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A new method of analysis is applied to three problems that have resisted detailed 
solution. These are: 

1. Concave roller 
2. Curved-axis roller 
3. Cambered web (Curvature of the relaxed web along its longitudinal axis) 

In the first two of these, the primary interest is the stress/strain field near the 
downstream roller. In the third, the primary interest is the lateral translation. In all cases it 
is useful to have information on the stress field throughout the span to evaluate the 
potential for damage and wrinkling. 

For each case, the normal strain and normal entry rules are used to develop 
downstream boundary conditions that can be used with a nonlinear version of the theory 
of elasticity for two-dimensional plane stress. A finite-element partial differential 
equation solver is used to develop steady-state solutions that include stress/strain fields 
and displacements throughout the spans. 

Along with specific numerical examples, there is a discussion of implications for such 
things as wrinkling, spreading, lateral translation and overstressing. 

A major advantage of the new method is that it provides a new way of looking at 
problems that will facilitate other approaches to modeling. This is illustrated by 
developing a beam theory model for cambered webs. 

61 



INTRODUCTION 

The method of analysis for this work, called the P. D. E. model, is described in 
another paper [I] presented at this conference. It is based on a nonlinear form of two
dimensional elasticity theory and uses two boundary conditions for the downstream 
roller. One, called the normal strain rule is new. The other is an extended form of the 
normal entry rule. The purpose of this paper is to provide illustrative examples of how 
this new method can used to explore applications by analyzing the following: 

I. Behavior of a concave roller 
2. Behavior of a curved-axis roller 
3. Behavior of a cambered web (Curvature of the relaxed web along its 

longitudinal axis) 

In addition, insight gained from a P. D. E. model, is used to develop a beam model for 
cambered webs using melho<ls similar lo those of Shellon[2] in his work on lhe 
misaligned roller. The two models are compared and shown to be in excellent agreement. 

The P. D. E. solver software for this work, running on an ordinary 2.8 GHz PC, 
produced solutions to problems in times ranging from I to IO minutes. 

NOMENCLATURE 

A Cross sectional area of web, m2 

D Roller diameter, m 
G Shear modulus, Pa 
h Web thickness, m 
I Moment of inertia, m4 

l Length of span, m 
M Moment, Nm 
N Force, N 
Q, Mass flow rate per unit of relaxed area at upstream roller, Kg/s 
Q,, Mass flow rate per unit of relaxed area at downstream roller, Kg/s 
R,,. Radius of camber of relaxed web, m 
T Tension, N 
Tm•g Cross web average of tension, N 
11 Particle displacement in x direction, m 
uy Derivative of u with respect toy 
v Particle displacement in y direction, m 
Vx Derivative of v with respect to x 
V,. Velocity in the y direction, mis 
V,, Surface velocity of upstream roller, mis 
VJ Surface velocity of downstream roller, mis 
W Width of web, m 
y, y displacement relative toy- 0, m 
y' y displacement relative to curve of camber, m 
r.a- Elastic shear strain 
c Elastic strain 
c,, Longitudinal strain at entry of upstream roller 
'7 Deformed y coordinate, m 
0, Angle of misaligned roller axis relative to y-axis (CCW positive), radians 
0,. Angle of camber (inclination of downstream end relative to x-axis), radians 
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µ Poisson's ratio 
~ Deformed x coordinate, m 
rr Stress, Pa 
a;1 Stress normal to a boundary, Pa 
rxy Shear stress in XJ' plane, Pa 
f// Angle of tangent to particle trajectory of web (in relation to x-axis), radians 
ut Elastic rotation in x.,y plane 

Subscripts 
u Upstream 
d Downstream 
x Aligned with x-axis 
y Aligned with y-axis 
" Aligned with z-axis (normal to web plane) 
b Displacement due only to bending 
s Displacement due only to shear 

ASSUMPTIONS 

For this analysis, air film effects are ignored and it will be assumed that friction 
controls traction between the roller and web. The usual assumptions are made about the 
behavior of the web when it is on the roller. At the entry point, friction Jocks it onto the 
roller surface. Any strains existing at the point of entry are then frozen in place and 
remain fixed relative to the roller surface until the web reaches a zone at the exit where it 
begins to slip from the roller under the influence of stresses downstream. And the lines of 
contact at entrance and exit are assumed to be parallel to the rolJer axis. The turning 
torque of the roller is small in comparison to web tension and the "stick zone11 will be a 
large percentage of the contact area. Under these conditions, the stresses in the upstream 
span are isolated from changes downstream. 

