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Many webs in web process machinery exhibit out-of-plane deformations, defined as 
troughs, in free web spans between rollers. In other cases when the troughs become 
severe the out-of-plane web deformations will begin to transcend rollers. Any out-of­
plane web deformations that transcend rollers are defined as wrinkles. Troughs and 
wrinkles in webs are often undesirable as they can interfere with web processes such as 
coating, they can result in web breaks and thereby decreased productivity, or these 
deformations may become permanent and result in quality loss. 

Many plastic film, paper, tissue and nonwoven webs are highly anisotropic either by 
design or just as a result of the process by which the web is made. The first objective of 
this paper is to show how anisotropic web properties affect the buckling and wrinkling 
tendencies of these webs. Previously algorithms have been developed that show how 
roller misalignment can induce troughs and wrinkles. The second objective of this paper 
is to demonstrate how web orthotrophy can affect the allowable roller misalignment in a 
web span and the web tension required to sustain a wrinkle upon a roller. 

NOMENCLATURE 

span length 
amplitude coefficient for buckled shape 

area of a beam which reacts shear, 2 bh for a web 
6 

web width 
lateral force in web at upstream roller 
lateral force in web at downstream roller 
MD modulus 
CMDmodulus 
shear modulus 
web thickness 



ho 

I 

n 
N, 
Ny 
R 
Rq 
Rq, roller 
Rq,web 
T 
Tw 
vi 
vi 
V 
w 
X 

y 

air film thickness 
3 

web area moment of inertia, hb for a web 
12 

number of half waves in buckled shape in MD, always unity in this application. 
bending moment in web at upstream roller 

bending moment in web at downstream roller 
number of half waves in buckled shape in CMD 
MD surface traction 
CMD surface traction 
roller radius 
equivalent RMS roughness 
RMS roughness of roller 
RMS roughness of web 
total web tension 
web tension per unit width 
lateral deflection in web at upstream roller 
lateral deflection in web at downstream roller 
web velocity 
out of plane web deflection 
coordinate aligned with MD 
coordinate aligned with CMD 

MD strain 

CMD strain 

shear strain 

Poisson's ratio, relates an cr, stress to an cy strain 

Poisson's ratio, relates an cry stress to an Ex strain 

shear parameter 

wavelength of buckled sector 

web/roller traction as affected by air entrainment 

viscosity of air 

MD stress 

stress aligned with x direction, positive when induces compression 

stress aligned with y direction, positive when induces compression 

stress aligned with y direction required to induce troughs or wrinkles in the 

web 
maximum CMD stress which can be supported in web based upon web 

traction 
slope in web at upstream roller 

slope in web at downstream roller 

slope required to trough the web 

shear stress in web 



ANALYSIS OF WEB TROUGHS IN FREE SPANS 

In this analysis we will assume an orthotropic web is subject to buckling. Previous 
studies by Good and Shelton have assumed isotropic material properties[l-3]. The 
deflection equation for an orthotropic plate including the effects of membrane forces 
is[4]: 

where Nx and Ny are the membrane forces in units of load per unit length in the x and y 
directions per Figure 1 on a web span of length a and width band D 1, D2, and D3 are: 

E h3 Eyh3 Gh3 
D1= ( x ) D2= ( ) D3=D1Vxy+2Dk Dk=-

12 1-VxyVyx 121-VxyVyx 12 

{l} 

{2} 

where E, and Ey are the principal moduli of elasticity, G is the shear modulus of rigidity, 
and his the web thickness. Perhaps the most concise manner for defining Poisson's 
ratios is through the constitutive relations between strain and stress: 

O'x Vyx<Jy O'y VxyO'x 1 
Ex=---- E =---- Y =-t {3} 

Ex Ey y Ey Ex xy G xy 

Figure 1 - A Plate Submitted to Uniform Edge Loadings 

In this analysis it is assumed that the x direction is aligned with the Machine Direction 
(MD) and that they direction is aligned with the Cross Machine Direction (CMD). 

