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The mechanics of the interactions between a flexible web and an externally 
pressurized air cushion is modeled. The web is wrapped around the porous cylindrical 
turn-bar at an oblique angle (helically). The turn-bar supplies pressurized air into the 
web/turn-bar clearance. The shell model used to represent the mechanics of the web is an 
extension of a previous model, and it allows the web to be wrapped around the cylinder in 
a helical fashion. The geometric relations are based on Rongen's work [l] and steady 
state equilibrium equations are developed based on the work ofMUftU and Cole [2]. The 
fluid mechanics of the air in the web/turn-bar clearance is a two diemnsional form of the 
incompressible Navier-Stokes equations averaged in the clearance direction and 
augmented by non-linear source terms. Contact between the web and the reverser, which 
is undesirable in a turn-bar application, is included in the model in order to enable the 
analysis of the limiting cases. This paper describes the theory. Case studies and design 
recommendations are presented. 
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Metric tensor 
Tangent vectors in curvilinear coord. (a= 1,2) 

Curvature tensor 
Web thiclmess, m 
Cartesian base vectors (i = I, 2, 3) 

Bend. rigidity, in-plane and shear stiffuess of the web 
Elastic modulus of the web, Pa 
Total in-plane strain (a, (3 = x, y) 
Membrane strain (a, (3 = x,y) 
External tractions acting on the web, Pa 
Web/air-reverser clearance, m 
Web tangency points at y = 0, m 
Length and width of the web, m 
Length and width of the fluid domain, m 
Bending moment (a, (3 = x, y) 
In-plane stress resultant (a, (3 = x, y) 
In-plane stress resultant (a, (3 = x, y) 

Normal curvilinear coordinate and base vector 
Supply pressure, Pa 
Air pressure, Pa 
Air pressure acting on the web, Pa 
Shear force resultant (a= x, y) 
Web radius, m 
Radius of the air-reverser, m 
Middle surface of the web 
Longitudinal external tension, Nim 
Air discharge velocity at the holes, mis 
(p,/2pf' reference discharge velocity, mis 
Air velocities in x • and y • directions, mis 
In-plane curvilinear coordinates 
Web <lisp. with respect to reference state, m 
Web disp. with respect to initial state, m 
w(.s,l/2) reference web displacement, m 
Coordinate system for the web equations 
Coordinate system for the air equations 

Areal hole density 
Helical wrap angle, deg. 
Initial web-reverser clearance, m 
Shear strain 
Poisson 1s ratio of the web 
Discharge loss coefficient 
Web curvature (a= x, y) 
Air density, kg/m3 

Wrap angle of the web 
Limits of the hole-region in circ-dir. on the reverser, deg. 
Fluid shear stress, Pa 
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INTRODUCTION 

Thin, flexible, continuous structures such as paper, various forms of films, metal 
sheets and magnetic tapes are generally known as webs. These materials are typically 
processed at high transport speeds (1-20 mis), under tension (10-200 Nim). In some of the 
web handling processes it is required to transport the web around a 44comer" without 
contact. Depending on the application, air bars [3 J or air reversers [2] provide an air 
cushion under the web to accomplish this task. In a previous article by the latter authors, a 
model has been introduced to analyze the case where the transport direction of the web is 
nonnal to the longitudinal axis of an air-reverser. In this paper, a more general model for 
the web mechanics is introduced, where the web approaches the reverser at an oblique 
angle, as shown in Figure I. 

The fluid structure interaction between the flexible webs and surrounding air is 
typically unavoidahle and gives rise to interesting problems. A flexible web drags the 
surrounding air into the guide-web interface while it travels over rollers or stationary 
guides. The resulting phenomenon is known as the foil bearing problem and has been 
extensively studied, [4], [5], [6]. The foil bearing problem stems from low Reynolds 
number effects, hence the fluid mechanics is governed by the Reynolds lubrication 
equation [3]. 

An air-reverser is used in a web handling application where the transport direction of 
the web needs to be reversed without making contact with a rigid surface. In order to 
achieve this goal, the web is wrapped around a cylindrical drum with holes on its surface 
to provide a pressurized air layer under the web. The equations governing the mechanics 
of air in the web/air-reverser clearance were given in reference [7]. The web is wrapped 
around an air reverser in such a way that its transport (longitudinal) direction is 
perpendicular to the axis of the air reverser. In another type of non-contact, web support 
device, known as tum-bar, the web is wrapped around the cylinder in a helical fashion 
with a helix angle /J. This device allows the web transport direction to be changed by an 
angle 2/J, and thus enables more flexibility on manufacturing floor layout. In both 
applications the web is transported in its longitudinal direction under an externally 
applied tension T. 

