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A set of sub-optimal Extended Kalman Filters (EKF's) are described. The filters 
are used to estimate web tension, modulus of elasticity, and loss torque for all sections in 
a small web processing line located at Rockwell Automation's Euclid Research Facility. 
Conditions necessary for obseivability, and estimate convergence are discussed. 

NOMENCLATURE 

Y meas,k+l 

State estimate vector at the kili epoch given the predicted state 

vector from the previous epoch. 

Noise-free predicted state vector 

Predicted state vector (with residuals) 

Discrete sample time [sec] 

Updated probability density matrix from the previous epoch. 

Linearized Predicted probability density matrix, given the 

update from the previous epoch. 

Updated probability density matrix 

State Transition Matrix at the kthepoch 

Updated Kalman filter gain matrix 

Sensor noise covariance matrix at the kili epoch 

Process noise covariance matrix at the kili epoch 

Measured states at the kili epoch 
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INTRODUCTION 

Predicted outputs, given the noise-free predicted states. 

The identity matrix 
Web strain [ engineering units of choice] 
Motor torque [ engineering units of choice] 
Loss torque [ same units as -r] 
lh web cross sectional area [ engineering units of choice] 
ith tenion [units of force] 
ith normalized tension 
ith modulus of elasticity [units of force per units of A] 
ith normalized modulus of elasticity [I =EREF] 
ith strain factor 1/(1+ s) 
ith roll rotational speed [rad/sec] 

ith normalized rotational speed [l =cob,J 
ith motor base speed [rad/sec] 
ith length [ engineering units of choice] 
ith roll radius [ engineering units of choice] 
ith gear ratio 
j th state in the ith zone, zero-mean white noise terms. 

The EKF is often used in the aerospace industry to estimate states and/or 
important system parameters in noisy systems. Why do we need to concern ourselves 
with this kind of technology in the drive systems business? 

There are many sources of uncertainty in a web processing system, for example, 
tension measurements can be corrupted by incorrect calibration of the load cell or strain 
gauge. The same can be said for the uncertainty associated with calculation of roll 
diameter as a function of an estimated surface speed and its ratio to the winder motor 
speed in ratio detector algorithms. Time varying frictional losses add uncertainty to 
friction compensation algorithms as do slight changes in material density to inertia 
compensation algorithms. The estimation of motor torque from a current reference in 
DC or torque reference in AC as compared to the actual motor shaft torque introduces 
another source of uncertainty. In the paper and film industries, time-varying modulus of 
elasticity adds another source of uncertainty. A Kalman filter that is designed to 
estimate states based on a known model of the uncertainty in the measured states is 
desirable. 

A Luenberger observer, can be implemented [5,6] to estimate system states, but 
such an implementation is not robust in the presence of noise. This is especially true for 
metals applications. Because of the high gain in the relationship between stress and 
strain (Young's modulus) in metals applications, noise in the speed feedback can result 
in large errors in the strain estimation. A Kalman filter that is designed to provide 
reliable estimates of important system parameters in the presence of well modeled 
system noise would be most useful. An additional benefit provided by such a filter, is 
that it could estimate unmeasured parameters, such as web strain, and loss-torque. 

The Kalman filter can provide the user with a measure of how "good" the 
estimate is. This measure, the covariance of the estimate, is most accurate in systems 
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where the uncertainty is Gaussian, and all process and sensor noise is band-limited and 
white. In systems where there are cyclical disturbances (e.g. machine resonances) and 
the resulting noise is pink at certain frequencies, a Kalman filter can be designed to 
filter the cyclic noise and calculate un-biased parameter and state estimates [3], 
however, the design of the Kalman filter in these instances is significantly more 
complex, for this reason pink noise sources will not be considered in this presentation. 

The usual drawback to the implementation of any optimal EKF is the need to 
heuristically derive optimum noise covariance matrices Q and R. Another is the trade
off between the need for computing power, and the need for filter bandwidth (i.e. update 
time). Most implementations usually result in such long update times that the Filter 
estimates are of little practical use in real time systems. 

