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CHAPTER I

INTRODUCTION

In beginning courses in foundations of mathematics the student
is told that a mathematical system must have a consistent, indepen-
dent and sufficient set of assumptions. The existance of such a set
is necessary, but it is not necessary that the set be known. Theore-
tically, there should be a set of assumptions for Euclidean geometry
that are consistent, independent and sufficient, but the set has not
been written yet. Many of the people who feel that they are qualified
to write a book on geometry seem to believe that they are qualified to
write a set of assumptions. Perhaps many of them are, but the improve-
ments that each author makes in the assumptions for his geometry creates
a problem for the student. The problem being that whenever a student
wishes to change books he finds that a different book, about the same
geometry, apparently has a different set of assumptions. The student
has two possible solutions, he can verify for himself that the assump-
tions are equivalent or he can assume that they are equivalent. The
first solution is so time consuming that the student usually takes the
second one. Attempts to solve the overall problem have almost always

lead to another set of equivalent assumptions.



The apparent differences in the different sets of assurptions
concerns two types of students. Beginning students, if they become
aware of the problem, are likely to doubt that geometry is a mathe-
matical system until they are convinced, by some teacher or by doing
research on their own. The problem is of most concern to students of
Foundations of Geometry. The problem should concern high school geo-
metry teachers, but fortunately most-of them never heard of it.

The problem is unique in mathematics in that it has the simple
solution; ignore it and it will go away. If a student takes progres-
sively harder courses in geometry, and avoids courses in Foundations
of Geometry, the question of assumptions never comes up after two or
three courses. College textbooks in Euclidean geometry frequently
start out with a statement similar to the following; this is a con-
tinuation of the high school course in plane geometry, therefore the
student should have in mind the assumptions and propositions contained
in a high school course in plane geometry. By such a simple statement
the question of assumptions is dispensed with. It can not be said for
certain that the author is ignoring the problem. He may not know that
the assumptions in most high school geometry books are so poorly stated
that even high school students can pick them apart. Ignoring the as-
sumptions is better than writing a new and different set of assumptions.

It is anticipated that a good set of assumptions will be written
soon. With the emphasis that is presently being placed on foundations
of mathematics someone will surely bring geometry up to date. Until
this is done the existing sets must be used. The set of assunptions

proposed in this paper is not a workable set therefore they will not
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add to the problem by adding another set of assumptions. It is intended
that the set and the discussion of each assumption should contain enough
information about the nature of assumptions to enable a student to eval-
uate a set of assunptions for hiuself,

This paper contains information that should be useful to a high
school teacher in the selection of a text book, but it is not recommended
for use as enrichment material for a high school course. The teaching of
high school geometry is difficult enough without mentioning, that the set

of assumptions being used may not be perfect.



CHAPTER II
BASIC ASSUMPTIONS

The assumptions presented in this chapter are for the demonstration
of the properties of assumptions and nothing else. They are consistent,
but not independent or sufficient for Buclidean gecmetry. Some of the
simple properties of sets such as, intersection, union, empty, non-
empty, belongs to and does not belong to, will be used. The notation is
not standard, but it is simple.

Assumption 1. There exists a set S, such that the

elements of S will be the elements of a geometry

with the following assumptions. The elements of S

shall be denoted by the capital letters of the

English Alphabet.

Assumption 2. There exists & relation which deter-

mines a particular type of subset of S. This type

of subset will be denoted by L( ).

Assumptions 1 and 2 are seldom found among the numbered assumptions
of a geometry. They make a nice introductory paragraph, and they are
different in nature from the other assumptions. The set S and the re-
lation are usually undefined, and all of the assumptions are about the
properties of the set and the relation. All of the following assuaptions

will be about the set S and the relation which determines subsets.



W

Te second sentence in assumption 1 and 2 are not part of the
assiumptions, They are put in that place for convenience. The prac-
tice cf including notes about notation with the assumption has be-
come almost standard procedure. It can be justified only on the
grounds ©that it makes a neater more compact paper, and the meaning
of the symbols are not likely to be overlooked.

