ON-LINE CONTROL OF TENSION IN WEB WINDING SYSTEMS BASED ON WOUND ROLL INTERNAL STRESS COMPUTATION

by

P. Bourgin¹, M. Boutaous¹, and D. Knittel² ¹Ecole Supérieure de Plasturgie ²University of Strasbourg FRANCE

ABSTRACT

One of the key challenges in the processing of flexible media such as plastic films is to obtain rolls without any aspect defect : if one considers that a "defect" (i.e. wrinkling or buckling) is due to the fact that the stress generated within the roll is greater than some "plasticity threshold", then it is crucial to predict the internal stress. Several process parameters must be carefully mastered, among which the winding tension is very important. Offline optimization of the tension can *a priori* guarantee the production of perfect rolls, with respect to the internal stress. Nevertheless, the industrial control systems never generate perfect followup of the tension reference value, because the tension which is actually imposed (i.e. measured) exhibits oscillations due to the imperfections of the winding system, including geometrical irregularities of the rolls. The fluctuations about the tension nominal value induce variations in the stress within the roll as compared to the value which would result from an ideal control. As a consequence, it is judicious to change the tension reference value during the winding process, according to some criterion defined from the stress computed within the roll, and then to apply this new "up-dated" reference to the forthcoming web layers. This new way of online tension control requires new concepts such as "robust multivariable control", because distributed control may not work as well.

The first step consists in computing the internal stress generated within a roll of a wound web (for instance plastic film). For that purpose, a modified nonlinear model is developed in the spirit of Hakiel's. The web's winding process can be considered as a continuous accretion process, in the sense that the stress components at a given point are continuously modified by the upper superimposed layers. In addition, the residual air films which separate the web layers are taken into account in an indirect way through the radial Young's modulus of the roll which is a non-linear (polynomial) function of the compressive stress component. Several illustrative examples are presented and commented. Then, having prescribed an optimization criterion for the winding tension, an optimization algorithm based on the simplex principle is described. Finally, a new concept of *online* tension control, based on prediction-correction is proposed. Dividing the roll radius into several segments, the tension reference is computed and corrected for each range of roll radius values, by using the predictive model for the stress within the roll. The adjusted tension is reactualized step by step, following the optimization principle as described above and it will be considered as the new tension reference value for the coming layers. A comparison between *offline* and *online* tension controls clearly shows the improvement given by the new optimization technique (online).

I – INTRODUCTION

The quality of a wound roll depends on the stress state within it.

From mathematical models of the stress within a roll, we propose two methods of computing an optimized winding tension, which is used to control the whole winding chain.

The control of such systems is generally based on practical experience and the tension reference does not change during winding: see for example Reid et al [15] or Wolfermann [16]. The multivariable robust control approaches, synthesized from H_{∞} and LPV techniques, have recently been studied by Koç [12]. All these control strategies can be considered as "offline tension control".

Based on the classical winding models, we illustrate the influence of the winding tension on the stress state generated within a roll.

We briefly recall the main features of "offline tension control" and we introduce the new strategy which is proposed here and that we propose to call: "online tension control".

II - BRIEF DESCRIPTION OF THE WINDING MODELS

During the two last decades, numerous papers were published in the literature, analyzing the stress state within a wound roll of a flexible medium.

The rigorous prediction of the wound roll stress started with Altmann [1]. Note that Altmann's model is based on a continuous accretion model first developed by Brown and al. [6] for planets formation. Since then, several improvements have been proposed, for example Yagoda [18] who considered adequate boundary conditions for the core and inertial effects, Connolly et al. [5] who studied the effect of external changes (temperature, humidity) on the wound roll stress state, Pfeiffer [14] and Hakiel [10] who introduced non-linear radial variation of the wound roll Young's modulus, Bourgin and al. [2-5] or Good and al. [9] who proposed to take into account the air interlayers.

<u>II.1 - Main assumptions :</u>

1) The web has perfectly uniform thickness, width, and length, which implies that the winding roll is a geometrically perfect cylinder.

