
REAL TIME DYNAMIC SIMULATION FOR CONTROL
SYSTEM SOFTWARE VERIFICATION

ABSTRACT

by

R. Bettendorf
Metso Paper, Inc. (Valmet)

USA

It is a common practice in the paper industry to verify large portions of the control
system software during machine commissioning. This is inefficient since the verification
is done under production conditions when time is limited and delays are costly. The
reason for this practice is that the machine, the drives, and other equipment are not
integrated before installation and therefore no trial runs can be made with a web.

This paper describes a method for software verification using dynamic real time
simulation. Primitive elements derived at the Web Handling Research Center are
combined to form a system of simultaneous differential equations that model the behavior
of the drives and the web. The system of equations is implemented in a programmable
logic controller and solved in real time using a numerical integration algorithm. The
outputs from the actual control software are used as inputs to the model and the simulated
state variables are used as feedback for the software. This makes it appear to the software
that all equipment has been integrated with the machine and a web is present.

Results are shown from a real time simulation that was successfully used on a
winder rebuild to verify unwind brake tension control software. These results are
compared with data from the actual machine. The differences and similarities are
discussed with respect to the software verification process.

211

NOMENCLATURE

A Cross-sectional area of the web
Bi Viscous damping of a roll
E Elastic modulus of the web
Ji Inertia of a roll
KE!r Unwind voltage to pressure transducer gain
Kr Integral gain of the drum drive speed regulator
Kr Proportional gain of the drum drive speed regulator
Krn Unwind brake torque constant
K™ Windup motor torque constant
L Web span length
N Integer multiple of the timed interrupt sample period
n Integral term of the drum drive speed regulator
p Unwind brake pressure
Ri Roll radius
11t Numerical integration time step
T. Sample period of the timed interrupt program file
~ Web tension
t1ref Web tension reference
V Voltage
vi Surface velocity of a roll
x Example state variable
Vzref Drum drive speed reference
-cEIP Unwind voltage to pressure transducer time constant

Subscripts

k An integer representing the present scan
j 1 = unwind, 2 = windup

INTRODUCTION

Software verification is the process of determining if a program will correctly meet
it's specifications and not perform unintended functions. In the paper industry, large
portions of this process are completed during machine commissioning. New web
handling machinery is typically a multi-vendor effort between the machine builder and
the electric drive supplier. Each vendor manufactures their equipment independently at
their own facility, so only limited software interface testing is done between the two
systems. When web handling machinery is rebuilt, one or more sections of the existing
machine are replaced by new equipment. Whether or not this is a multi-vendor effort,
some of the machinery is already in place at the mill site and is unavailable for testing. In
both cases, there is limited opportunity to test the integration of the new software with
other new or existing equipment before commissioning. Unfortunately, there is little time
available during the machine commissioning for completing this task.

Programmable logic controllers (PLCs) with custom control software are used
extensively in the paper industry to control web handling machinery. This paper
describes a method to verify PLC control software by using real time dynamic simulation
to model web handling machinery when it is unavailable for testing. The individual
components used in the method are reviewed in the first part of this paper. The first
component, numerical integration, is used to solve the dynamic model of the machinery.
The next component, real time programming in the PLC, is used to scale the simulation

212

time to correspond to actual time. The final component is the modeling of the hardware
interface between the PLC and the machinery. These components are combined to
continuously solve, in real time, the differential equations that describe the states of the
web handling machinery. The simulation is then coupled to the control software so that
the verification process can be performed without the machinery.

An example is presented in the second part of this paper that explains how real time
dynamic simulation was used to verify the software of a winder rebuild. The
configuration of the actual winder was used to develop a simplified model. Then a
simulation that used this simplified model was implemented in a PLC and used to verify
whether the control software met its specifications. It is also shown that this method can
simulate web handling machinery with sufficient accuracy to make the verification
process meaningful.

THE SIMULATION METHOD

A web handling machine and its PLC based control system is shown in figure 1.
The state of the machinery is returned as inputs through a hardware interface to the
program in the PLC. The program is continuously cycling and processes the inputs to
generate commands. The new commands are sent as outputs to the machinery through
the interface.