A solution is sought for the out-of-plane deformation w (in the z direction) of the 
form: 

w = Arnn si{ m:x )sin( n:) { 4} 

If expression { 4} is substituted into expression { 1} and divided by the web thickness (h) 
the following relation will result: 

O'xm2 +cryn2 a2 =n2 [m4 D1+2[mn]
2

D3+a2 n4 D2] {5} 
b2 h a2 b b4 



where o, and Oy are the surface tractions in units of stress. In web processing machinery 

it is expected that the web will be transported at some tension in the x direction and thus 
wrinkles cannot form which are oriented in the y direction. Thus m will become unity in 
expression { 5} and if an equivalent stress is introduced of the form: 

n2,[DJii; 
Oe== a2h {6} 

expression { 5} becomes: 

cr,+(:)'cr,•cr,[~+2(:)' }o;k+(:)'~] 171 

Expression {7} can be rearranged to yield the Oy stress required to buckle the web into a 

number of n half waves: 

cr,+,[~+2(:)' }o;k+(:)'~]-cr,K!)' 
For a web with given thickness, width, and material properties and a known span length 
the only unknowns are Oy and n. For a given half wave number (n) this expression will 

{8} 

yield the CMD stress level Oyer required to buckle the web. For most instability problems 

it is assumed that the instability will occur at the lowest possible load or stress level 
unless constraints exist that would prevent the buckled shape associated with that lowest 
stress level to be assumed by the structure or web in this case. Since no such constraints 
exist in this case it will be assumed that the web will buckle at the lowest possible stress 
level. If it is assumed that expression { 8} can be considered continuous with respect to 
the half wave number n, the value of n required to minimize Oyer can be obtained by 

setting the derivative equal to zero and solving for n. 

2[n2a4n4D + b4 (ha2o -n2D )] 
2 x l = Q {9} 

hb2n3a4 

There are four roots of this expression in n, three of which either lead to negative or 
imaginary wave numbers. The other root which is real and positive is: 

2 2 
n=-b-4 n D1 -ha O'x 

a.fir, D2 
{ 10} 

This root will always be positive for webs as ox is always a negative number due to the 

original sign convention chosen. Substitution of typical web values for h, a, O'x, Ex, Vxy, 

and Vyx into { 10} shows the n2D1 term is two to three orders of magnitude smaller than 

the ha2o, tenn. Thus the first term is neglected and after substituting and rearranging 

expression { 10} can be written as: 

n::::b✓ 2 4 3(1-VxyVyx}crmd 

nah Ey 

The positive omd stress is used to replace the -ox term to reduce possible confusion in 

terms of sign. Substitution of expression { 10} into expression { 8} yields: 

{ 11} 



21t ( 1t2D1,.J'i5;-ha2crx,.j'i5; +1tD3,.jn2D 1 -ha2crx) 
crycr=-2- I 

a h \ln2D1 - ha2crx 

Again for typical web parameters it can be argued that 1t2D1<< ha2crx and if the three 

parameter groups in the numerator are compared it is found that the first and third are 
negligible compared to the second group. Simplifying and substituting the material 
properties that represent D2 yields: 

{12} 

1th -crxEy 1th O"mdEy 
crycr = ,,/?,a 1- VxyVyx = ,,/?,a 1-VxyVyx { 13} 

Expressions { 11} and { 13} provide concise expressions for calculating the half wave 
number and the CMD stress required to buckle the web. Examples have been run with a 
broad range of material parameters, web thickness and aspect ratios that show good 
agreement with the more complex expressions { 10} and { 12} which are void of 
simplifying assumptions. It should be noted as well that expressions { 11} and { 13} will 
condense to the isotropic forms reported earlier if By becomes E and v xy is equal to v yJ3 J. 
With increasing values of h and to a much lesser extent E. the term 1t2D1 may become 

more comparable to the ha2cr. term and then expressions { 10} and { 12} should be used. 

COMMENTS REGARDING INPUTS 

Expressions { 12} and { 13} are functions of material parameters through the 
variables D1, D2, and D3• Since the web is subject to plane stress conditions and is 
orthotropic there are five independent properties including E., By, Vxy, Vyx• and G per 

expression {3 }. Maxwell's reciprocal theorem can be used to prove the Poisson's ratios 
and Young's moduli are related as follows: 

Vxy Vyx -=- {14} 
Ex By 

This reduces the number of independent properties to four. Some authors have presented 
expressions that relate the shear modulus to the remaining parameters. Szilard [5] for 
instance presents: 

✓ExEy 
G = -r~;::::::==~ 

2(1 + ✓vxy Vyx) 
{15} 

Cheng et al [6] present a derivation which yields: 
ExEy 

G-------~ {16} 
- Ex(l+Vyx)+Ey(l+Vxy) 

Whether such expressions are reasonable approximations is unknown, experimental 
verification does not appear to exist. Whether such expressions are reasonable for some 
subsets of web materials such as homogenous films and papers or possibly some 
nonwovens is unknown but worthy of further investigation. Thus only three independent 
parameters may fully define the properties of an orthotropic web material subject to plane 
stress conditions. 