To see the importance of assumpition 1 Jjust assume, there does
not exist a set 5, such that the elements of S will be the elements
of a geometry with the following assumptions. Note that assumption
2 is limiting and describing the set S. It states definitely that
there exists a relation which determines subsets of a particular
type. It does not say that there are not other relations which deter-
mine other types of subsets.

The last two sentences in the paragraph above illustrate a
fault that many geometry books have. Most authors seem to think it
is their duty or privilege to interpret their assumptions. Perhaps
this is necessary, but it would be much better if the assumptions
were written so that they could speak for themselves.

Assumption 3. The set S contains at least two elements.

This assumption could have been combined with assumption 1. This
is done in many of the books in which assumption 1 is stated as an as-
sumption. Combining two assumptions does not make one assumption, but
it does make for compactness, and it sometimes makes a student wonder
why one set of assumptions has twenty assumptions and another set has
twelve. The possibility of combining assumptions will come up again.
It is only a partial answer to the question of apparent differences in

assumptions.



Assumption 4. Every A and B that belongs to S determines one

and only one subset of the type L( ), such that A and B belongs

to the set. To show that A and B determines the set and belongs

to the set we write L(a,b).

The second part of this assumption is usually not stated. It
seems necessary in view of the fact that sets can be found in which
two elements determine a subset and the two elements do not belong to
the subset. A set of books on a shelf with the relation being, all books
between two given books, will serve as a model. Any two books determine
a subset but do not themselves belong to the subset.

In Hilbert's statement of this assumption he did not state that
A and B belonged to the set.l In his interpretation of the meaning of
his assumption he stated that A and B did belong to the set. This was
equivalent to putting in another assumption, in a place where it could
easily be overlooked. There is no way of knowing Just how many assump-
tions used in geometry are never stated as assumptions.

This assumption obviously could be broken into two assumptions,
possibly three. The words, a unique, could be substituted for, one
and only one. The assumption is stated in various ways, and various
meanings are attributed to it. One important thing to notice here is

that it appears in all sets of assumptions for geometries of points and

lDavid Hilbert, Foundations of Geometlry, tr. E. J. Townsend,
(Ia Salle, 1947) p. 4




lines. Notice also that it states a sufficient condition and not a
necessary one. That is L(a,b) may possibly be determined in other
ways, and by cther elements of S.

Assumption 5. If A, B, C and D are four distinct e.. ents

of S and C and D belongs to L(a,b), then L(a,b) = L(a,c) =

L(a,d) = L(b,c) = L(b,d) = L(c,d).

The meaing of this assumption is sometimes read into assumption
4, but most of the good sets recognize it as an independent assump-
tion. It can be shortened by writing it as; any two elements of a
set of the type L( ) completely determine the set.

Assumption 6. Every C that belongs to S divides any L( ) which

contains C into two subsets, such that C and only C belongs to

both subsets. Since A divides L(a,b) into two subsets, the sub-
set to which B belongs will be called L(a,1l,b), and the subset

to which B does not belong will be called L(a,2,b).

This assumption is difficult to connect with a particular assump-
tion from some well known set. The necessity of this assumption or an
equivalent assumption is shown by noticing that there are geometries in
which it is not true. There are two ways in which this assumption can
be omitted from a set of assumptions. It is the geometric equivalent
of Dedekind's postulate therefore it may be part of a metric assumption.2
It can be introduced by making a mark alongside a ruler then placing a
dot near the middle of the mark so that the reader can see that a point

divides a line into two parts. There is nothing wrong with introducing

2Richard Dedekind, Essay on the Theory of Numbers, tr. W. W. Beman,
(1a salle, 1948) p. 11.




the assumption as part of the metric assumption if it is stated so
that the reader will know how it is being introduced.

This is a very convenient place to introduce this assumption
in this set. It makes possible the definition of subsets of L(a,b)

and the prooi' of the following theorems.

Definition: The intersection of L(a,1,b) and L(b,1,a) will be
called AB.

Theorem 5.1 Both A and B belong to the set AB.

Theorem 5.2 If there exists a C in S such that C belongs to
AB, C # B, C # A, then C does not belong to either L(a,2,b)
or L(b,2,a).

