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PREFACE

What type of presentation of Coordinate Geometry should
be given in the high schools? This is a question which can
be answered only after much experimentation, but one of the
more logical methods is that which is presented in this
report. With three years of teaching experience, it is the
feeling of the writer that the students would appreciate and
would understand this type of presentation.

In the contents I have tried to explain the concept of
set and ordered pairs, which are particularly applicable to
the development of the ideas of Coordinate Geometry.

I would like to express my appreciation to Dr. J. H.
Zant, lr. S. Douglas, Mr. H. Dean, ¥r. M. Siebert, and Miss
E. J. Kerby for the advice and suggestions they have given

me in preparing this report.
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CHAPTER I

INTRODUCTION

This report is an introduction to Coordinate CGeocmetry
and is important preparation for the geometry work in
analysis and other advanced courses in mathematics. One of
the inadequacies in teaching elementary graphing in conven-
tional courses is the very small number of types of problems
which students can be expected to do. First, one teaches
them to plot points, and here is the first teaching problem.
In order to build in the students the reflex of "go over
with the first couponent,” one needs to have them actually
plot quite a few points. Students of moderate or high
ability often resent such a routine kind of job, but they
come to class still not sure of whether to go up or to go
over with the first component.

Next, one usually has students draw the loci of first-
degree equations. What else can one do with beginning
students? They can graph { (x,v) I ¥ = % } , and make a few
explorations into the loci of other non-linear squations,
but soon the algebra is over their heads. To some extent,
this is a problem with all Coordinate Geometry customarily
taught in the beginning course! there is just not enough

interesting content (7, 1).



Sinece the Cartesian plane is a cluster of points and
the points are ordered pairs of numbers, it is necessary
that each student understand the nuwber system.

Bveryone knows what numbers are. A person begins to
learn about them as soon as he can speak, has many experdi-
ences with then as he grows older, and seldom passes a day
of his 1life without using them in some way. The store of
knowledge about them is so vast and so rapidly growing that
only a few specialists have a clear picture of its entirety,
yet the sentence with which this paragraph bezins is hardly
true if it is taken to mean that everyone can sSay precisely
what nunbers are.

There are many satisfactory theories describing the
number systenm. Although they differ in their undefined
terms, their definitions, and their axioms, they exhibit the
same laws for the obvious reason that they all have been
designed to formalize the properties of numbers as they are
known and used.

The notion of set, involving essentizlly the mental
cperation of recognition, is deeply embedded in our intui-
tion. This concept occurs in all branches of mathematics,
as well as in the sciences and in life generally. For
mathematics it is a unifying concept, which is simple and
interesting. It will be used freely in this report in the
Pirw belief that it has much to offer in teaching a number

of standard topics in the high school program.



CHAPIER II

THE NUMBRER SYSTEH

Natural Numbers

Certainly the first calculations we learn are concerned
with the process of counting, amd we all become acquainted
at an early age with the counting numbers: 1, 2, 3, 4,

By eee o« The numbers, ly 2 35 Ly 55 eees are called the
natural numbers because it is felt generally that they have,
in some philosophical sense, a natural existence independent
of man.

The natural numbers are, of course, an abstract
concept, independent of the nomenclature used to represent
them. The most common representation, 1, 2, 3, ...y also is
called the decimal system because ten symbols or digits are
enmployed to represent all numbers. The compactness of this
excellent notation is due to its being a place or positional
system. That is, in such a number as 543, the digit 5
represents 5 hundreds; the digit 4, L tens; the digit 3, 3
units., In contrast, the Homan numeral XX for 20 has two
symbols z of equal value, ten. Thus the Hindu-Arabic systen
can be used to represent numbers of any size with ten

aymbols, whereas the nonpositional nctation like the Roman



nunerals would require new symbols for reasonable brevity in
the representation of larger and larger numbers.,

The decimal system is said te have base ten. This unit
probably originated in a anthropological sense from our
having ten fingers for use in counting, However, ten is not
the only possible base, for we could use any natural number
greater than one.

With the advent of electronic digital computers, much
use is made now of the base two. The base twelve has been
suggested from time to time as a more practical base than
ten.

