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ABSTRACT 

Historically, wound-roll models have been used to predict stress levels which develop 
within winding and wound rolls. To gain maximum benefit from these models, stresses 
must be incorporated into defect or failure models. This paper focuses on the 
development of a wound-roll dishing model. Caliper nonuniformity in both the width and 
the length direction is incorporated into the model. The effect of some of the important 
conveyance issues is also included in the model. An experiment is described and the 
results compared to the analytical predictions. Finally, the model is used to study the 
effects of process parameters on the level of wound roll dishing. 

NOMENCLATURE 

C core diameter, m s 
d finished roll diameter, m t 
D flexural stiffness, nm T 
Ex tangent modulw;, GPa 11 

Ey radial moduius, GPa V 

h web thickness, mm w 
N in-roll stress resultant, n/cm 0 
p in-roll radial stress, KPa 
q applied axial load, KPa E 
r nominal winding radius, m <I> 
R radial roll profile, m u 

Subscripts 
d in-plane radial compression 

included 
M total number of axial segments 
o initial (from in-plane solution) 
p pressure-roller-assisted winding 
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in-roll radius, m 
wound-on tension, Kn 
in-roll circumferential stress, KPa 
radial displacement, m 
axial displacement, m 
roll width, m 
axial displacement due to 
conveyance effects, m 
strain, dimensionless 
slope, dimensionless 
Poisson 1s ratio, dimensionless 

Superscripts 
A final minus initial (from 

out-of-plane solution) 
in-plane radial 
compression neglected 



INTRODUCTION 

Wound rolls are used to package and transport webs from one process to another and 
ultimately to the end-use customer. The quality of the wound-roll package must be 
optimized to minimize waste during handling and unwinding in order to insure maximum 
value to the customer. Wound-roll models have been developed to assist the process 
engineer with this optimization. Historically, a great deal of effort has been placed on 
predicting the stresses which develop within the wound roll. However, to gain maximum 
benefit from these models, stresses must be incorporated into defect or failure models. 

One defect mode for which a predictive model has not yet been developed owing to the 
complexity of the mechanics is the lack of sidewall straightness. Several terms have 
arisen in the literature to describe this phenomenon. Roisum (1) defines dishing as a 
nonstraight sidewall formed during winding and telescoping as a nonstraight sidewall 
formed subsequent to winding (either during handling or unwinding). Frye (2) uses the 
two terms interchangeably. Alternatively, dishing can be defined as a gradual departure of 
the sidewall from a straight condition (like a dish) and telescoping as a sudden departure 
without reference to whether the behavior occurs during or subsequent to winding. For 
purposes of this paper, we chose this definition. Lack of sidewall straightness can have 
very significant negative implications in the winding process. Edge damage during 
handling and lateral misplacement into a downstream operation are two such examples. 

Dishing and telescoping are interrelated phenomena and can occur because of several 
reasons. Lucas (3) presents a very thorough discussion on the mechanical causes of 
dishing at a double-drum winder used to wind large paper rolls. In his discussion, he 
states that dishing occurs when axial thrusting forces develop which cause axial 
movement owing to insufficient mechanical constraint. Thrusting forces arise from any 
system imbalance such as winder drum misalignment and caliper nonuniformity. Further, 
if the wound-on tension is not adequate, the thrusting forces can also cause lap-to-lap 
slippage during winding. 

Subsequent to winding, a roll wound with inadequate tension will be prone to further 
dishing and/or telescoping due to interlayer slippage which can arise from torque 
transmission failure. A very good discussion of this behavior is given by Bhushan (4). 

The thrusting forces which arise during winding due to thickness nonuniformity can 
cause roll dishing even when no lap-to-lap slippage occurs. This effect is especially 
important when considering narrow width rolls such as are commonly processed in 
finishing operations before end-use cusiomer shipment. In these cases, dishing is 
exacerbated when widthwise thickness nonunifom1ity which persists in the lengthwise 
direction. Additionally, for high-aspect-ratio rolls (diameter to width), certain 
combinations of process conditions can lead to roll instability from column buckling 
failure of the type described by Timoshenko and Gere (5). 

