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ABSTRACT 

Rubber covered nip rollers have a number of applications within web lines. Rubber 
covered rollers are often used to nip the web against a metal surfaced roller that is driven 
to achieve a certain web velocity or web tension. The lamination of webs is common in 
web process machinery where two or more webs are bonded together under nip pressure 
between rubber covered roll pairs. Rubber covered rolls are also used to wring liquids 
from webs and prevent contamination of downstream web processes. 

The complexity of rubber covered rollers is the rubber itself. Rubber is nearly 
incompressible. Intuitively rubber appears readily compressible but changes in shape are 
often mistaken for changes in volume. 

The purpose of this publication include to: (1) better document some properties of 
rubber and (2) to examine the usefulness of two dimensional algorithms that relate the 
force and deformations of rubber rolls in contact with other rolls and (3) to examine the 
potential for extending these algorithms for use in three dimensional modeling in which 
the bending deformations of the roll shafts become substantial. 

NOMENCLATURE 

a half width of contact 
b width of contact 
D nominal roll diameter (including cover thickness) 
E Young's modulus 
Ee Young's modulus for rubber including confinement effects 
E0 Young's modulus for rubber without confinement effects 
f transverse load acting on finite element 
F nip loading per unit width 
I area moment of inertia of metal shells or shafting 
IRHD International Rubber Hardness Degree (equivalent to Shore A) 
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k material parameter for rubber, 
k=0.305+0.053*IRHD-0.00135*1RHD2+0.00000906*IRHD3 (30~IRHD:::75) 

M concentrated moment acting on finite element 
p contact pressure 
R nominal roll radius 
S shape factor for rubber 
t rubber cover thickness 
u radial deformation of rubber 
v nodal deflection of shafting and rubber covering in finite element model 
W width of roll pair in contact 
Z stiffness of elastic foundation elements 

6 penetration of rubber covering due to nip lad, F 
B strain 
v Poisson's ratio 
0 nodal slope of shafting and rubber covering in finite element model 
cr stress 

THE MATERIAL PROPERTIES OF RUBBER 

There are several ways in which rubber properties can be characterized. The 
Mooney-Rivlin coefficients are often used today but are difficult to determine without 
compression samples. Most engineers who deal with rubber covered rolls at best may be 
able to discern the Shore A ( i.e. IRHD) hardness of the rubber cover with a hand-held 
instrument. Thus the discussion here will focus on determining the material properties of 
rubber based upon measurements that are easily made in the field. 

Compression tests were conducted on samples ofHypalon, nitrile, carboxilated 
nitrile, neoprene, ethylene propylene, and urethane rubbers in durometers ranging from 30 
to 90 (Shore A). The results from these tests are shown in Figure 1. These results 
indicate that Young's modulus is highly dependent upon the Shore hardness and is 
independent of the rubber type. Compression data was found in the literature for natural 
rubber that is also shown in Figure 1 and is shown to yield similar moduli as a function of 
hardness [6]. All tests and specimens conformed to ASTM specification 575[1]. The 
specimens were nominally 28.6 mm(l.129 in) in diameter and 12.5 mm(0.5 in) high. 
Spotts [2] among others has previously suggested using an exponential relationship 
between modulus and durometer over a limited durometer range. Based upon the data 
presented in Figure 1 a new exponential expression was developed that is valid over a 
wider durometer range and based upon these tests is shown valid for natural and synthetic 
rubbers: 

E
0 

= 145.7 e0.0564*IRHD (MPa) 

E
0 

= 20.97 e0.0564*IRHD (psi) 
{l} 

Poisson's ratio is reported to approach 0.5 for rubber materials. Results presented herein 
show that better definition of Poisson's ratio was required. After finding no quantitative 
data for Poisson's ratio in the literature a set of tests were performed on the compression 
samples described above. Diametral expansion was measured using a strain 
extensiometer whilst the specimens were subjected to controlled compression. The slope 
of diametral strain versus the compressive strain data was used to estimate Poisson's ratio. 
It should be noted that such tests are difficult with specimens of the dimensions 
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prescribed by the ASTM specification 575. If the ends of the specimen are not well 
lubricated the tractions due to friction will make Poisson's ratio appear to exceed 0.5. 
The tests become more difficult with increased durometer level as the pressure between 
the platens and the sample tend to exude whatever lubricants are used. The test results are 
given in Figure 2. There appears to be no trends between Poisson's ratio and durometer 
but it is clear the typical result is less than 0.5. The average result for all rubber types and 
durometers was 0.46. 

FORCE/DEFORMATION RELATIONS 

The analysis of rubber covered rolls in contact with other rollers has been addressed 
in several publications. Several rely upon series elasticity solutions and the finite element 
method to examine the force versus deformation characteristics of a nip roll pair [3-5]. 
Although the nonlinear finite element method is superb for studying large deformation 
contact problems such as this there are closed form algorithms either available or 
extractable from the literature that have a broad range of application for these problems. 
It is arguable that closed form solutions are more useful by a broad group of engineers 
rather than single result finite element analyses but this is not the mission of this 
publication. The following derivations were reviewed or extended to gain a better 
understanding of force/deformation relationships that exist within the literature. 

Lindley (61 
Lindley developed a solution for a rubber-covered roll in contact with a plane 

surface, equivalent to two identical rubber covered rolls in contact. Due to a contact load 
F the rubber covering deforms an amount o. This derivation is simple in that it is 
assumed all of the contact load is reacted by a rectangular block of material of width b. It 
is also assumed that the incompressibility of the rubber cover does not impact the contact 
width b. Using the geometry shown in the Figure 3 it can be found that: 

{2} 

and for small penetrations o, 

{3} 

Lindley then defines an incremental stiffness which is a function of the penetration, o as: 

dF = [ mod ulus*area] {4} 
do thickness s 

It is also assumed that the contact width, b, is small compared to the width of the roller, 
w, and that as a result plane strain conditions exist. Under plane strain conditions the 
compressive modulus as affected by constraint, Ee, can be determined from: 

Ee= 
4
~ 0 (l+kS2) {5} 

where E0 is Young's modulus per expression { 1} and S is the shape factor which is 
defined by Lindley as the ratio of the cross-sectional area to the force free area. k is an 
empirically derived factor which is a function only of Young's modulus which makes the 
equality { 5} true. Per the definition of shape factor: 