We shall not attempt to define the natural numbers, but
it is easy to see that, as a number system, they have some
very special properties. Some rather obvious statements
which one can make are:

he There is a first, or least, counting number.

B. EPEach counting number gives rise to the next one

merely by adding the least one.

[
»

Any collection of the counting numbers which has
one or more members has a least member.

flotice that, by use of the first two of these state-~
nents,; we can “generate™ any counting number: We begin with
the least one, 1, then add the least one to itself to get
the next one, 2, then add the least one to 2 to obtalin the
next one, 3, and 8o forth until we arrive at the desired
counting number. That is, the counting numbers are obtained

by repeated addition of the least one.



Statement © is of a different sort., We use it in our
daily conversation when we make statements of the following
forms "“The least populated state in the Union is Hevada.®
However, even in less definitive situations, we use this as
& property of the counting numbers.

Algebraically, the counting numbers are not very rieh.
e can add any two counting nuwbers and obtain again a
counting number, and the same is true of multiplication.
However, we cannot make analogous statements about subtrac-
tion and division becasuse, for example, L4 - 7 and L = 7 are

not counting numbers.

The Integers

4 slightly richer number system algebraically is the
collection of integers: see =35 -2, =1, O, 1, 2, 3, see «
Withian this system we can add, subtract, and multiply. This
system is essentially just a completion of the counting
numhers.

e see meaning in lLeopold Kronecker's often quoted
remark, “God made the whole numbers; all the rest is the
work of man (1, 215).%

Wetice that o is a very special number algebraically.
It is the only number with the property that, when added to
any number of the system, we just obtain that number again:
i.¢., for every integer x, x + 0o = X, We call o the addi-

tive identity for this system. And if x is an integer, then



the integer v with the property that x + v = o is called the
additive inverse of x. (Thus, -1 is the additive inverse of
1, and 7 is the additive inverse of ~7. The number o is its
own additive inverse. A more usual term for additive
inverse is "negative.!) (2, 8)

How the sense in which the integers are a completion of
the counting numbers is deseribed as follows: the integers
are obtained from the counting numbers by adjeining an addi-
tive identity and additive inverses. This means, algebra-
ically, that we can find solutions in the integers of
equations of the form x + a = b no matter what the integers
a and b are.

The integers enjoy two spec¢ial properties:

1. %+ o = o for every integer x and

2e {-x) {~y) = xy for any integers x and vy.

Witnlin the collection of integers; we are able to add,
subtract, and =ultiply; but we cannot always divide. There-
fore, we are now interested in a system rich enough to allow

all four of these bhasic algebraic operations.

The ERational Numbers

The system of rational mumbers (the collection of all
fractions §~whsre X and ¥ are integers and v # o) is rich
enough to éllcw all four of these basic algebraic opera-
tiong {2, 11). We recall that equality, addition, and

multiplication of rational numbers are given by



if ad = be
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In this system, we have essentially the integers, but we
have a good deal more. In the integers, the integer 1 was
the multiplicative identity, but only 1 and -1 have multi-
plicative inverses in that system. In the collection of
rational numbers, the rational number 1 (i.e., %) is the

multiplicative identity since

2 _a l _a&a . v . a
e 1 = 5-F°% for every rational 5 ° and

if

a ¥ 0,
then

‘2 is the multiplicative inverse of %
since

b * a ba ab 1 *

The rational number Q, {(i.e.., %), cannot have a mualtiplica-

for every rational .

o



In the system of rational numbers, there is no "next"®
element as there was in the cases of natural numbers and the
integers.

It is easy to see that 741 * 9321 is rational, since

this number also can be written as 7?30031 s 1ecus as a

quotient of two integers.
It should be clear that all terminating or repeating
decimals can be expressed as a rational number.

Consider 3.4222..., and we will see if it is rational.

let
x = 3.4222...
10x = 34.222... (1)
100x = 342.222... (2)

Subtracting (1) from (2), we obtain

90x = 308

This is the quotient of two integers and, hence, is
rational.

The collections of all decimal expansions which do not
terminate or repeat are called the irrational numbers; for

exa.mple, TT = 3:1&}159:0!3 V-E? == l,igi-lz&g LI ) ﬁ = 10732i.' -

Therefore, the collection of all infinite decimal

expansions forms the Real Number System.




