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A contact mechanical model for the winding nip, consisting of the wound roll, 
winding drum and the intervening sheet, is presented. The roll and drum are modeled as 
linear, orthotropic, homogeneous cylinders with a rigid core. The elastic solutions for 
the cylinders are derived analytically in a series form. The sheet is modeled as a linear 
and orthotropic material as well. An approximate elastic solution for the sheet is ob
tained by assuming an internal stress distribution compatible with the boundary condi
tions (thin sheet approximation). The governing contact mechanical equations are pre
sented and the appropriate form of the wound-on-condition of the sheet is presented. 

NOMENCLATURE 

a 

anm• bnm 

A,,, Are, A00, G,0 

C11,C12,Czz,C66 

h 

hj 

M1,M2 
p 

p,q 

nip half width 

coefficients to be determined by the boundary conditions 

elastic constants of the cylinder 

compliance coefficients of the sheet 

half of the sheet ( or web) thickness 

normal sheet surface stress at x j 

driving torques of the roll and drum 

vertical compressive load on the cylinders 

normal and tangential surface tractions on the cylinder 

tangential upper and lower sheet tractions at x j 

radial polar coordinate 

cylinder outer radius 

core radius 
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u,v 
+ -V ,V 

V1, V2 

v,, Vo 
v+,v-
½.,V2 
x,y 

xj 

80 
L'.lx 

INTRODUCTION 

incoming web tension 

outgoing web tension 

horizontal and vertical displacements of the sheet 

vertical upper and lower sheet surface displacements 

radial surface displacements of the roll and drum 

radial and tangential displacements of the cylinder 

upper and lower sheet surface speeds 

roll and drum surface speeds 

cartesian coordinates 

nip discretization point 

vertical approach of the roll and drum centers 

nip discretization step 

horizontal displacement of the nip center 

horizontal strains of upper and lower sheet surfaces 

friction coefficients in the upper and lower contacts 

normal stresses at the upper and lower sheet surfaces 

radial and tangential normal stresses of the cylinder 

horizontal and vertical normal stresses of the sheet 

shear stresses at the upper and lower sheet surfaces 

tangential shear stress of the cylinder 

horizontal shear stress of the sheet 

The winding devices of the modern paper industry exclusively include a nip. De
spite restricting air entrainment into the roll, a nip provides two additional external 
loads - normal and tangential - to control the wound roll structure. A winding nip typi
cally generates a high stress concentration in the nip area and, hence, a possibility for 
web and roll defects. It is also well known that in the nip area layer-to-layer slippage 
may occur in the wound roll. This sets demands for the winder control system to keep 
the nip loads in a range so that the required roll structure is achieved and, on the other 
hand, that roll defects due to nip induced stresses are avoided. Currently, the appropri
ate range of the winding parameters is sought mainly by trial and error tests. 

Despite that there exists a vast amount of literature on rolling contact of two par
allel cylinders, a rigorous theory applicable to the winding nip is still lacking. Bentall & 
Johnson [1] have studied the rolling contact of two cylinders with an elastic strip going 
through the nip. They restricted their treatment to isotropic materials, identical cylinders 
and essentially to free rolling conditions. Also, a half-space approximation for the cyl
inders was used and, hence, the theory is not suitable for a drum with a thin elastic 
cover. Tervonen [2] has extended the treatment to linear, viscoelastic cylinders and 
tractive rolling. His model includes covered cylinders but is also restricted to isotropic 
materials. In neither of these papers the winding application is considered. Soong & Li 
[3,4) have considered the rolling contact of two cylinders with linear, elastic and iso
tropic layers bonded to a hard core and driving an elastic thin sheet with extensional 
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stiffness. Welp & al. [5] have discussed the aspects of modeling the winding process 
and presented an idealized model for isotropic materials. They restricted the treatment 
to a rigid winding drum and based their treatment in one-dimensional web theory. In 
the web - wound roll contact the condition of total slip was assumed and, hence, only 
the web-winding drum contact was studied. All previously mentioned studies lack the 
proper nip exit condition for the web wound onto the roll. 

In this paper a contact mechanical model for the winding nip is presented. The 
model consists of the wound roll, winding drum and the sheet in the nip. The wound 
roll and winding drum are modeled as linear, orthotropic, homogeneous cylinders with 
a rigid core. The elastic solutions are derived analytically in a series form. The sheet is 
also modeled as a linear and orthotropic material. An approximate elastic solution for 
the sheet is obtained by assuming an internal stress distribution compatible with the 
boundary conditions and by integrating the orthotropic constitutive equations (thin 
sheet approximation). The appropriate form of the wound-on-condition of the web is 
presented. 

