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It is a common practice in the paper industry to verify large portions of the control 
system software during machine commissioning. This is inefficient since the verification 
is done under production conditions when time is limited and delays are costly. The 
reason for this practice is that the machine, the drives, and other equipment are not 
integrated before installation and therefore no trial runs can be made with a web. 

This paper describes a method for software verification using dynamic real time 
simulation. Primitive elements derived at the Web Handling Research Center are 
combined to form a system of simultaneous differential equations that model the behavior 
of the drives and the web. The system of equations is implemented in a programmable 
logic controller and solved in real time using a numerical integration algorithm. The 
outputs from the actual control software are used as inputs to the model and the simulated 
state variables are used as feedback for the software. This makes it appear to the software 
that all equipment has been integrated with the machine and a web is present. 

Results are shown from a real time simulation that was successfully used on a 
winder rebuild to verify unwind brake tension control software. These results are 
compared with data from the actual machine. The differences and similarities are 
discussed with respect to the software verification process. 
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NOMENCLATURE 

A Cross-sectional area of the web 
Bi Viscous damping of a roll 
E Elastic modulus of the web 
Ji Inertia of a roll 
KE!r Unwind voltage to pressure transducer gain 
Kr Integral gain of the drum drive speed regulator 
Kr Proportional gain of the drum drive speed regulator 
Krn Unwind brake torque constant 
K™ Windup motor torque constant 
L Web span length 
N Integer multiple of the timed interrupt sample period 
n Integral term of the drum drive speed regulator 
p Unwind brake pressure 
Ri Roll radius 
11t Numerical integration time step 
T. Sample period of the timed interrupt program file 
~ Web tension 
t1ref Web tension reference 
V Voltage 
vi Surface velocity of a roll 
x Example state variable 
Vzref Drum drive speed reference 
-cEIP Unwind voltage to pressure transducer time constant 

Subscripts 

k An integer representing the present scan 
j 1 = unwind, 2 = windup 

INTRODUCTION 

Software verification is the process of determining if a program will correctly meet 
it's specifications and not perform unintended functions. In the paper industry, large 
portions of this process are completed during machine commissioning. New web 
handling machinery is typically a multi-vendor effort between the machine builder and 
the electric drive supplier. Each vendor manufactures their equipment independently at 
their own facility, so only limited software interface testing is done between the two 
systems. When web handling machinery is rebuilt, one or more sections of the existing 
machine are replaced by new equipment. Whether or not this is a multi-vendor effort, 
some of the machinery is already in place at the mill site and is unavailable for testing. In 
both cases, there is limited opportunity to test the integration of the new software with 
other new or existing equipment before commissioning. Unfortunately, there is little time 
available during the machine commissioning for completing this task. 

Programmable logic controllers (PLCs) with custom control software are used 
extensively in the paper industry to control web handling machinery. This paper 
describes a method to verify PLC control software by using real time dynamic simulation 
to model web handling machinery when it is unavailable for testing. The individual 
components used in the method are reviewed in the first part of this paper. The first 
component, numerical integration, is used to solve the dynamic model of the machinery. 
The next component, real time programming in the PLC, is used to scale the simulation 
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time to correspond to actual time. The final component is the modeling of the hardware 
interface between the PLC and the machinery. These components are combined to 
continuously solve, in real time, the differential equations that describe the states of the 
web handling machinery. The simulation is then coupled to the control software so that 
the verification process can be performed without the machinery. 

An example is presented in the second part of this paper that explains how real time 
dynamic simulation was used to verify the software of a winder rebuild. The 
configuration of the actual winder was used to develop a simplified model. Then a 
simulation that used this simplified model was implemented in a PLC and used to verify 
whether the control software met its specifications. It is also shown that this method can 
simulate web handling machinery with sufficient accuracy to make the verification 
process meaningful. 

THE SIMULATION METHOD 

A web handling machine and its PLC based control system is shown in figure 1. 
The state of the machinery is returned as inputs through a hardware interface to the 
program in the PLC. The program is continuously cycling and processes the inputs to 
generate commands. The new commands are sent as outputs to the machinery through 
the interface. 