Since the web handling machinery is unavailable, a mathematical model of it is
formed consisting of a system of ordinary differential equations. This system of
equations is then programmed into the PLC and solved using classical numerical
integration methods. Figure 1 shows that the simulation of the physical system is done in
the same PLC in which the control software is implemented. This reduces the amount of
hardware required for testing and reduces the development time and costs of the
simulation. The equations are solved with real time programming techniques so that
simulation time is equal to actual time. The hardware interface is also modeled so that its
effect on the dynamics of the system are accounted for.

To implement the simulation, the signal path between the control software and the
hardware interface is temporarily broken as shown in figure 1. The model is then
inserted into the signal path to generate the appropriate inputs for the control software
based on the outputs.

Numerical Integration
Web handling machinery can be modeled by creating a system of ordinary

differential equations based on the primitive elements derived at the Web Handling
Research Center. This system of equations can then be solved with a numerical
integration algorithm. These algorithms use only sums and products to find approximate
solutions to a differential equation at a specified interval or time step 81.

The fourth order constant step size Runge-Kutta algorithm [l] was chosen to
simulate the physical system. This algorithm can accurately solve systems of differential
equations with a moderate computational burden. It is also numerically stable as long as
M is sufficiently short. To illustrate how the algorithm works, we begin with the first
order differential equation shown in (1) that is a function of time t and the state variable
x. If the differential equation had been second order or higher, it would need to be
reduced to a system of first order differential equations.

x = dx =f(t, x)
dt

213

(1)

The derivative can be approximated by a finite change in the state variable over a discrete
time step. Equation (1) can then be rewritten as:

(2)

Both sides of (2) are multiplied by L\t to solve for the finite change L\X of the state
variable. Converting to a difference equation results in the form shown in (3). The
fourth order Runge-Kutta algorithm extends this by calculating four estimates of the
change at different points of the interval L\t. The first estimate is taken at tk-J in (3). The
next two estimates are taken at the trial midpoint tk-J + 1/2-L\t in (4) and (5). The final
estimate is taken at the trial endpoint tk-J + L\t in (6).

(3)

(4)

(5)

(6)

A weighted average of the estimates is then taken. The weighting values are chosen with
a mathematical procedure which ensures that the error is minimized. This average
change is added to the value of the state variable from the previous scan to find the
present value as shown in (7).

(7)

Timed Interrupts and Sample Rate Selection
Real time software executes with a deterministic time interval. Solving the

equations of state in real time is necessary so that simulation time is scaled to correspond
to actual time. A real time implementation also holds the sample rate constant. This
prevents movement of the model's poles and zeros which would cause the dynamics to
vary. Real time performance is achieved in a PLC by implementing the software in a
timed interrupt. The main program execution or scan of the PLC is stopped at a preset
time interval or sample period T •. This allows the PLC to scan the program contained in
the interrupt file. The main program execution resumes when the program in the timed
interrupt file is :finished. This procedure is shown graphically in figure 2a. An additional
benefit of using a timed interrupt is that it allows the interrupt program to be executed
more often than the main program is executed.

The sampling theorem requires that the sample frequency of a discrete
approximation must be greater than twice the bandwidth of the continuous system. If this
is not done, frequencies higher than twice the sample frequency will appear to be a lower
frequency or an alias in the discrete approximation [2]. However, the sampling theorem
only provides a lower bound on the sample frequency that prevents aliasing. It does not
guarantee that the response of the discrete approximation will closely match the response

214

of the continuous system. A sample frequency at least 10 times the bandwidth of the
continuous system is needed for a smooth discrete response which closely resembles the
continuous response [3]. However, choosing a sample frequency that is too fast can
drastically increase the main program scan time by interrupting it too often as shown in
figure 2b. The PLC must also have enough computational power to execute the interrupt
program in less time than the sample period. As the execution time of the interrupt
program approaches the length of the sample period, the main program scan time will
increase as shown in figure 2c.

