure 8, sides "c" and "d" are assumed to be unconstrained. So, for 
those boundaries the normal and tangential stresses will both be zero. Therefore. 

u,, = 0 (36) T,, = 0 (37) 

where o;1 is the stress normal to the boundary and r11 is the shear stress tangent to the 
boundary. 

Boundary conditions at "b" will be the normal entry and normal strain rules. 

vx = 0, (38) (39) 

It will be assumed that span 1 is in pure tension with uniform, aligned rollers. So, there 
will be no boundary defect there. Thus, the boundary at "a" will be a straight line. 
Furthermore, the displacements at the entry to the upstream roller will determine the 
boundary conditions at "'a". These are, 

11 = 0 (40) V = -µye,, (4J) 

In theory, 11 should be c,, times the length of span I. However, since this will be a constant 
value, it would produce only a rigid body motion and nothing is lost by setting it to zero. 

Comparison with Shelton's Beam Model 

Referencing Shelton's [2] work, in which he graphed the elastic curves of the web 
using non-dimensionalized parameters, he divided the problem into two cases depending 
on the influence of shear stresses - short spans where it is significant and long spans 
where it can be safely ignored. The parameters are: 

and 
nT 

AG 
(42) 

Tis the total longitudinal tension, K is defined in equation (43) and 11 is a correction 
factor that accounts for the use of an average value to approximate the shear stress. 

(43) 

The static elastic curves for short spans are compared to one set of Shelton's[2] 
results in Figure IO .The solid lines are plots of Shelton's equations. The data points are 
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from calculations using a partial differential equation solver. The P.D.E. model always 
includes the influence of shear, even though it is negligible for long spans or low tension. 
Inputs to the P.D.E. solver are shown in Table 1. For the short span analysis, Shelton 
mentions that a value of n = 1.2 is often recommended in the literature. A value of 1.0 
provided the best agreement at K,l = 0. I. A value of 1.2 worked better at K,l = 1. The 
differences were small, though. For example, at K,L= 0.1 and nTIAG = .005 the 
difference between 1.0 and 1.2 at x/L = 1 was only 1.7%. Theoretically, the ratio of 
maximum to average shear is 1.5. This was confirmed with the P.D.E model. The fact 
that lower values provide the best agreement between the two is probably due to other 
simplifying assumptions in the beam model. 

The graph in Figure 9 compares the P.D.E. model with Shelton's results for long 
spans. Dimensions and tension were chosen to reduce the effects of shear to negligible 
levels. For Kl= 0 the effect of shear is still noticeable as a slight offset. 

P.D.E. Model Inputs for Short S ,ans 
IV O,° E ,, It L (111) II T 11T/AG KL 

(111) (Pa) (111111) (N) 
1.0 0.1 3.1e9 0.35 0.1 15 1.0 1.149 .00001 0.1 

1.062 229.8 .002 
0.672 574.6 .005 
0.477 1149 .01 
0.217 5746 .05 

P.D.E Model Inputs for Long Spans (Selected for Negli ible Shear) 
1.0 0.1 3.1e9 0.35 0.1 15 1.0 1.149 .00001 0.1 

9.534 1149 .01 2 
~ 

19.07 1149 4 
~ 

28.60 1149 6 
~ 

47.67 1149 10 

Table l 
Inputs to Elastic Model for Misaligned Roller 

The effect of leaving the nonlinear terms out of equations (14) and (15) would be to 
cause all of the curves in Figure 9 to look like the one for K,l = 0 or in the case of Figure 
10 like the one for nTIAG = 0. In other words, without the nonlinear terms the web 
behaves as though the longitudinal tension has no influence on the elastic curve. It is 
primarily the addition of m,a, to the shear in (15) that causes the bending to concentrate 
nearer the upstream roller. 

It is apparent from the agreement in the results that the beam model assumption of 
zero moment at the downstream roller is confirmed. This can also be seen in the fact that 
the normal strain rule requires ex to be uniform at a uniform downstream roller. The 
normal entry rule insures a,. will be small. So, rr, will be uniform, producing zero 
moment. 
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One of the advantages of a P. D. E. model is that it can produce detailed pictures of 
stresses throughout the web. An interesting example is the principal minimum stress. The 
bottom portion of Figure 11 is a contour plot of compressive stress from O to -100,000 
Pascals (shaded portion). The upper graph shows elevations of the data at 4 positions, 
spaced at I meter intervals down the web starting at the downstream roller. Model inputs 
were: L = 4 m, W = I m, average a:,= 6.5e6 Pa, 0,= 0.5 deg, E = 3.le9 Pa, 11 = 0.35. 
Positive 0, corresponds to deflection in the +y direction. This information can be used for 
wrinkle analysis using methods similar to those described by Good, Kedl and Shelton[6]. 
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Figure 11 

Minimum Principal Stress for a misaligned roller (Pa) 

APPLICATION TO A TAPERED ROLLER 

Markum and Good [4] performed an experimental evaluation of a concave spreader 
roller by splitting a web as it exited the upstream roller and measuring the separation at 
the spreader. Since the experiment is documented well, it provides another good test of 
the P. D. E. model. 
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Figure 12 
Markum and Good test 

For the downstream boundary the normal strain and normal entry rules are. 
V =0 , , 

e =1-f~'(l-e) ..- V a 
,J 

(44) 

(45) 

Equation ( 45) may be put into a more convenient form if Vd is expressed as a fraction 
of f~,- And since a non-uniform roller will cause this ratio to vary with distance from the 
roller centerlines, V,1 can be expressed as a function of the fractional difference in roller 
diameters. If f(y} is defined as, 

D (v)-D f(y) = d • " 

D,, 
(46) 

where, Dr1 and D11 are the respective diameters of the downstream and upstream rollers 
and y is the distance from the roller centerlines. Then, 

1-e r~, = v;, [1+ /(y)] (47) and e, = I ( ) ~ e,, + f(y) . (48) 
I+ I y 

Note that the deformedy coordinate 17 = y + v may be used as the independent variable for 
f(y) in cases where more accuracy is desired and the solution method allows it. This is 
done for the results reported here. 