Since the web handling machinery is unavailable, a mathematical model of it is 
formed consisting of a system of ordinary differential equations. This system of 
equations is then programmed into the PLC and solved using classical numerical 
integration methods. Figure 1 shows that the simulation of the physical system is done in 
the same PLC in which the control software is implemented. This reduces the amount of 
hardware required for testing and reduces the development time and costs of the 
simulation. The equations are solved with real time programming techniques so that 
simulation time is equal to actual time. The hardware interface is also modeled so that its 
effect on the dynamics of the system are accounted for. 

To implement the simulation, the signal path between the control software and the 
hardware interface is temporarily broken as shown in figure 1. The model is then 
inserted into the signal path to generate the appropriate inputs for the control software 
based on the outputs. 

Numerical Integration 
Web handling machinery can be modeled by creating a system of ordinary 

differential equations based on the primitive elements derived at the Web Handling 
Research Center. This system of equations can then be solved with a numerical 
integration algorithm. These algorithms use only sums and products to find approximate 
solutions to a differential equation at a specified interval or time step 81. 

The fourth order constant step size Runge-Kutta algorithm [l] was chosen to 
simulate the physical system. This algorithm can accurately solve systems of differential 
equations with a moderate computational burden. It is also numerically stable as long as 
M is sufficiently short. To illustrate how the algorithm works, we begin with the first 
order differential equation shown in (1) that is a function of time t and the state variable 
x. If the differential equation had been second order or higher, it would need to be 
reduced to a system of first order differential equations. 

x = dx =f(t, x) 
dt 
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The derivative can be approximated by a finite change in the state variable over a discrete 
time step. Equation (1) can then be rewritten as: 

(2) 

Both sides of (2) are multiplied by L\t to solve for the finite change L\X of the state 
variable. Converting to a difference equation results in the form shown in (3). The 
fourth order Runge-Kutta algorithm extends this by calculating four estimates of the 
change at different points of the interval L\t. The first estimate is taken at tk-J in (3). The 
next two estimates are taken at the trial midpoint tk-J + 1/2-L\t in (4) and (5). The final 
estimate is taken at the trial endpoint tk-J + L\t in (6). 

(3) 

(4) 

(5) 

(6) 

A weighted average of the estimates is then taken. The weighting values are chosen with 
a mathematical procedure which ensures that the error is minimized. This average 
change is added to the value of the state variable from the previous scan to find the 
present value as shown in (7). 

(7) 

Timed Interrupts and Sample Rate Selection 
Real time software executes with a deterministic time interval. Solving the 

equations of state in real time is necessary so that simulation time is scaled to correspond 
to actual time. A real time implementation also holds the sample rate constant. This 
prevents movement of the model's poles and zeros which would cause the dynamics to 
vary. Real time performance is achieved in a PLC by implementing the software in a 
timed interrupt. The main program execution or scan of the PLC is stopped at a preset 
time interval or sample period T •. This allows the PLC to scan the program contained in 
the interrupt file. The main program execution resumes when the program in the timed 
interrupt file is :finished. This procedure is shown graphically in figure 2a. An additional 
benefit of using a timed interrupt is that it allows the interrupt program to be executed 
more often than the main program is executed. 

The sampling theorem requires that the sample frequency of a discrete 
approximation must be greater than twice the bandwidth of the continuous system. If this 
is not done, frequencies higher than twice the sample frequency will appear to be a lower 
frequency or an alias in the discrete approximation [2]. However, the sampling theorem 
only provides a lower bound on the sample frequency that prevents aliasing. It does not 
guarantee that the response of the discrete approximation will closely match the response 
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of the continuous system. A sample frequency at least 10 times the bandwidth of the 
continuous system is needed for a smooth discrete response which closely resembles the 
continuous response [3]. However, choosing a sample frequency that is too fast can 
drastically increase the main program scan time by interrupting it too often as shown in 
figure 2b. The PLC must also have enough computational power to execute the interrupt 
program in less time than the sample period. As the execution time of the interrupt 
program approaches the length of the sample period, the main program scan time will 
increase as shown in figure 2c. 