Complex Humbers

If we restrict ourselves to the real numbers only, the

4 6
symbols V-z, V-16, Viiz, and so forth, are meaningless.

However, because of the important part that such symbols can
be made to play, not only in theoretical mathematics, but
alse in practical applications, it is desirable to give them
a meaning.

The unit of the real numbers, the number 1, has two
square roots, +1 and ~l. In crder to have a complete
analogy with this situation, we define the two square roots
of -1 to be +i and -i and agree always to replace the symbol
V-i by the symbol i, and 12 by -1. The number i is called
the imaginary unit.

Any mamber of the form a + bi, where a and b are real

numbers, is a complex number. The a is the real part, and

the bi is the imaginary part of the complex number; b is the
coefficient of the imaginary part.

If 2 = 0 and b # 0 in the number a + bi, the number is
a pure imaginary number, If b = 0, the number is a real
number.

The complex number system need not be obtained by defi-
nition from the real number system. We shall not list such
& case, however, but shall conclude with the following
diggram, which exhibits a classification of the various

kinds of numbers discussed in this chapter: (1, 217)
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CHAPTER IIX

COWCEPTS AND SYMBOLISM OF SETS

A brief outline of the concepts, vocabulary, and
symbols of the theory of sets follows. Illustrations will
be given later of how these can be employed systematically
over a long period of time to help clarifly other mathemati-
cal ideas and lead to g more contemporary treatment of
advance mathematiecs.

3et is an undefined conecept. However, a set can be

thought of as a collection of objects, physical or mental.
A finite set can be designated by simply listing the objects
that belong to it. Often it is possible, alternatively, to
give a description that permits unequivocal determination as
to whether any given object is or is not in the set.

Capital letters are used as the names of sets, and
small letters are used as names for members of sets.

That any element k belongs to a set 4 is expressed by
writing k€A, That an element n does not belong to a set A
is expressed by canceling the epsilon symbol with a vertical
or slightly slanted line. The membership of a sst is indi-
cated by listing all elements and enclosing them in braces

or by enclosing in braces a descriptive phase, e.g.

11
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S = {193: s 75 9}
R o= { x, such that x > 2'}.

)

This also can be written as R = {x\ x > 2} or
{x3x>2} . This is to be reads "R is the set of x's such
that = > 2.9 The symbols, |, and D, are read: “such vhat,”

If all the members of a set A are also members of a set
B, A is called a subset of B. This situation is symbolized
bys A E.B; and read: %A is contained in B." If B has
pmembers which are not in A, then A is a proper subset of B.
In symbols, A € B, read: "A is properly contained in B.”

The intersection of two sets A and B is the set com-
posed of those élemants which are in & and also in B. The
symbcl for intersection is N ., ANB is read “the inter-
section of A and BY or YA cap B.Y

The union of two sets A and B is Lhe set of those
elements which are in A or in B or in both. The symbol for
union is U . AUB is read "the union of A and B" or “A cup
E‘W

When in any discussion one or more sets are ceﬁsidered
as subsets of one particular set, the one over-all set is
called the universe, U‘. The emplty set, carfé, is one that
has no members, or one that is emptvy.

The empty Seb arises naturally in many mathematical and
logical discussions. PFor example: The set of all one-digit
odd prime numbers is a set containing three elements
{39 55'7}. The set of all one-digit even prime numbers is

a set containing only one element, {23. The set of all
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two-digit odd primes is {11, 13, 17, 19, 23, 29, 31, 37, 41,
43, k7, 53, 59, 61, 67, 71, 73, 79, 3, 97} . The set of
all two-digit even primes is empty.

To say that the set of numbers saﬁiéfying a éexjt.éin
condition is empty is £o say that no numbers satiafying that
condition @xist{ An@ther simple example is: The set of all
perfect squares ending in 7 is@. |

The complement of a set with réspe.ct to séme stated or
understood universe is the set of elements in the universe
which are not in the given set. That is, the complement of

A, symbolized by A%, is the set {x ‘ x¢ A} .



CHAPTER IV

SENTENCES, VARIABLES, AND ORDERED PAIRS

Consider the diagram below as a map of a section of

your present school campus.

