Name: Fred Thomas Johns Date of Degree: May 24, 1959

Institution: Oklahoma State University
Location: Stillwater, Oklahoma
Title of Report: THE TEACHING OF THE SLIDE RULE IN THE HIGH SCHOOL

Pages in Study: 29
Candidate for Degree of Master of Science
Major Field: Natural Science
Scope of Study: This report is a comparison comprised of two methods of determining the location of the decimal points in slide rule determined answers. These methods are the digit count method, which uses non-mathematical terms, and the logarithm characteristic method, which uses mathematical terms. In this report the operations and rules, for determining the answers and location of decimal points to problems solved on the slide rule, are given for multiplication, division, squaring a number, extracting square root, cubing a number, and extracting the cube root. It also gives some of the things to be taken into consideration when preparing to teach slide rule in the high school. This report does not include sample problems, examples, or illustrations of how to use the slide rule.

Findings and Conclusions: There is very little advantage to the use of either method over the other, if each is used under the proper conditions. The digit count method is excellent for the teaching of younger or weaker students. The logarithm characteristic method is more desirable when teaching more advanced students.

THE TEACHIMG OF THE SLIDE RULE
IN THE HIGH SCHOOL

By
FRED THOMAS JOHNS
Bachelor of Science
The Agricultural and Rechanical College of Texas College Station, Texas
1954

Submitted to the faculty of the Graduate School of the Oklahoma State University
in partial fulfillment of the requirements
for the degree of
WASTER OF SCIENCE
May, 1959

THE TRACHTMG OR SHE SIIDR RUTH
 TH THE TMCH SCHOOT,

Report Apmoved:

Dean of the Graduate School

PREFACE

This report is intended to give a clear and concise set of rules for the location of decimal points in the answers or probleas solved on the slide rule. The teaching of slide rule is considered by the author to be incomplete if the student can not locate the decimal point in his answer correctly. It is also a desire of the author to place before any teacher who wishes to teach slide rule in the high school an accurate set of procedures for the fundanental operations of the slide rule. It has been the pleasure of the author to see the increased interest in the instruction of the slide rule in the high schools of Tease in the last ten years. It was from a mathematics teacher in high school who did a fine job of teaching the slide rule that the author developed an interest in the teaching of the slide rule. The author is proud to say that in three years of teachine he has inspired several students to have an interest in the slide rule and to be able to use it with some skill.

In writing this report the author has found it necessary to becone acquainted with several methods of locating the decimal point. Many of these rethods involve an estination of there the decinal should be located, or after the digits of the answer have been determined, the
numbers then are rownded off and the operation done again mentally. These methods are time consuming and sometimes inaccurate Of course, a person who has been using one of these methods for years achievas good results and will think that a set of rules just complicates the operation. However, the rules in this report are for the beginner, who is not an piold hand at the slide rule.

The author wishes to acknowledge the assistance of Dr. James H. Zant, Director of the Academic Year Institute, and the National Science Foundation for its stipend which made this study possible.

TABLE OR COEPENTS

Chapter Page
I. IMTRODUCTION 1
II THE DIGIT COUNT IN THE LOCATION OF DECTMAL 5
Multiplication. 6
Division 7
The Square of a Nunber 9
Entracting the Square Root. 10
The Cube of a Mumber. 11
Fatracting the Cube Root. 12
III. THE LOGARTMH CHARACTERISTIC IN MME LOCAFTON OF DECTHAL. 15
Multiplication. 17
Divigion. 18
The Square of a Nuaber 19
Extracting the Square Root. 20
The Cube of a Number 22
Rxtracting the Cube Root. 24
IV SUMARY AND GONCLUSTONS. 27
BIBLTOGRADIY 29

CHAPTER I

INTEODUCTION

The purpose of this report is to discuss the teaching of the slide rule in the high school. It does not attempt to give a definite method of teaching the slide rule, but rather it points out sone of the problems and gives sone possible solutions to these probleas. A high school teacher Who tries to teach slide rule soon will find the right combination of these solutions to meet his particular needs.