This paper deals with the prediction of wound roll dishing in narrow rolls where no 
lap-to-lap slippage occurs. A dishing model is presented which predicts the dishing which 
develops within a winding roll due to the presence of thickness nonuniforrnity and in­
plane or radial stress arising from the wound-on tension stress. The problem is cast into 
two parts. First, a differential equation and associated boundary conditions are developed 
which govern the out-of-plane deformations due to the in-plane stress resultants. In this 
formulation, the roll is assumed to have an initial nonstraight profile. It is then shown 
that the same set of equations can be used to assess the buckling propensity of the 
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winding roll. This fonnulation follows a model presented by Benson and Cole (6) which 
models the deflections within a spinning initially nonflat disk. Next, a model is 
presented for computing the initial nonstraight profile of the wound roll. Thickness 
nonunifonnity and radial displacements are considered. The in-roll width effects model (7) 
is used in this formulation. Also considered is the impact of the winding method with 
regards to how sequential laps are laterally positioned on the winding roll. Numerical 
methods are then developed to solve for the wound-roll dishing and buckling propensity. 
A test case is then presented to verify the accuracy of the buckling model followed by 
experimental dishing results which show good agreement to the theory. Finally, 
numerical results are obtained for several test cases showing the utility of the model. 

PROBLEM FORMULATION 

The system of interest is an elastic, orthotropic winding roll with an initial out-of­
plane profile caused by axially and radially varying web thickness and in-plane stress. We 
wish to compute both this initial profile or displacement, v0 , and the final displacement, 
v, due to the effect of the in-plane stress resultant. Figure 1 and the nomenclature define 
the variables of the problem. The initial and final displacements of the winding roll are 
measured relative to a plane perpendicular to the z axis at z=O. The part of the 
displacement that is due to roll defonnation is given by 

(1) 

In the derivations which follow, several assumptions are made: 

1) in-plane analysis decouples from out-of-plane analysis, 
2) initial displacement can be computed from the theoretical model described in (7), 
3) generalized plane stress constitutive equations are appropriate, 
4) out-of-plane solution is axisymmetric, 
5) Kirchoff-Love approximation (8) applies to out-of-plane roll defonnations arising from 

in-plane stress resultants. 

In a subsequent section, the model for computation of the initial displacement is 
presented. In the next section, the differential equation governing t.~e out-of-plane roll 
defonnation due to the in-plane stress resultants is derived. 

Out-of-Plane Roll Deformations 

The equilibrium equations governing the out-of-plane behavior are found by balancing 
forces and moments'·over the elemental section of the roll shown in Figure 2 

dQ d¢, dN 
r--' +Q,+rN,-+N,¢,+r--' ¢,=rq 

dr dr dr 

dM 
M,+r--' -M8 +rQ, =0 

dr 

The transverse shear force can be eliminated in equation (2) by means of equation (3) to 
yield 
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Next, consider the orthotropic constitutive relationships 

where the strain-displacement relationships are given by 

• il 
Ee=-. 

r 
. du e,=­

dr 

Equations (5) and (6) can be inverted to yield 

T= 

(4) 

(5) (6) 

(7) (8) 

(9) (10) 

where use is made of the following derived from strain energy considerations (9) 

(11) 

To proceed, forces and moments acting on the middle surface must be obtained using 
the stress resultants which are found by integrating the stresses acting on the side faces of 
the roll elemental section of Figure 2 

'½ '1z '1z 
N,= J P0 dz, M, = - J Pzdz, Me= J Tzdz (12) (13) (14) 

-11z -11z -11z 

Equations (9) and (JO) can now be substituted into equations (13) and (14) using equal.ions 
(7) and (8) and the IGrchoff-Love approximation (8) 

• dv 
u=-z-

dr 
(15) 

to obtain expressions for the moments in terms of the roll deformation 

{ 
do. 1 d"} ... V 2 V 

Me =-D v-+g --
dr2 r dr 

(16) (I 7) 

where 
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g = ~=modulus ratio 
VEY 