In both air-reverser and tum-bar applications pressurized air is introduced between 
the flexible web and the rigid cylinder from the holes on the surface of the cylinder. The 
clearance between the web and the cylinder is typically on the order of 3 mm. The air 
pressure and the web deflections are coupled. The air pressure is primarily balanced with 
respect to the belt-wrap pressure (TIR,) acting on the web due to the external tension, 
where Re is the radius of the air-reverser. However, creating a flow pattern under the web 
which will balance the belt-wrap pressure is a challenging task. The air pressure and flow 
pattern primarily depends on the distribution pattern of the holes on the surface of the 
reverser. While the flow could stagnate in the central wrap region and provide an air 
cushion with a fairly uniform pressure, along the four edges of the wrap region air could 
flow from underneath the web with speeds reaching 25 - 30 mis. A two-dimensional air­
flow model, in the plane of the web, has been introduced by Lewis [8]. 

In order to derive the equilibrium equations for a web in an air-reverser application, 
MUftU and Cole took into account the following steps the web takes until it fmds 
equilibrium with a steady state clearance [2]. A detailed description of their model is 
given in their paper, and described here for completeness. The web which is initially flat 
is first wrapped around the cylinder, under tension T. This configuration is referred as the 
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Figure I -Schematic representation ofa) an air-reverser and b) a tum-bar 

initial reference state, 1110. At this state the effect of airflow is neglected. Once the air starts 
coming into the interface through the holes on the reverser surface, the web deflects away 
from the initial reference state. During this deflection, the web tension is kept constant by 
a control mechanism, which allows the web length to increase between the two support­
rollers on the entry and exit sides of the reverser. The web eventually finds a steady state 
condition which is removed from the reverser surface on the order of few millimeters. 
Thus the final reference state of the web from which the web deflections are measured is 
removed from the initial reference state and depends on the conditions such as tension 
and air pressure distribution of the particular application. This reference state, which is 
initially unlmown, is called the self-adjusting reference state, w,. The web deflections are 
measured with respect to the self-adjusting reference state. Thus the web deflection 
equations become non-linear. The self- adjusting reference state is a cylindrical surface 
extending from the mid-line of the deflected web defmed as w,(x)- w(x,L/2). The normal 
component of the web deflection is measured with respect to Wr and is indicated by, 

w=w-wr. 

In this paper the equation governing the mechanics of a flexible shell, wrapped 
helically around a cylinder with flat parts at the leading and trailing sides is derived. This 
derivation follows Rongen [l] and Milftil and Cole [2]. The equations governing the fluid 
flow in the web/air-reverser clearance, reported below, are essentially the same equations 
given by MUftU and Cole [2] with modified boundaries as described. The coupled fluid 
and web equations are solved numerically as described by MUftU [9]. 

COORDINATE SYSTEMS USED IN THE MODEL 

The geometry of a web wrapped at an oblique (helix) angle /3 around a cylinder of 
radius R, is depicted in Figure I. Note that the web and the air-reverser can be rolled out 
on a plane as shown in Figure 2a. The extent of the circumferential wrap is given by the 
wrap angle 0w as shown in this figure. The wrap-region spans the length RA,. The 

projection of the hole-region from the air-reverser onto the web is indicated by the span 

R, ( 0£, +0n). The governing equations for the web displacements are expressed on the 

(x,y) coordinate system shown in Figure 2b. The fluid mechanics equations are expressed 
on a coordinate system placed on the cylindrical reverser, not shown here. The 
interpolation of the variables h and p between the two solution meshes is performed on 
the (x ',y ') coordinate system shown in Figure 2b. 

The (x,y) coordinate system, indicated by !1,., for the web displacement equations is 
defined as; 
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Outer limits of the hole region 
Tangency lin!!s / 

F4 T4/ ~13 I F; WJ 
y = L .. ,c-. -,--,-f,"",----:--':"C'T--,--, 

y v y ./~L•% .t·L~ 

al-_-, -Fe!-· ,-x---'I-T",+-'--,l-7i"'.c'-'J,":---Y,Wi 

111c web L1 l,J 

Inner limits of the hole region 
a) b) 

Figure-2 a) A schematic depiction of the web and the reverser rolled-out on a plane. b) 
The geometric definitions used to define the web .f1w and fluid .n,dornains. 

