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PREFACE

The Fundamental Theorem of Algebra, well known to every student
of elementary algebra, has been proved many times in a variety of
ways, The purpose of this report is not to offer any new proof but
merely to give the reader the opportunity of examining proofs of
this famous theorem written by one of the greatest mathematicians
of the nineteenth century, Carl Friedrich Gauss, The proofs are
significant in that they represent the first rigorous proofs of the
theorem and because they represent the work of a mathematician who
made contributions to almost every leading field of pure mathema-
tics, astronomy, electricity and magnetism,

Grateful acknowledgments are due Professer John Hoffman, my
report advisor, and Professor Alton Juhlin, of the librarystaff,
for their valuable help during the writing of this report. Thanks
are also due Dr, James A, Zant and the National Science Foundation

for making this year's study possible,
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CHAPTER I
INTRODUCTION

A fundamental problem in the theory of equations is the solu~
tion of the general equation of the nth degree in one unknown,
Only very special cases of this problem were solved by the ancient
and pedieval mathematicians, Instances of the solution ef special
cases are furnished byt the geometrical representation of roots of
equations of small degree by the early Greeks, the finding of one

positive rational root of quadratic equations by Diophnntus”)

» and
the recognition by the Hindus and the Arabs of the fact that at
least some numerical quadratic equations have two roota,

Starting from such special cases as these, mathematicians have
gradually comprehended the fact that not only is every equation of
the form ax2 + b; + ¢ =0 solvable in the field of complex num-
bers, but far more is true: Bvery algebraic equation of any degree

n with real or complex coefficients,

n nel n=2
£(x) = x + a 1% ta ,x +teontayx +ao=0,

has solutions in the field of complex numbers, This elegant theorem
is commonly known as the Fundamental Theorem of Algebra,
For equations of the 3rd and 4th degrees this was established

in the sixteenth century by Tartaglia, Carden, and others, who solved

such equations by formulas essentially similar to that for the quad-
ratic equation, although much more complicated, For almost two



hund;ed years the general equations of the 3th and higher degrees
were intensively studied, but all efforts to solve them by similar
methods failed, It was a great achievement when Carl Friedrich
Gauss in his doetoral dissertation (1799) succeeded in giving the
first complete proof that solutions exist. The question of genera-
lizing the classical formulas, which express the solutions of
equations of degree less than 5 in terms of the rational operations
plus root extraction, remained unanswered until early in the nine-
teenth century when Abel conceived the idea of proving the impossi-
bility of the solution of the general algebraic equation of degree

n by means of radicals.

Though Gauss apparently introduced the term, fundamental theo-
rem of algebra, it is not certain to whom the credit belongs for

first stating this theorem, Professor C, Raymond Adams(l)

credits
Peter Rothe (1608) with recognizing that an algebraic equation of
the nth degree may have n roots, and Albert Girard (1629) with
asserting that "every algebraic equation has as many solutions as
the exponent of the highesat term indicates"; adding the qualifica-
tion "unless the equation is incomplete" (that is, does not contain
all powers of x from n down to zero). Girard did point out
that if an equation has fewer roots than 1its degree indicates,
it is useful to introduce as many “impossible" (i.e,, complex)
solutions as will make the total number of roots and impossible
solutions equal the degree of the equation,

Before Giauss, several faulty proofs of the theorem were de~

vised, notably by d'Alembert (1740), whose proof was so widely ac-

cepted that the theorem came to be known, at least in France, as



d'Alemberts' theoremj by Euler (1749); by Lagrange (1772); and by
LaPlace (1793).
Though van der waerden(e) mentions five proofs, most histori-

ans agree that Gauss gave four proofs, The first was discovered in

1799 and constituted his dissertation, Demonstratio nova theorematis

omnem functionem algebraicam rationalem integram unius variabilia

in factores reales primi vel secundi gradus revolvi posse (A New Proof

that Every Rational Integral Function of One Variable Can Be Resolved
into Real Factors of the First or Second Degree). In this proof,
Gauss gives one of the first coherent accounts of complex numbers,
proving that all roots of any algebraic equation are "numbers" of
the form a +bi, where a,b are real numbers, and i is the square
root of =1, This new "numb?r" was called complex., The significance
of this first proof lies in the fact that it showed all previous
proofs of this important iheorem to be faulty and it gave a newly
constructed rigorous proof, W#hat Gauss actually proved is that any
polynomial can be reduced to real factors of the first or second de-
gree, The second and third proofs appeared in 1816; and the fourth,
a simplification of the firat, was published in 1850,

Gauss made the restriction that the coefficients in the equa-
tion be reaI.; this, however, is notaseriﬁus defect since it can be
shown that the case in which the coefficients are complex can he re-
duced to that in which they are real, (See note on fourth proof, page 29).