FUNDAMENTAL ELASTIC SOLUTIONS 

Let us consider a linear, orthotropic cylinder of radius R (see Fig. 1) with a rigid 
core of radius R0 and loaded by the radial and tangential surface load distributions p and 
q, respectively. Hence, the boundary conditions in the polar coordinate system attached 
to the center of the core are 

v,(R0 ,0) = 0 , a,(R,0) = -p(0) 

v8 (R0 ,0) = 0 , r ,8 (R,0) = q(0) , 
(1) 

where v, and v 8 denote the radial and tangential displacements, and a r and r ,0 the 

radial normal and tangential shearing stresses, respectively. The linear constitutive 
equations of the orthotropic cylinder can be written as 

av, 1 ( OV0) 
(Yr = Arr - + A,o - V r + -- ' 

8r r 80 

(2) 

where the coefficients Arr, A,0 , A00 and G,8 are the orthotropic elastic constants of the 
material. Substituting the above equations into the equations of equilibrium 

8a r + .!_ 8r r0 + a r - a B = 0 
8r r 80 r ' 

or r0 + .!_ oa B + 2 r r0 = 0 
(3) 

or r 80 r 
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a coupled system of partial differential equations for the displacements v, and v 0 is ob
tained. Due to the periodicity 2,r of the solutions with respect to 0 , the displacements 
admit the Fourier series presentations 

00 

v,(r,0) = u0 (r) + L[u~ (r)sinnB+ u~ (r)cosnB], 
n=I (4) 

00 

v0 (r,0) = v0 (r)+ L[v~(r)sinnB+v~(r)cosnB]. 
n=I 

Substituting expressions (4) into the equilibrium equations, written in terms of the dis
placements, we obtain an ordinary differential equation system for the Fourier coeffi
cients u0 , u~, u~, v0 , v~ and vi. It can be shown that the solutions may be written in 
the form 

2 

Uo(r) = Lbom!Vom (r), 
m=I 

4 

u! (r) = L anm!Vnm (r), 
m=I 

4 

ui (r) = L bnm!Vnm (r)' 
m=I 

2 

Vo(r) = LaomlPom(r) • 
m=I 

4 

vi(r) = LanmlPnm(r), 
m=I 
4 

V~(r) = I-bnm'Pnm(r) · 
m=I 

(5) 

The coefficients anm and bnm are determined by the boundary conditions (1) and the 
functions ¢nm and 'Pnm are given by 

¢13 = lnr ' ¢14 = 1 ' 

IP01 = r 
-1 

, IP02 = r 
A +G 

' (f}13 = In r + r0 r0 

A00 +G,0 
,I, = rAnm _ Anm th · 'f'nm , IPnm - 11nm' O erw1se, 

where the characteristic roots are defined by (n=2,3, .. ) 

µn +.Jµ~ -Kn 

2A,,G,0 

and the constant coefficients by 
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' IJ?14 = 1 ' (6) 

µn -.Jµ~ -Kn 
(7) 

2A,,G,0 



1l nm = ( Are + G r0 )nl nm - ( A00 + G r0 )n ' 

µn = A00Gr0-Ar0(Ar0+2Gr0)n
2

+Arr(Gr0+A00n
2

) , (8) 

2 ( 2 )
2 

Kn = 4ArrA00Gr0 n - I . 

Let us consider next the elastic sheet in the nip. An analytical solution for the sheet 
can be obtained by using the method of homogeneous solutions and biorthogonality 
properties of the 2D elasticity problem formulated in terms of the stress function and 
generalized biharmonic equation [6], by using the method of separation of variables 
leading to a general series representation [7,8], or by using a sixth degree polynomial for 
the stress function accounting for linearly changing boundary loads [8]. These solutions 
would be valid for any sheet thickness. However, due to the complexity of these meth
ods, an alternative approximate solution, utilizing the thinness of the sheet, is considered 
here. Consider the sheet of Fig. 2 loaded by the normal stresses a+ (x) and a-(x) and 
the shear stresses r+(x) and r-(x) at the top and bottom surfaces, respectively. The web 
tension at the left cross-section of the sheet is 1'; . Within the thin sheet approximation 
one can assume that a+ (x) = a-(x) = a± (x). We postulate the following stress distribu
tion, compatible with the boundary conditions, inside the sheet 

+ 2 2 
ay = a-(x)+(y -h )g1(x), 

(9) 