The coordinate system of the fluid equations (x ·,y') indicated by .n1 are located on the 
cylindrical surface of the air-reverser. The projection of .n1 on .f1.,. is .n1_,.,. and it is defined 
as; 

{cx,y)ED/-•w cn ... l ytanP+x-LF! ::::o /\ ytanP+x-LFl ::;o} 

tan(e,, -;e .. ) tan(e,, -;e,.) 
where LFI = L

1 
- R and LF~ = L~ + R-~-~~~ 

cosp cosp 

The lengths LFI and Lp2 are the projections of the outer limits of the hole-regions on the 
web. 

(2) 

EQUATIONS OF EQUILIBRIUM FORA HELICALLY WRAPPED WEB 

A web wrapped around a cylindrical surface with a helix angle ,B represents a 
developable surface. Web equilibrium equations are derived in curvilinear coordinates. 
The equations are written with respect to the initial reference configuration w0, for an 
infinitely thin web. The geometry can be described, as shown in Figure 2b. as the union of 
two flat sections (OT1T,W, and T,W,W3T3) on the entry and exit sides of the wrap region, 
with the wrap region (T1T,T3 T,). This figure shows the projections of the tangency points 
and the limits of the hole-region on the unwrapped configuration of the web, where the 
lines T1 r, and T2T3 are the lines of tangency. The curvilinear coordinates and the 
equilibrium equations with respect to this system are described by Rongen [!]. The 
equations of equilibrium are derived using the Kirchhoff-Love assumptions. 

Geometry of a Helical Shell 
The shape of a shell is usually described by its middle-surface Sand thickness c. In a 

three dimensional space, with Cartesian basis vectors { e
1

, e
1

, e
1

} and origin 0, a generic 

middle-surface, is described by two independent surface coordinates 111, and 11, as follows, 
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r = r (u ll ) = r (u ) e I' 2 I a I (3) 

where the Latin indices take the values l, 2, 3 and the Greek indices take the values 1 and 
2. The summation convention applies to this equation where the repeated indices are 
summed. The location of any point i in the curved shell can then be defined by its 

normal coordinates ( u
1

, u
1

, U
3
), 

(4) 

where, r ( u
1

, u
2

) is the position vector to a point on the middle surface, ii is the unit 

nonnal on the middle surface at this point, and - c/ 2 :, 113 :, c/ 2 . The middle surface S is 

located at u, = 0. The tangent vectors to this middle-surface are defined by, 

a, 
au,, 

which form the base vectors for the 2-dimensional tangent plane, at each point. The 
normal vector to the middle-surface is given by, 

n 

(5) 

(6) 

providing ii.ii. = 0 at every point of the surface. The first fimdamental tensor or metric 

tensor of the surface is defined by, 

(7) 
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The second fimdamental tensor or the cw,,ature tensor of the surface is 

bu{! = iiu,fl'ii • (8) 

In order to calculate the value of ii" and ii for the helical geometry, let us investigate 

the equation of the line wrapped around a cylinder with the helix angle /J as shown in 
Figure 3. Let the curvilinear coordinates (111, 112) be oriented along and perpendicular to 
this line, respectively. The point Pon the cylindrical surface can be represented in terms 
of 111, and 112, and equation (3) as follows, 

f = R cos rp€l + R sinrpe! +(ul sin/J + l/2 cos /1)€3, 

with 'fl=(u,cosfJ-11,sinfJ)/R. 
(9) 

The tangent and normal vectors for this surface are found from equations (5), (6) and (9) 
as follows, 

ii1 = - sin rp cos /3€1 + cos rp cos /3€2 + sin /3€3, 

a2 = sin {/J sin /3€1 - cos (fl sin /3€2 + cos /3€3, 

ii = cos rpe\ + sin rp€2. 

where. The metric and the curvature tensors become, 

[

I 
a -

ujl - Q 
I [ -cos' /J 

b,,,, = R sin /J cos fJ 
sin /J c,os /J] . 