In preparing to teach slide rule in high school, there are a number of things which must be taken into consideration. Sone of these are the following: the grade level of the students to be taught: when and how much time is to be spent on the subject; the type of slide rule to be used; processes to be covered; and the procedures to be used in these processes. It can be seen easily that there is some overlappinc and that these factors must be considered as a group rathex than individually. One quickly realiaes that each school system and locality must nake decisions on the various items listed to best fit the local situation. The situation involved in this report will be that of a high school which has about 350 pupils enrolled in the ninth through the welfth grades. The slide rule is to be taught
in a club, which meets once or twice a week, or possibly in a science or mathenatics class, within a period of about two weeks.

When taking into consideration the grade level of the students to be taught, one must consider the mathematical background and the interests of the students. If the slide rule is taught in a mathematics or science class, the students will have had about the same background, and this will simplify this consideration. If it is to be taught to students of all grade levels where the backgrounds are varied, as would be the case in a club, one must use a nethod which will not kill the interest of the younger or weaker students and, at the same time, must not bore the more advanced students. If sone fom of competition can be started and maintained, the interest of the students may remain high. This is always desirable.

The time to be spent on the slide rule is often a limiting factor then being taught in a science or mathenatics class where more basic concepts of the course are of equal importance. If by matting some basic material che student may be placed at a disadvantage, the time hay be considered by sone as wasted. In a club the only Inaitation on time spent is the length of the meetings, wich may be only thirty minutes once a week. Also, if more than one club meets the same day, the group of students may vary from one meeting to another. This can cause the failure of a
 way sehools and that a stutient may belons to frise dube or nones.
 Wur all ctumger shoula have about the sate who so avoth

Li Renoral the processes to be tantht are thoae patich

 Te matuen the followtre statoments:

Ax andytas at the angwors 60 rore that 27, Wo athurles wonted on tho slike rule shok that Fous chaseg of erroxs included a vevy layed poxcentage of all comoz slide rule eryors dabot 93). Reve gomon errors axe: (a) arcors in loceting tha tocinal roint in ancurrs, (o) errors
 ancuere, (c) zero errors and (d) eriont in readiap

 140). Pe ive
miscellaneous errors account foz the romaining 7\% of the total exrors. ${ }^{2}$

The last three of these srrors may be said to be caused by the student's not being familiar with his slide rule. It is very faportant that the student becose fandiar vich his slide rule. This will prevent wany errors in estinating the third digit, zexo exrors or errors in locating the nubers. and errors in reading the slide rule in general. Practice is the only way a student can becone faniliar rith the slide rule. It is not the purpose of this report to try to say how much practice is needed, becauge this will vary with the student. This leaves only the first class of ergors, those in locating the decimal point in the answers. For this reason this report will discuss bwo gractical solutions of this problem of locating the decinal point in the ansurer. These two solutions involve the use of the हiolegt counters and the use of the logarithe charactertstics. These solucions will be described in detail in the next tro chapters. It is the purpose of this comparison to give a better maderstanding of the operations of the slide rule and the location or the decinal point in these operations.
${ }^{2}$ Carl it. Shusters A Study of the Problems in Reaching the Slide Rule (New York, 1940): 9.93 .
$3_{\text {Harxis }}$ p. 世i.

CHAPTER II

THE DTGIT COUNT IN THE LOCATION OF DECDRAL

When teaching slide rule to students at the ninth grade level, or to those who have taken very little mathematics, it is an advantage to use non-mathenatical terms. Even though mathematics should not be difficult for them, they already nay have a dislike for it. This will cause then not to try as hard as they might otherwise. By using terras not associated with the mathematics taught at a higher level. it is possible to encourage then at the very beginning. This nay very well save sone good slide rule student who would othermise not make the effort or would stop trying to learn the use of the slide rule at any early stage in training. To save those students wo lack the ability to learn mathematics quickly is the goal of all good mathenatics teachers.

Since the slide rule is based on logarithas, it is a natural tendency to want to use logarithm characteristics. However, many students have heard someone complain about logarithms while taking the second year of algebra. What terra can be used which could be defined similarly to the logarithm characteristic? When this term is coined, it will greaty help the teahing of slide rule to the weaker students. The teras ${ }^{\text {ef }} \mathrm{digit}$ count, ${ }^{87}$ as used by Dr. Co. O.