2 K1,
RO EV
EMWX
Fven>»

Your job is to make up 16 names for these rooms so that a
new student could find his way around as quickly and easily
as possible. OFf course, you could give 16 different names
like "Art Room,” "Secience Room,” atc., and use those. Such
names would tell the new student the courses that are taught
in the rooms, but they would not help him learn where the
rooms are located. A simpler set of names would be the
integers from 1 through 16. It would be easier to use these
names if you assigned then in order. For instance, like

thisg:

14
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»-0-0T

T 24

d 0K D 4

T B N D -
Then, it would be very easy for the new student to learn
where the rooms are located. If you told the new student to
0 to room 12, he would think: "Room 12¥: there are four
{4) rooms in sach row, so the first row is 1 to 4, the
second row is 5 to 8, and the third row is 9 to 12. 8o row
12 is the fourth room in the third row. HNotice that he
tells himself the location of room 12. He went from the
single number 12 to two numbers: the fourth room in the
third row. Since you think of the rcoms in terms of "which

row’ and “which room in the row,” you might just as well

have nawmed them that way in the first place, like this:

pb>ROF

4 0 4 34
'EHWX
'FYA>



16

Then by giving someone two numbers, that is, a pair of
numbers, you can tell him precisely which room you are talke-
ing about. But, note that if you just tell him, say “1 and
2,% he will not know whether wyou mean “first row, second
roon or Yfirst room, second row.® You could avoid this
difficulty by always telling which part of your instructions
zives the row and which part glves the room in the row. If
everyone agreed to follow this convention, then it would be
enough %o say, for example, “Go to '3,5'" or, for another
room, ®Go to '5,3.%%

When you give directions in this manner, you are giving
a pair of numbers in order, a first number and a second

number. Such a pair of nuwbers is called an ordered kair of

nunbers, In mathematics, one customary way of naming an
order pair of numbers is to put the names for the numbers in
parentheses, with the name of the first number on the left
and the name of the second number on the right, and separate
them with a comma. As for an example, congider the order
pair of numbers where 2 is the first number and 3 is the
second number. Ve may write this example as (2,3). There
are many other ways that ordered pairs may be named, but in

this report, the writer will use the symbol, (x,v).

Sentences in One Variable

A sentence, such as “The state of Virginia is one of

the original thirteen,” wmay be changed into an open sentence
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by replacing the word "Virginia® by a blank, thus: “The
state of _____ is one of the original thirteen.”

This open sentence is neither true nor false, but it
becomies true or false for any specific replacement of the
blank from an appropriate list (or set) of names. Thus, if

we replace the blank by “lew York," the resulting statement

s

8 true; if we replace the blank by “Chio,”® the statement is
false. The appropriate set of names here is the 1list of the
forty-sight states, and now there is a possibility that
“Alaska” and "Hawaii®” will be included in the universal set.
If we choose as 2 replacement the name “China,” the state-
ment must be regarded as neither true nor false, since China
is not the name of a state at all, Similarly, filling the
blank by "Frigidaire,” “Chevfcle%,“ "television,” or the
name of anything other than the name of one of our states,
vields a meaningless rather than merely g false sentence.

Usually, of course, we substitulte a letter, called a
variable, for the blank. Thus we would write; more conven-
tionallys The state of x is one of the original thirteen.

In mathematics such open sentences are usually equa-
tions, or inequalities, rather than verbal expressions:
thus,

X+ 3 =17 x> 2

The role of the variable in such sentences is clear: it is
a placeholder for the name of some object in "the totality

of things wnder discussion,” the universe, or the universal

23

¢

44
®

e As has been stated, it is customary to denote the
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unliversal set by U . If, for example, we are interested in
the mumber of dots on the faces of one of a pair of dice,
then

g = {l; 2s 35 by 5y é}

Tt is most important to keep in mind the totality of
things under discussion, or the universsl set. This means,
in high school mathematics, that we always nmust bear in mind
the particular number system under consideration. In other
words, what are the possible replacements for the variabvle?
Onee the universal set, U, is specified, a sentence such as
L+ & =7 divides U into two sebs: one set contains all
replacements v or x that make x + 4 = 7 true; the other set
containg all replacements for x that make x + L = 7 false.
Thus, if U is the set of integers, the f{irst set contains
just one integer, 3: all other integers belong to the second
s88t,

We can thus think of our sentence x + 4L = 7 88 & set~
selector: it selects from U (the set of numbers under cone
sideration) just those numbers that waks the sentence true
when used a8 replacements for x. This selected set of
apumbers 1s called the selution set of the sentence.