-sin· /J 
(11) 

TI1ese relations are used next to develop the equations governing the web static 
equilibrium equations for the helically wrapped web under tension T. The shell theory is 
based on the Kirchhoff-Love assumptions which state that: a) The shell is in a state of 
plane stress, where the normal stress in the thickness direction of the shell is neglected; 
and, b) A fiber of the shell which is initially straight and normal to the middle surface S, 
remains straight and normal to the middle surface after deformation, [!OJ. 

The in-plane displacements of the shell are indicated by Va , and the out-of­

plane displacement is by w. The strain-displacement relations for the shell then become, 

I 
e 11 =v 1,-b

1
/W+-W W

1
,, r: ,r, u 

2 
,u , {12) 

y =W. 
" ·" 
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where E,,11 is the total-strain, e,,fl is the membrane-strain, r,, is the shear-strain, K,,p is 

the ew,,at11re of the middle surface. Note that the curvature bapis added to the curvature 
of the middle-surface in order to take into account the initial bending of the web around 
the cylindrical surface. 

The in-plane stresses in the deformed shell are indicated by a"I' and the shear stresses 

in the direction normal to the middle surface Sare indicated by a,,, . The shell theory is 

based on stress resultants which are defined as follows, 

,/2 

(N,,p,Me1fl'Q,,) = f (rr,,11 ,u3rr,,1,,rr,,3 ')du3 

-r/2 
(13) 

where N , are the in-plane stress resultants, M 
1
, are the bending moment resultants and 

aj " 

Q" are the normal shear stress resultants. The static equilibrium of a curved shell is given 

by the following set of equations, 

N,.,,1,11 + F',, = 0 

Q,,, 11 +( w,,,N,,1,)+b,,1,N,,11 + F= = 0 

M "i,,1, - Q" + C,, = 0 

where Fa , C,, and F= are the external in-plane force, bending moment and pressure, 

respectively. Equations {l 4a,b) represent the static equilibrium of in-plane and out-of­
plane forces, respectively. Equation (14c) is the moment equilibrium equation. 

For an isotropic shell the constitutive equations are, 

N"I' = D,[(1-u)e,,l'+ua"l'ea] 

M"1, = -D, [ (!- u )K"I' +ua,,1,Ka] 

Q,, = D,r" 

{14) 

(15) 

where D, = Ee'/ 12 ( I - v') is the bending rigidity, D, = Ee/ ( 1- u') is the in-plane 

stiffness and D, = KGe is the shear stiffness, with the Young's modulus E, shear modulus 

G and shear correction coefficient K. The correction coefficient usually takes the value of 
5/6. 

The mechanics of the web is described with respect to a set of curvilinear 

coordinates located on the web (x,y,n). Note that these coordinates are identical to 

(11,, 11,, n) coordinates indicated in the previous figures. After combining equations (14b) 

and {14c) the equilibrium equations become, 
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Nu/I,//+ Fu = 0, 

A1ufl,r,fl + ( 1v,uNatl ),fl + bu//Nu/1 + F= = 0. 
(16) 

By using moment curvature relations, ( 15b ), and tbe curvature tensor, ( 11 ), equation 
(I 6) becomes, 

Nu,.r +N:<J',Y +~ = 0, 

NJ'.<,.t + NJJ',Y + F;. = 0, 

DVW- w ---- N -2 w , ( cos' /J) ( 
h •·"' R,,. ll ,.t)" 

sin/Jc.os/J) ( sin' /3) N - w ---- N =F. 
R" .t)' .JJ" R"' )J" = 

(I 7) 

where R.., = R,.(xJ1) is tbe radius of curvature of tbe shell defined as, 

0, forx+ ytanf]-L, < 0 

I 
= 

R.,(x,y} 
for x+ ytanf]-L, ;, 0 andx+y tan /3-L, $ 0. (18) 

0, forx+ ytan/J-L, > 0 

where L 1 and L, are tbe tangency points aty = 0. Equation (17) represents a set of coupled 
partial differential equations, which in tum represent tbe equilibrium of a shell wrapped 
around a cylinder in a helical fashion, with a helix angle /J, as described in Figure I, 
subjected to in-plane forces F., and F,. and external pressure p. 