WRINKLING OF WEBS UPON ROLLERS 

Webs deform into thin shell structures as they pass around rollers. The buckling 
stress of the web in shell form will be considerably larger than the buckling stress of the 
same web in a free span per expression { 13}. 

X 

j 

Figure 2 - Nomenclature for the Instability of a Cylinder 

The critical buckling load per unit length of a sector of a cylinder has been shown by 
others to be identical to the buckling load per unit length of an entire cylinder. In Figure 
2 an element of a thin cylindrical shell is shown. 

The constitutive expressions in { 3} can be written in terms of stresses and if 
multiplied by the shell thickness h will yield expressions relating the membrane forces to 
the strains. When an axisymmetric structure is subject to axisymmetric loading the 
circumferential strain Ex becomes -w/R and thus the membrane forces can be written: 

Ex h [ ] Ex h [ w ] N x = Ex+ Vyx Ey = - R + Vyx Ey 
1-VxyVyx 1-VxyVyx 

By h [ ] By h [ w] Ny= Ey+VxyEx = Ey-VxyR 
1-VxyVyx 1-VxyVyx 

If expressions { 17} are compared and if expression { 14} is employed it can be found 
that: 

[ NyVyx wJ w Nx=Ex ---h- =NyVxy-hEx-
Ey R R 

{17a} 

{17b} 

{18} 

Considering the strip jk in Figure 2 the forces { 18} yield a component of force in the z 
direction, the magnitude of which per unit length is: 

Nx 1 [ w] R= R NyVxy-hExR {19} 

Summing all z direction loads per unit length of strip jk yields: 
NyVxy w d 2w 

q +---hEx2 + Ny-2-
R R dy 

{20} 

where q is a potential pressure acting upon the element and the last term represents the 
component of transverse load due the membrane load Ny acting through the out-of-plane 
deformation w. Thus the differential equation for the bending of the strip jk is: 



d4w NyVxy w d2w 
Dz-=q+---hE -+N {21} 

dy4 R xR2 y dy2 

In applying this expression q is set to zero and w is now taken from the middle surface of 
the cylinder after the uniform compression Ny is applied. Thus w will be replaced by: 

w=> w+ NyVxyR {22} 
Exh 

and the differential equation becomes: 
d4w d2w w 

D2-4-+ Ny-2-+ Exh2 = 0 
dy dy R 

{23} 

after assuming Ny is positive when compression results. The cylindrical shell is expected 
to buckle into axisymmetric modeshapes that can be represented by the waveform: 

A . n7ty 
w=- sm-

b 
Inserting expression { 24} into { 23} and eliminating like terms yields: 

R2h3n41t4E +12b2{hb2E -R2n21t2N )(1-v v ) y X y xy yx _ 0 
2 4( ) -12R b 1-VxyVyx 

Solving expression { 25} for Ny yields: 

hb2E h3n21t2E N = X + y 
y R2n21t2 12b2(1-v v ) xy yx 

{24} 

{25} 

{26} 

Thus an expression has been produced that relates the axial load per unit length to the 
half wave number n. The goal is to determine the minimum value of Ny associated with 
any buckled shape. A new variable A is substituted for n7t/b in expression { 26}: 

hE h311.2E 
N =-x-+ y 

Y R211.2 12(1-v v ) xy yx 
{27} 

Assuming A is a continuous variable the minimum is found by equating the derivative of 

expression {27} with respect to 11. equal to zero. 

dNy 2hEx h3AEy 
- = -73 + -.-----'----,- = 0 { 28} 

dA. R).; 6(1-Vxyvyx) 

There are four roots to this equation, only one of which is real and positive which is: 

A= n7t = ~ 3Ex{l-Vxyvyx) {29} 

b 'VRh Ey 

Substituting this root back into expression {27} yields the critical buckling load: 

h2 ExEy 
Nycr =- 'll ) 

R "'\1-VxyVyx 
{30} 

Thus the critical stress required to buckle an orthotropic cylinder is: 

h ExEy 
Oyer=- 'll ) 

R "'\1-VxyVyx 
{31} 

where the associated half wave number n can be found using expression { 29}. 