'xy =½[r+(x)+,-(x)]+ ;h[r+(x)-,-(x)], 

where 2h is the thickness of the sheet and g1 (x) an integration "constant" to be deter
mined when integrating the horizontal and vertical displacements from the constitutive 
equations 

au 
-=cuax +c12ay, ax 
av 
ay = C1z0' x + C220' y ' 

au av 
-+-=c66' ay ax xy 

(10) 

The stresses (9) satisfy the equation of horizontal equilibrium and the boundary condi
tions. The equation of vertical equilibrium, however, is not fulfilled exactly. Models of 
this type ('extensional strip models') have been used by several authors [4,5). By inte
grating equations (10) and neglecting terms of order O(h 2

) we obtain 
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-a 

X 

+c12 f a-±(<;)d<;+ Cy+u(-a,O) , 

-a 

s(x,y)= ~~ {T,-I [ c'@-,-@]d+ c; [[,'@+ qeJ]d~ 

+ c22a-±(x)y- Cx + v(O,O) 

for the horizontal and vertical displacements of the sheet. 

FORMULATION OF THE CONTACT PROBLEM 

(11) 

The radial displacements of the upper and lower cylinder (roll and drum) surfaces 
v1 and v2 , and the vertical displacements of the top and bottom surfaces of the sheet v + 
and v-, respectively, must satisfy the indentation equation 

(12) 

within the contact area. In equation (12) the coordinate xis measured along the center
line of the deformed sheet, o0 is the vertical approach of the cylinder centers, &0 the 
horizontal displacement of the center of the nip, and 1 / R = l / R1 + l / R2 the relative 
curvature of the cylinders. 

In the zones of stick the velocities of the contacting surfaces must be equal. Using 
small displacement approximation the necessary stick condition between the paper roll 
and the sheet can be written as 

(13) 

Similarly, the stick condition within the contact area of the winding drum and the sheet 
can be written as 

(14) 

Here&+= ou(x,h)/ ox and &- = ou(x,-h)/ ox are the horizontal strains of the top and 
bottom surfaces of the sheet, and & 1 and & 2 the circumferential surface strains of the roll 
and drum, respectively. Note that due to equation (11) the condition &+ = &- is valid. 
The constants <;1 and <;2 are the creep ratios, i.e., fractional differences between the 
speeds of the contacting bodies far away from the contact area. Within the slip areas we 
assume Amonton 's law of friction, i.e., 

sgn(V+ - ½),+=µ+a-+, 

sgn(V- -V2 ) ,- =-µ_a--, 
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where v+ and v- are the local speeds of the upper and lower sheet surfaces, ½. and V2 

the local speeds of the surfaces of the upper and lower cylinders, and µ+ and µ_ the 
friction coefficients in the upper and lower contacts, respectively. 

In order to obtain the displacements and stresses at the contact we assume the fol
lowing piecewise linear distributions of the normal and shear stresses on the sheet sur
faces within the contact area -a s x s a 

M 

a±(x) = ~>///j(x) , 
j=l 
M 

,±(x) = LqJlf//x) , 
j=l 

where hi, qj and q1 are the unknown surface tractions at the points 

xj =-a+(j-l)Llx , j=l,2, ... ,M 

and the piecewise linear local basis functions are 

{

(x-xj_1)/Llx, xj-l <xsxj 

1//j(x) = (xj+l -x)I Llx, xj < x s xj+l 

0 , elsewhere , 

(16) 

(17) 

(18) 

where Llx = 2a I (M -1). Utilizing the elastic solutions ( 4) and (11) we can write the 
vertical displacements and tangential strains at an arbitrary contact point X; in the form 

M M M M 

v1 . = '°' A-- 1h. + "B-- 1q+ , v2 . = '°' A-- 2h + '°' B-- 2q-:-, ,I £.... I], } £.... I}, } ,I £.... I}, } £.... I], } 
j=l j=l j=l j=I 
M M M M 

f:1,; = Lcij,lhj + LDij,lqj, 6 2,; = Lcij,2hj + LDij,2qj, 
j=l j=l j=l j=I 
M M M _ 

v( = LA;jhj + LB;jqj + LB;1q1 + B/I';, 
j=I j=l j=l 

(19) 

M M M _ 

v;- = IA;jhj + IB;jqj + IBJq1 - B;T;, 
j=l j=l j=I 

M M _ 

et= e-; = ICJhj + IDJqj +D;T; 
j=l j=l 

The coefficients Aij,k• Bij,k• Cij,k and Dij,k (k =1,2) are determined via equations (1), (4), 