In a typical web handling application, tbe web is pre-tensioned to a value T in tbe 
longitudinal direction. It is assumed tbat, in tbe undeformed state, only T exists as in­
plane stress, when the web is wrapped around the cylinder. The in-plane stress resultants 
after deformation are indicated as follows, 

N =N· N =N· 
JJ" J)"' .t)' .t)'' 

(19) 

A simplified equation which represents tbe equilibrium of out-of-plane force resultants 

and bending moments can be obtained by considering tbat N~ can be evaluated in terms 

of deformations by using tbe strain-displacement relations, (12), and tbe constitutive 
relation, (15). Thus the in-plane stress resultant in tbe longitudinal direction becomes, 

[ 
w , I _, ( w , I _, )] N =T+D -cos•f]+-w·+v -sin'f]+-w·, 

·"r 
1 R 2".< R 2.) 

"' "' 

Then using tbe above equations it can be shown tbat the equation of equilibrium for a 
flexible web wrapped around a cylindrical drum with a helix angle /J is, 
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,_ ( 4 , , , ) W 
D1,V w+D, cos /J+vcos· /Jsm· fl-,--

R,.(x,y) 
T cos' /3 

(21) 

Note that for /3 = 0 this equation reduces to the same web equilibrium equation derived 
for the case of no helix angle [2]. Note that the vertical component of the external traction 
F, in Equation (17), has been replaced with the air pressure p and the contact pressure p,. 
The air and contact pressure distributions are obtained from the solution of the fluid 
mechanics equations, and evaluation of the contact conditions as presented in the next 
sections. 

The web is supported by a roller on each of its two longitudinal ends, and is free on 
its lateral edges. These conditions are represented as simple support conditions, 

W=O, 

NI =D.[W +uW ]=0, 
-' " ,.tf ,JJ' 

at 0 ,; y ,; L, and x = 0, L, , and as free boundary conditions, 

M,, = D [w + uW ] = 0 , /, ,))' ,.u ' 

Q, = D, [ w,,,, + ( 2 - v) ii\,,]= 0, 

at y = 0, L, and 0 ,; x ,; L, . 

Initial Clearance. The clearance h ( x,y) between the web and the tum-bar 

depends on the initial clearance ,5 ( x, y) and the web displacement w, 

h (x,y) = w(x,y) + o(x,y) 

(22) 

(23) 

(24) 

The initial clearance in the downstream and upstream sides of the web is obtained by 
calculating the distance between the web and the cylinder. In the wrap region, the initial 
clearaoce is zero. This is expressed by the following relation, 

(( )' ' ')'" x+ ytanf]-L, cos· /3 + R" -R, {(x,y) E n.,ly tan/J + x-L, < o} 

o(x,y)= 0, { (x,y) E n..[y tan/3 + x- L,;:, 0 I\ y taof] + x-L, ,; o} 

(( )'' ')'" x+ ytaof]-L, cos /3 + R -R, {(x,y) E n..[ytan/J+x-L, > o} 
(25) 

In obtaining the equations for the curvature and the initial clearance, the effect of bending 
rigidity of the web is neglected; and, the web is assumed to consist of two flat segments 
and one "helically-wrapped cylindrical" segment. 
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EQUATIONS OF FLUID MECHANICS 

The steady state form of the equations governing the fluid mechanics in the clearance 
between the web and the tum bar were derived by Lewis [7]. As the clearance h(x ",y ') 
between the web and the reverser is considerably smaller as compared to the other two 
dimensions of the fluid domain, namely x • and y • directions, the flow is assumed two 
dimensional in the plane of the reverser. Thus the flow velocities,,- and v' in the x• and/ 
directions, respectively, are averaged in the direction of the clearance height, and the flow 
component in the z • direction is neglected. The effect of the air coming into the interface 
through the holes is modeled as a distributed source, indicated by a(x •JI'). Velocity of air 
U coming through each hole is a function of the supply pressure inside the reverser p 0 and 
the local pressure of air p. TI1e two-dimensional flow assumption is invalid near each 
hole, and losses due to discharge are represented with the discharge coefficient K, whose 
value lies in the range (0,1]. The air velocity through each hole is modeled as follows, 

In their final form these equations contain distributed source terms to model the 
effects of the air injected through the holes. These equations also include the effects of air 
viscosity and turbulence. They are given as follows, 

where the reference discharge velocity uo = (Po/2p )11 2
• The conservation of mass is 

given by, 

ahu a1,,; 
--+--=aU 
ax' cy' , 

(26) 

(27) 

where the term on the right hand side represents the mass of air coming into the interface 
through the air holes. The conservation of momentum in the x• and/ directions is 
represented by the following two equations, 