Other assumptions: Viscoelastic and inertial effects are not significant. Thickness and 
material properties are constant in the longitudinal direction. 

EARLIER WORK 

Shelton [2] laid the groundwork for beam theory modeling of webs in his 1968 
dissertation. Development of the cambered web model, presented here, follows his 
example. 

Swanson [3] in his 1997 paper on web spreading devices provided a definitive 
demonstration of the spreading action of a concave roller by positioning a slitting blade 
immediately before the span he was observing. He used this to separate an inch of the 
web (0.8 mil PET) at the edge and measured the displacement of this piece at the 
downstream roller. 

Swanson [4] in a later paper attempted to determine through experiment and analysis 
the boundary conditions and basic principles that could be used to extend beam models to 
include non-uniform webs. This work confirmed earlier observations that cambered webs 
deflect toward the slack edge (the convex side) and established bounds on values for an 
end moment that might account for the behavior. 

Shelton [5] provided a good survey of the problems of cambered webs and provided 
qualitative insight by comparing their behavior to uniform webs on tapered rollers. 
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Markum and Good [6] confirmed Swanson's observations on tbe effect of a concave 
roller and developed a beam model tbat provided an estimate of the lateral displacement 

Olsen [7] proposed a beam model for non-uniform webs in which the camber was 
assumed to be induced by frozen-in strain, 

PLANE STRESS DEFINITIONS 

The following equations for plane stress are taken from Novoshilov's [8] simplified 
nonlinear theory for small rotations. 

Displacements from tbe relaxed coordinates x andy are 11 and v, respectively. Strains 
are, 

S .. h d' . 811 tram mt ex trectton s =
x ax 

Strain in the y direction 

Shear strain 

(4) 

av 
8,,=-::;-
, 0' 

av au r =-+-
.lJ' ax Qv 

av 
V=

.:r ax 
-µ 

Strain in the z direction 6
0 

= --(e, + e,.) 
I-µ 

Rotation in XJ' plane 

Deformed coordinates are, 

{=x+u (8) 

(l) 

(2) 

(3) 

(5) 

(6) 

(7) 

T7=y+v (9) 

Assuming Hook's Law, the stresses may be expressed in terms of strains, Poisson's 
ratio,µ, and modulus of elasticity, E, as follows. 

The x-axis stress is: u,=~[e,+µe,.] (lO) 
1-µ 

The y-axis stress is: (11) 

The shear stress is: 
T~ = 2(1!µ)[:~'. + :] 

(12) 
The equations of equilibrium are: 

~[u, -w,rn,]+~[rn. -w,rr,.J = 0 
Bx · By · 

(13) 

(14) 
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Another useful relationship is the expression that relates the x and y components of 
length of an infinitesimal line element before and after deformation. 

dq=(l+c,)dnu,.,(F d77=v,dt+(!+&_,.)i:!v (15) 

BOUNDARY CONDITIONS 

Boundary conditions at a downstream roller will be based on the normal entry and 
normal strain rules [1 ], 

Normal Entry: f// = tan-' [v,dt+(l+c_,.)dy ][(l+cx)dt+u.,.dy J' = 0, (16) 

where f// is the angle of a vector tangent to a particle path in the web and 
V 

Normal Strain: c = I - --"-( I - 6 ) . 
X 11:f ll 

(17) 

For a uniform web, (16) reduces to, 

tan-'v,(l+&,r' aev, =0,. (18) 

~, and V11 are, respectively, the downstream and upstream roller surface velocities and it 
is understood that these may be a function of y. c,, is the longitudinal strain at the entry to 
the upstream roller and may also be a function of(F + v) if the roller is nonuniform. 

A COMPARISON OF A CONCAVE AND CURVED-AXIS SPREADER 

ROLLERS 

A concave roller has a straight axis but a nonuniform diameter - smaller in the middle 
than at the edges. The depth profile is usually circular. The curved-axis roller has a 
uniform diameter. But, the axis is curved so that particle paths encounter a roller angle 
that increases with distance ftom the centerline. 