Harris, fills this need. The digit count is defined and explained by Dr. Harris as:

The digit count for one or a number greater than one is the numer of digits to the left of the decimal point in the number. . . . The digit counc for any number less than 0.1 is a negative number, and is numerically equal to the number of zeros at the right of the decimal point and between the 2 decinal point and the first digit of the number. ${ }^{2}$

This can be introduced without any reference to logarithras. Thus one of the stumbing blocks has been removed, and there is a satisfactory way of deteraining the location of the decimal point. It is true that this requires a different set of rules than those required when using logarithri characteristics, but they are no more difficult to learn and are just as accurate.

Multiplication

In the process of multiplication, the C and D scales are nomally used, by setting one inder of the C scale over the rultiplicand on the D scale and the hairline of the runner over the multiplier on the C scale. Then the answer is read on the D scale under the hairline. Since there are two indices on the C scale, either one may have to be used in order to coaplete the process on the D scale. this means

[^0]there will have to be a rule for deteraining the location of the deciral point for the product according to the index used. It is easily seen that, if the right index is used, the slide will extend out the left end of the stock of the slide rule. Also, the reverse is true. If the left index is used, the slide will extend to the right of the stock of the slide rule viith this in aind, the following rules for multiplication nay be stated.

1. When the slide extends to the left, the sum of the digit count for the multiplicand and the digit count of the multiplier equals the digit count for the answer.
2. When the slide extends to the right, subtract one from the sum of the digit count for the multiplicand and the digit count for the naltiplier to get the digit count for the answer. ${ }^{3}$

It will be shown in the following chapter that one is added to the characteristic, when the slide extends to the left instead of one being subtracted from the digit count, when the slide extends to the right. Since this is true, it will permit a student who knows nothing of logarithns to use the slide rule with accuracy and speed.

Division

Division is the inverse process of multiplication in comon mathematics. It is also an inverse operation on the
$3_{\text {Ibid. }}$ pp. 52-53.
slide rule. That is, the hairline of the runer is set over the dividend on the D scale, and the slide is moved so that the divisor on the C scale is also under the hairline of the runner. The answer is read from the D scale under the index of the C scale. Once again, it will be noticed that either index of the C scale may be the one indicating the answer, and the othex will extend from the stock of the slide rule. There must again be two rules for the location of the decimal point which are:

1. When the slide extends to the right of the stock, the digit count for the answer is one more than the digit count for the dividend minus the digit count for the divisor.
2. When the slide extends to the left of stock, the digit count for the answer is equal to the digit count for the dividend minus the digit count for the divisor. 4

There is one exception to this first rule; it is when the dividend is a multiple of ten. In the case of the dividend being a multiple of ten, the second rule will apply without regard to the direction the slide is extending fron the stock. This also gives a method of teaching slide rule without reference to logarithns which has its advantages while ceaching slide rule to a group of weak mathematics students.
${ }^{4}$ Tbid. pp. $70-71$.

The Square of a number

The operation of squaring a number involves the use of a new scale. This may be either the A or B scale. One of these scales and either the C or D scale will be used in the operation of squaring a nuber. On the tenminch slide rule recommended for use of high school students, the D and A scales occur on the stock, and the C and B scales occur on the slide. Since the operation requires only the movenent of the hairline of the runner, it is advisable to use both fixed scales on either the stock or the slide. This will prevent poscible errors ceused by not having the indices on stock and slide lined up properly.

The process of squaring a number is accomplished by setting the number to be squared on the D or 0 scales under the hairline of the runner and reading the answer under the hairline of the rumner on the A on B sales, respectively. The A and B scales are single scales made up of two scales going from one to ten, on the left half of the scale, and from ten to a hundred on the right half of the scale. There is a rule for locating the decimal point for each half of the scale. These may be stated as follows:

1. Wen the square of the number is read in the left half of the A scale, multiply the digit count for the number by two and subtract one. The result is the digit count for the square of the number.
2. When the square of the number is read on the center inders or in the right half of the A scale, multiply the digit count for the number
 oquaxe of the nunber*
sheoe sare ruleo whll aphly to whe scale for locathag the teetmat potnt.