It is now generally agreed that this theorem does not belong
to algebra, With the theorems of complex variable theory, the Funda=~
mental Theorem can be established immediately as will be demonstrated

in the closing chapter,



CHAPTER II
SECOND PROOF OF THE FUNDAMENTAL THEORFM OF ALGEBRA

This proof of the theorem, as translated by Professor C., Ray-

mond Adams(l)

. has an introductory section which containas the
proofs of certain theorems on the primality of rational integral
functions and on symmetric functions., Only a brief resume of this
section of the proof will be given as these theorems are now well
known., From this point on the proof will be presented in full,

In the introductory section it is proved that if Y and Y°*
are any two integral functions of x, a necessary and sufficient
condition that they have no common factor other than a constant is
that there exist two other integral funcfions (the term integral

function is used here in the sense of rational integral function)

of x, Z and 2', satisfying the identity
Z2Y + 2'Y' = 1
It is pointed out that if a, b, ¢, ... 1is any set of m con-

atants and if we define

v = (x=a)(x~b)(x=c)... = :l:m-/\'xm"1 e E L *

each A , or any function of the A's is a symmetric function of
ay by €y ene
The next part of the introduction is devoted to prowving that

any integral symmetric function of a, b, ¢, ... is an integral



function of the ;\‘sg the uniqueness of this function of the A's
is established.,
Next, the product
r = (a=b)(a~c)(a-d)...x(b-a)(b=c)(b=d)...x(c~a)(c-b)(c~d)seeX ous
is introduced. This is a certain integral function of A', A",, .4
the same function of 2°', Q" ,,., is denoted by p and is defined
as the discriminant of the function

1 m-2

m M
Yy=Xx = 2'x + At x - esee

This is regarded as any integral function of x of the mth degree
with the leading coefficient l,withoﬁt regard to the question of
factorability, and the 2 's are to be thought of as variables, On
the other hand the function

Y= xP - L'xm"'l + L"xm-2 -

ode

is regarded as a particular, though arbitrary, function of the same
type, with no restrictions on the coefficients, which are to be

thought of as arbitrary constants, The value of p for R' = L',

L% = LYy, ,.. is8 denoted by P, It is with the factorability of ¥
that this proof is concerned. On the assumption that Y can be
broken up into linear factors,'
Y = (x~A)}){x=B)(x-C) ... ,

the following theorems are p;oved:

Theorem 1t If P, the discriminant of Y, is zero, Y and Y.z %

have a common factor.

t

Theorem 11t If P, the discriminant of Y, is not zero, Y andY

have no comnon factor,

This concludes the introductory section,



Theorem I and II will now be established, “ith the second,
and simpler, we begin,

%e will denote by (@ the function

BK{X=b) (xec) (X~d) s oo a!x-a”x—-cnx-d)“, xsx-a“x-bzgx-d),"
(a-br(a-cF<a-a) . (beaPomc (b=,  (coaF(c-bP(cmdP..

+ oeny

which, 2ince n 1is divisible by the individual demominators, is
an integral function of the unknowns x.a,bj;cy .se turthermore ,
we set dv/dx = v', where v = (x-a){x=b)(x=c) qee y obtaining

v = (x«b)(x=C)(xed)s0e + (x=a)(x=C)(x=d) ess + (x~a) (x=DNX*Q) 100 + cue
For x=z=a we clearly have Pvt =, from which we conclude that the
function n=pv' is exactly divisible by =x-a (an integral function
will Le said to be exactly divisille by o second integril function
of the same variables if the quotient of the first by the second
is a third integral function of these variables), == (->§' is also
exactly divisible by x-b, X~t, ... and consequently also by the

product v, If we set

'—-ve-'—‘- v = O ,

¢ is an integral function of the unknowns X, a8,byC,; .ae and sym-
metric in the unknowns @y b4¢€y e Accordingly, there canbe found

two integral functions r and 8 of the unknowns x, ', %, ...
which, when we make the substitutions Q'= A", %"= A%, ... hecome

P and 0, respectively. If analogously we denote the function

mxm-l - (m-l)l.‘xm'z + (m-2) L"xm.s- ene 9

that is, the derivative dy/dx, by y*, so that y' also goes over
by those substitutions in v?*, then clearly by those same substitu-
tions pesy-ry'! goes over into n=ove~ ¥', that ia, into zero,

and must therefore vanish identically, !ience we have the identity



p = 8y + ry'

If we assume that by the substitution ' =L', 2" =L",... r and

8 becone respectively R and 8, we nave also the identity
P =SY + RY' ;

and since S5 and R are integral functions of x, and P is a de=
finite quantity or number, it follows at once that Y and Y' can
have no common factor if P is not zero,

The proof of Theorem I will be constructed by showing that if
Y and Y' have no common factor, P can certainly not be zero, To
this end we determine two integral functions of the unknown x, say
f(x) and ¢(x), such that the identity

£(x) Y + 9({x)-Y' = 1

holds§ this we can also write as

d(v=-Y)

fix)v + p(x)ev’ =2 1 ¢+ £(x) - (v=¥Y) + 9o(x) i

or, since we have

v' =2 (x~b){(x=¢c){(x=d) ... + (x~a)

d [(x-b) (x-¢) (x-a)...]
dx ]

in the form

af(x-b) (x-¢) (x-d).. ]

®(x) (x=b)(x~-c)(x=d).,. +¢(x)-(x~a) =

? 2(x)-(x-aXx=bXx-¢) =1 + £{x)-{v-Y) + (x) d(v-Y)