The concave and curved-axis rollers could be named by the boundary condition that 
causes the spreading. In the case of the concave roller it would be called a normal strain 
spreader and in the case of the curved-axis roller it would be called a normal entry 
spreader. 

A concave roller and a curved-axis roller will be compared in identical circumstances. 
The model parameters will be the same as one of the cases studied by Marlo.1m and Good 
[6] in their investigation of a concave roller. They evaluated spreading by splitting a web 
as it exited the upstream roller and measuring the separation at the spreader. The concave 
roller profile will be the same as Markum and Good's Parabolic Roller 2. The radius of 
curvature for the axis of the curved-axis roller will be chosen by trial-and-error to 
produce the same maximum spreading action as the concave roller. The test parameters 
are shown in Table I. The maximum profile depth in one web width is 0.28 mm. 

Material Modulus Caliper Width Length Tension Profile Profile 
(Mpa) (µm) (m) (m) (N) Radius F(y) 

(m) 
LDPE 165.5 25.4 0.152 0.419 17.8 10.16 .02776 

+ 
.0492/ 

Table I 
Test parameters for Markum and Good experiment 
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Boundary Conditions for the Concave Roller 

Figure I 
Concave roller 

Two boundary conditions are needed for each of the four boundaries. 

The sides are assumed to be unconstrained. So,· for those boundaries the normal and 
tangential stresses will both be zero. Therefore, 

a,, =0 T,, =0. (19) 

Boundary conditions at boundary "b" will be the normal entry and normal strain rules. 
V 

v,=0 (20) c,=1-
1
/(1-i:,,). (21) 
d 

Equation (21) may be put into a more convenient form if J~, is expressed as a rraction of 
V,,. And since a non-uniform roller will cause this ratio to vary with distance rrom the 
roller centerlines, VJ can be expressed as a function of the rractional difference in roller 
diameters. If/6,) is defined as, 

f(y) = Dd (y )- D,, (22) 
D,, 

where, DJ and D,, are the respective diameters of the downstream and upstream rollers 
andy is the distance rrom the roller centerlines. Then, 

J~.(1-i:,,) ( ) 
(23) and i:, = 1-

1 
[ ( )] - i:,, + f y . (24) 

J,, 1+ / y 

Note that the deformed y coordinate, 17 = y + v, may be used as the independent 
variable for f(y} where solution method allows it. This is done for the results reported 
here. 

It will be assumed that span I is in pure tension with uniform, aligned rollers. So, the 
displacements at the entry to the upstream roller will determine the boundary conditions 
at "a". These are 

(25) u=O. (26) 

The roller profile in the Markum and Good experiment was a circular arc. The roller 
diameters and profile radius in Figure I have been chosen to match their values. Using 
these values equation (22) becomes, 

f(y) = (l.767m-1)y2 -.00340. (27) 
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Boundarv Conditions for the Curved-axis Roller 

Figure 2 
Curved-axis roller 

Two boundary conditions will again be needed for each of the four boundaries. 

The sides are assumed to be unconstrained. So, for those boundaries the normal and 
tangential stresses will both be zero. Therefore, 

er,, = 0 T,, = 0 (28) 

where a;, is the stress nonnal to the boundary and r,, is the shear stress tangent to the 
boundary. 

Boundary conditions at "b" will be the normal entry and normal strain rules, 

0 . _, ( y) y 
11_,; = r =Sill - e;-

R, R" 
(29) 

V 
.e, = 1-f(l-.e,,) . 

d 

(30) 

It will be assumed that span 1 is in pure tension with uniform, aligned rollers. So, the 
displacements at the entry to the upstream roller will detennine the boundary conditions 
at "a". These are 

(31) 11=0. (32) 

Results 

One way to look at the spreading action of these rollers is to subtract out the Poisson 
contraction due to longitudinal stress. This can be done by using the constitutive equation 
( 11 ). The net spreading strain, [(, is due solely the cross web stress a; .. Therefore, 

1-µ' (•3) aY ~ = s!,. = s ... + µsx .., 

Figure 3 shows very little difference in the way the two rollers distribute the 
spreading. In both cases it drops off in a parabolic fashion from a peak in the middle to 
zero at the edges. 