2dacuctins the Square foows

The opaxaton of extraethas the gquare root ic the

 that the corvert hat de the A ar scale be used ap the mabaz has an ocd tagit cont, It ghoula be locabod oz the

 the A or scales. rins is a noral line of reasonine in it is rowambred thot the left half of the scale sis from one to
 or shat multiple of one hunded timec thege sanges.

The mocest of extracting the square root of a nuber is to set the hatidne of the rumen ovex the muber on tre

 rules for Locatang the dectnal point, as the nwher may be

 E0L10as:

$$
5_{\text {Tbid. }} \text { p. } 110
$$

I. When the digit count for the original number is odd, add one to the digit count and divide by two. The result gives the digit count for the squaxe root.
2. When the digit count for the original number is even, divide the digit count by two. The result gives the digit count for the square root. 0

These rules will apply to both the A and B scales. The reason for having two scales froa which the square root or square may be obtained is to increase the speed of operation if the problem requires a combination of operations. It will be revembered thet speed in obtaining an answer is one of the main purposes of knowing how to use the slide rule.

The Cube of a mumber

In cubing a nubor, the D scale will still be used but with the K scale. Both the D and F scales are on the stock of the slide rule. This means that only the hairline of the runner will be moved. The K scale is actually three scales in one, The rances of these three scales are from one to ten on the left third of the seale. ten to a hurdeed on the center third of the F sale, and from a hundred to a thousand on the right third of the freale or sone multiple of a thousand times these ranges.

The process of cubing a number is to set the haxime of the rumer over the number to be cubed on the D scale and

Toides po 115.
read the answer off the K scale under the hairline of the runner. This means that the answer may occur on any third of the II scale. Therefore, there will be three rules for location of the decinal point when cubing a number instead of the two as in the case of the other operations discussed in this report. These three rules for locating the decimal point may be stated as follows:

1. If the cube of a number is located in the left part of the K scale, the digit count for the cube is equal to two less than three times the digit count for the number.
2. If the cube of a number is read in the center part of the ${ }^{[}$scale, the digit count for the cube is one less than three tines the digit count for the number.
3. If the cube of a number is read in the right part of the K scale, the digit count for the cube is exactly three times the digit count for the number.?

Extracting the Cube Root

The operation of extracting the cube root of a number is the reverse operation of cubing a number. In extracting the cube root of a number, it is very important in which third of the K scale the number is located, because a number can only be correctly located in one of the thirds of the K scale. In determining which third of the K scale to locate the number, divide the digit count of the number by three,
$7_{\text {Ibid. }}$ p. 144 .
and the remainder will indicate the correct third of the K scale. If the remainder is a positive one or a negative two, the number is located in the left third of the K scale. If the remainder is a positive two or a negative one, the number is located in the center third of the K scale. If the remainder is zero, the number is located in the right third of the \mathbb{K} scale. It will be remmered that the ranges for the three parts of the K scale are the left third from one to ten, center third from ten to one hundred, and the right third from one hundred to one thousand or a multiple of a thousand times these ranges.

The process of extracting the cube root of a number is to set the hairline of the runner over the number on the \mathbb{X} scale and read the answer under the hairline of the runner on the D scale. Since the number nay be set on any one of the three parts of the K scale, there must be three rules for the location of the decial point in the process of extracting the cube root of a number. These three rules may be stated as follows:

1. If the original number is located in the left third of the K scale, the digit count of the cube root is equal to the digit count of the original number plus a positive two divided by three.
2. If the original number is located in the center third of the K scale, the digit count of the cube root is equal to the digit count of the original number plus a positive one divided by three.
3. If the original number is located in the right third of the f scale, the digit count of the cube root is equal to the digit count of the original number divided by three.

The operations, which have been described and explained in this chapter, are the only operations of the slide rule that may be taught without bringing in mathematics with which students of the ninth grade are not faniliar. If this much can be taught, then students with sufficient practice can become very proficient with the slide rule.