D 
g2E 3 E w3 

? Y2 w =-Y-for i>>u2 whichistrueforwoundrolls 
g--v 12 12 

The governing differential equation for out-of-plane deformation is finally found by 

substitution of equations (16) and (17) into equation (4) along with </J = d¼, 

(18) 

(19) 

(20) 

Associated with this ordinary differential equation are four boundary conditions. At 
the core, the displacement and slope of the roll are given by 

(21) (22) 

while at the roll periphery, conditions representing a free outer edge are expressed as 

d v +~ dv d = 0, 2+.!_ d v _fL...!._ d = 0 (23)(24) { 2• ·} {d3• 2• 2 d.} 
dr2 r dr r=- dr3 r dr2 , 2 dr r=-

2 2 

Equation (20) subject to equations (21) through (24) provides the means to fmd the out­
of-plane axisymmetric deformation of a winding roll due to the in-plane stress resultant 
arising from winding tension acting in concert with an initial out-of-plane profile caused 
by thickness nonuniformity. Additionally, displacements caused by an externally applied 
axisymmetric axial load are also included. If this force is set to zero, equation (20) can be 
rewritten using equation (1) as 

(25) 

The system of equations (21) through (25) is now formally equivalent to a winding 
roll with a straight initial profile. As such, they can be used for two distinct purposes. 
First, the equations can be solved directly to yield the out-of-plane displacements due to 
the in-plane stress resultants. To perform this analysis, the initial out-of-plane profile 
must first be computed as outlined in the next section. 

A second use of this system of equations is to evaluate conditions under which axial 
buckling occurs. For this purpose, the right hand side of equation (25) is replaced with 
.1.mEm (r) and conditions found for which nontrivial solutions exist for Am= 0. Here 
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A.m denotes an eigenvalue and m denotes the number of nodal circles or crossings of the 

z = 0 plane in the associated eigenvector, Em(r). The lowest buckling mode will occur 
for m = 0 since we are dealing with an axisymmebic problem. We will return to this 
after describing the method for the computation of the initial profile. 

Initial Ont-of-Plane Profile 

To compute the initial out-of-plane profile or displacement due to in-plane stresses, 
we first consider the case shown in Figure 3. Here, for illustrative purposes, the web is 
assumed to have a trapezoidal thickness disbibution 

(26) 

where h,,(r) is the mean thickness and 1/Jn(r) is the axial slope or taper of the web. If 
the web is now wound into a roll, an expression for the radially dependent slope within 
the roll can be written as 

(27) 

where the bar indicates that radial compression is neglected. The out-of-plane profile can 
be determined from equation (27) if it is assumed that each individual lap is axially 
aligned to the preceding lap as it is added to the roll 

(28) 

In practice, the web thickness disbibution will be more complex than that given by 
equation (26). Further, in-roll compression will modify the distribution of the slope 
within the roll. Lastly, the assumption that the iaps are axially aligned wili depend on 
how the roll is wound. 

The first two effects are accommodated by the in-roll width effects model (7). In this 
model, t11e radial pmfilc at the pcriphcrf of the winding roll, Rd(s,zL is piCdictcd as is 
the compression at this radial location due to the addition of subsequent laps, u

0
(s,z). 

We. cim thus write an expression for the radial roll profile within the roll during winding 
as 

(29) 

The means used to obtain this solution is to first partition the web into a discrete 
number of axial segments. Within each of these segments, the process parameters as well 
as the stresses and radial displacements are width independent. Therefore, the more 
physically realistic case of a general axial and radial thickness nonuniformity can be 
handled. 
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Coupling between the segments is achieved via the outer-lap analysis which is based 
on equilibrium considerations. This analysis is used to partition the winding tension 
between segments and makes use of the widthwise dislribution of radius at the periphery 
of the winding roll, the total winding tension within the winding lap, and the radial 
stiffness of each segment which is computed, as are the subsequent incremental stresses 
and displacements, using Hakiel's model (10). 