The y displacements are compared in Figure 4. The contours are not particle paths. 
But, they have similar slopes. The cross web stresses are shown in Figure 5. The curved
axis roller shows compressive stress. However, the levels are not high. There is also an 
area of compressive stress for the concave roller that is just beyond the area shown in the 
graph. It has a pattern similar to that of the curved-axis roller with an extreme of only -
825 Pa. 

The curved-axis roller had a radius of2lm. The concave roller had a profile radius of 
10.16m and a minimum diameter of 55.5mm. 
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Magnification of Lateral Errors 

There has been a presumption that because of the lateral shifts seen with tapered 
rollers, concave rollers would destabilize lateral registration. This was investigated by 
repeating the model calculations with a shift in the centerline of the profile. The result 
was that the centerline of the web moved opposite to the direction of profile shift. The 
shift was approximately - 11.6% of the profile shift. This relationship held for shifts up 
to ½ web width. Another way to think of it is that if the web shifted laterally by 1 inch at 
the upstream roller, it would shift in the same direction by 1.116 inch at the concave 
roller. When the roller profile radius was doubled, the ratio decreased to -5.5%. So, while 
it is true that the spreader magnifies any change in the upstream lateral position, the effect 
can be quite small if the spreading is kept modest. 

There has never been any reason to suspect curved-axis rollers of destabilizing lateral 
registration. But, for the sake of curiosity this was investigated with the P. D. E. model by 
rerunning the parameters of the curved-axis roller with a shift in the centerline of the 
profile. The result was that, just as in the case of the concave roller, the centerline of the 
web moved opposite to the direction of profile shift. The shift, however, was significantly 
less. It was approximately -1.5% of the profile shift as opposed to -11.6% for a concave 
roller with the same spreading ability. This relationship also held for shifts up to 1/, web 
width. 

When the maintenance problems of curved-axis rollers are considered, a concave 
roller might often be a better choice. 

APPLICATION TO A CAMBERED WEB 

The analysis begins by assuming that a cambered web is created on a tapered core in 
the manner described by Swanson [3]. The roll is assumed to be formed in such a manner 
that the relaxed web will pay off from the roll with its edges normal to the roll axis. 

Roll wound on 
tapered core as in 
Swanson1s experiment 

Ro 

Figure 6 

;,-. .,...,.. \ 
.,.. Relaxed web 

\ 

>-.,.. 

Normal Strain in a Cambered Web 

Normal Strain Boundary Condition 

l11e mass flow of the web at the line of exit from the unwinding roll will be, 

0 = V (d•1) n h R,, -y (34) 
-u u ~ r'o R,, 
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where Ro is the radius of the outer edge, V0 is the surface velocity at the outer edge and y 
is the distance from the outer edge. 

Tiie mass flow at the entry to the first roller will be, 

Q, =1~v(l+By1)P,h(l+e,,}r~ (35) 

where e,.1 and e,1 are they and z strains at the entry to the first roller, p1 is the density at 
the firsi roller, V1 the circumferential velocity of the roller and h tl1e web thickness. And 
using the mass density relationship, 

P, 
P,, 

(36) 

Q, becomes, 

Q, = dyp,,hV, (l+c,,} (37) 

Equating Q, and Q,, and solving for c,1 , the longitudinal strain at the entry to the first 
roller, 

(38) 

Aty = 0, equation (38) may be solved for the strain at the outer edge of the web at tl1e 
entry to the first roller. This will be called 8w , 

V 
-1 " 8m - -v • 

I 

Substituting (39) into (38) yields, 

So, 

_ R0 -Y( ) ",, -1-T 1-c,,, 

Using the same procedure for the second roller, the mass flow is, 

Q, =1{vp,,hV,(I+c,2 ). 

(39) 

(40) 

(41) 

Equating Q1 and Q2 and solving for c,2 , the longitudinal strain at the entry to the second 
roller, 

V 
8x2 =f{l-8xl) (42) 

And finally, if the value for c,1 in equation (38) is substituted in (42), 

c =1-__r:;_ R,,-y(I-c ) (43) 
xz V R xv 

2 (! 