For brevity we will denote the expression

£(x)+ (y=1) + ptx) H¥=D)

which is an integral function of the unknowns x, ', 2", ... ,

by
F(x'ﬁ” JQ-"' ..-) ‘



hence we have identically
1 + £(x)-(v=Y) + :p(x)-g-s-‘é;-!l =1 + Flxy A'y A"y .00)y
and therefore the identities
(1) 9p(a) - (a=b)(a~c)(a=d)... = 1 +Fla, A'y A", ...),

@(b)'(b-a)(b-C)(b-d)... = 1 +F(b’ A" A"' -oo)'

If then, we assume that the product of all the functions
1l + F(a’ -Q', —Q“‘ .0-)' 1l + F(b. -2.' 2"' ooo), ess 3§

which is an integral function of the unknowns a, b, ¢, ++. s 2%,
2", .«. and indeed a symmetric function of a, b, ¢, ... ; i de~
noted by

YEA G AYy hee s ', R4 000 o
there follows from the multiplication of all the equatiomns of (1)
the new ldentity
(2) %P8 - Pb PC eae = Y{ ATy A"y eae 3 Ay A", .a. )
It is furthermore clear that since the product oa-¢b-yc ...
involves the unknowns a, b, ¢y ... symmetrically, an integral func=-
tion of‘ the unknowns ' = A', 2" = A", .., goes over into ga-¢b-

¢$c ... If t is thia function we have identically

(¢) pt = (R, ", ..., ', 2", ... ),
for by the substitution %= A', 2% = A", _., this equation becomes
the ideatity (2).
From the definition of the funetion F follows immediately
the identity
F(x, L', L%, ... )= 0
Hence we have successively the following identities,
1 4+ Fla,L'L", +.a) =1, 1 +F(b,L*,L", ,..) = Lyees o

LP(A" A"' seoe 'L..L"' o-s) = 1’



and

(4) (R A", see ¢ L', LY, seay) =1
From equations (3) and (4) jointly, if we set 2'= L', Q" =1L", ... 4
follows the relation

(s) PT =1
where T denotes the value of the function t that corresponds to
those substitutions, Since this value must be finite, P can cer-
tainly not be szero,

From the foregoing it is apparent that every integral function
Y of an unknown x whose discriminant is zero can be broken up
into factors of which none has a vanishing discriminant, 1In fact,
if we find the greateat common divisor of the function Y and -§§-,
Y is thereby broken into two factors, Ifone of these factors again
has the discriminant zero, it may in the same way be broken into
two factors; and so we shall proceed until Y is finally reduced
to factors no one of which has the discriminant gero,

Moreover, one sees that of those factors into which Y has been
broken, at least one has the property that among the factors of its
degree index the factor 2 is present no more frequently than it
occurs among the factors of m, the degree index ¢f Y } according-
ly, 1if we set m=k-2" , where k is odd, there will be among the
factors of Y at least one whose degree is k! 2v s K' being odd
and v=p or vZV, The validity of this assertion follows immediately
from the fact that m is the sum of the numbers which indicate
the degree of the individual factors of Y,

Before proceeding further, we will explain an expression whose

introduction is of the greatest use in all investigations of
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symmetric functions and which will be exceedingly convenient also
for our purposes, (e assume that ¥ is a function of some of the
unknowns a,b,c, ... Let » be the number of those which enter in=-
to the expression M, without reference to other unknowns which
perhaps are present in M, If these M~ unknowns are permuted in
all possible ways, not only among themselves but also with the m-pM
remaining unknowns of the set a,b,e, ..., there arise from M
other expressions similar to M, so that we have in all
m(m-1)(n-2) ... {(m-m + 1)
expressions, including M itselfj the set of these we call sim-
ply the set of all M, From this, it is clear what is to. be under=-.
stood by the sum of all M, the product of all M, ,., Thus, for
example, ® can be called the product of all a-b, v' the pro-~
duct of all x~a, v' the sum of all ;;; s etec,

If M is a symmetric funetion of some of the * unknowns
which it contains, the permutations of these among themselves will
not alter the function M} hence in the set of all M, every term
is multiple and in fact, is present 1°2 .., v times if v stands
for the number of unknowns in which M is symmetric, But if M
is symmetric not only in v unkonowns but also in v' others, and
in wv" still different unknowns, etc.,, then M is unchanged if
any two of the firat v unknowns are permuted among themselves,
or any two of the following v*' among themselves, or any two of
the next v" among themselves, etc,, so that identical terms al-
ways correspond to

1'2 400 v-1:2 .0 v'e 12 .., v ...

permutations, If then, from these identical terms we retain only
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one of each, we have in all

m(mel)(m=2) ,,, (m=M +1)
1-2 e 42 1P v'-1-2 ses v anse

terms, the set of which we call the set of all M without repeti-
tions tﬁ distinguish it from the set of all M with repetitions,
Unless otherwise stated, we shall always admit the repetitions,