The integration algorithm is implemented in the timed interrupt program file of the
PLC. The time step Lit of the integration algorithm is set equal to the sample period Ts of
the interrupt. Setting these two values to be equal scales the simulation time to match
actual time.

Interface Modeling
The hardware interface between the PLC program and the web handling machine

can consist of analog-to-digital (AID) converters, digital-to-analog (DI A) converters,
encoder inputs, or even a communications link to another computer system. The
interface models that will be discussed in detail are for an AID converter and a DI A
converter. The encoder input would be modeled like an AID converter and a
communications link would be modeled as a pure time delay.

The AID converter is modeled with a discrete time sampler. Simulating the
physical system in a discrete device like a PLC means that the differential equations must
be solved with numerical integration algorithms. To make the physical system appear
continuous to the control software, the integration algorithm must be updated at a faster
rate than the control software. This means that the sample rate of the timed interrupt
must be set to what is required by the physical system model as shown in figure 3a. A
discrete time sampler is then used as shown in figure 3b to take data points from the
solution at an integer multiple N of the sample rate Ts, The down sampled data points
will be used in the controller difference equations to calculate the controller output. The
discrete time sampler suffers from aliasing just as the more familiar continuous time
sampler does [2].

The stair step output of a DI A converter is shown in figure 4a. A zero order hold
(ZOH) is used to model this characteristic of the DIA converter. The outputs of the
control software are calculated every N•Ts seconds and held constant in the PLC's
memory between calculations. The physical system model is being solved every Ts
seconds, so it accesses these values between the control software calculations. This
inherent ZOH models the operation of a DI A converter as shown in figure 4b.

ANALYSIS AND IMPLEMENTATION

An example is presented in this section that explains how a real time simulation was
implemented for a winder that was rebuilt to increase it's throughput. The unwind parent
roll uses a mechanical brake actuated by pneumatic airbags to maintain web tension. A
portion of the rebuild involved replacing the pneumatic load cells and a pneumatic
tension regulator with electronic load cells and a discrete tension regulator in the PLC.
The pressure in the airbags is now controlled by a voltage to pressure transducer (E/P).
The brake torque is approximately proportional to this pressure. The configuration of the
actual winder is shown in figure 5.

A system of 17 first order differential equations would be required to model the
winder as shown in figure 5. To reduce the computational burden of the simulation, the
winder model was simplified. The web driven rolls between the unwind and windup
were eliminated by assuming that they had negligible inertia. The driven guide roll was

215

eliminated by assuming that it's surface velocity exactly matched the web velocity. The
lengths of the separate web spans were then summed to form one long span. The drums
were combined to form one equivalent roll by assuming that there was no slippage
between the wound roll and the drums. This results in the windup being modeled as a
single inertia. The winder model that was formed with these simplifying assumptions is
shown in figure 6.

The differential equations that describe the simplified winder model are given by (8)
through (12) and are based on the primitive element models found in [4]. The pneumatic
brake and E/P are modeled in (8) as a first order lag with the gain KEIP and the time
constant 'tEIP• The unwind parent roll is modeled in (9) as a simple inertia-damper system
with the brake torque proportional to pressure. The web span is modeled in (10) as a
nonlinear element whose tension-velocity relationship is based on mass flow. The
windup is modeled as a single inertia-damper system in (12). A proportional-integral (PI)
speed regulator was incorporated in the windup model to control the surface velocity of
this roll. The proportional term is present in (12) while the integral term of the speed
regulator is treated as a separate state in (11). The inputs into this model are the voltage
signal V to the E/P and the speed reference Vzref to the windup section. The voltage signal
is an output from the actual control software that is being verified. The speed reference is
created by an S-curve generator in the simulation software. The web tension t1 passes
through the discrete time sampler to be used as an input for the tension regulator in the
control software.