Assumption 7. For every A and B in S, A # B, there exists ele-

ments C, Dand E, in S, C#A, C# B, D # A and E # B, such that

C belongs to AB, D belongs to L(a,2,b) and E belongs to L(b,2,a).

This should give a sufficient number of elements to L(a,b), but
it can not be proved that there is more than one set of the type L( ).
If it is essumed that there is more than one set of the type L( ) then
it can not be proved that there is more than one element in each set.
If it is assumed that there is more thaen one element in each set then
it can not be proved that there is more than one set.

Assumption €. Every subset of the type L( ) contains at least

two elements of S.

There are good arguments against the necessity of this assumption.
It can be argued that sets containing only one element would in no way

interfere with the geometry. Since it takes two elements to determine



a subset of the type L( ), the existance of sets with less than two
elements would never be known. It is independant of the seven preceed-
ing assumptions but its independance of the whole set is not claimed.
It is stated here because it is related to assumption 6 and 7, in so
far as all three of them could be replaced by assumption 17.

Assumption 9. If C belongs to L(a,b), C belongs to S.

This assumption is not necessary for the non-metric part of Eu-
clidean Geometry. It is necessary when a metric property is assumed
for Euclidean Geometry In the non-metric part of Euclidean Geometry
it is Just nice to know that the subset L( ) are not cluttered up with
a lot of elements that do not belong to S.

Assumption 10. For every A and B in S there exists a C in S such

that C does not belong to L(a,b).

This assumption is part of a more general assumption, which if
ever stated would probably read something like this; The elements of
S appear wherever needed and do not appear where they are not needed.

This assumption is necessary if there is to be more than one sub-
set of the type L( ). Since any two elements of S determine a subset
of the type L( ), A and C determine a subset L(a,c). The intersection
of L(a,b) and L(a,c) can be A and only A. It is A because of the as-
sumption that the two elements that determine a set belong to the set.
It can not contain elements other than A. If it did L(a,b) would be
identical to L(a,c) by assumption 5, but this would contradict assump-

tion 10. Thus the following theorem is easily established.
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Theorem 10.1 If A, B and C are any three elements of S such

that C does not belong to L{a,b) then A4, B and C determine three

distinct sets L(a,b), L{a,c) and L(b,c).

The following definition is clumsy, but it will show that such a
definition is possible.

Definition. If A, B and C are any three elements of S such

that C does not belong to L(a,b) then the set P(a,b,c) shall

consist of all elements of S belonging to L(i,J) where I and

J are any two elements belonging to L(a,b), L(a,c) or L(b,c).

IftI=JdJd=AorI=J=BorI=J=}C then except for I and

J only the elements of L(i,Jj,x), X # I, X belonging to P(a,b,c)

shall belong to P(a,b,c). If X and Y belong to P(a,b,c) then all

elements of L(x,y) shall belong to P(a,b,c).

Some authors consider the plane as another undefined relation.
If this definition is accepted there is only one undefined set and
one undefined relation in the non-metric part of Euclidean geometry.
The metric property may be introduced as an undefined relation. No-
tice that ever undefined relation requires the assumption of the
existance of such a relation. Hilbert assumed one set and two re-
J.ations.3 Veblen assumed one set and one rela:tion.h They did not

number these assumptions.

5Ibid.., p.7

ILOswald Veblen, "Foundation of Geometry", Monographs on Topics
of Modern Mathematics, ed. J.W.A. Young, (Dover Publishing Co. ed.
New York, 1955), p.4.
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Definition. If L(m,n) and L(v,q) belong to P(a,b,c) and the

intersection of L(m,n) and L(p,q) is empty then L(m,n) and

1(p,q) are parulle.{.

Definition. If L(e,d) does not belong to P(a,b,c,e) and E does

not belong to I(a,b) their IL(e,d) and L(a,b) are skew.

Assumption 11. Every L(i,J) that belongs to P(a,b,c) divides

P(a,b,c) into two subsets, such that their intersection is

1(1,3). Since L(a,b) divides P(e,b,c) into two subsets, the

set to which C belongs will be denoted by P(a,b,l,c) and the

set to which C does not belong by P(a,b,2,c).