So, in general, the expression for longitudinal strain at a downstream roller will be, 

V R -v 
c =I--"--"-· (I-c ) 

X V R XC, 

d " 

(44) 

Where f,~, and J,:, are the upstream and downstream roller surface velocities and EI:ni is the 
value of longitudinal strain at the outer edge of the previous span. Looking back at the 
expression for 8,1 in (38), it is now evident that the strain relationship at the first roller 
following the unwinding roll is like the otllers except that c,,, is zero. 
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Figure 7 
Parameters of Cambered Web for Development of Normal Entry Condition 

Normal Entry Boundary Condition 

With the P. D. E. method, all of the strains and displacements are defined in relation 
to the curved relaxed web. So, the normal entry rule will change to accommodate the fact 
that the particle trajectories of the relaxed cambered web are circular arcs. Starting with 
the defining equation for a the normal entry angle, equation (16), and since the relaxed 
trajectories are circular arcs of radius, r, 

( ' ')1/2 dy=-xl r·-x· dr=tan0dc 

At boundary "b", 0 = 0, and the tangent of the normal entry angle is, 

If/= tan·' ([v, +(1 +£,. Jtan 0, J[(1 +£, )+u, tan 0, r l = 0, 

And equation ( 46) becomes, 

tan 0, [(I+£,)+ u, tan 0,] = [v, +(I+ c,,)tan 0,] 

Solving for v,, 

v, =tan0,[(1+c,)+u,. tan0,]-(1+c,.)tan0, :0,-0, 

where 0,. is the angle of camber and 0, is the angle of the downstream roller. 

(45) 

(46) 

(47) 

(48) 

Boundary conditions for the two edges are the same as in the other problems except 
that the outward normal and tangential components of stress are not aligned with the x or 
y axes. So, for rectangular coordinates the conditions are as follows. 

0-
11 

= 0 = ux cos2 a+uy sin2 a+2r.n,sinacosa 

T,1 = 0 = { o-Y -CT,. )sin a cos a+ Txy ( cos 2 a -sin 2 a) 

(49) 

(50) 

o;, is the normal component of stress, T,, is the tangential shear and a is the angle of the 
boundary-normal in relation to the x-axis. 

Upstream Boundary Conditions 

At the upstream roller, the u displacement will be, 
11 = 0. (51) 

[f span 2 has been analyzed, the results for its downstream roller can be used for v. In 
many cases, it will be sufficient to estimate it as follows. The ratio of o;, to a:, at the exit 
of span 2 is usually much less than µ, which means that the v can be approximated as a 
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function of the strain, e '.. at the exit of span 2. Furthermore, if the upstream roller is 
uniform, e 'x will be an expression similar to ( 43 ). 

v=-µ fs•,,~v+C . (52) 

Since the only boundary conditions that control absolute position of the web are at 
boundary "a", the constant of integration, C, may be chosen arbitrarily to position the 
web at a convenient location. 

Comparison with Swanson's (31 Results 

An example is illustrated in Figure 8 . This is for one of the web geometries tested by 
Swanson: L = 2m, W = 0.3048m, E = 4.14e9Pa, l11ickness = 23.4µm, Average 
longitudinal tension, Tal'g = 32.5N (Tmx is larger than Swanson's value of22N because the 
model indicates this is the value needed to avoid a slack edge), R,,. = 139m. The P. D. E. 
model shows that when running, the web will move toward the convex side until it is 
almost straight with an offset fromy = 0 of -18.1 microns. All stresses are in Pascals. 

In general the P. D. E. model shows that 

When running between parallel rollers cambered webs become almost straight. 

The curvature at the downstream end becomes a small positive fraction of the 
relaxed value. 

The longitudinal tension profile will increase linearly from a low value on the 
convex side to a maximum on the concave side. 

For parallel rollers the cross web tension profile will be very uniform throughout the 
length of the span. 

There will be some compressive cross web stress near the downstream roller that 
worsens with roller misalignment. 

Some of the graphic data is shown in Figure 8. The offset of-18.1 microns does not 
agree precisely with Swanson's experimental results. He measured - 0.3 mm. However, it 
should be observed that 0.3 mm is only 2.0% of the initial displacement due to camber, 
Y, = 14.4mm. So, his experiment correctly showed that the web became nearly straight. 
And this was evident in all of the nine experiments tabled in the paper. Furthermore, he 
correctly predicted that the curvature at the downstream roller would be between O and 
1/Rw. 