Por example, if U is the set of integers, the solution
set of the sentence

x 2 3

is the set of integers greater than or equal to 3, namely:

L3s 055 00t}



o
{x:‘ x 23 }

which we vead as: “the set of all x's such that x = 3.9

Let ug assuyes th} ugual one-Lo-one covrespondence
between the real numbers and the points on a line. Then;
we can regard a sentence such as x > 10 as the selector of a
set of points corresponding to its solution set. This set
of points can be graphed on the line. In practice, the
graph of the set of points is called the graph of the

sentence for short.

Sets of Ordered Fairs

It is customary to denote the location of a point by
ordered pairs of numbers; for exanmple, {2, 3). As previ-
ously stabed, the order in which the numbers are written is

important. Thus, (2, 3} is not the sawe ordered pair as

*3&3

{3.2); their points are different. In zeneral, we dencte by

{x,7) a pair of numbers x and y, counsidersd in the order %
first and y second. UWe call x and y the coordinates of the
ordered pair (x,v).

We now wish to think about sets of ordered pairs. Aay

ﬂ

set of numbers can yield a set of ordered pairs in the

t:‘“

following manner. Let U be a given se
v= {1, 2 3}

Then we can form the set of all cordered pairs whose coordi-~

> of numbers, say

nates belong to U. One way of doing it is as follows: form



all possible ordered pairs with the first coordinate 1j then
form all possible ordered pairs with the first coordinate 2:
and sc on.

In this operation, the following tree graph (&, 10)

helps us to avoid missing any eligible ordered pairs:

_—1 (1.1)
1= (1,2}
\3 (1,3)
{2,1)
p2 (2,2)
\3 (2,3)
1 {3,1)
_— 2§
3=z {(3,2)
~~3 (3,3}

The set of ordered pairs obtained in the foregoing manner is
denoted by U x T (read U cvoss U¥) and is called the
Cartesian set of U, Thus, if U = {Z?.g 24 33 s bhen

vx = (L), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1),
(3.2), (3,3} }.

Considering cach ordered pair as a position of g
vuilding in a city block, we can graph each ordered pair by
selecting the first number as the “row" and the secbnd
number as the "building in the row." This graph is a square

array consisting of nine points, as follows:
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Similarly, if we consider the set J, where J is the set

of integers,; say

J = { eevy =hy =3, =2, =1, 0, 1, 2, 3, &, 066} s
then J x J, as above, would be



, 64,‘4),(-3 3),@,4),(-! 9o ,' Q)i . 4’).(?,.4),(3_,. 4),(-4; Q..
-£4,3)(3, 36,3)61, 3)(0, 3),(1,3),,3).6.3),(4, 3)- - -
-£42 )63, 2)62, 2)(1,2),(0, 2).(1, R)R,R),B.R)(4, R)- - -
© - E4,0),63,1) R, 106 00, (6 1) R, 0,6, 0, 0)- - -
4,0 €3, )2, 0) 1, 0)(0, 0),(1, 0}, (3, 0),(3, 0)(4, 0)- - -
“Ca)3,-1) @, )60, 1), (0,00, 1) R 1), (3,-1) 800 - -

" 452 (3,2)68,-2) 0, R)0,-2) (1,-0) (B B)(3-2), (3,-)- - -
“(4-9)(3,-3)(= -2 (1,-3)(0,- ) (1,-9) (B, 3)(2,0) (3, -3) - - -

" 644 (09, (R,4)1,-0)0-4) (1,-9)(2-4),(3,- 4), (9,-4) - - -

¢ e 0 PY ] [ TN

’ st e
One con see clearly the number of ordered pairs that we
would have obtained by listing all the integers.
Prom previous work with graphs in algebra, one can see
clearly the manyness of points in a plane. Bach point in a

plane corresponds to an ordered pair of aumbers: the numbers
& 2



in the pair are the coordinates of the point. The first

& s

ausber in the ordered palr is the first coordinate or the

=,

gbscisse of the point corresponding to the ordered pairi the

second number is the second coordinate or the ordinate of

the point. The point is called the graph of the ordered

4

pair of aumbers.
The get of points, each of vwhich has second coordinate

Oy is called the first coordinate axis or the x-axis.