. KE/P V 1 p=-- ---p (8)
'tE/P 'tE/P

(9)

· Vz() V1() t =- EA-t -- EA-t
I L I L 0

(10)

(11)

(12)

Equations (8) through (12) were solved by the Runge-Kutta algorithm in the timed
interrupt file. The initial conditions were manually entered into the memory of the PLC
before placing it into run mode. The control software was also located in the timed
interrupt file, but it was only executed every N interrupts. Figure 7 shows a block
diagram of the actual system and a block diagram of how it was simulated in the PLC.
Pressure, windup speed reference, windup speed, and tension are displayed on a human
machine interface (HMI) for use by the operator.

The shortest time constant in the system of differential equations was used as a
guideline to choose the sample period for the timed interrupt. The unwind parent roll was
nearly a pure integrator with a time constant measured in minutes. The time constant of
the pneumatic system 'tE!P was 3 s. The speed regulator was tuned so that the windup had
an overdamped response similar to a first order system with a 1 s time constant. The web

216

span is a nonlinear system with a time constant L/v2 that varies with the velocity v2. Near
zero speed, L/v2 is very long and the web span resembles a pure integrator. At the
maximum winder speed, L/v2 is 160 ms which is the shortest time constant in the model.
This meant that the sample period needed to be shorter than 80 ms. The PLC required 5
ms to execute the simulation which meant that the sample period needed to be longer
than 5 ms. To provide time for the main program to execute, the sample period of the
timed interrupt was set to 10 ms. The resulting ~t was 16 times shorter than the time
constant of the web span at maximum speed. This allowed the response of the discrete
simulation to closely match the response of the continuous system. The sample rate of
the control software was 50 ms which required that N = 5 for the discrete time sampler.

RESULTS

Two sets of results will be presented. The first set of results show how well the
model represents the web tension. It is desirable to have a physical system model that is
accurate so that the software verification process is meaningful. The second set of results
discusses what the expectations were for the simulation. It explains what techniques
were used to verify the software and the end result of the verification process during the
machine commissioning.

Simulation Results
The simulation results presented here were done after machine commissioning. The

gains determined during commissioning were used to compare the actual tension with the
simulated tension. The results in figures 6 and 7 show that near zero speed the model
was not accurate. This is because a motor model was used to model the brake instead of
deriving a nonlinear brake model based on static and dynamic friction. Mechanical brake
torque is generated by the friction force of the brake pads on the drum. Therefore, it can
only oppose motion; it can not cause motion in the direction of the torque like a motor
can. The actual machine also had an oscillatory response that the simulation did not
exhibit. This difference could be due to the simplifying assumptions used in the model.
The difference in response had no effect on the verification process, but the brake model
that was used prevented extensive testing near zero speed.

The cross coupling that existed between the windup velocity and tension is shown
in figures 8 and 9. The tension temporarily dropped below the setpoint when the windup
velocity rounded out of the S-curve. This was caused by the relatively sudden loss of
retarding torque when the unwind stopped accelerating. The tension regulator responded
to the drop in tension by increasing the braking pressure which caused the tension to
return to the setpoint value. It can be seen that the physical system model accurately
represents the cross coupling and the response of the tension regulator.

As seen in figures 10 and 11, the model closely resembles the physical system at
steady state. This indicates that the low frequency parameters in the model are relatively
close to the actual values. However, it can be seen in figure 10 that the actual pressure
was slowly decreasing while figure 11 shows that the simulated pressure was constant.
This discrepancy occurred because the unwind radius was treated as a time varying
parameter in the model. The unwind brake pressure must decrease to maintain a constant
tension as the parent roll radius decreases. The change in radius was very slow compared
to the system time constants. Therefore, it was possible to treat R1 as a time varying
parameter instead of as a separate state. Different values of R1 (and J1) were entered in
the PLC's memory between simulation trials and held constant during the simulation.
This allowed verification at different operating points without the extra computational
time required to solve another state equation.

217

Verification Results
The verification results presented here describe how real time simulation was used

to test the control software. The objectives of the software verification process were to:

• verify the HMI for proper functionality
• verify that the control software functions properly and that there are no undesirable

numerical phenomena
• have the control software functionality at a level sufficient to allow the machine to

run with paper immediately after commissioning
• reduce the amount of software modification that is usually necessary after

commissioning

The verification techniques used to achieve these objectives included interface testing,
prototyping, functional testing, and performance testing [5].