There may also have been problems in the Swanson test due to the fact that the 
conditions upstream of the test span were not controlled well and/or because of the 
difficulty of measuring such a small displacement on a moving web. l11ere were actually 
two spans involved in the test. One was a very short run from the unwinding roll to the 
upstream roller of the main test span. Both of these were mounted on a four-bar linkage 
so that the side force could be measured. Although the tension in the main test span was 
carefully controlled, the tension between tl1e unwind roll and the upstream roller was set 
by a friction brake with a manual adjustment. Therefore, the upstream conditions going 
into the test span are unknown. And as the foregoing analysis shows, this information is 
critical to predicting behavior of the test span. 
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BEAM MODEL FOR A CAMBERED WEB 

A beam model is a useful adjunct to a P. D. E. numerical model. It can provide 
answers to many questions that are often adequate for applications. And it provides a 
conceptual framework for utilizing the P. D. E. results. So, one of the first things done 
with the P. D. E. model was to look for the fourth bounda,y condition necessary for a 
beam model solution. An obvious possibility is to use (43) to estimate the end moment. 
So long as a;. << a:,, u, should be approximately equal to Ee, . This proves to be an 
excellent assumption. For example, for l = .0762m; W = 0.3048 m; E = 4.14e9Pa; 
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Thiclmess, h = 23.4 microns; Average longitudinal tension, T,l\'g = 327N; Rw = 139m and 
0, = 0, the P. D. E. Model shows the error in the moment to be only 0.002 %. Even at R,.. 
= 7m, the error is only 0.003 %. 

(a) 

Relaxed sh~pe 

.... __ ,,,,r 
livl+dM 

----- L -------

Figure 9 
Cambered web analysis 

(b) 

(a) Free body diagram (b) Solution parameters 

The neutral axis offset, used in conventional curved bar theory and described in 
references such as Timoshenko [9], is important only for problems such as crane hooks 
that have large initial curvatures. For the curvatures experienced in web handling the 
offset is insignificant. Thus, development of the cambered model will begin with a 
uniform web model that will be transformed to the solution for a cambered web through a 
simple change of variable. One feature of curved bar theory that will be retained is the 
effect of longitudinal tension on curvature, introduced in equation (60). This adds a term 
to the solution that is important for a successful cambered web model. 

In the following development y' will be used to indicate deflection of the uniform 
web under the influence of the cambered web boundary conditions and y, will represent 
the sum of y' and the Y,. offset due to camber. 

The free body diagram of Figure 9 (a) represents an infinitesimal segment of a 
uniform web under the influence of shear, longitudinal and bending stresses. The angle 0 
is assumed to be very small so that the forces N and N + L1N are nearly parallel to they
axis and ds ss dt. Summing moments, taking clockwise as positive. 

M-(M+llM)+Ndt=O (53) or dM =N (54) 
dt 

Summing vertical forces taking +y as positive. 

N-(N +llN)-Td,j, = 0 

and since, 

(55) 

(56) 

Next, following Shelton's example [2], separate expressions for bending (subscript b) 
and shear (subscripts) will be developed. 

dy' nN 
--' -

dx AG 
(57) 

where n is the correction factor for parabolic shear distribution, A is the cross sectional 
area and G is the shear modulus. 
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The action of the longitudinal force, Twill increase angle dij, by, 

1'd¢, = Tdt 
AEr 

where r is the radius of curvature. And 

-= d2y'1, 
,. dt' 

(58) 

(59) 

So, taking into account the bending moment, Mand the effect of (58) the total bending is, 

d1y',, A1 T d 2y\ 
--=--+---
dt' EI AE dt' 

(60) 

where 1 is the moment of inertia. 

Conventional curved bar theory uses the initial curvature !Ir of the bar in the last term 
of (60) because the fmal curvature varies very little from the initial value. In this case, 
however, the bending is of the same magnitude as the initial curvature. So, the variable 
form of the curvature must be used. Now, since the total deflection is due to both bending 
and shear, 

d'y', = d'y' _ d'y', = d'y'(i+ 11T) (6 !) 
dr.2 dr.2 dl dr.2 AG 

Combining (61) and (60) 

M=-Eld'>:'(1---"!:.._)(1+ nT). (62) 
d,- AE AG 

Next, substituting (62) in (54) differentiating once and equating with (56) 
d4 1 d~ 1 

y K 2 • y - D (63) 
dt4 - ' dt' -

where, K,:2 = ____ T ___ _ 

EI(!- :£)(1+ ;~) 
(64) 

The only difference between this expression and the one in Shelton's dissertation [2] is an 
additional term in K, to take better account of the effect of tension on curvature. For 
uniform webs the effect of TIAE is negligible. But, it is important for cambered webs. 