Due to the partitioning of the winding roll, a discrete set of ordered pairs are computed 
which describe the radial roll profile within the roll during winding 

(30) 

From these ordered pairs, we are able to compute using the method of least squares the 
slope within the roll 

(31) 

where the coefficients are selected to yield a "best possible fit" to the actual profile. In 
this case, the "best" system is the one which renders the sum of the squares of the 

M 2 

deviations, I,[R,t' (s, z;)-Rdri] a minimum. 
i=I 

We now use equation (28) to compute the initial profile of the winding roll 

s 

v0 (s) = J ¢0 (s'")ds', 

½ 
(32) 

Equation (32) assumes axial alignment between successive laps during winding. In 
practice, the method of winding will impact this and perfect alignment between the laps 
will not occur. This effect must be computed if we are to successfully model the final 
displacement which occurs within the winding roll. 

In this paper, we consider the case of pressure-roller winding where an idling roller 
with a compliant covedng is added to the periphery of the winding roll. This method is 
typically employed to improve winding reliability and to enable high speed winding. If 
the web wraps the pressure roller, then two subcases present themselves. First, if flanges 
are used on the pressure roller, then no lap-to-lap offsets will arise and the expression 
given by equation (32) will be correct. However, in this case, axial constraint in the 
pressure roller and winding roll will result in an overconstrained system since the roll 
seeks to develop an initial out-of-plane profile. Under extreme conditions, rolls wound in 
this way have the potential to exhibit sudden axial shifts when the forces within the roll 
are not sufficient to balance the applied forces which develop due to overconstraint. 

This leads to the second subcase where the pressure roller is not flanged. Typically, 
in this application, the pressure roller is rigidly mounted with provision made to insure 
that the lateral position of the web onto the pressure roller is always at the same axial 
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pos1uon. Thus, a component of tracking will arise which will always cancel the 
developing initial offset of the periphery of the winding roll 

(33) 

The variable r in equation (33) indicates that evaluation of this component within the 
winding roll is to occur using the slope of the roll when the periphery is at the point of 
interest. For this case, the initial profile of the winding roll is found by adding equation 
(33) to equation (32). As will be shown, experiments indicate this to be a very 
reasonable predictor of lap-to-lap offset. Further, from the standpoint of winding 
reliability, this method is preferred in that excessive applied constraint forces do not 
develop. 

NUMERICAL SOLUTION 

The solution for the initial out-of-plane profile is obtained by adding a least-squares 
algorithm to the in-roll width effects model according to equation (31). The initial profile 
neglecting lap-to-lap offsets is found by employing Simpson's rule to perform the 
numerical integration indicated by equation (32). The effect of lap-to-lap offsets due to 
the presence of a rigidly mounted, unflanged pressure roller is predicted in the same 
fashion. 

We now turn our attention to the numerical solution of equation (25) governing the 
axial displacements within the initially displaced winding roll due to the in-plane stress 
resultants. The radial domain is divided into N equal-sized steps 

with node points located at 

d-c !!.~--
2N 

C ,n = -+nil 
2 

(35) 

(36) 

A superscript indicates a function evaluated at the corresponding node point, for example 

·n •( ") v = v r , etc. (37) 

Derivatives in ii are approximated by the following central, fmite difference formulas 

dVn -vn+2 + 8yn+l _ gyn-1 + yn-2 
(38) 

dr 12!!. 

d2vn -vn+Z + 16vn+I -30v" + !6vn-I -vn-Z 
(39) 

dr2 12!!.2 

d3iin vn+2 _ 2-i,n+l + 2\Jn-1 _yn-2 
(40) 

dr3 2!!.3 
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(41) 

Similar expressions can be written for the derivatives of N, and Va. Substituting 
equations (35) through (41) into equation (25) provides N + l equations in N + 5 
unknowns 

(42) 

where n = 0,1,2, ... ,N and 

(44) 

(45) 

(46) 