2./m,w /no 
S=2(t-0Xt,+w)=(t-o) {

6
} 
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where the contact width, b, has been assumed to be small compared to roller width, w. 
Substituting the knowledge of modulus, area of contact, and deformed thickness into 
expression { 4} yields an expression for stiffness: 

dF - 2AAw 4EQ (1+ kDo 1 {7} 
do - (t-o) 3 l (t-of) 

Lindley then non-dimensionalized the deformation by dividing by the cover thickness and 
introducing a new variable u(=o/t). He then integrated {7} to yield an expression for load 
versus the non-dimensionalized deformation u: 

where: 

and: 

F = E0 w.fto( <lR + ~ ~R) 

<lR =!1 ( l +./u) _12_-iu 
3 '1-.Ju 3 

-1n( 1 +./u) 10 ./u +~ ./u 
~R - 1-,Ju - 3 (1-u) 3 (1-u)2 

or an equivalent form: 

( 1 (3Dk+8t)ATANH If 
F ='!:..JoE ./6lDk(58-3t) _gj + t 

3 0 @-if ~ 

{8} 

{8a} 

{8b} 

{9} 

It should be noted that Lindley's expression would require modification to model a 
rubber-covered roll in contact with a metal roller. In its present form it will model the 
case of two identical rubber covered rollers in contact or equivalently, one rubber roller in 
contact with a half plane. 

Johnson [7) 
Johnson has also developed a relationship for nip load as a function of penetration for 

a rigid cylinder in contact with a elastic covering on a second cylinder. First, he assumes 
that the rubber covering is thin and therefore plane strain conditions exist. Thus the 
deflections and strain in the lateral y direction are assumed to be zero. The strain in a 
vertical z direction is: 

1-v2 v(l+v) 
Ez =--crz- crx 

Eo Eo 
{10} 

The crz stress is assumed to be constant throughout the cover thickness and equal to the 

pressure of contact, p(x), refer to Figure 4. Thus expression {9} becomes: 

1-v
2

[ V ] Ez=-- -p(x)---crx 
E

0 
1-v 

{11} 

where the negative associated with the pressure of contact is introduced to infer a 
compressive crz stress. The deformation in the contact region in the z direction is known 

since the metal roll surfaces are assumed rigid. The penetration is maximum at the center 
of the contact region and decreases to zero at the edge of the contact zone: 

uz =-(o- ;~) {12} 
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It should be noted that the radius R is an equivalent radius of the form 
R=(R1 *R2)/(R1+R2), thus allowing these expressions to be applicable to rollers in 

contact as well as a roller in contact with a plane. In Johnson's derivation the half width 
of contact is defined as a and is related to the maximum penetration per: 

a2 =2Ro {13} 
Note that expression {13} is equivalent to expression {3} if2a is substituted for b. The 
strain in the z direction can now be found as: 

At 
Ez=-= 

t t 
{14} 

Johnson then assumes a bond between the elastic cover and the underlying rigid roll 
constrains the deformation in the x direction and that thereby the strain in the x direction 
is zero. 

1-v2 v(l+v) 1-v2 [ v 7 
Ex=B,crx- Eo crz=~ crx+ 1_vp(x)J=O {15} 

If equations { 11} and { 14} are combined and then with { 15} there are two equations and 
two unknowns, crx and p(x), that can solved. After eliminating crx the pressure 

distribution p(x) is found to be: 

p(x)=i!=d.b..±(1-x
2
) {16} 

1- 2v 1- v2 2Rt a 2 

Integrating {16} over the contact area yields the nip load: 
1 11-v\2 E a3 

F --~--=.o....- {17} 
- 3 l-2v 1-v2 Rt 

Expression {13} can be substituted to yield the nip load as a function of the maximum 
penetration: 

F = 1 fr:d..b_ Jo oYi 
3 1- 2v 1- v2 t 

{18} 

Evans [SJ 
Evans developed a solution on a somewhat different basis than Johnson. He as well 

used expression { 13} to model the contact width. Evans then represents the average 
pressure in the contact area as: 

F 
Po= 2../2R8 

{19} 

where a unit width of contact (in they direction) has been assumed. Evans then assumes 
that the elastic stresses in the narrow zone of contact between the rubber covered roller 
and the contact plane are the same as the case in which the average pressure (p0 ) acts 

uniformly about the circumference of the rubber covered roll. This enabled him to 
develop an expression between p0 and 8 using Lame's solution for the elastic stresses in a 

cylinder subject to external (p0 ) and internal (Pi) pressures. At radius r the solutions for 

the stresses are: 
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where: 

and: 

A 
crr=-+2C 

r2 

A 
cre=--+2C 

r2 

A - a2R2(po -pi) 
- R2-a2 

2 R2 
2C= Pja -Po 

R2-a2 

{20} 

{21} 

In an axisymmetric formulation for a cylinder the general expression for the tangential 
strain is: 

ea=;=~ [cre-vcrr]= ! [(-~ +2C )-{~ + 2c)] 

This can be rewritten in terms of the radial deformation (u) as: 

1 [ (l+v)A 2C( ) ] u=- ....___..._+ 1-vr 
E0 r 

At the inside radius of the rubber cover it is assumed that the roller shaft restricts the 
deformation such that the previous expression becomes: 

0 1 [ (l+v)A 2C( )] =- ------'--+ 1-va 
E0 a 

{22} 

{23} 

{24} 

which can be solved in terms of the inner pressure as: 
2p R 2 

P· ---.;;.J.1....-- {25} 
t - a2+ R2+v(R2-a2} 

The deformation at the outside of the roller cover is &, where the outside pressure is given 
in expression {19}. Substituting into expression {25} and solving in terms of the nip load 
(F) yields: 

{26} 

COMPARISON OF FORCE/DEFORMATION RELATIONS 

In Figure 5 a comparison of the theories presented by Lindley, Johnson, and Evans is 
shown. Johnson's expression {18} is extremely sensitive to Poisson's ratio in the .45 to 
0.5 range, due to the (1-2v) term in the denominator. When Poisson's ratio is set at 0.46 
the three theories yield nearly identical results for deformations up to about 10% of the 
cover thickness. At deformations less than 10% Lindley's expression predicts slightly 
less nip load at a given deformation than Johnson's or Evans' expressions which is not 
visible in the scale of Figure 5. At higher deformations Lindley's theory then diverges 
from the rest and the effect of the rubber confinement becomes notable. Johnson's and 
Evan's theory does not account for the confinement of the rubber as Lindley did. The 
effect on Young's modulus can be accounted for by including the 1 +kS2 term as shown 
below in modified versions of Johnson's {27} and Evan's {28} expressions. 
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{27} 