Furthermore the sum of all M, or the product of all M, or
more generally, any symmetric function whatever of all M is al-
ways a symmetric function of the unknowns a,b,c,..., whether re~
petitions are admitted or excluded,

We will now consider the product of all u-(a+b)x +ab without
repetitions, where u and x indicate unknowns, and denote the same
by f . Then f will be the product of the following 1/2m{m=-1)
factora:

u~{(a+b)x + ab, u={a+c)x + ac, u=-(as+d)x + ad, ..., }

u={bsc)x + be, u=(bed)x + bd, ... }

u=-{(c+d)x + cdy cee } aes
Since this function involves the unknowns a,b,c,... symmetrically,
it determines an integral function of the unknowns u,x, ', 2",...9
which shall be denoted by =z, with the property that it goes over
into f if the unknowns ', 2", ... are replaced by A', A", ...

Finally we will denote by Z the function of the unknowns u and

x alone to which 2z reduces if we assign to the unknowns ', 2",
«+s the particular values L', L%, ,..

These three functions f{ ,z,and Z can be regardedas integral
functions of degree 1/2m(m-1) of the unknown u with undetermined
coefficients] these coefficients are

forf ¢ functions of the unknowns x,a8,b,Ceess
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for 2z, functions of the unknowns x, &', ", .,

for 2, functions of the single unknown x,
The individual coefficients of 2 will go over inte the coefficients
of f by the substitutions R'= A', 2" = A", ,,., and likewise into
the coefficients of Z by the substitutions 2'= L', Q% = L",,.,
The statements made here for the coefficients hold also for the dis-
criminants of the functions f e 2, and Z, These we will examine more
closely for the purpose of ohbtaining a proof of the following theoremnm,

Theorem: VWhenever } is not =zero, the diseriminant of the
function 2 cannot vanish identically.

The proof of this theorem will be omitted,

The discriminant of the function f is the product of all dif-
ferences between pairs of quantities (a+b)x - ab, the total number
of which is

1/2m(m-1){1/2m(m=1) =1] = 1/4 (m+1) m(m-1) (m-2).
This number also expresses the degree in x of the discriminant of
the functionf « The diseriminant of the function 2 will be of
the same degree, while the discriminant of the function Z can be
of lower degree if some of the coefficients of the highest power of
X vanish, Our problem is to prove that in the discriminant of the
function 2Z certainly not all the coefficients can be zero,

If we examine more closely the differences whose product is the
discriminant of the function [ ¢ We notice that a part of them
(that is, those differences between two guantities (a+b)x - ab which
have a comson element) provides the product of all (a-=b)(x- c);
from the others (that is, those differences between two gquantities

(a+b)x =~ ab which have no comiaon element) arises the product of all
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(a+b~c=d)x~ab+cd
without repetitions, The first product contains each factor a-b
clearly m-2 times, whereas each factor x-c¢ is contained (m-1)-
(m=-2) timesj from this it is easily scen that the value of this

product is
22 v(n—-l) (m~2)

If further we indicate by r that functions qt the unknowns x, 2°¢,
Q"4 «.. which by the substitutions Q2%'= A', 2" = A", _, roes over
into @ sand by R that function of x alone into which r goes
over by the substitutions R'= L', Q"= L", ..., the discriminant of
the function 2z will be equal to

pm-z y(m—l)(m--Z) r

while the discriminant of the function Z will be

Pm-2 Y( m-1)(m-2) R

.
Since by hypothesis P is not zero, it now remains to be shown that
R cannot vanish identically.

To this end we introduce another unknown w and will consider
the product of all

(a+b ~c = d)w +(a - c)(a - @)
without repetitions§ since this involves the a,b,c,.,.. symmeirical~
ly, it can be expressed as an integral function of the unknowns w,
A'y A"y ... We denote this function by filw, A', A",...). The
number of the factors (a+be-c-d)w + (a-c){a=d) will be
1/2m (m-1)(m=2) (m=3) ,

from which easily follow in succession the equalities

L0, A%y A™, vee ) = &\ m=2) (m-3)
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£(0, R'y "y ...) = ph'Z)(m's)
and

£(0, L'y L7, ...) = P2 (2=3)
The function f(w,L',L",,,.) must in general be of degree
1/2m (m=1)(m=2) (m=3) }

only in particular cases can it reduce to lower degree, if some
coefficients of the highest power of w wvanishj it is, however,
impossible for it to be identically zero, since as the above equa-
tion shows, at least the last term of the funetion does not vanish,
¥e will assume that the highest term of the function f(w,L*,L",
ees) to have a non-vanishing coefficient is Nw' e If we make the
substitution w = x = a, it is clear that f(x « a,L*,L" , ,..)
is an integral function of the unknowns x and a, or what is the
same thing, an integral function of x whose coefficients depend
upon the unknown a; its highest term is Nx' and it therefore has
a coefficient that is independent of a and different from zero.
In the same way f(x - b,L',L", ...}, f(x « ¢c,L',L",...), ... are
integral functions of the unknown x which individually have Nx'
as highest term, while the coefficients of the remaining terms de~
pend upon ag.b,c,... Hence the product of the m factors f(x - a,
L' L%, .0.)y 2 (x = byL',L",,..)y f{x =~ ¢y L*',L",..0) 4e.. will be an
integral functiqn of x whose highest term is N s whereas the
coefficients of the subsequent terms depend upon a.b,Cye..