Figure 7. Shows the optimal EKF implementation for the Euclid lab-line system. 
In this system there are 22 system states, and 12 system inputs. To execute the EKF 
algorithm with this many states on a 7010 Automax ® processor would take 
approximately 20 [sec] per update. Clearly, with such an update time, the tension 
estimates could not be used to close a sufficiently responsive tension loop. 

However, if a set of sub-optimal filters are designed, and linked with estimated 
parameters, as shown in Figure 8, the resulting sub-optimal filter computational 
requirements are significantly reduced. In this case the most number of estimated states 
is 3 and the most number of inputs is 2. The resulting matrices are at most 3x3, and all 
matrix computations can be accomplished with simple routines. The EKF algorithm can 
now be executed in about 15 [msec] using a 7010 Automax processor. Given that the 
scan-time of a standard Rockwell Automation tension loop is 22 [msec], tension 
estimates, for example, can be used to close a tension loop. 

Having overcome the implementation hurdle, the process of exercising the EKF 
on the Euclid lab-line revealed that the estimated web strain, loss torque, and web 
modulus of elasticity states, in those sections where the tension feedback was not made 
available to the filter, would not converge. A dual state analysis performed by Angus 
Andrews at the Rockwell Science Center [8] provided a proof that tension feedback was 
required if these states were to be estimated. The conclusions drawn in the proof were 
extensible to Leunberger observers, implying that filll'. observer or state estimator of web 
strain, loss torque, or modulus of elasticity was not feasable if it is implemented without 
tension feedback. This was an important conclusion given that the impetus for the study 
was to investigate the possibility of developing tension sensor-less web process lines. 

Presentation Overview 

The first section contains a brief description of the EKF algorithm. The second 
section describes the non-linear process model used in the final sub-optimal Kalman 
filter implemented on the Euclid lab-line. The third section describes the coding of the 
EKF for use with the Automax distributed control system, and results from the 
integration of the filter onto the Euclid lab-line. Conditions necessary for observability 
and estimate convergence, along with conclusions are presented in the fourth section. 

179 



THE EXTENDED KALMAN FILTER ALGORITHM: 

The EKF algorithm described by Figures 4 and 5, and derived in numerous 
texts on the subject ([l,2,3,4]) is summarized below. The noise statistics are modeled as 
follows: Let Q and R be the covariances of zero-mean Gaussian process noise 'w' 
and the measurement noise 'v' respectively: Then: 

State prediction equations: 

xk+llk = xklk + *klkLlt + AkiklkLlt2 / 2' Ak =(ox/ox) lxklk 

Covariance prediction equations: 

pk+llk =<l\Pklk<I>! +<t' <l>k =l+AkLit 

Kalman gain equations for each sub-optimal section 

Covariance update equations: 

State update equations: 

" " " ( " ) xk+llk+l = xk+llk + Kk+l y meas,k+l -y k+l , Y k+l = h(xk+llk) 

SYSTEM MODELLING AND FILTER iMPLEMENTATION 

The Euclid lab-line (Figure 1.) is a four section web processing line designed for 
the evaluation of web handling control strategies. For this study the web material used in 
the process was Kraft paper. A one-line diagram of the lab-line is shown in Figure 2. A 
simplified one-line diagram is shown in Figure 3. 

State variable designations: 

The EKF algorithm described above (Figures 4, and 5), requires the a-priori 
designation of all system state variables, inputs, outputs, measured state variables, 
estimated state variables, process noise sources, and sensor noise sources. These 
designations are made based on a satisfactorily complete model of the process. 

The following designations were used in the implementation on the Euclid lab
line: 

Unwinder + downstream web (with dancer disabled, operated as a torque 
regulator.) 