{28} 

VERIFICATION OF THEORY 

These expressions have never been thoroughly verified. A test program was setup 
such that the deformations of nip roll pairs could be monitored in a web line as nip load 
was varied. The deformations were monitored using linear variable differential 
transformers. Nip loads were applied using pneumatic cylinders that were controlled with 
regulators. Four rubber covered rollers were manufactured in pairs with various 
diameters, cover thickness, and durometers as shown in Table 1. In Figure 6 the results of 
experiments are presented that were conducted with identical rubber covered rolls in 
contact. In Figure 7 the results of experiments are shown that were conducted with rubber 
covered rolls in contact with metal rollers whose surfaces were relatively rigid compared 
to the covered rolls. The results of Evans expression {26} .are not shown in these plots, 
the results would be identical to that of Johnson's expression {18} since the assumption 
was made to leave Poisson's ratio fixed at 0.46. Johnson's expression appears to match 
the experimental data quite nicely while Lindley's expression {8} appears to undershoot 
the data slightly in several of the cases. The maximum cover penetrations shown in these 
figures range from 2.5 to 3.4%. Johnson's expression {27} that was modified to account 
for the constraint of the rubber would fit the data as well. For low cover penetrations the 
1 +kS2 term approaches one. These tests were conducted with a 23 µm polyester web 
running through the web line at 30 m/min. 

Rubber has some strain rate dependency. The same rubber covered rollers used in 
the tests whose results were shown in Figures 6 and 7 were compressed diametrally in a 
servohydraulic material testing system. The results are shown in Figure 8. The dynamic 
data acquired in the moving web line at 30 m/min is compared to the static data. The 
correlation is not perfect but quite reasonable and it appears at least for the cases studied 
that strain rate effects must not be significant, at least up to the strain rates associated with 
web line velocities of 30 m/min for the penetrations tested herein. 

In Figure 9 experimental results from Miller [ 4] are compared to the expressions 
derived herein. Miller's experimental setup was dynamic in that measurements were 
taken while the rollers were turning. Three rollers with rubber coverings were tested in 
contact with a comparatively rigid, metal surfaced roller. The dimensional and cover 
hardness data for these rollers is given in Table 2. These tests were conducted at nip 
loads somewhat higher than those tests conducted in Figures 6 and 7. The necessity of 
modeling the effect of the constraint of the rubber on the modulus of elasticity is now 
seen. Johnson's expression modified for the constraint of the rubber {27} is now seen to 
best fit the test data. Both Johnson's unmodified expression {18} and Lindley's 
expression {8} undershoot the experimental data. 

Finally some static tests were run which verify the use of these expressions at the 
highest nip loads which are commonly seen in the metal strip industry. These diametral 
compression tests were run in a servo-hydraulic testing machine, the deformations 
measured were divided by two such that plots of force versus radial penetration could be 
produced. The rollers were all nominally 102 mm in diameter with 12. 7 mm thick rubber 
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covers of varied hardness as shown in the legend (IRHD). The results are shown in 
Figure 10. Note that Lindley's expression {8} now fits the experimental data the best. 

When does one elect to use a particular theory? Based upon the combined results 
presented herein it appears that Johnson's expression {27} with a modulus term 
accounting for the confmement of the rubber performs well up to cover strains on the 
order of 6-7%. At higher strains up to 16% Lindley's expression {8} performs admirably. 

ANALYSIS OF WIDE NIP ROLL PAIRS 

Many nip rolls are designed using pneumatic or hydraulic actuators which press upon 
the roll ends in an effort to provide nip pressure continuously across the width of the nip 
roll pairs. This can be reasonably effective if the bending stiffness of the nip roll pair is 
adequate. In many cases the bending stiffness is not adequate and the nip loading will be 
larger at the roll ends near the actuators and minimal at the center of the machine. This 
can cause a number of problems. If the nip pair is being used to laminate two webs 
together the lamination pressure variation across the web width can cause quality 
degradation. The rubber being nearly incompressible attempts to speed up when 
impinged in the contact zone between the two rolls. If the radial impingement of the 
covering is increased the surface velocity of the covering must increase. In cases where 
the nip load is higher at the roll pair edges the surface velocity of the rubber at the edges 
of the web is greater than the web velocity at the web center. This can cause baggy or 
slack edges in the web or wrinkles. In some cases these problems can be solved with 
"gravity nips" in which the dead weight of one of the nip rolls is sufficient to provide the 
uniform nip loading needed in the application. This may not be a solution if space is a 
constraint within the web line or if many web products must be processed at various 
contact pressures. In these cases the bending stiffness of the nip roll pair must be 
sufficient to provide the uniformity of nip loading required. 

Thus it is often necessary to attempt to design a nip roll pair with sufficient bending 
stiffness to maintain nip load uniformity through some design range of nip loads. This is 
difficult as the force versus deformation relationships have already been shown to be 
nonlinear in two dimensions in expressions {8, 18, 26, 27, 28}. This entire problem 
could be approached using the fmite element method to model this contact problem in 
three dimensions, but again the purpose of this publication is to show that a simplified 
approach can be used that a web line engineer could apply accurately with a prompt 
result. 