We now consider the product of the m factors

T(x =8,y 0%, 2", o) o f{x=by 7, 8", ..) s f(x=Cy '3 2" y000)peens
which as a function of the unknowns x,a,b,Cyee., ', 2",,.., sym=~

metric in the a,b,c,...s can be expressed in terms of the unknowns



15

Xq >\'| A"u--: 2', M,..s and denoted by

cp(x, Al 9 A.". snsy -Q.. 1", cen )

Xy AT Ay eaey AT AN, L)
becomes the product of the factors o
f(x=8y A%y AMyece) g flx=by A'y A"yoel)y fxmey A%y A"y teddyaus

and is exactly divisible by (? 4 s8ince as 1is easily seen each factor
of @ is contained in one of these factors, We will therefore
set

P(xe Aty Ay iee o A A", 0ie ) = OW(x, ATy AT, 00l ),
- indicating an integral function. From this follows at once the
identity

PUX Lt yL"y cae s L'y L'y 400 ) = R¥ (x4, L, L", ... ).

We have proved above, however, that the product of the factors
Flx=a,L' L, ,00)y F{x=b L', LW, 00)y F(xwcy, L'3L"; 20a) s 0ee
which is @(xs A '3 A"yeuesl'3L",0..) has 5™ as its highest term;
hence the function @(x,L*,L¥,...4L"4L",,..) will have the same
highest term and accordingly, will not be identically zero, There=-
fore R, and likewise the discriminant of the function Z, cannot
be identically zero,

Theorem: If 9(u,x) denotes the product of an arbitrary num-
ber of factors which are linear in u and x and so of the form

a + Bu + x,a' + Plu+ 'x,0% ¢ BPu + "X ...

and 1f w 1is another unknown, the function

(; + w-gzéﬁlzl. x-wwgzégifl) = £2

will be exactly divisible by o(u,x),.
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Proof: 1If we set
Pluyx) = (a+Pu+wyx) Q= (a?+B'u +¥'x) Q' = ...,
then Q,Q'y ... will be integral functions of the unknowns u,x,«,8,

vy a',B', ¥'y, .., and we shall have

dplu,x) _ Yq + (“+Bu+Yx)-§%

s Y*Q' + (a? ¢+ Btu+ ¥Y'x)

&é-:—'}-)- = BQ + (a+Bu+Yx)%?‘-

a B'Q? + (a' +Blu+Y'x)

If we introduce these values into the factora of the product ,

that is, into

G+Bu+¥x+ﬁw9$%;-:—ﬁ‘-)--¥we-¢%%l§—),

a’ ¢+ B'u + ¥'x + B'w-g?%-'-’-‘l - Y'wgg;‘d-:—’—xl s eoe s

we obtain the expressions

(¢ + bu + vx) (14 pwad . w%),

(a‘ + ﬂ'u + Y'x’ (1 + B.wéﬁq: - Y'w%:'gl)’ voew 9

so that §2 becomes the product of @¢(u,x) and the factors

1+ ﬂv%-vwg-g-, 1« a"%’- -Y'w%&-' s ees §
that is, of ¢(u,x) and an integral function of the unknowns u,x,w,x,
BV 40" 3f' Y 'y o0

The theorem of the foregoing paragraph is clearly applicable
to the function f ¢ which from now on we will denote by

f(u.x,?l',h“' '.') '
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so that

f(u+ w%g—, x-w%é-,/\'.)\". ...)

is exactly divisible by f the quotient, which is an integral
function of the unknowns u,x,w;a,b,c ... and is symmetric in a,b,
Cyessy We will denote by

Flugxaw, Aty AN L),

From this follow the identities

3 (u + W-g% » X - "g%o R, .Q"....) = 2\ {u,X,wy 2" e R g0ue)y

4 (u + w%g X W“%g'o L.’L"'--t> = Z\W(uyx,w,L',L", o,. ).

If then we indicate the function Z simply by F(u,x), that is ,
set
f(“gX.L"Lﬂgc-.) = F(u,X)'

we shall have the identity
F (u + w%" X = Wgﬁ) = z%(u.x’w.L'.L"' ese ).