The integration algorithm is implemented in the timed interrupt program file of the 
PLC. The time step Lit of the integration algorithm is set equal to the sample period Ts of 
the interrupt. Setting these two values to be equal scales the simulation time to match 
actual time. 

Interface Modeling 
The hardware interface between the PLC program and the web handling machine 

can consist of analog-to-digital (AID) converters, digital-to-analog (DI A) converters, 
encoder inputs, or even a communications link to another computer system. The 
interface models that will be discussed in detail are for an AID converter and a DI A 
converter. The encoder input would be modeled like an AID converter and a 
communications link would be modeled as a pure time delay. 

The AID converter is modeled with a discrete time sampler. Simulating the 
physical system in a discrete device like a PLC means that the differential equations must 
be solved with numerical integration algorithms. To make the physical system appear 
continuous to the control software, the integration algorithm must be updated at a faster 
rate than the control software. This means that the sample rate of the timed interrupt 
must be set to what is required by the physical system model as shown in figure 3a. A 
discrete time sampler is then used as shown in figure 3b to take data points from the 
solution at an integer multiple N of the sample rate Ts, The down sampled data points 
will be used in the controller difference equations to calculate the controller output. The 
discrete time sampler suffers from aliasing just as the more familiar continuous time 
sampler does [2]. 

The stair step output of a DI A converter is shown in figure 4a. A zero order hold 
(ZOH) is used to model this characteristic of the DIA converter. The outputs of the 
control software are calculated every N•Ts seconds and held constant in the PLC's 
memory between calculations. The physical system model is being solved every Ts 
seconds, so it accesses these values between the control software calculations. This 
inherent ZOH models the operation of a DI A converter as shown in figure 4b. 

ANALYSIS AND IMPLEMENTATION 

An example is presented in this section that explains how a real time simulation was 
implemented for a winder that was rebuilt to increase it's throughput. The unwind parent 
roll uses a mechanical brake actuated by pneumatic airbags to maintain web tension. A 
portion of the rebuild involved replacing the pneumatic load cells and a pneumatic 
tension regulator with electronic load cells and a discrete tension regulator in the PLC. 
The pressure in the airbags is now controlled by a voltage to pressure transducer (E/P). 
The brake torque is approximately proportional to this pressure. The configuration of the 
actual winder is shown in figure 5. 

A system of 17 first order differential equations would be required to model the 
winder as shown in figure 5. To reduce the computational burden of the simulation, the 
winder model was simplified. The web driven rolls between the unwind and windup 
were eliminated by assuming that they had negligible inertia. The driven guide roll was 
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eliminated by assuming that it's surface velocity exactly matched the web velocity. The 
lengths of the separate web spans were then summed to form one long span. The drums 
were combined to form one equivalent roll by assuming that there was no slippage 
between the wound roll and the drums. This results in the windup being modeled as a 
single inertia. The winder model that was formed with these simplifying assumptions is 
shown in figure 6. 

The differential equations that describe the simplified winder model are given by (8) 
through (12) and are based on the primitive element models found in [4]. The pneumatic 
brake and E/P are modeled in (8) as a first order lag with the gain KEIP and the time 
constant 'tEIP• The unwind parent roll is modeled in (9) as a simple inertia-damper system 
with the brake torque proportional to pressure. The web span is modeled in (10) as a 
nonlinear element whose tension-velocity relationship is based on mass flow. The 
windup is modeled as a single inertia-damper system in (12). A proportional-integral (PI) 
speed regulator was incorporated in the windup model to control the surface velocity of 
this roll. The proportional term is present in (12) while the integral term of the speed 
regulator is treated as a separate state in (11). The inputs into this model are the voltage 
signal V to the E/P and the speed reference Vzref to the windup section. The voltage signal 
is an output from the actual control software that is being verified. The speed reference is 
created by an S-curve generator in the simulation software. The web tension t1 passes 
through the discrete time sampler to be used as an input for the tension regulator in the 
control software. 