The solution method combines the use of the force/deformation expressions 
previously developed with a beam fmite element model. The stiffness matrix in 
expression {29} has been developed and used by numerous authors[9,10] for a beam 

loaded by concentrated[!:]~~ :[Rme!~t~:r~jij'7:wnl in Figure II. {29} 

fj U -12 -6Le 12 -6Le Vj 

Mj 6 Le 2L~ -6Le 4 L~ 0j 

This beam element will be used to model the metal core of the rubber covered roller. The 
rubber covering will be modeled using a Winkler foundation element, expression {30} 
that is commonly used to model an elastic foundation beneath a beam [10]. 
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l
fil f 156 Mi = ZLe 22Le 
fj 420 54 

Mj -13Le 

22Le 54 

4L~ 13Le 

13Le 156 

-3L~ -22Le 

-13Lel1Vil -3L~ 0i 

-22Le Vj 

4L~ 0j 

{30} 

The stiffness of the elastic foundation, Z, will be determined from the two dimensional 
force versus deformation relations presented earlier. Z has dimensions of stiffness per 
unit length. The derivation of the Winkler foundation assumes that Z is a constant that 
relates the force compressing the foundation to the deformation of the foundation. If 
Johnson's expression {18} is examined it is seen that the force of compression is related 
to the 3/2 power of the deformation: 

F = ~ ~~ ./f5 cY2 
3 1- 2v 1- v2 t 

{18} 

Thus Z from Johnson's expression is: 

Z = l~~ ./f5 Ii, or Z = 1 i!::.d_ _b__ ./fj /; 
3 1 - 2 v 1 - v2 t 3 1 - 2v 1 - v2 t 

{31} 

The Winkler foundation element is assumed to set atop a rigid half-space as shown in 
Figure 12. The beam stiffness matrix {29} and the Winkler foundation element {30} can 
be used to model two identical rubber covered rollers in contact. This is realistic because 
of the contact surface between the two identical rubber covered rollers is a plane, similar 
to the rigid half space that was defined at the base of the Winkler foundation. After the 
stiffness of all the beam and elastic foundation elements have been assembled into a 
model stiffness matrix [K] a set of equations of the form {F}=[K] {v} must be solved. 
This typically presents no problem but in this case there are Z terms in [K] which depend 
on the square root of nodal deformations {v} per expression {31} which are unknown 
prior to the solution of the equations. The solution method thus requires iteration. Trial 
assumptions are made for the foundation stiffness values, Zi, for each elastic foundation 
element used in the model. The set of equations {F}=[K] {v} is now solved for the 
unknown deformations { v}. These deformations can now be substituted into expression 
{31} and the stiffness for each elastic foundation is calculated. An error term is now 
calculated in which the absolute value of the difference between the guessed and 
calculated values of Zi are summed into a total. The calculated Zi values now become the 
guessed values in the next iteration. The set of equations {F}=[K] {v} is now solved again 
for the unknown deformations { v} and the values of Zi are recalculated from expression 
{31}. The error term is recalculated and this iterative procedure continues until the error 
term vanishes to a level acceptable to the user. A flow chart of this code is shown in 
Figure 12. 

When modeling a rubber covered roller in contact with a metal surfaced roller the 
beam element {29} is used to model the metal core within the rubber covered roll and 
metal surfaced roller. A new Winkler foundation element was derived using the potential 
energy method to represent the rubber in compression. This was necessary to couple the 
deformations between the two rollers that were no longer identical in stiffness or 
covering. 
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fi 156 22Le 54 -13Le -156 -22Le -54 13Le Vi 

Mi 22Le 4Le 13Le -3Le -22Le -4Le -13Le 3Le 0i 

fj 54 13Le 156 -22Le -54 -13Le -156 22Le Vj 

Mj _ ZLe -13Le -3L~ -22Le 4Le 13Le 3L~ 22Le -4Le 
fk - 420 -156 -22Le -54 13Le 156 22Le 54 -13Le 

0j {31} 

Vk 

Mk -22Le -4Le -13Le 3L2 22Le 4Le 13Le -3Le 0k 

f1 -54 -13Le -156 22Le 54 13Le 156 -22Le VJ 

M1 13Le 3Le 22Le -4Le -13Le -3Le -22Le 4Le 01 

This element is meant to couple the deformations and slopes between nodes i and j on the 
metal core of the rubber covered roll to the deformations and slopes of nodes k and 1 on 
the metal surfaced roller as shown in Figure 13. 

This solution method was verified on a pair of rubber covered rollers used in a 
laminating process. The rollers had live shafts and most of the dimensional data is shown 
in Figure 14. The metal roll bodies were composed from steel and in the central sections 
were hollow with an outside diameter of 80 mm and an inside diameter of 54 mm. The 
central sections were covered with a layer of rubber 4 mm thick and a hardness of70 
IRHD. A low and a high loading condition were tested. The nip loading was exerted by 
pneumatic cylinders at the roll ends as shown in Figure 14. The design of the fixture was 
such that the nip loading was not exactly the same from left to right. In the low loading 
condition 1500 N was applied at the left end of the roll pair while at the right 1515 N was 
applied at the right which resulted in a nominal nip load of39.7 N/cm. In the high 
loading condition 2190 N was applied at the left end of the roll pair while at the right 
2292 N was applied at the right that resulted in a nominal nip load of 59 N/cm. Once 
coded the solution method described herein easily accommodates different nip loads from 
left to right. In the tests local measurements of nip load were made using pull tabs similar 
to what are used in winding experiments. Shim steel strips 1.27 cm wide and 25 .4 µm 
thick were inserted across the width at 5.08 cm intervals. The strips were sufficiently 
long that a handheld force gage could be attached to measure the force required to 
dislodge the strips. This force could then be divided by the friction coefficient to obtain a 
local estimate of nip load. These tests were repeated three times and the results were 
averaged. The tests were found to be highly repeatable. A comparison of the fmite 
element analysis and experimental results are shown in Figure 15. The agreement is quite 
good and thus the solution method of incorporating two dimensional models of force 
versus deformation for the rubber compressed between the rollers into elastic foundation 
elements that can then be used in three dimensional studies appears to be valid and 
efficient. 

CONCLUSIONS 

Experimental evidence has been provided showing that many if not all natural and 
synthetic rubbers have Young's moduli that are dependent only upon the hardness level of 
the material. Also some experimental evidence has been provided that indicates 
Poisson's ratio for these materials is nominally 0.46. It is not apparent why this is but it 
might be postulated that there must be some compressible elements in the rubber 
compound that result in Poisson's ratio being less than 0.5. 
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The two dimensional force versus deformation relationships developed by Johnson 
and Evans appear to be applicable up to strains of 6-7% provided the confmement of the 
rubber is accounted for in the modulus. Lindley's expression under predicts the load 
associated with a given deformation up to 6-7% strain but accurately predicts the nip 
loads associated with strains in the range of 7 to 16% strain. 