Assuming that particular values of uand x;, say u = U and x = X,
glive

we have identically
F(U + WX" X = 'U‘) = F(UQX)Y'(01X|',L"L"|ccc)o
Whenever U' does not vanish we can set

X~ x

v = T

and obtain

4 L -
F(U+ o .Lix ,x)= F(U,X)W(".X.?EET’-‘ .L'.L",...) .
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XX? X'x
If we set u=U + < - T the function Z therefore be-

comes

F(u,x)\k(u.x, ’;I',"‘ s LT,L", ... )

Since in case P 1is hot é.ero the‘discrimina.nt of the funétion
Z is a function of the unknown x that is not identically zero,
the number of particular values of x for which this diseriminant
can vanish is finite§ accordingly an infinite number of values of
the unknown x can be assigned which give this diseriminant " a
value different from zero, Let. X be such a value of x (which
moreover we may assume real), Then the discriminant of the function
F(u,X) will not be zero and it follows by Theorem II that the

functions

F(u,X) and Q-F-(a%ﬁ
can have no common divisor, We will further assume that there is a
particular value U of u, which may be real or imaginary, that
is, of the form g + hi =1, and which makes F(u,X) = O, so that
F(U,x) = O, Then u~U will be a factor of the function F(u,X)
and hence the function ;‘f_‘%z_'_x_)' is certainly not divisible by u-U,
If then we assume that thias function Q_F_%_:_:_é_)‘ takes on the value U’
for u=U, surely U* cannot be gero, Clearly, however, U' is
the value of the partial derivative % for u=U, x=X§ 1if then
we denote by X' the value of the partial derivative g for the
same values of u and x4y it is clear from the proof in the fore-

going section that by the substitution

4 1
ug0+§-x—--x—-x-

U' *
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the function 2Z vanishes identically and so is exactly divisible

by the factor

X! xx!
u+-‘-ﬁx- U+-U—,- .

If we set u = x° s clearly F(x2 + X) 18 divisible by

2 Xt v XX*
x+ﬁ-;x- +~a-;-

and thus takes on the value zero if for x we take a root of the

equation

2 X! XX

X +EJ—;x—U+-ﬁ-.-=0
that is,

. = -X*' 2 V(4UU'U' + 4XX'0U' + X'X')
2u"

These values are either real or of the form g+hm .

Now it can be easily shown that for these same values of x the
function Y also must vanish, For it is clear that f{xx,x,A’,
A", ovo ) is the product of all (x-a){x=b) without repetitions and

m-1

80 equals v « From this follow immediately

f(xx,x'ﬂ'.l". see ) = ym-l ]

f(xx,x, L'. L"’ see ) = Ym-l $

or F(xx,x) = Ya-]'; accordingly, a particular value of this function
¥ cannot be zero unless at the same time the value of Y is =zero,
By the above investigations the solution of the equation Y= O,
that is the determination of a particular value of x which satis-
fies the equation and is either real or of ’tl.he form g+ hr:‘f, is
made to depend upon the solution of the equation F(u,X) = 0, pro-
vided the discriminant of the function Y 1is not zero, It may be

remarked that if all the coefficients in Y, that is, the numbers
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L', L", ,,. , are real, and if as is permissible we take a real value
for X, all the coefficients in F(u,X) are also real., The degree
of the auxiliary equation F(u,X) = 0 is expressed by the number
1/2m(m-1)} if then m is an even number of the form 2"k, k desig-
nating an odd number, the degree of the second equation is expressed
by a number of the form 2p"1k.

In case the discriminant of the function Y is zero, it will
be possible to find another function @ which is a divisor of Y,
whose discriminant is not zero, and whose degree is expressed by a
number 2'k with v <M, Lvery solution of the equation ¢ = 0 will
also satisfy the equation Y= 0} the solution of the equation é = 0
is again made to depend upon the solution of another equation whose
degree is expressed by a number of the form 2v-1k .

From this we conclude that in general the solution of every
equation whose degree is expressed by an even number of the form
2k can be made to depend upon the solution of another eguation
whose degree is expressed by a number of the form 2"'k with M<M,
In case this number also is even; —that is, if ' is not zero, —
this method can be applied again, and so we proceed until we come
to an equation whose degree is expressed Ly an odd numberj the co-
efficients of this equation are all real if all the coefficients of
the original equation are x;eal. It is known, however, that suchaﬁ
equation of odd degree is solvable and indeed has a real root. Hencs
each of the preceding equations is solvable, having either real roots
or roots of the form g + hm.

Thus it has been proved that every function Y of the form

2

m-1 + LTS L L, s in whieh L*,L%, ... are particular real

xm-L'x
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nunbera, has a factor x-A where A is real orof the form g + -1,
In the second case it is easily seen that Y is also gzero for
X = g—hm and therefore divisible by x- (g-hm) and so by the
product xx= 2¢x +gg + hh, Consequently every function Y certain-
ly has a real factor of the first or second degree, 3Since the same
is true of the quotient jof Y by this factor] s it is clear that
Y can be reduced to real factors of the first or second degree, To
prove this fact was the object of Gauss' second proof of the funda-

mental theorem,



CHAPTER IIIX
THE THIRD PROOF OF THE FUNDAMENTAL THEOREM

The translation of Gauss' third proof by Professor Maxime
(s5)

Bocher is as follows:

Let f{z)_: O be the equation (of the nth degree) for which we
wish to prove the existence of a root, and suppose that in the poly-
nomial f(z) the coefficient of z" is 1., The idea which under -
lies the proof we shall give is, that if we can prove that g(z)/f(z),
where g(z) is a polynomial, does not remain finite for all values

of 2, f{(z) = 0 must have a root, Let

$(2) = 2£'(2) = 5‘%—?—)

F(z) = -mzr 'LZ)

Virite

= u{x,y) + ivix,y),

.where

z =X + yi
Note that: (1) u(0,0) = 0} (2) 1if we describe a circle of radius
a about the origin, u(x,y) can be made positive at all points on

the circumference of this circle by taking a sufficiently large,
since F(w) = n, |

Let

£(2) =2 + (ape by 1)2™ o il b (0

1t bn_li)z+an+bi =0+ 7Ti,

and let

zf'(z) = o' + Tt'i,

22
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Then letting 2z = r(cosg +ising), we have

=" cosnﬁ+a1rn-1 cos(n-1) g + ...