Since the initial displacement, Va, is known, the right hand side can be written in a 
similar fashion. However, since boundary conditions do not exist for these 
displacements, forward and backward differences must be resorted to at the roll boundaries. 
Thus,for n=2,3, ... ,N-2 

(48) 

and for n = 0,l 
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_ -N" +--r o o o o 
{ 

1 dN" H2vn+3 - 9vn+Z + 18vn+l -llv"} 
r" ' dr 64 

(49) 

and for n = N -1,N 

-N"+--r o o o o 
-{ 

1 dN" Hllv" -18vn-l + 9vn-Z -2v"-3 } 

~ r ~ 64 
(50) 

The radial derivative of the stress resultant is likewise found for n = 2,3, ... ,N -2 

(51) 

and for n= 0,1 

(52) 

andfor n=N-1,N 

(53) 

The boundary conditions supply the remaining four equations needed to complete the 
system. Substituting equations (35) to (41) into equations (21) to (24) gives 

yo =0, (54) (55) 

---+- V + --- V + -- V { 1 V }•N-2 { 4 4u}•N-1 { 5 }•N 
124 6d 34 3d 24 

+{_i_+ 4V}vN+l +{--l--~}vN+2 =0 
34 3d 124 6d 

(56) 
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__ l_+---~ ,;N+I + _l ___ l_+L ,;N+2 -O +{ 8 2} { 2} 
ti 3dt. 3d2 2t.2 6dt. 3d2 -

(57) 

In the process of solution, values for ;;n, n = -2, -1, N + 1 and N + 2 will be computed. 
They have no physical meaning. 

Lastly, we consider the solution to the radial buckling problem posed by equation (25) 

(58) 

The boundary conditions are the same as equations (21) through (24) with Em(r) 
replacing ii. Here, we wish to find the discrete values of Am which yield nontrivial 

solutions for Em (r). More to the point, we would like to evaluate conditions under 
which the lowest eigenvalue becomes equal to zero. In this case, the winding roll will be 
radially unstable and axial buckling will occur. 

To find the lowest eigenvalue, we use the method of Barasch and Chen (11). The 
method, in brief, consists of the following steps. A value of A is chosen and two 
displacement functions are generated. The first has boundary values 

(59) 

and the second has boundary values 

(60) 

Equation (58) generates subsequent values on ½:,; r:,; ½. The requirements E = O and 

d¾r = 0 al r = ½, follow from uie inner boundary conditions. The choices for 

d
2 
El 2 and d

3 El 3 are nonphysical, but will lead to nontrivial displacement 
ldr ldr 

functions. The question is whether a linear combination of these can satisfy the free-edge 
boundary conditions. Only for discrete values, A= Am, will this be possible. We use 
standard matrix techniques and a Newton/Raphson iteration to find the lowest eigenvalue. 

RESULTS 

Case 1 - Buckling of a Plate 

A test case with published analytical results was selected to verify the implemented 
numerical solution to the buckling problem. Results are given in (5) for the lowest 
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critical buckling force symmetrically distributed around a circular plate with a hole at the 
center and both clamped and simply supported boundary conditions at the perimeter. The 
boundary conditions in the model were modified to simulate these conditions. The 
method of solution was ID first solve the in-roll problem to obtain the distributed in-roll 
stress resultant and subsequently compute the lowest eigenvalue from the buckling 
analysis. Iteration on wound-on tension continues until the eigenvalue becomes zero. 
The inputs to the model are shown in Table la. As can be seen, seven different 
geometries were evaluated (core/finish diameter ratio from 0.05 to 0.35). The core 
stiffness was selected to be nearly zero to approximate the force free center and the 
winding tension was manually inputed such that the tension was nearly zero except in the 
last lap which approximates the applied forces of the problem. 

Results for both the clamped and simply supported conditions are given in Table lb. 
Comparison in terms of the winding tension in the outer lap is made between the 
analytical and numerical results. As can be seen, the agreement between the two is very 
good with the maximum deviation equal to 3.1 %. It is interesting to note that the model 
successfully predicts the local minimum seen in the clamped case at the core/finish 
diameter ratio of 0.20. From these results, we conclude that the model is accurate and 
capable of predicting axial buckling. 