It does appear as well that these force/deformation expressions can be used in 
conjunction with Winkler foundation finite elements to model roll coverings in contact 
between rollers accurately to greatly simplify the analysis of wide pairs of nip rollers in 
contact. 

ACKNOWLEDGEMENTS 

This publication resulted from research that was funded by the sponsors of the Web 
Handling Research Center at Oklahoma State University. Also the author is indebted to 
Mr. Ron Swanson and Mr. James Dobbs of 3M Company who provided the setup and 
experimental prowess that provided the dynamic force versus penetration data reported in 
Figures 6 and 7. 

REFERENCES 

1. ASTM D 575, "Standard Test Methods for Rubber Properties in Compression," 
Annual Book of ASTM Standards, 100 Barr Harbor Drive, West Conshohocken, 
PA, USA. 

2. Spotts, M.F., and Shoup, T.E., Design of Machine Elements, 7th Edition, 1998, 
pp.277-278. 

3. Hannah, M., Quarterly Journal of Mechanics and Applied Mathematics, V. 4, 1951, 
p. 94. 

4. Miller, R.D.W., "Variations of Line Pressure and Rolling Speed with Indentation of 
Covered Rollers," British Journal of Applied Physics, V. 15, 1964, pp. 1423-
1435. 

5. Batra, R.C., "Rubber Covered Rolls-The Nonlinear Elastic Problem," ASME 
Journal of Applied Mechanics, V. 47, 1980, pp. 82-86. 

6. Lindley, P. B., "Load-Compression Relationships of Rubber Units," Journal of 
Strain Analysis, V. 1, N. 3, 1966, pp. 190-195. 

7. Johnson, K. L., Contact Mechanics, Cambridge University Press, 1989, pp. 139-
140. 

8. Evans, I., "The Rolling Resistance of a Wheel with a Solid Rubber Tyre," British 
Journal of Applied Physics, V. 5, 1954, pp. 187-188. 

9. Przemieniecki, J. S., Theory of Matrix Structural Analysis, McGraw-Hill, 1968. 
10. Chandrupatla, T. R., and Belegundu, A. D., Introduction to Finite Elements in 

Engineering. Prentice Hall, 2nd ed., 1991. 

169 



"2' 

~ 
"' .s .g 
0 

::E 

.g 
~ 
"' ~8 
"' "' .... 
0 p.. 

35 

30 

25 

20 

15 

10 

5 

0 

20 

◊ Carboxilated Nitrile 

a Ethylene Propylene 

/:,. Hypalon 

0 Natural 

)K Neoprene 

X Nitrile 

+ Urethane 

- Expression { 1} 

40 60 80 
Durometer (Shore A or IRHD) 

Figure 1-The Relation between Young's Modulus and Durometer 

0.5 -..., 
0.49 .... 

I 
..., 

0.48 

0.47 

- -average - .458 

♦ experiments i 
~ 

0.46 •• ♦ 

0.45 

0.44 

!+ t 
♦ ... • ..., ... •• ◄ t 

-
.... ♦ ◄► 
..., 

0.43 

0.42 

20 40 60 80 

Durometer (Shore A or IRHD) 

Figure 2 - Poisson's Ratio for Rubber 

170 

100 

-.... 

♦ 

100 



t-8 

l 
8 

Figure 3 - Definition of Variables for Lindley's Theory 

F 

Figure 4 - Definition of Variables for Johnson's Theory 

171 



700 

600 

500 

s 400 u z 
'-' 
-c, 

300 c<:I 
0 

....i 

.e-
200 z 

100 

0 

0 

0 

-o-KLJ {18} 

~PBL {8} 

--ts-EVANS {26} 
-+-KLJMOD {27} 

12.7 mm 

1 2 3 

Radial Penetration (mm) 

Figure 5 - Comparison of Theories 

0.1 0.2 0.3 

Radial Penetration (mm) 

D RAIRAexpt 

---RA/RA KLJ 

-RAIRAPBL 

o RB/RB expt 

---RB/RB KLJ 

- -RB/RBPBL 

♦ RC/RC expt 

---RC/RC KLJ 

- - RC/RCPBL 

b. RD/RD expt 

---RD/RD KLJ 

- -RD/RDPBL 

Figure 6 -Application of Johnson's and Lindley's Theories at Low Nip Load Levels for 
Identical Rubber Covered Rollers in Contact (Legend -Refer to Table 1). 

172 



l5 
s 
() 

---e 
"O o:s 

lO 0 
....:i 
.e-z 

5 

0 0.1 0.2 0.3 0.4 

Penetration (mm) 

D RA/Rl expt 

---RA/Rl KLJ 

-RA/Rl PBL 

o RB/R.2 expt 

---RB/R.2 KLJ 

-RB/R.2PBL 

♦ RC/Rl expt 

---RC/Rl KLJ 

- RC/Rl PBL 

b. RD/Rl expt 

---RD/Rl KLJ 

-RD/Rl PBL 

Figure 7 - Application of Johnson's and Lindley's Theories at Low Nip Load Levels for 
Rubber Covered Rollers in Contact with Rigid Rollers (Legend - Refer to Table 1 ). 

20 

~ 
■ RA/RA expt 

■ c 
fl 

16 c RA static 
C 

C 

s ORB/RB expt 
() 

--- 12 e o RB static 
"O 

o:s 
0 

♦RC/RC expt ....:i 
.e- 8 z • RC static 

4 • RDIRD expt 

t:. RD static 

0 
0 0.1 0.2 0.3 

Radial Penetration (mm) 

Figure 8 - Comparison of Penetrations Measured Dynamically to those Measured 
Statically (Legend - Refer to Table 1). 

173 



70 

60 

50 
s u 
---z 40 '--' 
"Cl 

(,:j 
0 

...:I 30 .e-z 
20 

10 

0 
0 

I 
I 

I 

I 

I 

I I 

0.2 0.4 0.6 0.8 1 
Penetration (mm) 

□ Miller R# 1 expt 

---R#l KLJ {27} 

----R#l KLJ {18} 

- - - - - - R#l PBL 

6 Miller R#2 expt 

---R#2 KLJ {27} 

- - - -R#2 KLJ {18} 

- - - - - - R#2 PBL 

o Miller R#3 expt 

---R#3 KLJ {27} 

- - - -R#3 KLJ {18} 

- - - - - - R#3 PBL 

Figure 9 - Verification of Theory at Medium Nip Load Levels against Miller's Data 
(Legend - Refer to Table 2). 