The functionality of the HMI was partially verified with interface testing. This test
focused on the communications interface between the HMI software and the PLC
software. All operator controls on the HMI were moved to their extreme positions while
observing the corresponding values in the PLC. Conversely, values in the PLC were
forced to their upper and lower limits while observing data displayed on the HMI. This
procedure verified that the variables in the HMI were reading from and writing to the
proper memory locations in the PLC. It also verified that the scaling in the HMI matched
the scaling in the PLC. After this test was complete, all data was being properly passed
between the HMI and the PLC.

The simulation was able to provide a prototyping capability. Since this was a
custom machine rebuild, it was unknown what operator controls would be best suited for
the application. Various combinations of operator control devices were programmed on
the HMI and used to control the simulated machine. This was done until a suitable set of
control devices were found. Functional testing was then performed for both the control
software in the PLC and the operator controls on the HMI to prove that the operator
requirements were met. This was accomplished with the simulation by accelerating up to
speed, performing a normal stop, performing an emergency stop, and changing tension
levels. It was established during the simulated test runs that the tension regulator
algorithm regulated properly. This portion of the testing was also used to verify that
there were no discontinuous changes in the voltage signal sent to the E/P when the
tension regulator was switched between automatic and manual modes of operation. The
functional testing proved that the control software functioned properly, the HMI software
functioned properly, and there were no undesirable numerical phenomena.

Performance testing was conducted on the real time portion of the control software
by monitoring the interrupt scan time in the PLC. This was done to ensure that the
control software could execute quickly enough to allow real time operation. It was also
important to verify that the software execution time did not approach the length of the
sample period and degrade the performance of the main program.

The simulation was used to determine initial tension regulator gains. The
proportional gain obtained during the simulation was .001 and the integral gain was 2.
For comparison, the final proportional gain on the actual machine was .0045 and the final
integral gain was 4. Although the initial gains were relatively small compared to the final
gains, they resulted in a stable tension control system on the actual machine. This made
it possible to run with paper immediately after commissioning. The only software
modification that needed to be made after the commissioning was to add an unwind brake
pressure step during deceleration. The purpose of the pressure step was to prevent the
web tension from decreasing while the winder was stopping. Other work performed after
commissioning was tuning the tension regulator and adjusting parameters in the software.

218

CONCLUSION

This paper described a method for verifying control software using real time
dynamic simulation. Results were presented from an actual winder rebuild that used this
method. The simulation results showed that this method can accurately model a web
handling machine and provide for a meaningful verification process. The results of the
verification included a discussion of the testing techniques used and the success
experienced during machine commissioning.

There are many avenues to pursue in future work. Modeling the parent roll build
down and wound roll build up as separate states will allow more accurate simulations and
will allow additional control software capabilities to be verified. Another area for further
investigation is the tradeoff between integration algorithm complexity and physical
system model complexity. Finally, the use of real time dynamic simulation for operator
or technician training can be explored.

REFERENCES

1. Wylie, C. Ray and Barrett, Louis C., Advanced Engineering Mathematics , 5th
ed., McGraw-Hill Book Co., New York, 1982, pp. 267-296.

2. Oppenheim, Allen V. and Willsky, Alan S., Signals and Systems, Prentice-Hall,
Inc., New Jersey, 1983, pp. 514-551.

3. Franklin, Gene F., Powell, J. David, and Workman, Michael L., Digital Control
of Dynamic Systems , 3rd ed. , Addison Wesley Longman, Inc., Menlo Park, CA, 1998,
pp. 449-476.

4. Reid, Karl N., Tree, Alan, and Newton, John, "Seminar on The Analysis and
Design of Web Transport Systems", Tab 1, Oklahoma State University March 1996.

5. Wallace, Dolores R., Ippolito, Laura M., and Cuthill, Barabara, "Reference
Information for the Software Verification and Validation Process", NIST Special
Publication 500-234, U.S. Department of Commerce, Gaithersburg, MD, 1996.