2) The roll is a composed of concentric hoops of web.

3) The roll is an orthotropic, elastic cylinder. The cylinder is nonlinearelastic in the radial direction : the radial modulus of elasticity is a known function of the radial stress.

4) The stress state within the roll is that of "plane stress" conditions, i.e. the stress has two components : radial and tangential. These components are functions of the radial location only.

II.2 - Basic Equations

The equilibrium equation for axisymmetrical plane stress in the presence of centrifugal forces is:

$$r \frac{d\sigma_r}{dr} + \sigma_r - \sigma_t = -\rho \left(\frac{v}{s}\right)^2 r^2 \qquad (1)$$

Where r denotes the current radius, s the outer radius of the roll, ρ is the local density and v the winding velocity.

Denoting E_t and E_r the tangential and radial Young's moduli respectively, the constitutive equations for an orthotropic cylindrical roll can be written as :

$$\varepsilon_{\rm r} = (1/E_{\rm r})\sigma_{\rm r} - (\nu_{\rm rt}/E_{\rm t})\sigma_{\rm t}$$

$$\varepsilon_{\rm t} = (1/E_{\rm t})\sigma_{\rm t} - (\nu_{\rm tr}/E_{\rm r})\sigma_{\rm r}$$
(2)

Now, Eq. (1) and Eq. (2) can be combined to yield the following differential equation in terms of radial stress :

$$r^{2} \frac{d^{2} \sigma_{r}}{dr^{2}} + 3r \frac{d \sigma_{r}}{dr} + (1 - g^{2})\sigma_{r} = -(3 + v)\rho \frac{v^{2}}{s^{2}}r^{2}$$
(3)
where $g = E_{r}/E_{t}$

The two boundary conditions which are needed to solve this second-order differential equation are :

(i) Near the core, which has a modulus E_c :

$$\frac{\partial \sigma_{\rm r}}{\partial \rm r} = \left[(\rm E_t / \rm E_c) - 1 + \nu \right] \sigma_{\rm r} + \rho \frac{v^2}{s^2}$$
(4)

(ii) At the outside of the winding roll, the incremental stress caused by the last lap is :

$$\sigma_{\rm s} = T_{\rm w} \, \frac{\rm h}{\rm s} - \rho {\rm v}^2 \, \frac{\rm h}{\rm s} \tag{5}$$

where T_w denotes the web tension and h the web thickness.

The tangential stresses are then computed by using their relation with the radial stresses :

$$\sigma_{t} = -\sigma_{r} - r \frac{\partial \sigma_{r}}{\partial r} + \rho \frac{v^{2}}{s^{2}} r^{2}$$
(6)

Finally, the total in-roll stress is obtained by adding all the contributions of the incremental stresses due to the N laps:

$$\sigma_{\text{rtot}} = \sum_{j=i+1}^{N} \sigma_{\text{rij}}, \qquad \sigma_{\text{ttot}} = T_{\text{wi}} + \sum_{j=i+1}^{N} \sigma_{\text{tij}}$$
(7)

Figures 2 shows the influence of the nominal tension on the stress state within the roll. As expected, a high tension level leads to a stiff roll (larger nominal values of the tangential stress). Figure 3 shows the effect of fluctuations about the tension nominal value. Clearly, we confirm in both cases that the tension has a great influence on the stress, which means that it must be optimized during winding.

III - OPTIMIZATION OF THE WINDING REFERENCE TENSION

The concept of an "optimum reference" for controlling the web tension resorts of industrial know-how : see for instance Reid et al. [15] or Wolfermann [16-17]. The latter author proposes sensorless measurement of web tension associated with control based on fuzzy logics and neuronal networks. In most cases, we are faced with distributed control : see figure 4.

III. 1 - Offline optimization

The target of winding tension is generally determined experimentally with respect to the desired quality of the roll. This tension value can be constant or a function of the radius, according to any non linear function.