400 

300 
,-._ 

s u 

~ 
"Cl 200 

(,:j 
0 

...:I 

.e-z 
100 

I 
I 

I 
I 

□ 30 expt 
1---30PBL {8} 
- - - -30 KLJ {18} 

+----t- ---+-----t----r--n,1- - - - - - 30 KLJ {27} 

, ,, 
, 

✓ 

I 

6 46 expt 
1- --46 PBL {8} 
- - - -46 KLJ {18} 
- - - - - - 46 KLJ {27} 

✓ o 62 expt 

+----1-------,-~~:-,...'---:-+,,e.,;,c.--=~~1---62 PBL {8} 
- - - -62 KLJ {18} 
- - - - - - 62 KLJ {27} 

0.0 0.5 1.0 1.5 2.0 

Radial Penetration (mm) 

Figure 10 - Verification of Theory at Higher Nip Loads 

174 



Figure 11 - Finite Element Model of a Rubber Covered Roller in Contact with an 
Identical Roller. 
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Figure 12 - Flow Chart for FEA code. 
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Figure 13 - A Rubber Covered Roller in Contact with a Metal Surfaced Roller 
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Figure 14 - Dimensions for Rubber Covered Roller Pair Tested 
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Figure 15 - Comparison of Finite Element and Experimental Results. 

Roller IRHD Cover Thickness (mm) Roller Diameter (mm) 
A 76 5.1 62.7 
B 78 20.2 190.5 
C 60 7.5 165.1 
D 61 12.7 127 
1 Rigid -- 73.7 
2 Rigid -- 87.6 

Table 1 - Data for Rollers Tested 

Roller IRHD Cover Thickness (mm) Roller Diameter (mm) 
1 57 3.3 152.7 
2 52 4.4 152.1 
3 45 12.7 152.2 

Rigid -- -- 152.4 
Table 2 - Data for Miller's Rollers [4] 
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Modeling Rubber Covered Nip Rollers in Web Lines J. K. Good- Oklahoma State 
University, USA 

Name & Affiliation Comment 
M. Jorkama - Metso Paper We have used a similar procedure that K. Aro la described 

in his paper for determining the elastic modulus and 
Poisson's ratio of for rubber covers and this appears to 
work well. We measured the indentation and the nip width 
and then performed a fit. 

Name & Affiliation Reply 
K. Good-OSU Did you assume 0.5 for Poisson's ratio of rubber? What 

did you use? 
Name & Affiliation Answer 
M. Jorkama - Metso Paper No. The procedure yields both the elastic modulus and the 

Poisson's ratio. We calculated Poisson's ratios of about 
0.6. Poisson's ratio is very important in winding 
applications. When you order a rubber cover you are 
allowed to specify the hardness but not the Poisson's ratio. 

Name & Affiliation Comment 
K. Good -OSU There is a certain amount of uncertainty in those tests 

because rubber is not dimensionally stable. Hence 
compression specimens or roller covers composed of 
rubber are by no means geometrically perfect. 

Name & Affiliation Question 
N. Vaidyanathan - Presstek Now that you've shown us this pressure profile that exists 

across the width of two rubber rolls that are in contact, 
which we normally encounter during lamination and 
similar applications, how do we improve the profile? 
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Name & Affiliation 
K. Good -OSU 

Name & Affiliation 
J. Shelton - OSU 

Name & Affiliation 
K. Good-OSU 

Name & Affiliation 
J. Shelton - OSU 

Answer 
I have shown you a method by which the pressure and nip 
load profile can be determined across the width of the roll 
set. The results from the method are affected by the 
bending stiffness of the rolls and shafting, load level, 
rubber cover thickness and hardness. When you ask how 
you can improve your load profile I would answer first by 
proper selection of those parameters. Variation in nip 
loads is often the result of the manner in which we apply 
the load from pneumatic or hydraulic cylinders at the 
edges of nip rolls. The result is that we inject moments in 
addition to the loads at the edges of the roll sets. Thus a 
good design will attempt to minimize these moments by 
decreasing the length of shafting between the point of load 
application and the edge of the nip roller. 

When all of the above fail in yielding the uniformity in 
nip loading that you desire you may have to employ other 
technologies. If you are laminating you might consider a 
gravity nip in which the nip loading is due to the dead 
weight of a nip roller supported by a second roller. The 
complication of a gravity nip is that they are typically 
designed to yield one load level and if you handle multiple 
products on one web line which require different nip load 
levels to achieve lamination this will not be a solution. If 
the nip roll set is being used mainly as a drive roll set nip 
load variation may vest itself in the form of web wrinkles. 
The nip load variation results in the rubber speeding up 
differently across the roll set and thus you are attempting 
to transport web faster at some CMD locations than others 
and wrinkles result. In such a case you could consider a 
vacuum pull roll as an alternative technology. 
Comment 
You also could employ a cantilever nip roller where you 
have a shaft supporting the shell ideally at the center. The 
two ends then are cantilevered from the center so that the 
nip roller at least bends the right direction. Through 
calculations you can predict how to vary the shell 
thickness from the center to the edge to achieve nip load 
uniformitv. 
Answer 
John, whether we're talking about gravity loaded nips or 
cantilevered rolls we are introducing nips that are very 
application specific. If it is required that a number of 
different laminated products be run through the same web 
line, we may need different designs. 
Ouestion 
With a gravity nip, you are barely going to get enough 
force for any lamination. Gravity nips are potential 
solutions for treaters and such things. It will either 
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conform or partially conform to the deflecting roller that it 
is mated to. It will not make it worse, but will make the 
nip impression more uniform, because it is sagging into 
the deflection of the mating roller. 

Name & Affiliation Comment 
K. Good-OSU Remember Nanda, you don't even know if you've got a 

problem. Use the model described herein first to determine 
if the nip load non-uniformity is unacceptable. Then use 
the model again to see if altering bending stiffness, etc. 
can yield an acceptable solution. If the non-uniformity is 
still unacceptable then you should consider an alternate 
technology. 

Name & Affiliation Question 
D. Roisum - Finishing I think we're making this way to complicated. I think all 
Technologies, Inc. you really need to do is crown your rolls. You could use a 

little skew to correct for load variations that you need for 
different grades. That's an easier way to do that. 