The rules explained in this chapter are simple and easy to understand. The student who has a fear of mathematics may find an interest in slide rule even if he will not attempt other Soms of mathematics. He might not even think of slide rule being related to the subject he is trying to avoid. In learning the use of the slide rule, he will have a userul tool which may help him the rest of his life. It is also true that through his work with the slide rule he may overcome his fear of mathematics. These simple rules may go a long way in the developnent of the student in his thinking toward mathenatics.

THE LOGARITM CHARACTERISTIC IN TME LOCATION OF DECIMAL

The use of logarithm characteristics in the location of the decimal point in problems solved on the slide rule is a basic concept regardless of how it is disguised. The operations described in Chapter II will again be presented using the logarithm characteristic instead of the digit count.
What is a logarithm? What is a logarithm characteristic? These are questions which the student must ask and must understand the answers to before he can use logarithms in determining the location of the decimal point while using the slide rule. The slide rule as an outcome of logarithms is a very useful way of showing how a part of mathematics, thought by many students at the high school level to have no practical use, is of practical use. The student learns in second year algebra, or later in trigonometry, that a logarithm is defined as:
The exponent of the power to which a given number called the base must be raised to equal a second number is called the logarithm of the second number. 1
$1_{\text {William A. Granville, Plane Trigonometry (Boston, }}$ 1943), p. 105.

This means that any number may be expressed in terms of another if the correct exponent is used. The base of common logarithns is ten. Therefore, any number located on the slide rule will have the sane location as any multiple of ten times the original number. This brings up the question of how the distinction is made between multiple of ten tines a nunber. It is answered by the logarithra characteristic of the number. This characteristic may be defined or explained by the following statements:

The characteristic for a number greater than unity is positive, and one less than the number of digits in the number to the left of the decinal point.

The characteristic for a number less than unity is negative, and is one greater numerically than the number of zeros between the decimal point and the first significant figure of the number. ${ }^{2}$

These statements take care of all numbers except unicy itself which has a characteristic of zero. By using this characteristic, which tells what multiple of ten the number located on the slide rule should be multiplied by, will give the location of the decimal point in the answer. When the student has a good understanding of logarithra characteristics, he is ready to learn the simple operations of the slide rule.
$2_{\text {Ibid. }}$ p. 111.

Fultiplication

The process of multiplication is the same regardless of the method of detemaning the location of the decimal point. The processes described in the previous chapter will be repeated for clarity mine discussing the procedure in locating the decinal point. The operation of multiplication on the slide rule involves the use of the C and D scales. One index of the ces scae iss set over the multiplicand on the D scale and the hainline of the runner over the multiplier on the C scale Then the ansure is read on the D seale under the hamine. The Location of the decinal point will bo determaned by the following rule:

The characteristics of the product of two numbers is the sw of the characteristics of those nuwbers (the characteristic of the second factor beine increased by unity if the slide extends to the lett). 3

This rule takes into consideration that the slide may extend either to the right or left just as the rules for the digit count method did. This rule nay seem easier to remomber because it is shorter, but it must be remembered that any set of rules may be statod in a more conqact fom if this is desired. In a comparison of the rules of the tro methods of determining the location of the decimal point, there is very Iittle advantage for either method.

[^1]The operation of division is to set the hairline of the runner over the dividend on the D scale and move the slide so that the divisor is also under the hairline of the runner on the scale. The answer is read from the D scale under the index of the C scale. It will be noticed that either index of the C scale may be the one indicating the ansiter and the other will be extending from the stock of the alide rule. The rule for the location of the decimal point in the answer of a division problem may be stated as:

The characteristic of the quotient of one number divided by another is found by subtracting the characteristic of the divisor from the characteristic of the dividend (the characteristic of the divisor being increased by unity when the slide extends to the left). 4

There is also an exception to this rule, as there was to the digit count rethod rule in the foregoing chapter. This exception is when the dividend is a multiple of ten. When the dividend is a multiple of ten, the divisor always will be treated as in the slide extended to the left. The ract that this is the same exception as was found in the other method does not give either method an advantage over the other.