This assumption is prebably not independent, but its proof
would require two much time for the good it would do. It could be
made independent by changing assumption 6 to a theorem. The pos-
sibility of interchanging assumptions and theorems accounts for a
large part of the apparent differences in different sets of assump-
tions. The assumption is stated here to make the following defini-
tions meaningful.

Definition. When C does not belong to L(a,b) the intersection

of P(a,b,1,c) and P(a,c,1,b) shall be called A(a,b,c).

Definition. If C belongs to L{a,1,b), A(a,b,c) = 0, and A(a,b,c) =

1.(a,1,c,b) = L(a,1,b,c).

Definition. If C belongs to L(a,2,b) and D does not belong to

L(a,b) the intersection of P(a,b,1,d) and P(a,c,1,d) shall be

called A(a,b,c). A(a,b,c) = 2.

Theorem 11.1 A(a,b,c) is never empty.
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This theorem was stated to point out the fact that the numbers O
and 2 as used in the definition have no metric properties whatever.
If S was the set of all points in space and L(a,b) was the line con-
taining A and B then A(a,b,c) would be the angle BAC. The zero is
not a measure for the angle, but only a name for a particular kind of
angle.

Theorem 11.2 If A(a,b,c) = 2, then A(a,b,c) = P(a,b,1,d).

Definition. When C does not belong to L(a,b) the intersection
of P(a,b,1,c), P(a,c,1,b) and P(b,c,1,a) will be called T(a,b,c).
Assumption 12. For any C that does not belong to L(a,b) there
exists at least one L(c,d) such that L(c,d) is parallel to L(a,b).
Assumption 13. If L(c,d) and L(c,e) are parallel to L(a,b) then
L(c,d) = L(c,e).
Assumption 12 and 13 are usually combined to make one assumption.
They are separated here because in some geometries one of them is
true and the other is false, and in some geometries both are false.
Of course assumption 13 can not be true when assumption 12 is false.
Assumption 14%. For any P(a,b,c) there exists a D belonging to
S such that D does not belong to P(a,b,c).
Definition. If the intersection of P(a,b,c) and P(d,e,f) is
empty, P(a,b,c) is parallel to P(d,e,f).
Assumption 15. For any D that does not belong to P(a,b,c) there
exists at least one P(d,e,f) such that P(d,e,f) is parallel to
P(a,b,c).
Assumption 16. If P(d,e,f) and P(d,i,Jj) are parallel to P(a,b,c)

then P(d,e,f) = P(4,1,J).
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Assumption 14 is necessary if there is to be more than one set
of the type P( ). Assumption 15 and 16 are very similar to assump-
tion 12 and 13. Assumption 15 and 16 are probably not independent
in this set. They are stated here because in some geometries 12 and
13 are false and 15 and 16 are true and independent.

Assumption 17. There exists a 1 to 1 correspondence between the

elements of any set of the type L( ) and the real numbers such

that for eny A and B in S the elements of L(a,b) are in 1 to

1 correspondence with the real numbers and A corresponds to O

and B corresponds to 1.

One of the first thing to notice about this assumption is that
it does not in any way imply the relation called distance or length.
It does imply that the elements of L( ) have many of the properties
of the real numbers. It is obvious that if this assumption is used
assumptions 6, 7 and 8 may be omitted from this list. Statements
could be made about order and useful definitions could be made. As-
sunption 17 adds very little useful material to this set of assump-
tions. It was stated here because it will probably become quite pop-
ular in the next few years. The main thing against it is that it
requires that the student of geometry also be a student of arithmetic,
and it makes the foundations of geometry depend upon the foundations
of arithmetic.

Assumption 18. The set of all points in space has most of the

properties of the set S.
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This is the final assumption in this series. First a set was
assumed to exist, then sixteen descriptive assumptions described the
set so that now it has been recognized. The next step is to translate
the assumptions and definitions so that they will be about points, lines,
planes, angles and other elements of geometry. The translation will not
be made here. Any reader who is interested may do so then see how many
of the theorems in his high school geometry book can be proved. One
such check, gave one theorem proved, three hundred three that could not
be proved.s In fact in any of the important geometries about points,
lines and planes very few theorems can be proved. In each one at least

one important, characteristic assumption is uissing. The missing char-

acteristic assumption will be the subjJect of the next chapter.