APPLICATION TO ISOLATED WEB SPANS WITH MISALIGNED ROLLERS 

Now that a troughing and a wrinkling failure criterion for an orthotropic web have 
been developed they will be employed in the analysis of a web span that has been 
subjected to shear from a misaligned roller. Webs undergoing lateral deformation can be 
modeled as beams. A web span ratio (alb) can take on a large variation depending on the 
particular industry. In the paper industry rollers are often mounted very close together 
with wide web widths and thus shear stiffness effects must be considered. In the film and 
metal strip industries long spans and narrow webs are not uncommon and thus the effect 
of web tension can be significant on the lateral deformations and shears within the web. 
Thus a thorough model should account for both shear and tension stiffening effects. 

Przemieniecki [8] and others have developed stiffness matrices for beams stiffened 
by tension and shear effects. In Figure 3 a free body of such a beam is shown. 

fyi, Vi fyj, vj 

M;.~ 

b L. 
I◄ a 11111 

Figure 3 - Sign Convention for Positive Loads, Deformations and Rotations 

The stiffness matrix for this beam is: 

12Exl 6T 6Exl T 12Exl 6T 6Exl T 
+- +-

a3 (1+ ♦) 
+-

a3 (1+ ♦) Sa a2 (1+ ♦) 10 Sa a2 (1+ ♦) 10 

l~l= 
6Exl T (4+ ♦)Exl 2Ta 6Exl T (2- ♦)Exl Ta 

+- +-
a2 (1+ ♦) a(l+ ♦) 30 a2 (1+ ♦) 10 a(l+ ♦) 15 10 

12Exl 6T 6Exl T 12Exl 6T 6Exl T 

a3 (1+ ♦) 
-- -

a2 (1+ ♦) 
+-

a2 (1+ ♦)-10 Sa 10 a3 (1+ ♦) Sa 

6Exl T {2- ♦)Exl Ta 6Exl T (4+ ♦)Exl 2Ta 
+- - - +-

a2 (1+ ♦) 10 a(l+ ♦) 30 a2 (1+ ♦) 10 a(l+ ♦) 15 

\~;\ 
{32} 

Where ♦ is defined as the shear parameter: 

♦ = 12Exl 
GAsa2 

{33} 

and A. is the area of the cross section subject to shear. For rectangular cross sections 
A.=5bh/6. It is assumed the web is the beam and that it is supported by rollers at i and j 
in Figure 6 and that the web is traveling from left to right and that the roller at position j 
is misaligned to some degree 8i. This will induce a shear force and therefore shear 

deformation into the span. At the upstream roller it will be arbitrarily assumed that vi is 
zero without loss of generality. The rotation at i will be non-zero due to the shear 
deformation and equal to: 



f· 
8· =_JL {34} 

1 GA s 
Shelton detennined that the moment in the web just prior to a downstream roller is zero 
under steady-state conditions [9]. Thus with knowledge that~ is zero the fourth 
equation in the stiffness matrix { 32} can be solved for vj as: 

a[Ta2(4A8G8j -fyjxl + cl>)+ 30Exl{fyj{2-cl>)+ A8G8j(4+ ♦)}] 
V· - --=------....-----.---------'- {35} 

J - 3A8G{60Exl+Ta2 (1+ ♦)} 
With vi assumed zero and 8i and vj known the third expression in the stiffness matrix 

{32} yields an expression relating fyj, and thereby the shear in the web F, to the 
misalignment of the downstream roller 8J: 

A8o[240Etl2 + 3T2a4(1 +cl>)+ 8ExITa2{13 + 3♦)] 
f · = F = ---=---.,..---------=-=----~---=-8· {36} 

YJ 240Eti2 +Ta4{2A8G+T){l+cl>)+8Exla2[15A8G-T(2-3cj>)] J 

Expression {36} can be used to determine the shear in a web span with a misaligned 
downstream roller and bending stiffness, shear stiffness, and web tension are accounted 
for. This expression has but one known bound which is that it is valid until the 
downstream roller is misaligned to the extent that web edge slackness occurs at the 
upstream roller. 