$$
\text { 4Toide. } 0.573 .
$$

The Square of a Number

The operation of squaring a number involves the use of a new scale. This may be either the A or B scale. One of these scales and either the C or D scale will be used in the operation of squaring a number. On the ten-inch slide rule which is recommended for the use of high school students, the A and D scales occur on the stock of the slide rule, and the B and C scales occur on the slide of the slide rule. Since the operation requires only the movement of the hairline of the rumer, it is advisable to use the set of scales on either the stock or the slide. This will prevent possible errors caused by not having the indices of the stock and slide lined up properly.

The process of squaring a nunber is accomplished by setting the number to be squared on the D or C scales under the hairline of the runner and reading the answer under the hairline of the rumer on the A or B scales, respectively. The A and B scales are single scales made up of two scales, having the ranges from one to ten, on the left half of the scale and from ten to a hundred on the right half of the scale. The theorm of logarithms for raising a nunber to a power states that: PThe logarithm of the pth power of a number is equal to ptines the logarithm of the number. ${ }^{5}$ There are two rules which may be derived from this theoren
${ }^{5}$ Granville, p. 108 .
for the location of the decimal point then squaring a number on the slide rule. These rules may be stated as follows:

1. If the answer is found in the left half of the A scale, the characteristic of the squared muber is equal to the characteristic of the original number multiplied by two.
2. If the answex is round on the right half of the A scale, the characteristic or the squared number is equal to the characteristic of the original nuaber multiplied by two and increased by one.

These rules will apply to the B scale as well as the A scale for locating the decimal point for a nuber which has been squared. The one which was added to the characteristic of the squared number found in the right half of the A is a one which had to be carried when the mantissa of the logarithra of the original number was doubled. The mantissa of the logarithm is the decinal part of the logarithm. 6

Extracting the Square Root

The operation of extrecting the square root is the reverse operation of taking the square of the nuraber. In extracting the square root of a nuber. it is very important that the number be located in the correct half of the A or B scale. If the charactexistic of a nuber is even, the

6mbid. $\mathrm{p} \cdot 111$.
nubler shoule be Located on the left hals of the scale. if the chavacteristic of a muber is oca, she muber should be located on the raght half of the scale. This is beceuse the ranges for each hall of the sade are from one to ter on the Lest hale which would have an even charactertstic and iron tea to a hundred on the right halt of the scale mich moula hove ant ode characteristic or sone multiple or a hundred tines these manges.

The process of extracting the square root of a muber is to set the hainline of the rumer over the nomber on the A or 1 scale and read the answer on the D or c seale marex the hatrine of the romer, respectively. There are two rules, wich hay be denjved from a theorem of logerithas for extracting the various roots of a nomber, for the location of the deciand point when extracting the square of n nuber on the slide rule. this theorem way be stated ac rollows: sphe logaritho of the roth root of a number is equal to the logarither of the number divided by $x^{* 7}$ The two rules for the location of the decinal point when finding the square roct of a nubar on the slide rule nay be atated as follows:

1. If the orighal mamber is found on the lept halr of the A scale, then the characteristic of the square root of the mumer is equal to the characteristic of the oriminal number divided by tho.

Tbid.: p* 10t.
2. If the original number is found on the right half of the A scale, then the characteristic of the square root of the number is equal to the characteristic of the original number decreased by one and divided by two.

These rules will apply to the B scale as well as the A scale. The decrease of one in the characteristic of numbers found on the right half of the scale is made up in the mantissa of the logarithr.

The Cube of a fumber

In the cubing of a number, the D scale will still be used but with the K scale. Both the D and K scales are on the stock of the slide rule, so the only movenent needed for finding the cube of a number is that of the hairline of the runner. The I scale is actually three scales in one. The ranges of these three scales are from one to ten on the left third of the K scale, ten to a hundred on the center third of the K scales, and from a hundred to a chousand on the right third of the k scale or sone multiple of a thousand times these ranges.