Measured states: 
Roll (angular) speed 
Roll diameter (from ratio detector) 
Roll torque: 1: = f(current & field strength) 

Estimated states: 
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Web strain factor: z = 1/(l+s), wheres= strain 
Roll loss torque: -rL 
Web modulus of elasticity: E 

Tensions: 
Input (wound-on): assumed zero 
Output (downstream): calculate, T = AEs = AE(l/z -1) 

S-wrap bridle + downstream web 
Measured states 

Roll (angular) speed 
Roll torque: -r = f( current & field strength) 

Estimated states 
Web strain factor: z = 1/(l+s), wheres= strain 
Roll loss torque: -rL 
Web modulus of elasticity: E 

Tensions 
Input: from upstream subsystem 
Output (downstream): calculate, T = AEs = AE(l/z -1) 

Pull-roll + downstream web 
Measured states: 

Roll (angular) speed 
Roll torque: -r = f(current & field strength) 
Web tension (from load cell) 

Estimated states: 
Web strain factor: z = 1/(1 +s), wheres= strain 
Roll loss torque: --rL 
Web modulus of elasticity: E 

Tensions: 
Input: from upstream subsystem 
Output (downstream): calculate, T ,= AEs = AE(l/z -1) 

Rewinder 
Measured states: 

Roll (angular) speed 
Roll diameter (from ratio detector) 
Roll torque: --r = f(current & field strength) 

Estimated state: 
Roll loss torque: -rL 

Tensions: 
Input: from upstream subsystem 
Output (downstream, wound-in): assumed zero 

First principal equations: 

The following first principal equations were used to describe each section of the 
simplified system (Figures 3 and 6) in each of the sub-optimal EK.F's (Figure 8). Note: 
for the sake of brevity, the Unwinder was configured as a torque regulator, and the 
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estimator for the dancer position was not implemented. Note: the choice of units must be 
made appropriately so that the equation dimensions are correct. 

States available from other subsystems: 

Upstream: 

Downstream: ro1 

State equations: 

Motor speed: dro0 _ 1 f- _ C (-T -I )] --=-[to-'tLO+ · ,-- o +wroo, 
dt J 0 

Motor torque: 

Loss torque: 

Strain factor: 

Modulus of elasticity: 

Where: 

d'fo --w 
dt - ' 0 

d'fLO ---w dt - ,LO 

dz! ( RorobO J-- ( Rlrobl J-- = ---O)Z - ---O)Z +W 
dt L GR O O L GR I I Tl 

I O I I 

dE1 
--==WEl 
dt 

Note: The w; terms represent the zero-mean noise terms (covariance= Q; ). 

The subsystem model equations for the Unwinder and Rewinder are slightly 
different than those shown above for constant diameter rolls. First, an additional state 
equation is necessary in both the Unwinder and Rewinder to estimate the varying roll 
diameter; a measurement of the diameter is available in each case (from a ratio 
detector). And second, the Rewinder does not have a downstream web, so the state 
equation for strain factor is eliminated. The derivation of these equations is left up to the 
reader. 

Lab-line implementation 

Each subsystem model was implemented as one roll plus downstream web, as 
illustrated in Figure 6. The subscript O represents upstream and the subscript 1 
represents downstream. The implementation was structured with one AutoMax 7010 
processor card per sub-optimal filter. Programming was done using AutoMax enhanced 
BASIC equations. Software switches were included for correctly re-assigning variables 
when reversing line speed direction. The various measured state variables from each 
subsystem were observed using the Sigma ® data system during line operation in the 
forward and reverse directions. Data was extracted and plotted using the Mathworks 
Corp. MATLAB® data presentation algorithms. 
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OBSERVATIONS 

Estimated states for the line between the Pull-roll and the Rewinder were the 
most well-behaved. The estimated modulus of elasticity for the web section between the 
two rolls tended to settle at a steady-state value that was reasonably close to the expected 
value. The reason for these well-behaved results was later proven to be due to the 
presence of a tension measurement in this zone. 