( . ') ( '. '. ,. ) . . . au . au ap 4 a u a u I a·v T_.,. u 
p u -+v -- +--µ ---+--+---- +2-·-+apV-=0 

ax· cy· ax· 3 ax'' cy'' 3 ax'cy' h h 
(28) 

( . ')' ('',. '') . • 0v • 0v Op 8 V 4 a-v 1 a·u T_.y' V 
p u -+v - +--µ --+---+--- +2-·-+apU-=O 

ax· cy' ay' ax'' 3 cy'' 3 a.icy' h h 

where, pis the mass density,µ is the viscosity of air, and p is the air pressure averaged 
over the normal direction. The flow is turbulent in the web-reverser clearance, as 
indicated by the high value of the Reynolds number, (Re=O(5000)) [2]. The shear stresses 

r,,- and r;,. are found from the 117"'-power-velocity distribution Jaw for turbulent flow 

in a two-dimensional channel [11], 
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Case (}Fl-(}F2 0F.l- OF, 
1 -90" - -50" 50" - 90" 
2 -100" - -60" 60" - 100" 
3 -110" - -70" 70"-110" 

Table 1. TI1e extent of the hole-regions for the three cases discussed in this paper. See 
Figure 1 and 2a for the definitions of the angles Ofr 

;t' ( ')/ 1 - pl, *? *2 2-,! 2 
r ,* .* = - p0.0676cos 0 (-J {u - + v ) 

- X 2 µ 

with ri = tan ' ( 11 '/ v) and ,!' = ¼. The solution of this equation is discussed in [8]. 

The boundary r, of the fluid solution domain is the outer periphery of the 

parallelogram defmed as, 

(29) 

{r,l{x',y')en
1

cR', (x',o);,. {x',() A y"tanfi+x·-(,=0 A y·tanP+x·-(,=0} 

(30) 

where in and L~, are the limits of the hole regions at y • = 0. Given these, the boundary 

condition for fluid becomes, 

(31) 

where K 11 is the boundary discharge coefficient. 

CONTACT PRESSURE 
In case rigid body contact occurs between the web and the reverser surface, the web 

is supported (partially) by the contact pressure Pc· Whether contact will take place 
depends on the overall equilibrium of the web and the air pressure. If contact occurs, its 
magnitude, and location are not known apriori. In general, surfaces are not smooth; and, 
contact between two surfaces takes place on the peaks of the surface asperities. A review 
of available multi-asperity contact models is beyond the scope of this paper. However, in 
the context of web and tape mechanics papers by Rice et al. [12], Lacey and Talke [13], 
and Wu and Talke [14] could be consulted for more information. In this work, the 
parabolic contact model introduced by Lacey and Talke for tape mechanics is used. This 
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model was later evaluated by Rice et. al for contact of paper and PET based webs. In this 
model the contact pressure is evaluated by, 

(32) 

where P0 is the asperity compliance and o-0 is the asperity engagement height. If the web­
to-reverser clearance I, falls below o-0 then it is assumed that asperity contact takes place. 
The values of P0 and o-0 are typically empirically determined. For web contact guidance 
on these selections are given in reference [12]. In this paper the following values were 
used.: P0 = Jxl06 Pa and o-0 = IO0xl0-6 m. 

RESlJLTS AND DISCUSSION 

In order to investigate the effect of helical wrap, a case study of different helix angles 
varying in the range ofO' ,;,{J,; 45°, is conducted. In this study the web wrap angle 
around the reverser, is 0w = 180'. Three different cases of hole distributions were 
investigated. In all three of these cases, the total span of the main hole-regions are 40° in 
the entry and 40' exit directions of the web. This 40' window is moved around in the 
circumferential direction, in order to investigate the effect of placing the hole-region in 
relation to the wrap region. The three cases of hole region locations are defined in Table 
I. All of the other parameters were kept constant at their values reported in Tables 2 and 
3. The node spacing used for the finite difference solution are reported in Table 3. 

The steady state conditions for /J = 0° and 45°, for case-I, are plotted in Figures 4 and 
5, respectively. The web displacement (w) distribution, measured with respect to the 
initial wrapped state, is plotted in part a) of these figures. The air velocity distribution in 
the fluid domain is given in part b ), where the air pressure (p) contours are also plotted. 
Finally, the air pressure and contact pressure (p,) profiles are plotted in 3D in parts c) and 
d). Note that the same legends are used in these figures. 