Expression { 36} can be used to determine the shear stress in the web. The average 
shear stress was determined by dividing the shear by the cross section area. The second 
principal stress will be negative (compressive) and can be determined using the 
expression: 

{37} 

If this principal stress is equated to expression { 13} the critical rotation to induce troughs 
in the web can be detennined: 

2 5Et h2b6 + Ta 4(3T + 5Ghb ){1 +cl>)+ Ex ha2b3[ 25Ghb + T( 6cj>- 4)] 
8 ------------...,.....-------.,.::..---~--= 

cr,tavg - 5Ga 5Eih2b6 +9T2a4(1+ ♦)+2ExhTa2b3(3♦ +13) 

3.f37tha,JE;o~ 3n2h2Eyomd 
X --======----,---.._-.--

✓1-VxyVyx (1-VxyVyx) 

{38} 

At this rotation of the downstream roller troughs would be expected across much of the 
web width. Troughs should first appear at the center of the web where the flexural shear 
stress is maximum, 1.5 times greater than the average value. If the maximum shear stress 
is inserted into expression { 37}, the principal stress can again be equated to the critical 
buckling stress in expression { 13} to provide an expression for the critical rotation to 
predict the onset of troughing: 

8 _ 4 5Eih2b6 +Ta4(3T+5Ghb){l+cl>)+Exha2b3 [25Ghb+T(6♦ -4)] 
cr,tmax - 5Ga 5Eih2b6 +9T2a4(1+ ♦)+2ExhTa2b3(3cj>+13) 

{39} 
2 

or 8cr,•max = - 8cr • • 3 ••avg 



VERIFICATION OF TROUGH MODEL 

Expressions { 38} and { 39} provide a model for predicting the occurrence of troughs. 
A set of experiments were conducted to test the validity of the shear and tension 
stiffening assumptions and to verify that the web orthotrophy was included satisfactorily. 
In these experiments a downstream roller would be misaligned until a trough was 
produced. The misalignment would then be further increased until a wrinkle was 
produced on the misaligned roller. The experimental setup is shown in Figure 4. 
The web is traveling from left to right in this picture and the horizontal span is the test 
span, note the troughs in the web. Prior to entering the span the web just exited a web 
guide and a roller mounted on load cells such that the edge position of the web is 
maintained constant and the web tension is known. The downstream roller is mounted 
upon a yoke as shown. The rotation (8j) of the yoke is precisely adjusted using an end 
micrometer. The downstream rolls sit upon an adjustable table of a former lathe bed and 
thus the web span length (a) is easily manipulated. 

The first tests were run on a polyester film that was 23.4 µm thick and 15.24 cm 

wide. This film was chosen as it was isotropic with a Young's modulus of 5 0Pa. The 
isotropic Poisson's ratio will be assumed to be 0.3 temporarily which will result in a 
shear modulus of 1.92 0Pa. In these tests web tension was set, the span length was 
varied, and the rotation required to induce troughs was recorded. Results from two 
experiments are shown in Figure 5 for a web tension of 1.84 N/cm. Results are also 
shown for expression {38} which are labeled "Avg Shear Stress" and for expression {39} 
which are labeled ''Max Shear Stress" since these expressions relied upon assumptions of 
an average and maximum shear stress, respectively. Also shown is a result labeled 
"Beam Theory" which are results from an expression from a previous study in which 
shear and tension stiffening were not accounted for [4]. The previous study focused upon 
span ratios where neither the shear nor tension stiffening terms had a sizable impact on 
the results. The current tests show influences of both shear and tension stiffening. The 
influence of tension stiffening is seen above span ratios of 4. 

The "Beam Theory" results from the previous study also assumed an average shear 
stress distribution. The effects of shear stiffening are not evident on the scale of Figure 5. 
The data in Figure 5 were plotted again but over smaller ranges of the abscissa and the 
ordinate in Figure 6. Note that the "Beam Theory" predicts that the critical angle 
approaches zero at small span ratios whilst expressions { 38} and { 39} yield results which 
show that the critical angle begins to increase with decreasing span ratio and this 
behavior is shown in the experimental data as well. 