The model of stress computation makes it possible to define a criterion J by:

$$J = \int_{R_{rol1}}^{R_{max}} (\sigma_{\theta}(T_w) - \sigma_{\theta mean}(r))^2 g(\sigma_{\theta}, r)) dr$$

where T_w is the winding tension, $\sigma_{\theta mean}$ is some averaged value, in a given range and $g(\sigma_{\theta_1} r)$ denotes some weight function defined by :

 $g(\sigma_{\theta}, r) = 1$ if σ_{θ} is in the gauge

$g(\sigma_{\theta}, r) >> 1$ else.

The example of figure (5) shows a gauge and two curves of tangential stresses: one before optimization (a), the other one (b) computed with the new reference tension which minimizes criterion J. For both curves, the winding tension is a linear function of the radius. The optimisation algorithm is based on the principle of the simplex of Nelder and Mead [13]. Of course the convergence

towards a minimum does not guarantee that it is the global minimum. In addition the existence of a solution depends on the gauge.

III. 2- New tension control strategy : online optimization of the internal stress

Offline optimization of the tension reference is supposed to guarantee apriori the production of a perfect roll. However, in reality, the strategies of control never generate a perfect follow-up of the instruction: the tension really applied, i.e. measured, will always present fluctuations due to the imperfections of the chains of winding and the geometrical irregularities of the roll. These tension oscillations induce variations of the stresses which would result from an ideal control, i.e. a control which would perfectly ensure the follow-up of the instruction and the elimination of the disturbances. The actual tension thus do not lead any more to the optimal stress state in the roll. It is consequently judicious to change the instructions of tension for the layers which still remain to be wound, throughout the whole phase of winding, in order to always optimize the stresses in the final roll according to the criterion as defined previously. The principle of this control is sketched in figure 6. The roll is divided into a number N of packs of layers. To describe the algorithm, let us consider time ti, which corresponds to the winding of pack i. Packs 1 to i-1 are already wound up: we know their tension reference and their actual values (measured). The instruction for i is also clearly defined and it is now possible to calculate the instruction for i+1 to N, then to compare the values of the tension measured with the ones predicted by the model for a *fictive* roll. By the gauge of the tangential stress, we will calculate the weight function. The optimization of this function by minimizing it according to the principle already defined, makes it possible to find the optimal instructions of tension for the remainder of the reel: i+1 to N. The next instructions will be thus reactualized as the roll is being wound.

The improvement is clearly illustrated in Figures 7, which present a comparison between the computed instruction offline and the instruction computed by online optimization of the stress. The latter is obtained by using a model representing an experimental device composed of three engines: winder, unwinder and tractor, Koç [12], see Figure 1. The winding tension measured corresponds to that given by the simulator, the imperfections of the sensor and the disturbances are represented by black noise. It should be noted that without the addition of this noise, the "offline" and "online" instructions remain identical.

IV - CONCLUSION

Assimilating a roll of a flexible medium (i.e. plastic film) to an orthotropic solid, the internal stress can be predicted as a function of the process conditions and of the film properties. This model is used to introduce the new concept of "online optimisation" of the reference tension : the winding tension is adjusted online so that to insure an internal stress state compatible with elastic deformations of the web within the roll. The next step would be to tailor the surface topography so that to relax the internal stress, see Boutaous *et al.* [4-5].