. KE/P V 1 p=-- ---p (8) 
'tE/P 'tE/P 

(9) 

· Vz( ) V1( ) t =- EA-t -- EA-t 
I L I L 0 

(10) 

(11) 

(12) 

Equations (8) through (12) were solved by the Runge-Kutta algorithm in the timed 
interrupt file. The initial conditions were manually entered into the memory of the PLC 
before placing it into run mode. The control software was also located in the timed 
interrupt file, but it was only executed every N interrupts. Figure 7 shows a block 
diagram of the actual system and a block diagram of how it was simulated in the PLC. 
Pressure, windup speed reference, windup speed, and tension are displayed on a human
machine interface (HMI) for use by the operator. 

The shortest time constant in the system of differential equations was used as a 
guideline to choose the sample period for the timed interrupt. The unwind parent roll was 
nearly a pure integrator with a time constant measured in minutes. The time constant of 
the pneumatic system 'tE!P was 3 s. The speed regulator was tuned so that the windup had 
an overdamped response similar to a first order system with a 1 s time constant. The web 
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span is a nonlinear system with a time constant L/v2 that varies with the velocity v2. Near 
zero speed, L/v2 is very long and the web span resembles a pure integrator. At the 
maximum winder speed, L/v2 is 160 ms which is the shortest time constant in the model. 
This meant that the sample period needed to be shorter than 80 ms. The PLC required 5 
ms to execute the simulation which meant that the sample period needed to be longer 
than 5 ms. To provide time for the main program to execute, the sample period of the 
timed interrupt was set to 10 ms. The resulting ~t was 16 times shorter than the time 
constant of the web span at maximum speed. This allowed the response of the discrete 
simulation to closely match the response of the continuous system. The sample rate of 
the control software was 50 ms which required that N = 5 for the discrete time sampler. 

RESULTS 

Two sets of results will be presented. The first set of results show how well the 
model represents the web tension. It is desirable to have a physical system model that is 
accurate so that the software verification process is meaningful. The second set of results 
discusses what the expectations were for the simulation. It explains what techniques 
were used to verify the software and the end result of the verification process during the 
machine commissioning. 

Simulation Results 
The simulation results presented here were done after machine commissioning. The 

gains determined during commissioning were used to compare the actual tension with the 
simulated tension. The results in figures 6 and 7 show that near zero speed the model 
was not accurate. This is because a motor model was used to model the brake instead of 
deriving a nonlinear brake model based on static and dynamic friction. Mechanical brake 
torque is generated by the friction force of the brake pads on the drum. Therefore, it can 
only oppose motion; it can not cause motion in the direction of the torque like a motor 
can. The actual machine also had an oscillatory response that the simulation did not 
exhibit. This difference could be due to the simplifying assumptions used in the model. 
The difference in response had no effect on the verification process, but the brake model 
that was used prevented extensive testing near zero speed. 

The cross coupling that existed between the windup velocity and tension is shown 
in figures 8 and 9. The tension temporarily dropped below the setpoint when the windup 
velocity rounded out of the S-curve. This was caused by the relatively sudden loss of 
retarding torque when the unwind stopped accelerating. The tension regulator responded 
to the drop in tension by increasing the braking pressure which caused the tension to 
return to the setpoint value. It can be seen that the physical system model accurately 
represents the cross coupling and the response of the tension regulator. 

As seen in figures 10 and 11, the model closely resembles the physical system at 
steady state. This indicates that the low frequency parameters in the model are relatively 
close to the actual values. However, it can be seen in figure 10 that the actual pressure 
was slowly decreasing while figure 11 shows that the simulated pressure was constant. 
This discrepancy occurred because the unwind radius was treated as a time varying 
parameter in the model. The unwind brake pressure must decrease to maintain a constant 
tension as the parent roll radius decreases. The change in radius was very slow compared 
to the system time constants. Therefore, it was possible to treat R1 as a time varying 
parameter instead of as a separate state. Different values of R1 (and J1) were entered in 
the PLC's memory between simulation trials and held constant during the simulation. 
This allowed verification at different operating points without the extra computational 
time required to solve another state equation. 
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Verification Results 
The verification results presented here describe how real time simulation was used 

to test the control software. The objectives of the software verification process were to: 

• verify the HMI for proper functionality 
• verify that the control software functions properly and that there are no undesirable 

numerical phenomena 
• have the control software functionality at a level sufficient to allow the machine to 

run with paper immediately after commissioning 
• reduce the amount of software modification that is usually necessary after 

commissioning 

The verification techniques used to achieve these objectives included interface testing, 
prototyping, functional testing, and performance testing [5]. 