Pointeg in this sot are lined up hovizontally in J x J. The
set of poinbs, cach of which has {irst coordinate O, is

P

called the gecond coordinate axis or the y-axig. The points

in this sebt are lined up vertically in J x J. Uote that the
wwo sets of points have one point in common. This point
corresponds to the pair (0,0) and is called the origin.

The set of peinss, each of which has both the first and
swend coordinate greater than O, is called the first

guadrant. The get of points, cach of whiech has the [Tirst

coordinate less than 0 and second coordinate greater than O,

is called the second guadrant. The set of points, cach of

which has both the fivrst and second coordinate less than 0O,

is ecalled the third guadrant, and the set of points, each of

waich has the first coordinate greater than 0 and second

coordinate less than 0, is called the Lfourth guadrant.
The ovigin and the coordinste sxes are useful in

loecgbting graphs of ordered pairs. TFor example, suppose you
ave tryving to find the graph of (3,4). Pirst, put vour

fingey on the origin., Then, move along the first coordinate
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axis until you loecate the point corresponding to (3,0). You
are in the colwmn which contains, also,; the graph of every
ordered pair with first number 3. Therefore, this column
conbains the praph of (3,4). Now, vebturn to the origin, and
move your finger along the second coordinate axis until you
- locate the point corresponding to (0,4). You are in the row
which combains, also, the graph of every ordered pair with
second number 4., Therefore, this row containsg the graph of
{(3,4). S0 let A = (3,x) and B = (x,4); therefore, ANB
{read ¥A intersects BY) is the desired point.
The process of locating a point when you are gilven its

coordlnates often is called plotting a point.

Now, sinee the set of ordered pairs that givés rise to
our Pirst coordinate axis cougists of all ordered pairs whose
second number is zero, we can delete the gzerc and only
consider the first number. In the second coordinate axis,
delete the zZero, and only consider the second number
[Jexeluding (0,0)_7. We can represent the origin by a single
0. Therefore, the diagram below will suffice for the

graphing of all ordered pairs in J x J.
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wotice that sach line in the diagrem abofe, both verti-
cal and horigontal, contains all the integers. Thereiore,
if we associate a line with each of the integers, the
diagram above is capable of repregenting all possible
ordered pairs in J x J.

Up te this point we have been working with a plane and
with points which have iategers as coordinates. It is
natural to ask if it is possible to work with points which
hwove coordinates belonging to the entire set of real numbers
{directed real aumbers). For example, can you plot the
graph of (33 - 16) or {+97, - V52)9 The answer is “yes.”

The space between each integer 1s completely filled with

oiher points. These points consist of the rational numbers
{fractions) and the irrational mumbers. We could say that

the gpaces consist of gll infinite decimal expansions.



How we ave able to say that there is & one~bo-one
correspondence between the real numbers and the points in a
coordingte plane., Such a coordinate plane is called &

Cartegian coordinate plane or, siwmply, a coordinate

piane (7, 23).

As in the case of a coordinate plane with indefinitely
many points, it is impossiblie to draw an accurate diagram of
such a plane., Even if you draw a diagram of only part of a
coordinate plane, you could not show all the points in that
part of the plane because all you would have on vour paper
is a completely black region. So, when we make a diagram of
part of a coordinate plane, we show only some of the points

Ye

in thac part. Ve show just a few sels of points such that
each set consists of points having either the same Tirst
coordinate or the same second coordinate. Such sets of
puints are shown as straight lines in the diagram; these

straight lines are sometimes called grid lines.