%G. A. Wentworth, A Text-book of Geometry, Rev. ed. (Boston, 1898)




CHAPTER III

CHARACTERISTIC ASSUMPTIONS OF THE BASIC GEOMETRIES

In this chapter some of the different types of geometries of
points, lines and planes will be discussed. These geometries have
been classified in so many different ways and have been know by so
many different names that it is almost necessary to quote a few of
their assumptions to designate a certain geometry rather than call
it by a name. Projective Geometry and Euclidean Geometry are stan-

dard terms, but Non-Euclidean Geometry and its brances are sometimes

confusing.

Projective Geometry

Projective Geometry is distinguished from the Euclidean and
Non-Euclidean by four characteristic assumptions that are not nec=-
essary for the other geometries.

Assumption A. Every line has one special point.

Assumption B. Every plane has one special line.

Assumption C. There is one special plane.

15
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The special point on a line is defined to be the point where
two parallel lines intersect. The special line is defined to be
the line containing all the special points and only the special
points in a plane. The special plane contains all the special lines
and only the special lines. Notice that it is not necessary to assume
that the three assumptions above are false in Euclidean Geometry.
They may simply be omitted from the set of assumptions for Euclidean
Geonmetry.
Assumption D. If a projective leaves each of three distinct
points of a line invariant, it leaves every point of the line
invariant.
Assumption D concerns properties of points and lines that are
not usually defined in Euclidean Geometry, therefore it may be omitted
from the Euclidean set of assumptions. Notice that the omission does
not mean that it is not true, but only that it is not needed.
Projective Geometry may be developed using the four assumptions
above and all of the Euclidean assumptions or by using the four as-
sumptions above and all of the Euclidean assumptions except the metric
assumptions. That is, if the set of assumptions in Chapter II were
sufficient for the non-metric part of Euclidean geometry, then a suf-
ficient set for Projective Geometry could be made by combining that

set and the four assumptions above.
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EUCLIDEANl GEOMETRY

The characteristic assumption of Euclidean Geometry is the me-
tric assumption. ProJective Geometry can be developed with or with-
out a metric assumption, but most of all Euclidean Geometry depends
upon the metric assumption. Without it circles and spheres can not
be usefully defined, and there is no way to say that two angles are
equal. The set of assumptions in Chapter II do nct contain a metric
assumption therefore it is not possible to prove that, if two lines
intersect, the verticle angles are equal.

The metric assumption has been introduced in various ways. For

a long time the concept of superposition worked nicely. It became un-

popular and is found now in only a few high school geometry books.
The concept of superposition was replaced by the assumption of con-
gruence. Congruence worked nicely, but it required four or five
assumptions for completeness. It has been criticized for this, and
attempts are being made to replace it by the idea of 1 to 1 corres-
pondence. The idea of 1 to 1 correspondence has been well developed
in mathematics. It is a simple concept that can be introduced at
the high school level.

Assumption E. There exists a relation between any two points

in space, This relation will be called the distance between

the points.



Assumption F. There exists a special 1 to 1 correspondence

between the points on a line and the real numbers, such that

number differences will be a measure of distance on the line.

The special 1 to 1 correspondence has some advantages. It
would be useful in integrating algebra and geometry. If it was
used, high school math teachers would no long be found pointing
out the 1 to 1 correspondence in their algebra classes and then
carefully avoiding it in their geometry classes.

For the student who wishes to check one set of assumptions
against another, this can sometimes be done by isolating from each
set the assumptions that assign the metric property to geometry.
These will be the hardest to check for equivalence. Frequently
they can only be checked by showing that each leads to the proof
of the same theorems. The non-metric assumptions can usually be
checked by calling one set, theorems and using the other set to
prove them. If each set can be proved, using the other as assump-
tions then the two sets are equivalent. If this is not the case
then something is wrong, but a general statement of the trouble
can not be made. The metric assumptions frequently can not be
isolated, because they are combined with non-metric assumptions.
In this case it is sometimes possible to check one set against the

other. The check that will always work, and for that reason is the

18

best one, is to see if both sets are used to prove the same theorems.