The conditions at boundary "d" will, as in the previous cases, be: 

V = -µe,,y (49) 11=0 (50) 

The concave roller surface in the Markum and Good experiment was cut with a 
circular arc ofradius R,, = I 0.16m. The diameter is approximated mathematically as, 

(
D y') Dd(y)=2 -;(-+-,- =2(0.02776+0.0492y') 
- -Ro 

(51) 

Their profile was expressed in terms of roller radius and D,/2 is the midpoint radius. If 
the upstream roller turns freely, the average of V,!Vd is zero and/6,J will be, 

/(y)=L773111-2y 2 -0.003414 (52) 

Comparison of Results 

The test arrangement is shown in Figure 12. Roller profiles were either circular arcs 
or "bow tie" and the test materials were either PET or LDPE. The bow tie rollers had 

55 



uniform diameter in the middle with tapered edges. Problems with traction and yielding 
were reported for many of the tests. The best results, shown in their Figure S, was the 
"parabolic 2" profile with LDPE. It is examined in detail. Relative to a web edge at 
0.076m rrom the midpoint of the roller, "Parabolic 2" had a profile depth of0.28 mm. 

For each test, three sets of results are presented. One is data rrom the Markum and 
Good beam model. The second is rrom an enhancement of the Marh1m and Good 
calculation using a recursive method to compensate for profile displacement in which the 
calculated value of Y; is added to the y coordinate and then Y, is recalculated. The 
solution converged to a steady value in six repetitions. The third is the from the P. D. E. 
model. The measured values were scaled off the graph in Figure 5 of their paper. 

Test parameters are described in Table 2. Results are in Table 3 . 

# Material Modulus Caliper Width Length Tension Profile Profile 
(MPa) (µm) (m) (m) (N) Radius f(y) 

(m) 
I LDPE 16S.S 25.4 0.152 0.419 8.9 JO. 16 .02776 

+ 
.0492/ 

2 " " " " 0.419 17.8 " " 
3 " " " " 0.242 8.9 " " 
4 " " " " 0.242 17.8 " " 

Table 2 
Test parameters for Markum and Good experiment 

Measured Beam Pct Recursive Pct P.O. Pct 
# Separation Model Error beam Error E. Error 

2(Ys) (m) relative model relative model relative 
(m) to (m) to (m) to 

measured measured measured 
I .0079 0.007? -8.3% 0.00800 1.33% .00792 0.253% 
2 .007S .0067 10.4 0.00737 -1.74 .00702 -6.40 
3 .003 I .0026 -17.8 0.00264 -14.9 .00274 -11.6 
4 .0027 .0024 -10 0.00256 -5.03 .0025S -5.S6 

Table3 
Comparison of results with the three models 

The improved accuracies of the recursive beam and the P. D. E. models are due to 
compensation for profile displacement. 

The reasons for success of the beam model are apparent in detailed plots rrom the P. 
D. E. model shown in Figure 13 and Figure 14. The assumption that a;,<< a:" used to 
estimate the end moment, is valid. And though there are large areas of compressive stress 
(shown shaded), the levels are generally low except in a small area near the upstream 
roller. The minimum principal stress,o-mill, plotted in Figure 14 is very nearly equal to Oj,. 
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Figure 13 
Longitudinal stress for test# 2 (Pa) 

Figure 14 
Minimum principal stress for test# 2 (Pa) 

Areas of negative stress shown shaded 

A new method for solving problems involving deformation and translation of moving 
webs is now available. 

□ It is founded on basic elasticity theory in a way that permits the use of general
purpose numerical methods to rapidly solve the partial differential equations. 

□ It introduces a rigorous definition of the normal entry rule suitable for use with 
elasticity theory. 

□ It introduces a new boundary condition for the downstream roller that has the 
same range of application as the normal entry rule. 

□ It shows that so long as traction is maintained, the controlling conditions at the 
entry to a roller are fundamentally geometric with stresses only controlling the 
relationships between the strains that govern particle paths and mass flow. 

□ It has been shown to produce solutions that are in agreement with experimental 
results reported for both misaligned and tapered rollers. 

□ It is capable of providing detailed descriptions of stress and deformation fields 
throughout web spans. 

□ It can be used to identify relationships that help in the creation of simplified 
models. 
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Question 
Did this analysis assume a uniform web? You have 
addressed nonuniform rollers, but not nonuniform webs. 
How hard would it be to extend to nonuniform webs? 
Answer 
This will be addressed in the paper which follows 
immediately: Effects of Co11cave Rollers, Cwwd-Axis 
Rollers a11d Web Camber of the Defo1111ation a11d 
Translation of a .Moving fVeb 
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