Name & Affiliation Answer 
K. Good-OSU This is often attempted with mixed results. Why do we 

want uniformity in nip load? Often it is because the web 
process demands it but often we also have wrinkling 
problems in the vicinity of nips, and this is probably one of 
the worst locations for wrinkling to occur, as it will result 
in a permanent web defect or a web break when passing 
through the nip. Crowning any roller in web line should 
be done with care because crowned rolls generate velocity 
differences that tend to wrinkle webs. Paper webs in 
general may not have as much problem with this type of 
wrinkling because paper webs are often 3 to 4 times 
thicker in caliper than film webs with nominally the same 
Young's modulus. Thus the paper web has a larger 
buckling strength and can absorb larger velocity 
differences across the width prior to wrinkling. If you 
skew two rubber covered nip rollers you could be setting 
the line up for web weave problems. Designing a nip roll 
set properly to begin with is probably less complicated 
than operators having to deal with intermittent wrinkling 
and weave problems through the life of a machine. 
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Discussion - Session 1 

Name & Affiliation 
D. Pfeiffer - JDP 
Innovations 

Name & Affiliation 
A. Thill - Exxon Mobil 

Name & Affiliation 
D. Pfeiffer- JDP 
Innovations 

Name & Affiliation 
A. Thill - Exxon Mobil 

Question 

J. D. Pfeiffer - JDP Innovations, 
Canada 

We've had quite a few spectacular papers. Let's recap the 
day. There was a keynote address by Dr. Howard. Mr. Lei 
from Eastman Kodak talked about modeling roll structure 
and thermo and temperature effects. We had questions on 
that about cinching and how do you test cinching. W adood 
Hamed gave a coefficient of restitution paper and some 
stress strain models that were questionable from my point 
of view. Koshi Tanimoto gave an interesting paper on 
winding and permeability and the effect of air entrainment. 
Patrick Bourgin and Ahmed Boutaous talked to you about 
online control of tension in winding systems based on 
programming your winding tension to get the structure 
based on sampling methods. The impact of mandrel 
support on core Ee was presented by Mr. Wang from 
Sonoco and he was talking about the problem of winding 
aluminum on large diameter fiber tube cores. Keith Good 
talked about modeling nip-induced tension in wound rolls 
and some more theories on what happens in the nip. Then 
development of web tension in a winding nip by Dr. 
Jorkama. That was another explanation of what goes on in 
a nip. I think rather than my standing here and reading 
what you can read in your program for the order of papers, 
we'll open it up to some questions from the floor on any of 
these papers presented so far and some of the controversies 
that were raised over these presentations and whether you 
want to have further explanations from the authors or 
suggestions for further work or perhaps what ought to be 
talked about in IWEB 2003. Now is the time to think about 
what you didn't get a chance to ask the authors before and 
draw them out in discussions. 
Question 
There is one thing I am looking forward to see at the next 
IWEB. It is the effect of air leakage on the final roll for 
winding wide non-permeable film rolls. With constant nip 
pressure the middle of the roll winds at a larger diameter 
than the edges? 
Comment 
The effect you notice is that the roll diameter significantly 
larger in the center of the roll than on the edges and you 
attribute this mostly to the fact that the entrained air cannot 
get out in the center sections of the roll? 
Comment 
It gets out in the underlying layers generating a pressure 
differential center to edge, which means that the roll is 
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bi2:2:er in diameter in the center than on the ed2:es. 
Name & Affiliation Comment 
D. Pfeiffer- JDP The edges leak so they wind more tightly. So, is the 
Innovations observation from the rest of you that this is a problem, a 

noticeable one that doesn't go away with time? 
Name & Affiliation Comment 
A. Thill - Exxon Mobil Do you apply the uniform contact pressure with your nip 

roll to the wound roll? The underlying layers leak to the 
outside and after a certain winding time you have a roll 
diameter that is bigger in the center than on the edges. 
With the wound roll larger at the center it has become 
crowned. This leads to pulling the web towards the center. 
This effect makes the roll narrower than what it would like 
to be and generates after aging the tin canning. 

Name & Affiliation Answer 
D. Pfeiffer- JDP Small waves in the center wouldn't necessarily be due to 
Innovations that. You might have diagonal ridges coming out. Bruce 

Feiertag has suggested that these are called corrugations in 
other oarts of the industrv. 

Name & Affiliation Question 
A. Thill - Exxon Mobil If you have close to a uniform thickness they get located 

exactly in the center. Some people say there must be a 
defect in the center. That is not true because it also 
happens on slit rolls. It is a defect that you can see on any 
type of material whether it's aluminum foil, polyester, or 
polypropylene. It is visible on any high modulus material. 

Name & Affiliation Answer 
D. Pfeiffer - JDP So we have a high modulus material so that the tensile 
Innovations strains can't relax the problem and that would give rise 

more to set-in wrinkling and surface wrinkling. 
Name & Affiliation Answer 
D. Roisum - Finishing Yes, this is actually quite a common problem in the film 
Technologies industry called buckles, but other people have it as well. 

The challenge is, you make a perfectly uniform web and it 
winds up reasonably uniform but after time air leaks out 
the edges. Then as it leaks out the edges, the edges seal 
themselves so that the air becomes trapped in the middle. 
Also the air entrapped in the middle has so much farther to 
go so you end up with buckles on the edges as this roll 
collapses. There is nothing you can do after you have 
wound the roll. You have to manage the air as you wind 
it. That's one way to do that. Some people make football 
shaped gauge profiles to squeeze the air out and give it a 
path to go. There are many, many tricks. You can also 
slow the line down by half. It's a tou2:h cross to carrv. 
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Name & Affiliation Question 
W. Qualls - Imation First a comment. I am very familiar with this problem. I 

see it in high modulus thin films. Not only do we see it in 
the center we see it take on 80% of the roll width. But my 
question is do we believe air entrainment is the forcing 
function here? Without air entrainment we would not have 
this problem? 

Name & Affiliation Comment 
A. Thill - Exxon Mobil The air entrainment gets more and more complicated while 

the speed is increasing. That's why the solution is to drop 
the speed bv half and the problem is 2:one. 

Name & Affiliation Answer 
D. Pfeiffer- JDP I think this is one of those problems where the problem 
Innovations increases with a cube of the speed, not just linearly with 

speed. I have a solution for it though - wind your rolls in a 
vacuum. 