Finally, to transform (63) into the cambered web equation a change of variable is 
made. Camber can be interpreted as an offset in they coordinate of a uniform web. 

x2 
y. = Y. + v' = -·-+ y' (65) 

C ,: • 2~, 

where Ye is the y coordinate of the cambered web relative to y = 0 and the ./ tenn 
approximates the arc of a circle with radius, R,, .. Substituting this into (63) yields, 

d" ,, ~ d2J1' K 1 K--=-' (66) 
d,,/ c dr2 R"' 

Note that the dependent variable in this equation is still y' rather than y,., So, when it is 
solved, equation (65) must be used again to yield the complete cambered web solution. 

The solution of (66) is, 

y' = - ;~, +C, sinh( K,x)+C, cosh( K,x)+C3x+C4 (67) 
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Substituting the result into (65) yields, 

y, = c, sinh(K,x)+C, cosh(K,x)+ C,x+C, (68) 

Boundary conditions are: 

dY nTm .. 
@x=0: v. =0, -' =--' 

. ' d, AG 
(69) 

where 0, is the angle of the downstream roller, Tm•g is the average longitudinal tension 
and PL is the radius of curvature at the downstream roller. Note: the definition for the 
normal entry angle is 0, instead of 0, - 0, because of transformation (65), Using (65) in 
(62) the curvature at the downstream roller is, 

~,=;.-:;(1-:;r(1+':;r (70) 

The average longitudinal tension, Tm•g is found from (43) as, 

7;,, = Eh wy [ R,, - Y, 
7 

1
;• (1-eo)]dy, = EWh[I -

1
;• (1-eJ(l + t' )·'] 

-w 12 R". + w 1 _ rd 1" _R11 . 

(71) 

And ML is found from (43) as 

M =Eh,,.f
12 [1 R,,.-y, J~, (1-e )}• d, = E!T~, (l-e )(1+...!....)·' 

'· . " +W /2 V " 'D, R, V " 2R, -H·/2 -''w d ,, d ,, 

(72) 

So, the fourth boundary condition is, 

( )., ( )'' ( )'' 1 1 V W Ta,.g nTa,,.g 
-=-[¢] where, ¢=1--:;'-(l-e,,) l+-

7 
- 1-- l+--

A R,,. 1,, -R,,. AE AG 
(73) 

Solving for C,, C2 and C3, 

C, =[-: cosh(K,L)+ ~ 2 sinh(K,L)][cosh(K,L)(1+ nT"'' )-1]·' 
, ~, AG 

C2 = [ i, sirtl1(K,L)+ R,,~/ (1 + ':; -cosh(K,L )) ][ cash( K,L )(1 + 
1

:~; )-1J' 

C = -C K I + ~ 
( 

nT ) 
3 I c AG 

C, = -C, (74) 

Inspection of the coefficients reveals that each consists of two parts. One is 
proportional to the roller angle. The other (which will be called the camber term) is 
independent of the roller angle and proportional to end curvature, ¢ IR,, .. Furthermore, the 
roller angle terms are exactly the same as for a uniform web. 1l1is makes sense; because 
as R,,. approaches infinity, the camber terms should approach zero as the cambered web 
becomes more like a uniform web. So, to understand the general behavior of the 
cambered web solution it is only necessary to characterize the effect of the camber terms 
and add them to the misaligned roller results. 

The change of variable made in equation (65) may be troubling to some. It looks like 
algebraic slight of hand. The thing to keep in mind is that it has been assumed that the 
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slight curvature of the relaxed web has no effect on the size of the bending and shear 
deformations. Its main effect is to act as a y offset to the neutral axis of the beam. If the 
analysis had been carried without the variable change, it would have been possible to get 
the same result. But, the boundary conditions would have had to change in ways that 
might have been just as confusing. And it would have been necessary to add x2/(2Rw) to 
the result to account for the initial y offset. It could be rightfully argued that there must be 
some interaction between the initial curvature and the longitudinal tension. That is taken 
care of by the combined effects of new term that is introduced in equation (60) and the 
1/R,, term in (70). 