-blrn'l sin(n-1) g - ..,

n

r®sinng +a,r L sin (n=1) g +..0

w
"

1

+blrn-1 cos (n=1) ¢ + ...

o' = or" cos ng + (n-1) alrn'l cos {n-1) ¢

+ cee
- (a-1) b,r" L sin (a-1) g - ...

T = nr” sinng + (n-1) alrn-l sin(n=1)g + ...
+(n-1)b1rn-1 cos (n=1)g + ...

Flz) = g'+x'i  ogo' e’ ot' - w'i ‘ wevi

" v—E—+—-§-————-
62+T G+72

o+7Ti
We wish now to find the dérivatives of u and v with regard
to r and ¢, For this purpose we note the following relations:

6o o do .
Br =T '

br Tt R ¢
Ez?'wzd

We also have formulae of precisely the same sort for express-
ing the derivatives of o' and v' with regard to r and g in
terms of o" and ¥ where

1 cos (n=1) ¢

+
.
L]
.

o" = n°rPcos ng + (n.-l)za1

1

-(n-1)2b1r"' Bin (n=1) g = ..u o

n=1

* = n°r® ein ng 4»(11--1)2 ayr sin{n-l) g + ...

-1

+(n—1)2b1rn cos (n=1) g + ...
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We get then by direct differen tiation

bu _ l bv
r ° 1t B8
- (a2+12)(aa“+t‘r") +J(d‘l"-‘t'd')2 - {oa! +r1:')2 I

r( 02 + 1.'2)

Now form the double integral

a 2%
(] o

If here we integrate first with regard to § and then with re-
gard to r, we obviously get Ge= 0, If, however, we integrate first
with regard to r and then with regard to g, we gét, remembering

that u vanishes at the origin,

O- LG“d# '

the integral being taken around the circumference of a cirecle with
radius a and center at the origin, so that G2 will be positive if
a is suffi'cientl& large., The faet that we get different values
for S¢ according to the order of integration shows that T ecannot
be everywhere finite, continuous, and single valued, and this can
be explained only by the vanishing of 02 + 1.'2 (since r, which also
occurs in the denominator of T is a factor of each term of the

numerator), A point where o 4+ o2 vanishes is a root of f(z) =0,



CHAFTER IV

THE FOURTH PROOF OF THE FUNDAMENTAL THEOREM(‘S)

Let z=x+1iy, then the variable reyresents points in a plane,
and the function f(z) has a definite value at each point in the
plane. ie may write f(z)= P +1iQ, where ‘P and ¢ are functions of
x and y with real coefficients, To findexpressions for P and Q,

let x=1r cos ¢, y=rsing ., By De ®Moivre's Theorem,

2" = r™cos § + i sin $)™ = r"(cos mg + isin mg),

Substituting for z in f(z), we get,

P=r"cos ng + a ! cos (n-1)g + a r2-2 cos(n-2)g + ... ta

1 2

Q=r"sin ng + a]_r".1 sin(n-1)¢g + atzrn"2 sin(n=2)g + .., + a _;rein [

A second expression for P and Q is obtained by letting

t = tan 1/2¢, We obtain,

2 2
cog g = l't,,,sinf a—f“:-t-é,z=r-(—1—f-i——;)-—
1+¢° 1+t 1+t
This gives,
n .
(1+t2) (P+iq) = r®(141)2" & a,r" L1410)%2™2(1.¢%)

n
ree + & (1+t2) -
n

If we expand the binomials by the hinomial formula, and arrange

the result according to the powers of t, we get

(t) h(t)
P= 8l Q=
(1+¢2)2 ° (1+¢ &)’

25
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where g(t) and h(t) are rational integral functions of t, the de-
grees of which do not exceed 2n,

All points in the plane having the same value for r 1lie upon
a circle of radius r, the center of which is at the origin of co-
ordinates, To determine the points on this circle for which Pand Q
vanish, we must solve the equation g(t) = O and h(t) = O, for the
given value of r, But we know that if h(t) = O and g(t) =0 have
roots at all, they cannot have more than 2n, Fromthis it follows
that neither Pnor Q can be equal to zero at all points of an area
in the plane, for in that event we could select 1 auch that the
circle would pass through that area, and P and Q@ would vanish at

an infinite number of points on this circle,
The value of (@ may be written
B (si 2L gin(n-1) g +—2 sin (n-2) )
Q=r snnﬁ+-;—sn n- "*‘,.'2'5“ n=2)g+...).