The results shown in Figure 7 are for the same polyester web but now the effect of an 
increase in web tension to 3.6 N/cm is shown. The experimental data appears to follow 
expression {38} which relied upon the average shear stress assumption. 

In Figure 8 the results are shown for yet a higher web tension. If Figures 5, 7, and 8 
are reviewed the trend appears that at low span ratios the experimental data appears to fit 
both expressions { 38} and { 39} reasonably well but at higher span ratios the data appears 
closest to expression { 38}. Both expressions rely upon the failure criterion { 13}, the 
development of which assumed the cry compressive stress was present across the entire 
web width (b ). Now consider the half wave numbers per expression { 11} as shown in 
Figure 9. At high span ratios there are only 8 half waves or 4 whole sinusoidal waves 
across the entire web width of 15.2 cm (a wavelength of about 3.8 cm). The flexural 



shear stress is maximum at the center of the web and decays to zero in parabolic form 
towards the web edges. In the development of algorithm { 38} an average shear stress 
assumption was made and per expression { 37} would lead to a uniform compressive a2 

stress across the entire web width (neglecting the violation of surface equilibrium at the 
web edges). Thus expression { 38} would theoretically predict that all 8 half waves 
would appear simultaneously when the critical angle is surpassed. Expression { 39} 
calculates the rotation required to induce the critical stress level { 13} at a point at the 
web center. 

• &MW! · 
Figure 4 - Experimental Setup 
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Figure 5 -Trough Tests for PET, Tw = 1.84 N/cm 
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Thus additional rotation would be required to exert a compressive stress in excess of the 
critical value over one full wavelength. At the lowest span ratio the half wave numbers 
vary from 57 to 75, depending on web tension, or approximately 28 to 37 whole 
sinusoidal waves across the 15.2 cm span width. Since the length of one buckled wave 
has drastically been reduced in comparison to the large span ratio wavelength (about 1.38 
cm when n is 28), expression { 39} appears to fit the test data reasonably well at low span 
ratios. 
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Figure 9 - Half Wave Numbers for PET at Web Tensions Tested 

The impact of Poisson's ratio is shown to be minor in Figure 10 on the polyester web 
under study. Poisson's ratio appears to be an insensitive input to the expression and from 
hereon it shall be assumed that Vxy is 0.3 and Vyx will be calculated using expression { 14 }. 
This finding is important as it is difficult to measure the Poisson's ratio of thin webs since 
they often trough during extension making if difficult to measure the lateral contraction. 

Newsprint was the second web to be tested, the results are shown in Figure 11. This 
web was 71 µm thick and 15.7 cm wide. The MD and CMD modulus (Ex and By) was 

tested and found to be 4.34 and 2.76 GPa, respectively. With Vxy assumed as 0.3 

expression { 14} yields that Vyx is 0.19 and expression { 16} yields the shear modulus to be 
1.43 GPa. The trough expression { 38} based upon an average shear stress assumption 
appears to fit the test data the best over the range of span ratios tested. 
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The final web studied was a spun-bond polypropylene non-woven, the results are 
shown in Figure 12. This web was 127 µm thick and 10.6 cm wide. The MD and CMD 
modulus (Bx and By) was tested and found to be 55.1 and 8.27 MPa, respectively. With 
Vxy assumed as 0.3 expression { 14} yields that Vyx is 0.04 and expression { 16} yields the 
shear modulus to be 6.67 MPa. The three sets of test data compare reasonably well with 
the results using expression { 38}. Variations in density were visually apparent in this 
web and undoubtedly there were variations in modulus associated therewith. 