Name & Affiliation Comment 
Andre Thill - Exxon Mobil Some do that, metalizers for instance. But look what 

hannens when vou take the roll back into the atmosphere. 
Name & Affiliation Comment 
R. Swanson - 3M I don't remember what IWEB it was, but Al Forrest had a 

model on how to predict it, bucklin2: number. 
Name & Affiliation Question 
L. Kindel - Eastman Question for the gentleman with the paper from Metso. It's 
Chemical Co. a nomenclature question. Soft roll bottom, hard roll 

bottom? Other people probably know that answer to that. 
Name & Affiliation Comment 
D. Pfeiffer- JDP Roll bottom would be the onset of winding right after the 
Innovations transfer onto the new reel spool and in his paper he has a 

program for making a hard roll bottom. You start with a 
very high nip load and perhaps increase tension, but I think 
the graph is for tension versus diameter and the tension 
goes down - I'm sorry, I mean nip load versus diameter, it 
goes down quickly and becomes a constant nip load. For 
the soft roll bottom, the nip load starts low and comes up 
to a constant value and stays constant. 

Name & Affiliation Question 
P. Bourgin - Ecole I have questions dealing with the air entrainment. The first 
Superieure de Plasturgie one is concerned with the paper by Lei and Cole from 

Eastman Kodak, who proposed a thermoelastic winding 
model with air entrainment. I am a little puzzled that there 
are no thermal expansion coefficients involved in the 
model. The second question would be what is the effect of 
humidity change and would the model be able to take into 
account the effect of humidity change in the roll? 
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Name & Affiliation Answer 
H. Lei - Kodak The model consists of two parts. In the first part we predict 

the internal pressure during the winding, and in that part 
we assume the temperature is constant, so there's no 
temperature variation there. But in the second part of the 
model we predict the internal pressure change after the 
winding so in that part there no winding involved. That's 
why we do not have the coefficient of thermal expansion 
during the first part of the model. And for the second 
question - the humidity effect, well, we know that roll 
quality could change significantly due to the humidity of 
the paper rolls when you dry those rolls they get very soft 
and we did not include that into the model yet. 

Name & Affiliation Question 
P. Bourgin - Ecole Thank you. My next question is from Tanimoto's paper, 
Superieure de Plasturgie which is concerned with air entrainment and permeation. 

Did you investigate the relation to relative importance of 
radial air migration due to permeation and lateral air 
migration due to the compressive force of the oncoming 
layers? Apparently you only considered the radial air 
migration only due to permeation. Would you comment on 
this? 

Name & Affiliation Answer 
K. Tanimoto - Mitsubishi The paper is several meters wide and the air film thickness 
Heavy Industries is less than several micrometers. At both edges there must 

exist some lateral movement of air but it is small 
Name & Affiliation Comment 
P. Bourgin - Ecole Yes, but if you have plastic film instead of paper then you 
Superieure de Plasturgie don't have any permeation and still you have air migration 

and that must be all lateral migration. So you assume that 
there is no lateral recreation as compared to the effect of 
permeation. That's the assumption? 

Name & Affiliation Answer 
K. Tanimoto - Mitsubishi Yes. 
Heavy Industries 
Name & Affiliation Question 
P. Bourgin - Ecole I have the last question for Dr. Jorkama. Do you propose 
Superieure de Plasturgie to take into account the air entrainment in the stick and slip 

model? Don't you think the air entrainment effect would 
affect the stick and slip regions? 

Name & Affiliation Answer 
M. Jorkama - Metso To be honest, I haven't thought that much what will 

happen when air comes in the picture. I will not be 
surprised if the stick and slip pattern would remain 
basically the same. 

Name & Affiliation Comment 
K. Good-OSU My remark to is to Patrick's last question. I think it comes 

in stages. As you begin to become partially airborne, but 
you still have asperity contact, I think the coefficient of 

184 



friction that Marco and I and others use in slip models 
have to change. But at the point to where the nip roll 
becomes completely airborne, now we're talking about 
traction terms that would be related to viscosity of air. And 
so they wouldn't be very large and it is difficult for a nip to 
induce any additional tension with no available traction. 
Certainly there is a point at which air entrainment would 
affect our models. The second thing that I really wanted to 
say to begin with was look at how much time we spent 
today on the calculation of stresses m wound rolls 
compared to how little time we spent on calculating or 
trying to predict models of roll defects. I mean why are 
we in this business of calculating stresses and rolls if we 
aren't also in defect models? I think there needs to be a lot 
more work there. That's my comment. Thank you. 

Name & Affiliation Question 
G. Homan- Westvaco I have a question to the people from Sunoco. In the process 

of manufacturing spiral wound cores, moisture is 
introduced. At what moisture were the moduli calculated 
and what moisture were the cores tested? Have they 
looked at the effects of moisture? This has and continues 
to be a problem within our organization - moisture 
variation with cores. 

Name & Affiliation Answer 
Y. Wang - Sonoco When we measure the properties, it is around 80% of the 

relative moisture content. When we make a tube we try to 
avoid the moisture as much as possible. After we make a 
tube, we use some plastic bag or some other material to 
wrap it up to ship to our customers. What's the second part 
of the questions? 

Name & Affiliation Question 
G. Holman- Westvaco What moisture content were the properties measured at, 

what moisture content was the testing conducted, and 
whether you have looked at various moistures in this 
particular evaluation? 

Name & Affiliation Answer 
Y. Wang - Sonoco I think I answered the first question that we measured 

usually around 80%. It's in the condition of the room, the 
lab. We did some study on the moisture content influence 
on the material property and we do have the adjustment 
effect for the material properties with the changing of 
moisture content. If the moisture content is higher then the 
material properties will be lower. But we do have a 
quantitative measurement on that. 

Name & Affiliation Comment 
D. Pfeiffer - JDP I'd like to make one more comment to people who work 
Innovations on models of nip-induced tension. I think there are two 

factors that you have to consider. One of those is the 
rejected paper moving backward against the oncoming 
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feed of the drum that's feeding it in and the other factor is 
the transfer of torque across the winding nip. So if you 
haven't considered those two, you haven't got a complete 
model. Thanks to all the authors for a very challenging 
first day of sessions. 
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