Sentences in Two Variables

Sentences in two variables are cormmon in high school
mathematics., For examples
Yy =X b4 yox x° 4 yz = ]
Such sentenceg are neither true nor false. However, they
are true of, or false of, certain replacements for x and v.
Thus, if x = 1 and v = 5, the sentence y = x + L is true; if

x=5and y = 1, the seutence y = x + L is false. Such
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sentences are true of, or false of, ordered pairs of numbers
{6, 11}. Ap ordered pair such as (1,5} that, after replace-
ment (take 1 for x and 5 for y), makes the sentence true, is
called a golution of the sentence. The set of all such

ordered palrs is the golution set of the sentence (6, 11).

&

he golution set for a given sentence depends on the
totality of ordered pairs under cousideration. For example,

if the solution set must be found in the Cartesian set

U-f:{l, 2,3}

then the solution set for the sentence y > x - 1 is

7 P
U x U, where

{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3) §

and the solution set for the sentence y = x -~ 1 is

{(2,1), (3,2) }

The graphs of these soclution sets are shown below.
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On the other

hand, if U is the set of real numbers,

that is, "RUR'," where R is the set of rational numbers and

RY is the set of

sete consists of

3}

)

x BY, then U x

irrational numbers, the union of the two
the entire set of real numbers. If U =

U is represented by the entire coordinate

plane. The solution sets of vy = x - 1 and y>» x - 1 are

infinite sets of

ordered pairs. The graph of y =x - 1 is a

straight line, and the graph of y > x - 1 is the %"half-

plane” above the
set of ¥y % - 1.
The figures

solution sets.

straight line that represents the solution

below indicate the graphs of these infinite
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(Incomplete graph)

If we take U as the set of real numbers, we can regard
a senbence in two variables, such as y = x - 1, as a set-
selector. What is selected is a set of ordered pairs (the
solution set), and this set of ordered pairs is a subset of
U =x U.

Using the set-builder notation, we can write:

{(x,y) ‘ v o=z - 1}

(read: Ythe set of ordered pairs (x,y) such that
yo=x - 1%},

The graph of a sentence in two variables is, as we have
seen, the graph of its solution set. We simply plot the set
of ordered pairs in the usual way, but this viewpoint
broadens the concept of a graph and admits a much wider
variety of graphs in the earlier stages of mathematics.

Closely related is the notion of a locus, defined

thus?
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A loucus is the set of those points, and only those
points, that satisfy a given condition (3, 1838).

Tho condition nmay be, but does not necessarily have to
be, an eguation or inequality with two vwariables. In case
it is, the sclution set of the equation or unequality
corresponds to the set of points that makes up the locus.
Thug, the graph of the equation or inequality pictures the
locus; which is commonly called the locus of the equation or
inequality. In other words, the leocus of an equaticn or
inequality is the set of points that corresponds to the

solution set of the ogquation or inequalitye.



CHAPTER V

RELATIONS AKND FUNCTIONS

To this point, we have regarded a sentence . in two vari-
ables as a set-selector. For example, the sentence y = x
selects from the Cartesian Set U x U {represented by the
coordinate plane) a subset of ordered pairs with equal

coordinates (represented by a straight line as shown).

y=x

(Incomplete graph)

Now here is énethey way of looking at things: we may think
of a sentence in two variables as expressing a relation that
holds, or fails to hold, fof the coordinates x any y of an
ordered pair {x,y) belonging to U x U. Thus, |

¥y< X
selects from U x U a subset of just those ordered pairs
{x,y) of U x U for which the relétion v £ x holds.

On the other hand, if
v={1, 2 3,4}

31
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then the set of ordered pairs U x U is represented by an

array of 16 points as shown. The sentence y < X expresses a

relation that holds for just six ordered pairs of U x U.

Q4T . o v .
3 4 . . ) ®
R+ + . O ®
"7+ ® ® ®

Tt 3 s

{(:c,y), v < x}

Tn like manner, we can graph the subset of U x U for which

the relations expressed by v = x and y ¥ X, respectively,

hold.
at « - =+ 0O al ®© ®© © -
3. ) . ® - 3 @ ©® o .
R 4 ¢« ® o el © o o .
LI 4 ® ) . . 1 . . . .
s r < i+ 4
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Suppose that we have a relationTR in U. Then IR is a
set of ordered pairs (x,y). The subset in U for which x is

a placeholder is called the domain of the relation; the sub-

set in U for which y is a placeholder is called the range of

the relation. As exanmples, refer to the four relations

ﬁ{l'through ﬁah graphed above. For convenience, we
tabulate.