E(GPa) 4 µ (Pa.s) l.85x!0-5 

V 0.3 R (m) 0.1 
C (rum) 0.05 0,,. (deg.) 180 
T_, (Nim) 40 K 0.9 
p(k lm3

) I p, (kPa) 0.8, I, 1.2, 1.4 
Table 2. Parameters common to the presented cases. 

I!. O' 5' 10" 15' 20' 30° 40' 45° 
L 1 (m) I I I I I I I I 
L2 (m) 0.96 0.91 0.87 0.82 0.71 0.58 0.71 0.50 
Lx(m) 2.31 2.27 2.23 2.19 2.15 2.07 1.99 1.95 
L,.(m) 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.50 
Llx=Lly (rum) 5.78 5.68 5.58 5.48 5.38 5.18 4.96 4.87 
,tx'(cm) 0.88 0.90 1.11 1.25 1.39 1.75 2.21 2.48 
Lly' (cm) 1.24 1.25 1.26 1.26 1.26 1.27 1.27 1.24 

Table 3. Length parameters used for the presented cases. 
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Figure-4 The steady state conditions for the case-I, with (3 = 0', Po= 800 Pa 

In general, Figure 4a and 5a show a large displacement io the wrap region, where the 
web is supported by the air cushion. In the case of /J= 0', the maximum displacement is 
on the order of 2 mm. But, when the web is wrapped with a helix angle of fl= 45' the 
maximum web displacement is found to be approximately 8 mm. In both of these figures, 
the air cushion support is insufficient to prevent web contact at the entry end exit regions. 
This is evidenced by the non-zero contact pressure distribution shown io Figures 4d and 
5d. Noted that the non-smooth contact pressur shown in Figure 5d is the result of 
numerical discretization. Nevertheless, the web is supported io the central wrap region by 
the air cushion. In the case of zero wrap-angle, Figure 4c shows that, io the central region, 
the air pressure settles to approximately 800 Pa; the pressure drops to ambient io a narrow 
transitional region around the outer periphery of the wrap region. On the other hand, the 
air pressure for the wrap-angle of fl= 45' settles to approximately 450 Pa in the central 
wrap-region. The pressure drops to ambient in a similar manner around the outer 
periphery. 

The magnitudes of the pressure contours and web displacements at steady state are 
strongly iofluenced by the helix angle. At the low value of fl (Figure 4), the steady state 
pressure contours reach 800 Pa range, whereas at the high value of fl (Figure 5), the 
contours reach 450 Pa range. Conversely, the web displacement is lower for low values of 
/J, whereas it is higher for higher values. In fact, as the helix angle increases from O' to 
45' the web displacement increases while the maximum pressure decreases. This may at 
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Figure-5 The steady state conditions for the case-I, with fi = 45°, p 0 = 800 Pa. 

first seem counter intuitive; However, it is actually due to the fi dependence of the shell­
stiffness and the belt-wrap pressure. Equation (21) shows that the sl,el/-stiffi,ess and the 
belt-wrap pressure for the helically-wrapped web are defmed as, 

T cos' fi 
D,(cos' fi+vcos' fisin' fi) and 

R"' 

respectively. Thus it can easily be seen that the effect of both of these parameters reduce 
at when fi > 0. As the belt-wrap pressure is reduced at higher fi values, the overall 
equilibrium is established at lower air pressure levels. Similarly, the shell stiffness is also 
reduced as a result of increasing fi, resulting in a more compliant web behavior. 

Effect of the supply pressure on the three cases of hole distributions is presented in 
Figures 6 - 8 for p0 values of 800, 1000, 1200 and 1400 Pa. For Case-I, where the hole­
region is placed right on the boundary of the web's tangency line, the air pressure is 
insufficient to overcome the belt-wrap pressure and the web contacts the reverser surface 
near the tangency lines. Increasing supply pressure only ends up lifting the web in the 
central region, otherwise the web remains in contact on the tangency line, as shown in 
Figure 6. 
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Figure- 6 Center line (x,L,12) displacements for the Case-I, for supply pressure 
values of p0 = 800, 1000, 1200, 1400 Pa, in figures a)- c), respectively, and helix 
angles of/3 = 0, 10, 20, 30, 40 deg. 