THE MINIMUM TRACTION REQUIRED TO SUSTAIN WRINKLES 

For a uniform web tension the maximum compressive stress which can be supported 
by the traction between a web and a roller, which occurs at the web center, on a per unit 
circumference basis is: 

{40} 

where J1t is the coefficient of traction, that may be affected by entrained air. If the 
maximum lateral compressive stress which can be supported by the traction predicted by 
expression { 40} is less than the buckling stress predicted by expression { 31 } , a wrinkle 
cannot be sustained in the web upon the roller [2,3]. Wrinkles that attempt to form as the 
web enters the roller glide out upon the roller surface since the traction is unable to 
sustain them. Previous research has focused on how traction is reduced by entrained 
air[l0]. A simple model that works well for ungrooved rollers and non-permeable webs 
is: 

µt = µst ho~ Rq 

µst 3 
µt =---ho+-µst Rq ~h0 ~3Rq {41} 

2Rq 2 

µt =0 ho;::3Rq 

where h., is an air film layer due to hydrodynamic lubrication that was first shown to exist 
between moving webs and idler rollers by Knox and Sweeney [11] andµ_ is the static 
coefficient of friction between the web and roller surface. Those interested in the traction 
for permeable webs may refer to Ducotey and Good [12]. Knox and Sweeney verified 
the following relationship was applicable to webs moving over rollers: 

ho = 0.643~ l~t, r {42} 

where fl is the viscosity of air (3.08*10-7 N-min/m2@ 27°C) and Vis the web velocity 
(m/min), and Tw is the web tension (N/cm). Rq is the combined rms roughness of the web 
and roller surfaces in contact defined as: 

Rq = ✓,.....R-~,-ro_ll_e_r +-R-~.-w-eb- { 43} 

Expressions { 31 } and { 40} can be equated and solved for the web tension (T w) beneath 
which a wrinkle cannot be sustained upon the roller. The equated expressions cannot be 



solved directly for T w due to dependence of µ1 on T w and the piecewise definition of µ1 

depending on the air layer thickness. However in just a few iterations the expressions can 
be solved. 
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Figure 13 - The Effect of Orthotropic Web Properties on Troughs and the 
Minimum MD Tension to Sustain Wrinkling. 

To exhibit the impact of orthotropic web properties an example comparison of 
isotropic and orthotropic webs will be used. For the isotropic web the properties stated 
earlier for the 15.24 cm wide, 23.4 µm thick polyester web will be used (i.e. E = 5 GPa, 

v = 0.3, and G = 1.92 GPa). The orthotropic web will have the same width and thickness 

with moduli E, and By of 5 and 2.07 GPa, respectively. The Poisson's ratio Vxy will be 

assumed to be 0.3 and a Vy, of 0.12 will result from expression { 14} and a shear modulus 

of 1.24 GPa will result from expression { 16}. Furthermore, assume R is 3.68 cm, µ.1 is 

0.26, and Rq is 2.44 µm. Velocities of 50 and 150 m/min will be studied. Assume the 

span length is 1.524 m, resulting in a span ratio of 10. The results of this comparison are 
shown in Figure 13. Expression {38} was used to generate the curves to predict troughs 
as shown. Beneath each curve the web would be planar at a given web tension starting at 
zero misalignment and proceeding up to a particular curve. Thus it is shown the 
orthotropic web has a smaller region of planarity than the isotropic web as might be 
expected due to the smaller CMD modulus (Ey). The vertical lines represent web tensions 
beneath which no wrinkle can be sustained upon the defined roller surface. The decrease 
in the CMD modulus amounts to a 58.6% reduction. At web velocities of 50 and 150 
m/min the reduced modulus lead to a 24% and 19% reduction in the MD tension required 
to sustain a wrinkle on the roller surface, respectively. 

CONCLUSIONS 

The impact of web orthotrophy has been investigated by producing a trough { 13} 
and a wrinkle { 31} failure criterion. The wrinkle failure criterion is applicable to webs 
transgressing rollers and winding onto wound rolls. 

The trough failure criterion was incorporated into a model developed for predicting 



the allowable misalignment of a downstream roller in isolated web spans. Expressions 
{ 38} and { 39} incorporate: 
• orthotropic web properties 
• the effect of shear stiffness that can be important for short web spans 
• the effect of tension stiffness which can be important for long web spans 
These expressions were verified by tests of polyester, newsprint, and a spun bond 
polypropylene webs. In general it appears that expression { 38}, which incorporates an 
assumption of a uniform, average shear stress is the more accurate solution over broad 
ranges of span ratio. 

The impact of web orthotrophy was also examined on the MD tension required to 
sustain a wrinkle upon a roller surface. In the example studied it appears that the web 
orthotrophy produces only modest changes in the MD tension required. 
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