V - REFERENCES

- 1. Altmann H.C., "Formulas for Computing Wound Roll Stresses in Center-Wound Rolls," <u>TAPPI J</u>. Vol. 49, N° 8, 1966, pp. 347-362.
- 2. Bourgin P., and Bouquerel F., "Winding Flexible Media : A Global Approach", Adv. Info. Storage Syst. ASME, Vol. 5, 1993, pp. 493-511.
- 3. Bourgin P., "Air entrainment in winding: to be avoided or mastered?," Keynote Lecture, <u>Proc. 4th Intl. Conf.Web Handling</u>, Oklahoma, USA, 1997, pp.161-176.
- 4. Boutaous M. and Bourgin P., "Winding plastic films: experimental study of squeeze film flow between one smooth surface and one rough surface," <u>Proc.</u> 4th Intl. Conf. Web Handling, Oklahoma, USA, 1997, pp. 224-234.
- 5. Boutaous M. and Bourgin P., "Dynamic characterization of surface topography of plastic films," <u>Macrom. Symp.</u>, Vol. 148, Polymer char.1999, pp. 311-319.
- 6.Brown B.C. and Goodmann L.E., "Gravitational stress in accreted bodies," <u>Proc. Roy. Soc.</u>, vol. 276 A, 1963, pp. 571-576.
- 7. Connoly D. and Winarski D.J., "Stress analysis of wound magnetic tape," <u>Proc.</u> <u>ASLE Intl. Conf.</u> SP 16, San Diego, 1984, pp. 172-182.
- 8. Geddes J.E., Postlethwaite M., "Improvements in product quality in tandem cold rolling using robust multivariable control," <u>IEEE Trans</u>. on Control Systems, Vol. 6, N° 2; 1998.
- 9. Good J.K. and Covell S.M., Proc. 3rd Intl. Conf. Web Handling, Oklahoma, USA, 1995, pp. 95-112.
- 10. Hakiel Z., "Non-linear model for wound roll stress," <u>Tappi J</u>. Vol. 70, 1987, pp. 113-117.
- Jeon S.H., Kim J-M., Jung K.C., Sul S.K., Choi J.-Y., "Decoupling control of briddle rolls for steel mill drive systems," <u>IEEE Trans</u>. on Ind. Appl., Vol. 35, N°1. 1999.
- 12. Koç H., Knittel D., de Mathelin M., Abba G., "Robust control of web transport systems," <u>Pro. IFAC Symp</u>. on Robust Control Design, ROCOND'2000.
- 13. Nelder J.A., Mead R., "A simplex method for function minimization," <u>Comput. J.</u>, Vol. 7, 1965, pp. 308-313.
- 14. Pfeiffer J.D., "Prediction of roll defects from roll structure formulas," <u>Tappi</u> <u>J.</u>, Vol. 62, N° 10, 1979, pp. 83-85.
- 15. K. N. Reid, K-C. Lin, "Control of longitudinal tension in multi-span web transport systems during start-up," <u>Proc. 2nd Intl. Conf. Web Handling</u>, Oklahoma, USA, 1993, pp. 77-95.
- 16. W. Wolfermann, "Tension control of webs. A review of the problems and solutions in the present and future," <u>Proc. 3rd Intl. Conf. Web Handling</u>, Oklahoma, USA, 1995, pp. 198-229.
- 17. W. Wolfermann, "Sensorless tension control of webs," Proc. 4th Intl. Conf. Web Handling, Oklahoma, USA, 1997, pp. 318-340.
- 18. Yagoda H.P., "Resolution of a core problem in wound rolls," <u>ASME, J. Appl.</u> <u>Mech.</u>, Vol. 47, 1980, pp. 847-854.

ACKNOWLEDGEMENTS

The authors wish to thank the University of Strasbourg (Louis Pasteur) and the French Ministry of Research for financial support through the project "Winding and high velocity handling of flexible webs" (ERT N° 8).

Figure 1: Chain of winding

Figure 2: Influence of the nominal tension on the stress components

Figure 3: Effect of tension fluctuations.