(5) and (16), and the coefficients AJ, BJ, CJ, DJ, B; and D; via equations (11) and 

(16). Note that the effect of the tension T0 on the deformation of the roll is not ac-
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counted for in equations (19). A complete treatment of T0 evidently calls for the use of 

an Archimedean spirale for the roll. 
We can still utilize the total equilibrium conditions of the subsystems. It is easy to 

see from Fig. 2 that the horizontal equilibrium condition for the sheet and the torque 
balance conditions for the roll and drum lead to the equations 

a a f r+(x)dx- f r-(x)dx+T0 =T;, 
-a -a 

(20) 

In a real winding situation two of the quantities M 1, M 2 and T; - let's say M1 and T; -
are given. The vertical equilibrium conditions for the roll and drum give 

a a f a+(x)dx = f a-(x)dx = -P. (21) 
-a -a 

If the compressive load Pis given, equations (21) can be used as part of the solution 
procedure providing also a value for the nip contact width 2a. If, on the other hand, the 
nip width is given the corresponding compressive load can be calculated by equations 
(21). The latter alternative is preferable since it leads to a simpler set of equations to be 
solved. 

If the sheet goes through the nip with an externally set tension behind the nip, the 
tension T0 is known. However, if the sheet is wound on the roll, the tension T0 is not 
known a priori so that the number of unknowns is increased by one. The wound-on
condition, on the other hand, yields one more equation. Since the sheet behind the nip, 
after being stuck onto the roll surface, becomes part of the roll, one can readily conclude 
that the wound-on-condition takes the form 

(22) 

It has been pointed out in [5] that the web tension and curvature of the surfaces within 
the contact area give rise to an additional surface pressure = web tension/radius of cur
vature. Note that the radius of curvature contains information about the displacements 
and, hence, accounting for it would greatly complicate the solution process. Fortunately, 
the nip pressure due to curvature is typically about 5 % of the average nip pressure due 
to the external compressive load and, therefore, may be ignored in a first approximation. 

The unknowns of the problem are h1, ... ,hM, qf , ... ,q'kt, <50 , a, c0 , ,;1, ,;2 , and To. 
The equations at disposal are the indentation equations (12) and the stick/slip equations 
(13)-(15) written at discrete points within the contact area, the equilibrium equations 
(20)-(21) and the wound-on-condition (22). The appropriate solution process is a varia
tion of the Panagiotopoulos Process [9]. For the sake of simplicity the contact half-
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width a is taken as a given quantity as explained above and, hence, the iteration of the 
contact area is excluded from the solution procedure. The problem is now solved by the 
following algorithm: 

Step 0. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Step 7. 

Step 8. 

Step 9. 

Initiate with qt = q1 = 0. 

Calculate hi (i = 2, 3, ... , M -1), c0 and 8 0 from the indentation equation. 

Assume stick at all points X;. With h; obtained from step 1, calculate qt, 
q1, ,;2 and T0 from the stick equations and total equilibrium (20). 

If lqf I > - µ±hi, then index i is placed in S± (index set: area of slip in upper 

or lower contact). 

If lqf I ~ -µ±hi, then i is placed in A± (index set: area of adhesion in upper 

or lower contact). 

If i is in S±, then qf = -sgn(qf )µ± hi . If i is in A±, then the corresponding 

stick equation is used. In conjunction with the total equilibrium equations 

(20) these are linear equations. Solve them. 

If i is in A±, as well as the just-found lqf j > -µ±hi, then i is placed in the 

area of slip S±. 

If A± is changed in step 5, then go to step 4. 

If i is in S±, and qf and the relative speed between the surfaces have the 

wrong sign with respect to each other, then i is placed in A±. 

If S± is changed in step 7, then go to step 4. 

If the difference between the just calculated and the previous shear stresses is 
larger than the required tolerance, go to step 1. Else stop. 

CONCLUSIONS 

Starting from first principles we have presented the equations for the contact me
chanical approach for the winding nip consisting of the wound roll, winding drum and 
the sheet obeying the orthotropical material law. In the next stage the model should be 
implemented into a computer for nip simulations. The aim of these calculations is to find 
out the state of the sheet in the nip as well as the wound-on-tension needed to evaluate 
the stresses in the roll. The sheet model used can be progressively improved, starting 
from the approximate model presented in this paper and proceeding towards the more 
complete models of the sixth degree polynomial stress function and a general series rep
resentation. 
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Fig. 1 Winding configuration 

a,,2 t r 

---- r0,2 

~ 
Fig. 2 Notation of the stresses within the contact area 
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