Estimated states for other regions of the line tended to deviate from expected 
values, similar to the deviations noted during MATLAB simulations of the Lab-line. In 
particular, the modulus of elasticity values for the two other web sections - i.e., the S
wrap to Pull-roll section and the Unwinder to S-wrap section, appeared to diverge either 
above or below their expected values, depending on the covariance values selected for 
the Q-matrix and R-matrix elements. This indicated that the modulus of elasticity and 
loss torque are not observable, unless there is a measurement of tension available. 

The results presented below for the S-Wrap section loss torque estimation 
illustrate these points. The measured states are angular speed, m0 , and motor torque, 
'to. The estimated states also included: strain factor, z1 , and a calculated modulus of 
elasticity, E1. For the diagonal Q matrix covariances given in Table 1, the results are 
shown in Figures 9 through 11: 

Increasing the process covariance for the modulus of elasticity from (.003)2 to 
(.01)2 caused the estimated value of E1 to diverge above the actual. Decreasing the 
process covariance for E1 from (.003)2 to (.001)2 caused the estimated modulus of 
elasticity to diverge below the actual value. Similar heuristic strategies were employed 
for optimally setting the co-variances of all other state variables. The effect of off
diagonal values in the Q matrix were then investigated. 

The most likely off-diagonal terms to be present in the above example were 
assumed to be the ones linking loss torque and roll angular speed; i.e., most likely, 'tL ~ 

Bv m . If roll angular speed is state 1 and loss torque is state 3, then the cross-coupled 
process covariance becomes the matrix elements Q(l,3) = Q(3,l). Estimation of loss 
torque appeared to approach a steady-state value onlly when these cross-coupling terms 
were at or near a critical value. Much effort was expended in investigating and 
identifying optimal settings for all diagonal and cross-coupling covariances. For 
example, decreasing the cross-coupled process covariance, loss torque to speed, Q(l,3) 
= Q(3,l) from (.008)2 to (.006)2 resulted in the loss torque estimate shown in Figure 
12. Whereas increasing the cross-coupled process covariance, loss torque to speed, 
Q(l,3) = Q(3,l) from (.008)2 to (.01)2 resulted in the unbounded loss torque estimate 
shown in Figure 13. Similar observations were made while setting other estimated state 
process and sensor noise covariance values. 

It is believed that the estimation of Young's modulus would be significantly 
improved if a model relating stress to strain for the material in the web process line was 
implemented in the above state equations. The model used in the Kalman filter on the 
lab-line was composed of only a noise model. Several models were investigated, they 
were obtained heuristically with measurements of web stretch as a function of tension, 
however, slight changes in humidity rendered them inaccurate. The stress strain 
relationship of metals appears to be much better understood and modeled. It is believed 
that the Kalman filter will perform significantly better in metal processes where these 
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models can be implemented. The author noticed that, in the area of paper, film, and 
plastics, there is a lack of published material on this subject. 

CONCLUSIONS 

The author corresponded with Angus Andrews at the Rockwell Science Center 
for assistance when it was observed that the state estimates of tension, strain factor, web 
modulus of elasticity, and loss torque would not converge in those sections where a 
tension measurement was not fed back into the EKF. A dual state analysis of the system 
was performed [8] and a comparison of optimal and sub-optimal filters revealed that the 
above states were only observable if a measurement of at least one of the above 
mentioned states was made available to each the sub-optimal filters. Tension is the only 
state that can be practically measured. This conclusion implied that the implementation 
of a tension sensor-less system is not feasible. However, important states, such as web 
strain, or loss torque, can be estimated if the tension feedback is made available, and an 
EKF is used to estimate these states, even in the presence of significant process and 
sensor noise. 