Normalizing the solution 

A good way to normalize (68) is to divide y, by they displacement of the relaxed 
cambered web, L/(2R,,.), (YL in Figure 7). This quantity can then be graphed so that the 
combined effects of camber and roller misalignment can be estimated. Before doing that, 
however, it is necessary to point out some important relationships between the key 
variables. To do this a new parameter, /J, is defined. It encompasses the main factors that 
determine longitudinal stress. 

And a little algebra will show that, 

and 

¢=211 (µ+l)(l-/J) (76) and 
1+2n(l+ µ)(1-JJ) 

nTm., ( )( ) --=2n I+µ 1-/J 
AG 

L { 12(1- /J) }·' 
K,L= W /J[1+2n(l+µ)(l-/J)] 

(75) 

(77) 

(78) 

Thus, it is possible to plot the camber portion of y, as a function of only /J and LIW (n and 
µ are treated as constants). 

For parallel rollers, the ratio of longitudinal stress at the concave edge compared to 
the average stress will be approximately, 

J;,1,,m~ =] + _LJ I+_!__) . (79) 
r,,,, 1- JJ l 2R,,. 

The lateral force at the downstream end is, 

NL = -Eh( C2 sinh ( K,L) + C, cash( K,L) )(1- /J)( ! r K,L (80) 

Comparison of the Beam and P. D. E. models 

The solid lines in Figure IO represent results from the beam model and the circles are 
data points from the P. D. E. model. Agreement between the two is excellent except for a 
slight deviation at LIW = 8 on the (I - /3) = 0.0 I curve. In that case the P. D. E. model 
value is more likely right because it is more consistent with the curves below it. For 
values of (I - PJ > 0.01 both models should be used with caution because the magnitude 
of displacements, rotations or strains violate the assumptions of small deformation 
elasticity theory. 
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In conclusion, cambered webs do not cause large lateral misalignment. They do cause 
compressive stresses in the cross web direction that can cause wrinkling. And they can 
cause large cross web gradients in the longitudinal stress. 

Cambered Web Maximum Deflection 
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Figure 10 
Comparison of Beam and P. D. E. Cambered Web Models 

(Sign of the ordinate is reversed to facilitate logarithmic scaling.) 

CONCLUSIONS 

The scope of the individual studies in this paper was intentionally limited in favor of 
illustrating the range and versatility of the new method. But, it should be evident that: 

□ It has been shown that the new method can be successfully applied to the 
following situations. 

o The spreading behavior of concave and curv_ed-axis rollers, including stress 
fields near the downstream roller. 

o The deflection and deformation of a cambered web. 

o The development of a beam theory model for a cambered web. 

□ The new method can evaluate the potential for damage to webs by producing 
precise and detailed descriptions of stress/strain fields throughout spans. 

□ It is evident that much more can be done in exploring these and other 
applications. Additional simplified models can be developed and where that is 
not possible results can be tabulated for everyday use. 
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Beyond illustrating the capabilities of the method, tl1e following things have been 
accomplished. 

□ A beam model of the cambered web has been developed and shown to produce 
the same results as the new method for small strains. 

□ It has been shown that concave and curved-axis rollers behave very much alike 
and that concave rollers have an undeserved bad reputation. 

D It has been shown that camber in a web can produce large variation in 
longitudinal stress across the width, but it does not cause large lateral alignment 
errors. 
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Question 
Have you given some thought about how to include the 
downstream span and what those boundary conditions are? 
That would be a very interesting extension of your work. 
Answer 
I have begun to work on multiple spans. You really have 
to take into account more than one span at a time. I think 
that is really important. 
Question 
In the Swanson paper you referred to there were also shear 
force results. I was wondering if you compared your 
analysis to the shear force measurements? 
Answer 
No, I haven't done that at tl1is point. I certainly can. 

Question 
For the classic case of a straight web that enters a 
misaligned roller, what does your modified normal entry 
theory predict? Does it have the web end up in the same 
running position as it exponentially moves over in time or 
does it fail to converge to the predictable normal entry 
position to that misaligned roller? 
Answer 
I wasn't explicit about Uris. This development only 
describes the steady state case. I haven't done the transient 
development. I am working on that now. I see how to 
extend the current development to transient conditions. 
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