The functionality of the HMI was partially verified with interface testing. This test 
focused on the communications interface between the HMI software and the PLC 
software. All operator controls on the HMI were moved to their extreme positions while 
observing the corresponding values in the PLC. Conversely, values in the PLC were 
forced to their upper and lower limits while observing data displayed on the HMI. This 
procedure verified that the variables in the HMI were reading from and writing to the 
proper memory locations in the PLC. It also verified that the scaling in the HMI matched 
the scaling in the PLC. After this test was complete, all data was being properly passed 
between the HMI and the PLC. 

The simulation was able to provide a prototyping capability. Since this was a 
custom machine rebuild, it was unknown what operator controls would be best suited for 
the application. Various combinations of operator control devices were programmed on 
the HMI and used to control the simulated machine. This was done until a suitable set of 
control devices were found. Functional testing was then performed for both the control 
software in the PLC and the operator controls on the HMI to prove that the operator 
requirements were met. This was accomplished with the simulation by accelerating up to 
speed, performing a normal stop, performing an emergency stop, and changing tension 
levels. It was established during the simulated test runs that the tension regulator 
algorithm regulated properly. This portion of the testing was also used to verify that 
there were no discontinuous changes in the voltage signal sent to the E/P when the 
tension regulator was switched between automatic and manual modes of operation. The 
functional testing proved that the control software functioned properly, the HMI software 
functioned properly, and there were no undesirable numerical phenomena. 

Performance testing was conducted on the real time portion of the control software 
by monitoring the interrupt scan time in the PLC. This was done to ensure that the 
control software could execute quickly enough to allow real time operation. It was also 
important to verify that the software execution time did not approach the length of the 
sample period and degrade the performance of the main program. 

The simulation was used to determine initial tension regulator gains. The 
proportional gain obtained during the simulation was .001 and the integral gain was 2. 
For comparison, the final proportional gain on the actual machine was .0045 and the final 
integral gain was 4. Although the initial gains were relatively small compared to the final 
gains, they resulted in a stable tension control system on the actual machine. This made 
it possible to run with paper immediately after commissioning. The only software 
modification that needed to be made after the commissioning was to add an unwind brake 
pressure step during deceleration. The purpose of the pressure step was to prevent the 
web tension from decreasing while the winder was stopping. Other work performed after 
commissioning was tuning the tension regulator and adjusting parameters in the software. 
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CONCLUSION 

This paper described a method for verifying control software using real time 
dynamic simulation. Results were presented from an actual winder rebuild that used this 
method. The simulation results showed that this method can accurately model a web 
handling machine and provide for a meaningful verification process. The results of the 
verification included a discussion of the testing techniques used and the success 
experienced during machine commissioning. 

There are many avenues to pursue in future work. Modeling the parent roll build 
down and wound roll build up as separate states will allow more accurate simulations and 
will allow additional control software capabilities to be verified. Another area for further 
investigation is the tradeoff between integration algorithm complexity and physical 
system model complexity. Finally, the use of real time dynamic simulation for operator 
or technician training can be explored. 
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Real Time Dynamic Simulation for Control System R. Bettendorf - Valmet, USA 
Software Verification 

Name & Affiliation Question 
P. Pagilla - OSU Usually in control we want to measure the feedback signal 

at a higher sampling rate than the rate at which we send a 
control signal. In your verification, you were sampling at 
50 milliseconds whereas your control input was at 10 
milliseconds. Would you comment on that? Part of the 
reason we sample the feedback at a higher rate is so we can 
filter the measured signal and control based upon a filtered 
or averaged feedback signal. 

Name & Affiliation Answer 
R. Bettendorf - Metso Normally, you desire the fastest sampling rate possible. I 
Paper was simulating a continuous system in a discrete device. In 

order to make that continuous system look continuous to 
my controller software, I had to employ a much higher 
sample rate on my discrete model of a continuous system. 
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