219

Inputs

Outputs
Hardware
Interface

r------------~
I
I
I

,..,,.,"1....------i
"--,------~ Web

! Handling
I hi ------",,:Mac nery

,1
------,.,/ :

I
I
I

I ------------
Control

Software PLC Machinery

~--------< Hardware
Interface
Model

Fig. 1 Overview of the simulation method.

220

,~-~ Real Time
Dynamic

Simulation

I Ts = 20 I
~::;:t t

f t I I I ~

~ Main Program 4- Main Program _J
a) Timed interrupt with T. = 20 ms.

r- Ts = 10 I
~::;:~ t f

t t t i t 6 I

~ Main Program -4- Main Program _J

b) Timed interrupt with T. = 10 ms.

I Ts =20 I
I ~:;: tt--------lil----------it~--~b
~ Main Program _J
c) Timed interrupt with Ts= 20 ms and an execution time that approaches T,.

Fig. 2 Effect of timed interrupts on main program scan times.

221

x(kNTs)

jl
NTs

a a

kTs kNTs

a) Physical system model sampling. b) Discrete time sampling ofx(kT.).

Fig. 3 Physical system model sampling and discrete time sampling.

x(t)

NTs

t kTs

a) D/A converter output. b) Simulated ZOH.

Fig. 4 D/A converter output and simulated ZOH.

222

Parent
Roll

Fig. 5 Actual winder layout.

V -

Table
Rolls

Fig. 6 Simplified layout of the winder.

223

Speed Regulated
Guide Roll

Load
Cells

Spreader
Rolls

Rider
Roll

Rear Front
Drum Drum

HMI PLC Physical System

Control

C(kTs)

a) Block diagram of the actual system.

HMI

Control
Software

C(kNTs)

DIA

DIA

Ts= 50 ms
AID

Converter

PLC

ZOH

Web
Handling
Machine

G(t)

Ts= 10 ms
Timed

Interrupt

NTs = 5 · 10 ms
= 50 ms

Discrete Time
Sampler

b) Block diagram of the system simulation.

Fig. 7 Block diagram of the real time dynamic simulation.

224

Web
Handling
Machine
Model

G(kTs)

~ 0 tension [kN/m] 2.54 rifa.
0 pressure [MPa] .41 -N 0 speed [mis] 30.48

> 0 1.r- -···---, ·--'l'l- ·------·-r-----r-·-,r----···--
r:,
~

C:
!.
"' ~
~
1:1)
Q. tt1~-'< ::z. I
"' 3 ' ~ ; ! 1:1)
~

~ ~, ~ 1 ii,
>

" f
°' 0

N
N
Vl

~ tension [kN/m] 2.54 rjfa' 0

- 0 pressure [MPa] .41
~ 00 speed [mis] 30.48
:!!
3
C:
;-
~
(1)
Q.

"' ~

!I 1 1
I f l II~

(1)
1:1)
Q.
'<

"' ~ ~ 1:1)
~

~

~
°' 0

~ 0 tension [kN/m] 2.54 ~
~ ~
:.,. 0 pressure [MPa] .41 ~

0 tension [kN/m] 2.54
0 pressure [MPa] .41

= 0 speed [mis] 30.48 > > 0 __ , _ __,;;,_......;:_....;:...___ r:,
r:, ~

"""" '1 =
; \ ~ !.
- ~ · 1:1) 00 ' r:,
I < ' r:,
~ N : ~
C: ' -
~ ~
< ... -----~----1-w.-.._-~ 1:1)
(1) 3 \ O'.
~ (1) ' 0

0 speed [m/s] 30.48
0 r;-

i, "-....

~ ,..;·,,1 l~
ii,

...
§'
(1)

c: ~ - l • 0 \.' ' , = [~ .. 'tll
~ -~T --·---- - r-·-

. ' ' ' • +---·--Ji
°' 0

~ E--ij ____ ,__,
-.• \ L. ·t ·. ,..._ .. _ __ ,. - ..:\ <- ·· ·-- ' ll

'°O 1 N 1 _.