The structure and results of the dual state analysis will be the subject of another 
paper on this topic. However, by inspection of the equations describing strain factor, 
tension, loss torque (i.e. speed), it is clear that the above states exhibit dependence. For 
example, if the estimate of web tension is lower than the actual, the estimate of loss 
torque must be higher than the actual, this is because the estimate of shaft torque is 
accompanied by a measurement. It can be considered known with a degree of certainty. 
At a steady state speed, the torque on the shaft minus loss torque, will produce strain in 
the material. What is lost in one estimate must be made up in the other estimate. 
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Tables 

State - -
ffio 'to 'tLO zl El 

Q (.001) 2 (.01)2 (.003) 2 (.0003) 2 (.003) 2 

R (.001) 2 (.01)2 

Table 1. 
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Figure 1. Euclid Lab-Linc Facility 

Unwinder Winder 

Figure 2. Lab-Line Physical Model 
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Figure 3. Simplified Lab-Linc Model 
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Figure 4. Algorithm Structure 

noise-free (w = 0) 
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Figure 5. Extended Kalman Filter Algorithm 
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Unwinder 

Strip direction: left to right 

Strip direction: right to left 

Figure 6. Subsystem Model Structure 
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Figure 7. Optimal Kalman Filter Design 
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Fi~rure 8. Sub-Optimal Kalman Filter Design 

Winder 

Figure 9. Actual tension (green) versus Kalman filter estimated tension 
(yellow) 
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Figure 10. Calculated modulus of elasticity (green) versus Kalman filter 
estimate (yellow) 

Figure 11. Loss torque estimated by Kalman filter 
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Figure 12. Estimated loss torque for cross coupling terms Q(l,3) = Q(3, l ) = (0.006)A2. 

Figure 13. Estimated loss torque for cross coupling terms Q(l,3) = Q(3,l) = (0.01Y'2 
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B. Boulter 
Estimating Modulus of Elasticity, Torque Loss, And Tension Using an Extended 
Kalman Filter 
6/7/99 Session 1 3:30-3:55 p.m. 

Question - Prabhakar Pagilla, Oklahoma State University 
You have this entire sub-optimal Kalman filter, but the system as a whole is inherently 
coupled, the sub systems are coupled. So how do you set up the Kalman, you still need to 
pass information between each of these because each of these are depending on the 
neighboring systems. How would you call it a sub-optimal system? What is the criteria 
for doing that? 

Answer - Brian Boulter, Rockwell Automation 
The big issue is the mathematical proofs that go into developing for Kalman filters. Dr. 
Wilscki (Professor at MIT) made it clear that there was a lot of risk to set this up. When 
you have multiple Kalman filters that are talking to each other, you can throw the 
mathematics out the window because you're working with nonlinear systems. He gave 
an example like of an F16 regarding the eight targets that they track, when the targets 
cross over how do the filters know where the targets are going to be if they cross over at a 
very small angle. If you look at the probability solution it goes through the roof there. 
You tum the filter off when this happens, then back on when they pass. We use measured 
states whenever we could, that includes stuffing values in the Jacobian, includes passing 
parameters between the filters, the only time we didn't use states was when they weren't 
available. What we found was if you can measure tension in zone you pass the measured 
values across, you don't pass the estimated measures, and you get better results. I'm not a 
mathematician. I'm just saying that is what we have found out playing with it on the lab 
line. Sending the actual values across, not estimated. 

Questions -
So there is no proof of conversion? 

Answer - Brian Boulter, Rockwell Automation 
No, none at all. I tend to work with things more practical. 

Comment-
I think that Michael Leonard mentioned that he had to measure torque to get friction, he 
couldn't infer it by the velocity measurement. He measured torque and velocity to 
estimate tension. 

Answer - Brian Boulter, Rockwell Automation 
They do a state analysis like Gus did and I hope he will be able to present his paper next 
time. He goes into a lot of detail about that side of it. He focuses on what is observable, 
what isn't, why it isn't. I didn't want to cloud any issues here, just keep it simple. 

Questions - Wolfermann, Tech University of Munich 
You have used several Kalman filters in your entire system. If you had a web break in 
your system, what would you have for control? 
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Answer - Brian Boulter 
As soon as you get a web break the speed loop, depending on the offset you use, kicks in 
and the drives become regulated. The Kalman filter will, of course, produce garbage 
results. At that point when failure occurs you basically turn things over to speed 
regulators. That's pretty standard in the industry. 
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