NON-EUCLIDEAN GEOMETRY

The term, Non-Euclidean Ceometry is best used to apply to a
geonetry that assumes a contradiction of the Euclidean parallel
postulate. There are at least three non-euclidean geometries,
each has a characteristic assumption that is a contradiction of
the Buclidean parsllel sssumption, and certain other Euclidean as-
sunptions are omitted or modified. It has not been considered
worthwhile to publish a set of assumptions for any of the Non-Eu-
clidean geometries. The authors of Non-Euclidean text-books say;
take the Euclidean set of assumptions and chenge certain assump-
tions. Thus Non-BEuclidean geometry depends upon Euclidean, but

this is not necessary.

GEOMETRY OF ILOBATSCHEWSKI

This was the first non-euclidean geometry developed. It as-
sumes that through a given point not on a given line there are two
parallels to the given line., If the parallel assumption is medified
and the assumptions that extend Euclidean plane geometry to Euclidean
so0lid geometry are omitted all other assumptions of Euclidean geometry
may be adopted as the assumptions of Lobatschewskian geometry. Thus
this geometry shows the independence of the parallel assumption.

Assumption G. Through any point not on a given line there are

two parallels to the given line.
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RIEMANN'S GEOMETRY

This geometry is due to an assumption made by Riemann, but the
geometry was not developed by him. The characteristic assumption
is that, through a given point not on a given line there is no par-
allel to the given line. This leads to the proposition that all lines
intersect. This leads to Riemannian Geometry I and Riemaanlan Geome=-

try II.

Riemannian Geometry I assumes no parallels and two lines inter-

sect in one point. It is a plane geometry therefore the assumption
of parallel planes and the existance of points not on a given plane
may be omitted. All the plane assumptions of Euclidean geometry

expcept those comnected with parallel lines are assumed.

Riemannian Geomeuvry II is the best developed of all the Non-

Euclidean geometries. This is because it was found that a sphere

was a perfect model. For this reason it is usuelly known as Spher-
ical Geometry. It requires the modification of a great number of the
Fuclidean assumptions., If the set of assumptions given in Chapter II
vere to be reworked for sphericsl geometry, assumptions 4, 5, &, 7,
12, 13 and 17 would have to be omitted or modified. This is the
geometry in which it is possible to have parallel planes but not

parallel lines,



CHAPTER IV

CONCLUSION

The apparent differences in geometric assumptions impsir only
the beauty of geometry. They are the result of the geometry being
built before the foundation. Other areas of mathemetics have the
same problem. The real nurbers grew up then the foundstions were
developed, It is generally agreed that the foundations of real num-
bers are good. That is that there are a few good developments,
Every attempt to develop a good foundation for geometry has been
followed by someone who thought they couid do better. Thus, there
are literally dozens of sets of assuuptions for Euclidean Geometry.
Each just different enough to enable the author to get it printed.

The beginning student should avoid the problem created by the
different sets of assumptions. It is not a problea that is likely
to be solved by a beginning student. The only solution is for some
respected master to write a set that is better than all the rest.
The set must not only be good, but it must be simple so that it
can be presented in the first course in geometry. Until such a
set has been written the problem must be 1iyed with. There is no

better solution at the present time than, to learn one set, use it,
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and igmore the rest. After a high school course in geometry nost
students will have assumed for themselves the necessary assuiptions
to go on to cther courses. Meanwhile students of Foundations of
Geometry, are working on the overall solution. They may only be
making it worse, but 1t is only by such attempts that the better
set will be written.

It is believed that this paper shows the need for the better
set and that it will give a beginning student enough information
about the general nature of assumptions to enable him to accept
whatever set he knows without wasting time looking for the best
set. There is only one idea that might be of use in writing a
better set of assumptions. That is the using of sets to avoid

preconceived ideas about points and lines.
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