• \ H j °' 0

~ rifa. --:!!
3
C:
;-
~
(1)

Q.
00
I

r:,
C:
~
<
(1)

~
0
C:
= Q.
0
C:
l""

0

::z.
3
(1)

~

~

°' 0

0
0
0

-0

tension [kN/m]
pressure [MPa]

speed [mis]

\[
~\

I \

~

\

2.54
.41

30.48

~ rifa.
1.0

:!!
3
C:
1:1)
~
(1)

Q.
1:1)
r:,
r:,
(1)

;;-
~
1:1)

0

...
§'
(1)

~ ~ -· [/) 0 ~

?

°' 0

0
0
0

tension [kN/m]
pressure [MP a]

speed [mis]

2.54
.41

30.48

N
N
V,

"'f'J
CJ?. -N

>
I') -= :.,

"' -~ :.,
C.
'<
"' -:., -~

"'f'J
CJ?. -c...i

~
3
= ;--~ C.

"' -~ :.,
C.
'<

"' -:., -~

0

0
0
0

tension [kN/m] 2.54
pressure [MPa] .41

speed [mis] 30.48
--~--

;;-
::1. C '·
3 ' ... -
0 -

,....., ,'
~ f

f •---l-1----i---+-·+--·-·- ·1

...
•I -
p i,

"O

°' 0 ,.~-~~--~-~-~---

0 tension [kN/m] 2.54
0 pressure [MP a] .4 I

0
0 speed [mis] 30.48

... .::"

3
0

...
!!,

<
N

,.....,
~ f---+--+----+----t-ft----1

"O

°' O~~~~-~

"'f'J
CJ?. -=
>
I') -= ~
r,i
I

I')

= "'I
<
~

"'I
0

= = C.
0

= :->

"'f'J
CJ?.

--:!:
3
=
:., -~ C.
r,i
I

I')

= "'I
<
~

"'I
0
= = C.
0
= :->

0

...
§"
0 ,.....,
~

°' 0

0

-
3
0

,.....,
~

°' 0

~

0
0
0

tension [kN/m]
pressure [MPa]

speed [mis]

r r l, ,::"T

\ !!,

\ ;;- \

I

2.54
.41

30.48 -,
--

.::"(
-------\ .

\
~~-.-- ~ ---·-··•• -- t -l(-··-·-

' l
"O

·f---

i

0
0
0

"O

- ~ ~---

tension [kN/m]
pressure [MP a]

speed [mis]

\[
;;-\

I \

.::"

\

2.54
.41

30.48

'.;1
~
00

0 tension [kN/m]
0 pressure [MPa]

2.54
.41

30.48 >
I')

0 speed [m/s]
0 ~~~.;__-.----,--,----, -= :.,

:.,
I')
I')
~ ;-
"'I
:., -:;·
p

"'f'J
CJ?.

'°

-§'
0

,.....,
~

°' 0

0
0

:!:
3

00

=
:., -~ C.
:.,
I')
I')
~ ;-
"'I
:.,

-
3
0 ,.....,

-· [Jl 0 '--'
p

°' 0

f
I 1.

"I \ ;:1·--\ i ➔
l \ h I

tension [kN/m]
pressure [MP a]

speed [mis]

-!!,

2.54
.41

30.48

Real Time Dynamic Simulation for Control System R. Bettendorf - Valmet, USA
Software Verification

Name & Affiliation Question
P. Pagilla - OSU Usually in control we want to measure the feedback signal

at a higher sampling rate than the rate at which we send a
control signal. In your verification, you were sampling at
50 milliseconds whereas your control input was at 10
milliseconds. Would you comment on that? Part of the
reason we sample the feedback at a higher rate is so we can
filter the measured signal and control based upon a filtered
or averaged feedback signal.

Name & Affiliation Answer
R. Bettendorf - Metso Normally, you desire the fastest sampling rate possible. I
Paper was simulating a continuous system in a discrete device. In

order to make that continuous system look continuous to
my controller software, I had to employ a much higher
sample rate on my discrete model of a continuous system.

226