The process of cubing a number is to set the hairline of the runner ovor the number to be cubed on the D scale and read the answex on the K scale under the hairline of the runser. The answer ray occur on any one of the three parts of the K scale. For this reason therg are chree rules for
locating the decimal point when cubing a number instead of the two, as has been the case in the other operations discussed in this chapter. These three rules may be derived from the theorem of logarithms for raising a number to a power which may be stated as: "The logarithm of the pth power of a number is equal to p times the logarithm of the number. ${ }^{8}$ Brom this theorem the following rules for the location of the decimal point when cubing a number may be derived.

1. If the answer is found in the left third of the K scale, the characteristic of the number cubed is equal to the characteristic of the original number multiplied by three.
2. If the answer is found in the center third of the K scale, then the characteristic of the number cubed is equal to the characteristic of the original number multiplied by three and increased by one.
3. If the answer is found in the right third of the K scale, then the characteristic of the number cubed is equal to the characteristic of the original number multiplied by three and increased by two. The increase in the characteristic is due to the product of three times the mantissa of the logarithm.
[^2]The operation of extracting the cube root of a number is the reverse operation of cubing a number. In extracting the cube root it is very important in which third of the K scale the number is located, because a number can only be correctly located in one of these. In determining which third of the K scale to locate the number, divide the characteristic of the number by three and the remainder will indicate the correct third of the K scale. If the renainder is zero, the number should be located in the left third of the K scale. If the remainder is a positive one or a negative two, it should be located in the center third of the K scale. If the remainder is a positive two or a negative one, the number should bo located in the right third of the K scale. It will be remembered that the ranges for these three parts of the K scale are from one to ten on the left third, fron ten to a hundred on the center third, and from a hundred to a thousand on the right third of the K scale or a multiple of a thousand times these ranges.

The process of extracting the cube root of a number is to set the hairline of the runner over the number on the \mathbb{K} scale and read the answer under the hairline of the runner on the D scale of the slide rule. Since the number may be set on any one of the three parts of the K scale, there must be three rules for locating the decinal point in the process of extracting the cube root of a number. These rules nay be
derived from the logarith theoren which may be stated Iike this: mathe logarithn of the rth root of a nuber is equal to the logaritha of the number divided by x. 9 the three rules derived fron this theoren may be stated as follons: 1. If the originel number is located in the Ieft third of the k scele, then the characteristic of the cube root of the number is equal to the chavacteristic of the original number divided by three.
2. If the original nomber is located in the center thind of the E scale, then the characteristic of the cube root of the numbor is equal to the char. acteristic of the original nuber decreased by one and divided by three.
3. Is the original number is located on the right third of the scale, thon the characteristio of the cube root of the number is equal to the characteristic of the original nuber decreased by two and divided by three.

The operations which have been described and explained in this chapter included only those which wexe included in the previous chapter so that a comparison could be rade without being influenced by including new operations. If aditional operations, such as finding the sinc or tangent of an angle, it would give the impression that the pirst
system was inconplete or imprectical for use in these other operations. This is not the case, as the first systom has covered just those operations that would be desireble for the weaker mathenatics stadent to know.

CHAPTER IV

SUMARRY AND CONCLUSTONS

The problem in this discussion of teaching the slide rule in high school was a comparison of two methods of locating the decimal point in the answers of problens solved on the slide rule. This report briefly considered five things believed to be the most important considerations to be made when preparing to teach slide rule in high school. These considerations were: (1) the grade level of the students to be taught; (2) when and how much time is to be spent on the subject; (3) the type of slide rule to be used; (4) the processes to be covered; and (5) the procedures to be used in these processes. It was concluded that the main difficulty encountered by students is finding where to place the decimal point in the answer. To overcone this difficulty, two methods for determining the decinal point in the answer were described and explatned for six operations which are profitable for nost people to know. These six operations were nultiplying, dividing, squaring a number, extracting the square root of a nubbers cubing a number, and extracting the cube root of a number. These two methods for deternining the location of the decimal point in the answer were the digit count method and the logarithm characteristic
method. The digit couat method is a method for detemining the decinal point in the ancver without mentioned the basie principle of the slide rule, that is, logarithas. This method is desirable if the students tho are to be taught are considered to be weak or at a low level of achievenent in mathematics.