Fig. 4 : Offline optimization of the reference tension

Fig. 5 : Optimization gauge for tangential stress

Fig. 6 : Online optimization of the reference tension

Fig. 7 : Offline and online tension references : comparison

Online Control of Tension in Web Winding Systems Based on Wound Roll Internal Stress Computation **P. Bourgin¹, M. Boutaous¹, and D. Knittel²** – ¹Ecole Supérieure de Plasturgie and ²University of Strausbourg, France

Name & Affiliation	Question
N. Vaidyanathan – Presstek	Does your optimization Criterion J have any physical
	significance? Does the combination of terms have any
	physical meaning or interpretation?
Name & Affiliation	Answer
P. Bourgin – Ecole	This is a classical way to define functionals that are used
Supérieure de Plasturgie	in optimal control. So you have a gauge where the function
	$g(\sigma(\theta),r)$ is equal to 1 when you are within the gauge and
	much greater than 1 otherwise. You search for function T_w
	so that functional J will be minimal. Thus there is no
	physical meaning for Criterion J, but this is a general way
	of using optimal control theory.
Name & Affiliation	Answer (Additional)
M. Boutaous – Ecole	This Criterion J is based on the model of Nilder and
Supérieure de Plasturgie	Meade. There is no guarantee that the minimum is a global
	minimum. It can be a local minimum. This is explained in
	their paper.
Name & Affiliation	Question
K. Shin – KonKok	Criterion J is often used to design a controller in the
University	control area. In your case, you have computed reference
	tension by use of the criteria. So you are using the criterion
	in a different way. Can you guarantee the performance
	Just by calculating a reference tension? Are you using
Name & Affiliation	A new on
D Deursin Easle	Answer L will answer your second question first. So far we have
P. Bourgin – Ecole	I will allower your second question first. So far we have
Superieure de Flasturgie	have used it for both (tangential and radial) but that would
	have led to a more complicated problem. As a first step
	we decided to ontimize the tangential stress which we
	believe is the most critical in terms of wrinkles. This is a
	simple, two-dimensional model. Now regarding your first
	question; I agree that we used the classical optimal control
	theory in a slightly different way. The quality of this
	control depends on whether we have reached a global or a
	local minimum. There is no way to be sure because there is
	no way to ensure the uniqueness of the solution. We
	assume that everything seems to work fine but if
	something is wrong, we cannot know. That is a weak point
	of the problem. Perhaps Dr. Koc would like to make
	additional comments on my answers?

Name & Affiliation	Answer
H. Koc – Siemens	We were concerned with the control of this system. We
Germany	used simple PI controllers and I will present the control
	aspect of this system in the paper I will present later.
Name & Affiliation	Question
Z. Hakiel – Eastman Kodak	Are you aware of a U.S. patent that covers the use of
	tangential stress models in a closed loop control system to
	minimize the resultant imperfections?
Name & Affiliation	Answer
P. Bourgin – Ecole	No, I'm not aware of this.
Supérieure de Plasturgie	
Name & Affiliation	Answer
Z. Hakiel – Eastman Kodak	I will provide you with the reference.
Name & Affiliation	Question
G. Homan – Westvaco	In your figure 4, you mentioned the limits you were trying
	to operate within: b is within those limits, a falls outside
	the limits. What's the difference between a and b ?
Name & Affiliation	Answer
P. Bourgin – Ecole	The blue and red lines represent the upper and lower limits
Supérieure de Plasturgie	not to be surpassed. So curve a shows a negative part
	which means that in this zone there is a risk of wrinkle.
	Curve a corresponds to the stress generated without the
	optimization of the tension. Then using Criterion J it is
	possible to modify the nominal tension T_w and then curve
	b is obtained. So you modify the whole shape of the curve,
	and then the entire part of the curve is positive. This is the
	concept.
Name & Affiliation	Question
D. Roisum – Finishing	I'm surprised that you chose tangential stress as the
Technologies	objective function because it might predict buckling or
	starring, but only in conjunction with radial stress. Had
	you picked the radial stress, you would have been able to
	talk about things like telescoping and blocking and gauge
	bands and many other things. Maybe a wider spectrum of
	applications. Any comments?
Name & Affiliation	Answer
P. Bourgin –	Yes, you are correct. We decided to select the tangential
Ecole Supérieure de	stress as a first step for our problem. It would be better to
Plasturgie	control both, simultaneously, but this would be even more
	complicated. This could be one of the further steps in our
	research.