Relation Domain Range

R, i-l, 01} -1, o, 1%
R $-2, 0, 2} {-2, ¢, 2%

“{a The set of positive The set of
2 real numbers and 0. real numbers.
IR& The set of real The set of

‘ numbers. positive real

numbers and O.

Hote that ﬁ?l and'ﬂlq give rise to graphs containing a

finite number of isclated points; the range and the domain
are said to be discrete. However, relations'“§3 and ﬁ{k

give rise to smooth graphs with no points missing; that is,
no gaps; the range and the domain in such cases are said to

be contbinuous.

Funections

Let us re-examine the relations “21 through ﬁ% Note

l,,.
that'ﬂig_enjoys a special property: for each x in the

domain, there is one and only one y such that (x,y) belongs



to the relation. Such a relation is called a function.
Hence, a function is a special kind of relatiom.

A function in U is a set of ordered pairs (x,y)
belonging to U x U and having for each x one and only one
v (6, 29).

Graphically, this means that a relation,m s 18 a
function if, and only if, no vertical line meets the graph
@ﬂR at more than one point.

Let us consider the sets, B = {1, 3 i«,} and C =
{ G, 7, 9}‘; then form B x C = i(l,é)g (1,7}, (1,9), (3,6),
(3,7)5 (3,9), (ks6)y (457), (4,9) §. Ve shall use the set
AB x C to define in a very simple case a very'important
concept of mathematicsj; however, we will not delve into the
concept to any extent. This concept mentioned previously is
that of a function. A function from B te C is a subset of
B x C with the one limitation that the elements of B appear
once but not more than once as the first element of a pair.

The notion of function involves a domain, & range, and
a rule. The language of sets helps to clarify the meanings
of these three words. The domain is the set of all first
coordinates of the ordered pairs that make up the functiong
the range is the set of all second coordinates of the
crdered pairs that make up the function; and the rule
assigns a unique second coordinate in the range to a given

first coordinate in the domain (6, 31).



CHAPTER VI

CONCLUSION

The ideas discussed in the previous chapters are
particularly applicable to the development of the ideas of
modern mathematics, especially those of locus. A locus is
defined as the set of points which satisfy certain condi-
tions. The conditions always can be considered as condi-
tions placed on the coordinates (ordered pairs) of the
points. These conditions can be expressed as open
sentences, equations, and inequalities.

Open and closed half-planes are the loci of expressions
like x > 0O, ¥ z 1, respectively. If we consider the set of
points satisfying both of these conditions, we obtain the

set of points in the doubly shaded area shown below.

36
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x>0, y 21

(Incomplete graph)

The doubly shaded portion is, of course, the intersection of
the set of those points whose coordinates satisfy x > 0 and
the set of these points whose cocrdinates satisfy vy & 1.

A particularly interesting extension of this work is
given if we consider three open sentences, say:

bd

x 0

y 20

S
+
v

o

}
L9



(Incomplete graph)

The set of points shown by the horizontal shading is the

-y

sclution set of x 2 O (includimg the points on the axis):
the set of points shown by vertical shading is the solution
set of v ZC (including points on the axis); and the set of
points shown with the diagonal shading is the solution set
of x + 2y £ 6,

The intersection of the three sets is, of course, the
triangle (triply shaded region), including its sides and its
interior.

The complement of this intersection is the exterior of
the triangle.

Extending this approach to the circle, it is easy to

see that x2 + y2 = 25 would select the set of peoints on the



circunference of a circle with center at the origin and a

2 2 £ 25 yould select the

radius of 5. The sentence x" + y
points of the disk with center at the origin and radius 5
(i.e., the set of points on and within the circle). The
sentence xz + y2 > 25 would be the set of points outside of
the circle.

We could continue with this approach and develop and
solve many geometrical problems, but that is not the purpose
of this report.

One should see clearly the many roads in which a

teacher can travel in preparing students for a course in

Coordinate Geometry.
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