The logaritha characteristic aethod places the basic principles of the slide rule before the students. The rules Por using this method are not of a difficult nature but require a working mowledse of logarithat characteristics. If the time will allow and the students' interest can be raintained, this nethod should be used. Nowever, this nethod should not be used unless the students have a well developed understanding of logarithms. If it is usod without this understanding, the student may acquire a dislike Sor hathematics and the little he learns about the slide rule's basic principlos will not make up for the damage done to his mental attitude toward mathenaties.

Wis report aces not take into consideration the nerits of toaching slide rule in the high school, because the slide cule is a very userul instruaent in nany types of business todey.

Arnolds J. in Ghe Slide Fule granciples and mplicationso New Yonk: Prenive-Rall, 10540

Boteng J. Jo Aqdition and Subtraction with Iinear Seales as an Introduction to the Study of the Slide Rule." School Science and Mathenatics, LUII (November. 1957)s

Bagle, E. Le BDecinal Point and the Slide Rule Answer. ${ }^{3}$ Wathenatics Teacher, XXXV (December, 1952), 572-5.

Granville, Villiam Ao Plane Trigononetiy. Bostoni: Ginn and Company. 1943.

Haxris, Charles 0. Slide Rule Simplified. Chicago: American Rechical Society, 1949.

Jecobs, Re FPlacine the Decimal Point in Slide Rule Computations. STe Shematics Teacher. I (Octobery 1957). $424-5$.

Kepper. George ${ }^{\text {Ko }}$ Ghe Slide Rule Hade Meaningtul. Hathematics leacher, XXXXIV (0ctober. 1951), 392.

Levis, D. L. Mocimal Point in Slide Fule Calculations. ${ }^{\text {E }}$ $\frac{\text { School Science and Mathematics, IN (october, }}{520 \text {. }}$ (955).

Maccubbin. Jo E. RSlide Rule in Jmior Rich School. ${ }^{\text {F }}$ Gethematics Teacher, WXXII (warch, 1949), 164-5.

Peak Philip. Mre Slide Rule in Junior High School vethematics: School Science and Lathematics, XXXXI (December, 1940), 821-4.

Shuster, Carl 10 \& Study of Problems in reaching the Slide Bule. New York: Columbia University 1940 .

Sommers, H. H. The Study of the Slide Rule. Chicago: Austin Publishing Conpany, 1941.

VITA

Pred Thomas Johns
Candidate for the Degree of
Master of Science

Report: WHE TEACHING OF THE SLIDE RULE IH THE HIGH SCHOOL Major Field: Natural Science

Biographical:
Personal Data: Born in Cameron, Texas, January 16, 1932, the son of Willian Henry and Ida A. Johns.

Rducation: Attended grade school in Cameron, Texas; Graduated from Yoe High School in 1950; received the Associate of Arts degree from Blinn College in Brenham, Texas, in 1952 ; received the Bachelox of Science degree fron The Agricultural and Mechanical College of Texas, with a major in Entomology, in Hay, 1954 completed minor in Education at The Agricultural and Nechanical College of Texas in July, 1955 : returned to The Agricultural and Mechanical College of Texas for sumer institute in Physics in 1956; attended sumer science institute at Southern Methodist University in 1957: attended sumar science institute at Baylon University in 1958 ; completed requirements for the Master of Science degree at Oklahoma State University in may. 1959.

Professional experience: Worked for Bilsing-Orr Pest Company, Inc., Bryan, Texas, for five months, September to January, 1954-55\% science teacher. Yoe High School, Cameron, Teas, for three years. 1955-1958.

[^0]: ${ }^{1}$ Charles O. Harris, Slide Rule Simpliried (Chicago, 1949), p. vi.
 ${ }^{2}$ Ibid., p. 50-51.

[^1]: ${ }^{3}$ E. L. Eegle, Mecinal Point and Slide Rule Ancwers, ${ }^{30}$ Mathemetics Teacher (December, 1952), 8. 573.

[^2]: ${ }^{8}$ Ibid.