Figure - 7 Center line (x,L,12) displacements for the Case-2, for supply pressure 
values of p0 = 800, 1000, 1200, 1400 Pa, in figures a)- c), respectively, and helix 
angles of /3 = 0, I 0, 20, 30, 40 deg. 

In Case-2, where the hole-region encloses the web's tangency lines, the web contacts 
the reverser only for the lowest supply pressure value of p 0 = 800, for the helix angles of 
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Figure - 8 Center line (x,L/2) displacements for the Case-3, for supply pressure 
values of p0 = 800, 1000, 1200, 1400 Pa, in figures a)- c), respectively, and helix 
angles off]= 0, 10, 20, 30, 40 deg. 

20°, 30° and 40°, as shown in Figure 7. For all of the other supply pressures and helical 
wrap angles no contact occurs. In general increasing supply pressure and increasing helix 
angle causes the web displacement to increase. For this hole-distribution the web 
displacement near the tangency line is significantly lower as compared to the central 
region of the web. 

In Case-3, where the hole-region spans the I 10° to 70" range, on the entry and exit of 
the air reverser, the web displacement in the wrap region is more uniform, as can be 
observed in Figure 8. However, the overall, web displacements are lower than those in 
Case-2. Considering that no contact occurs for any of the supply pressure values and helix 
angles, this is a safer design for preventing web contacts. 

SUMMARY 

A mathematical model for the steady state deformations of a web wrapped around an 
air-reverser in a helical fashion is developed. This is an extension of a previous model 
where the helix angle was zero [2]. An equation governing the steady state deformations 
of a thin flexible, cylindrical shell is derived. These equations show that the shell stiffness 
and the belt-wrap pressure are both reduced due to the helical wrap. The equations 
governing the fluid mechanics of the air cushion between the web and the air-reverser is 
modified to accommodate skewed boundaries. The coupled system is solved numerically. 
A case study shows that increasing helix-angle results in increased web-reverser 
separation and lower steady state air pressure. This study also shows that, in order to 
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prevent web-scratches, it is advantageous to place the hole-regions circumferentially, on 
the reverser, in such a way that they to enclose the tangency points of the web. 
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Question 
Have you ever conducted this kind of research on a porous 
web? 
Answer 
No, we haven't. 

Question 
Do you have any plans in the future? 
Answer 
Yes, if someone suppmis it definitely. 

Question 
I was interested in your finding that the shell stiffness was 
reduced. Would you expect that to affect wrinkle 
tendencies for this? Would you adjust say the radius or 
tension to accommodate that? 
Answer 
I think it's a design problem. Someone needs to look at 
the parameters and the design. We have a web and wrap it 
around a cylinder then due to shell stiffness, it becomes 
more difficult to deform. But when we wrap it helically, 
the effective stiffness is reduced. The effective radius goes 
down. Moreover, you develop a stiffness not only in the 
longitudinal direction but also in the cross direction. Timt 
also plays into the problem. 
Question 
I think in some printing press applications they use porous 
metal rolls lo float the web. I think that allows them to 
float with a lesser flying height above the roll. Do you 
have any comment on that use rather than using holes? 
Answer 
I think in the old days the tape industry did the same thing. 
Instead of using rollers they wanted to minimize the 
friction drag on the motors so they were using porous 
guides essentially. In that case the clearance is much 
lower and the flow is not inertia dominated or it's 
somewhere in between on the lubrication side where there 
are some inertia effects. So you can get away with some 
corrections to the Reynolds equation. There, Eshel & 
Elrod, who came up with that famous equation, had some 
corrections to their equation. Interestingly, currently, the 
tape industry is using porous guides and the tape industry 
has the same problem as the web industry. The lateral 
control is very important and in fact probably more 
important for them because they can't tolerate mis-
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registered tracks. They have tracks that are only 25 
microns wide and the track widths going down for 
increasing areal densities. So they cannot afford the lateral 
motion. One of the things they've found is roller 
imperfections feed into lateral motion. So some companies 
are using porous guides which can be analyzed with the 
equations that you mentioned. 
Question 
Yes, I would also think that with the porous guide, you 
would not have so much reduced shell stiffness with the 
helical wrap if you fly it alone for height the shell stiffness 
should be higher. 
Answer 
That is a shell issue and something we cannot avoid if 
we're flying. When you're contacting that may be a 
different situation. 
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