From this expression it is readily seen that r may be taken
so large that Q has the same sign as sinng on all points of the
circle where sinng is numerically larger than some &, which may

be as small as we please, but not zerc. HMark on the circle the

points
0. X 2 (2n-1) =
] n. n § oo 9y n

and designate them, respectively, by 0,1,2; .0e. 4y 2n=1, Thus the
circle is divided into 2n ares, (01), (12), (23), vc. s (2n~1,0),
in which sinng is alternately + and -, The figure shows the divi=-
sion for n=95. In passing from arc (Ol) to arec (12), the function
Qs for sufficiently large values of r, changes from +to =~ , Since

Q is a continuous funetion having real values, in going along the
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circle from + to -« , it must at
the point 1 pass through zero,
Similarly, ¢ must pass through
zero also at the points 2,3,... 3
(2n-1),but it does this at no
other points of the circle,
Similar remarks apply to

P, 1t isreadily seean that, for

sufficiently large values of r,

P and cos ngd have always equal
signs§ that P is positive at the points 0,2,...,(2n=2), and in their
vicinity, and negative at the points 1,3,5,...,(2n+1), and in their
vicinity,

¥e have seen that Q cannot vanish at all points of an area, Con-
sequently, the area within the circle can be divided into districts so
that in some districts ( is everywhere positive, while in others it
is everywhere negative., These districts are marked off by boundary
lines along which Q vanishes, To aid the eye, the positive districts
are shaded,

An arc (2h,2h+1) of the circle, along which Q is positive, lies
in a positive district, This district lies partly inside and partly
outside the circle, Designate by I the part of it that is inside,
Several cases may arise. The area I may terminate inside, as does
(2,12,3), in which case (2h, 2h+l) is the only arc of the circle
on its boundary. Or, the area I may run inteo another positivearec
(2k,2k+1), or it may divide into two or more branches, each of

which terminates in a positive arc (22, 22+1). If there could
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be within I an area, like an island, in which Q were negative, then
the conclusions which we are about to draw would still follow,
Consider the boundary line within the circle, passing from

2h+1 to 2k, Along this line Q = O, But P is negative at the
point 2h+1 and positive at the point 2k, Since P is continu-
ous and represents real values, P must pass through zero in at
least one point along the boundary line connecting 2h+l and 2k.
Thus, at that point, we have not only ¢ = O but alsec P=0§ that
is, £(z) = P + iQ = O, Thus the existence of at least one root of

2(z) = 0 is demonstrated,

A Note on Gauss' Fourth Proof

The theorem has been proved for the special case in which the
coefficients of the given equation are all real. The general case,
in which some or all of the coefficients are complex, easily follows,
For, if £3(z) is a function of 2z, whose coefficients are, respect-
ively, the conjugate imaginaries of the coefficients of a second
function fa(z), then we may write f£3(z) = A+iB and fo(z)= A ~iB,
and f;(s) f£,(2) = A2 + B2 = f(2), where f(2) has only real coef-
ficients, Now, if f(z) = O can be shown to have aroot @y 5 then
we must have either £3(a;) = 0 or f3(a1) =0. Suppose f3(a;) = O,
then it follows that fz(dz) = 0, where a is the conjugate of aj,

Hence, fl(z) = 0 and tz(z) = 0 have each at least one root,



CHAPTER V
A MODERN PROOF OF THE FUNDAMENTAL THEOREM

The proofs of Gauss are indeed remarkable and are of consider-
able historical interest, However, as we mentioned in the first
chapter, this theorem in its classic form is no longer regarded as
belonging to algebra, The basic ideas of the modern treatment pro-
bably go back to Galeois (1811-1832), |

In 1851, Aquinas J., Liouville published the following famous
theorem bearing his name: If f(2) is analytic for all values of
z, and ‘f(z)‘ is bounded, then f(z) is a constant. The proof of
this theorem can be found in any medern textbook on theory of funce
tions of a complex variable, Armed with this theorem, we can esta-
blish the Fundamental Thedrem of Algebra in itse classic form immediately.

Let G(z) =a 2" + a zn_1 +eset@a ,a 3% 0, 0<n, be an ar=-

o 1 n (¢}
bitrary polynomial, The Fundamental Theorem states that the equa-~
tion1:
| a(z) = 0,

has a root,
To prove this, we will employ an indirect proof, using Liou=-
ville's theorem to arrive at an absurdity,

Subpose G(z) had no root, Form the function

F(z) = g%?y .

Then F(z) 1is analytic in the =z plane. To show that it is bounded,

29



consider its value on a circle,

5 = Re(pin

Since, for all such points,
n 8 %n
Glz) =2 |&a + = 4+ .00 + =
o z

it follows that

\a, ! |2q |
lG(Z)! 2- \Z‘n [‘ao - ‘l";"’ " esse = 'i'féln -
Now, choose R 8o that
o A Y I o™ __1__\ . '
R ? o g° 2 o

Then
)G(z)\ 2 -}-‘a l R" ,r S ‘z[.

Therefore,

\F(z)ts 2n . R$|z‘.

|| ®
o
and so F(z) is bounded, By Liouville's Theorem, F(z) is a con-

stant, But this is absurd, Therefore G(z) has a root,
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