Case 2 - Experimental Yer.ification 

As a second case, winding experiments with an unflanged pressure roller were 
performed on 35 mm wide polyethylene terephthalate support. Two rolls, each 1800 m 
in length, were spliced together to form one roll. The rolls were selected based on the 
presence of significant thickness non uniformity. The experiment consisted of winding 
the roll five times at one tension and nip force level onto a phenolic core and 
subsequently measuring the dishing profile after winding. The dish was measured at four 
angular positions (every 90°) by means of a dial indicator mounted to a straightedge 
referenced to the end of the core. It was found that averaging the angular data eliminated 
variability which arose due to lack of perpendicularity between the end of the core and the 
rotation axis. The conditions of the experiment, shown in Table 2, were then inputted ID 
the numerical model. Thickness nonuniformity is shown in Figure 4. These results were 
obtained by tal<lng the average of three L VDT traces measured every 300 m. As can be 
seen, the nonuniformity is very persistent. 

Experimental and analytical results are shown in Figure 5. The solid curves represent 
the model results for both cases of pressure roller winding. The experimental data with 
95% confidence limits are also shown. As can be seen, the unflanged pressure roller 
model results agree very well with the experimental data. The perimeter of the roll is 
axially very well aligned with the axial position of the web near the core. It is further 
seen that the additional deflection from out-of-plane deformation of the roll due to the 
distributed in-roll stress resultant is quite small. Also shown is the lowest eigenvalue 
which is substantially positive as expected indicating minimal likelihood of axial 
buckling. 

Case 3 - Process Study 

Using the conditions of the previous case, the effect of two levels of width and three 
levels of thickness nonuniformity on initial displacement and maximum roll deformation 
were studied with the model. In addition, the lowest eigenvalue was computed. Results 
are shown in Table 3. It is seen that when the support is 35 mm in width, the 
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deformation of the roll due to the in-roll stress resultant is small relative to the initial 
displacement while for the narrower roll, the magnitude of the roll deformation becomes 
more significant. At the same time, the lowest eigenvalue is significantly lower and 
approaching zero which implies that the roll is becoming much more prone to axial 
buckling. Finally, the effect of thickness nonuniformity is seen to be more significant 
for the narrower width support as evidenced by the comparison between the last case of 
the 35 mm support and the second case of the 16 mm support. The initial displacement 
is larger for the narrower web because less in-roll compression occurs thereby resulting in 
less mitigation of the stacking effect of the trapezoidal shaped laps. 

SUMMARY 

A wound-roll dishing model has been presented. Caliper nonuniformity in both the 
width and the length direction has been incorporated into the model. The effect of some 
of the important conveyance issues was also included in the model. The model was 
correlated to closed-form analytical solutions as well as to experimental results. Finally, 
the model was used to study the effect of thickness nonuniformity and web width on the 
level of wound roll dishing and the propensity for axial buckling. 
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c(m) 
h (mm) 
d(m) 
w{m) 
Ex, Ey(GPa) 

Iv 

c/d Ref(5) 
Fig 31b 

0.05 20.27 
0,10 19.70 
0.15 19.14 
0.20 18.85 
0.25 19.42 
0.30 20.84 
0.35 22.68 

0.0635, .1270, .1905, .2540, .3175, .3810, .4445 
12.1, 11.4, 10.8, 10.2, 9.53, 8.89, 8.26 
1.27 
0.0160 
4.69 
0.333 

core stiffness (Pa) 
numberoflaps 

Table la - Case 1 Model Inputs 

Critical Winding Tension (Kn) 
(Outer Lao Onlv) 

Model %Diff Ref(5) 
(Clamoed) Fig 31a 

19.97 -1.5 5.812 
19.21 -2.5 5.672 
18.66 -2.5 5.386 
18.62 -1.2 5.103 
19.19 -1.2 4.820 
20.42 -2.0 4.537 
22.40 -1.2 4.254 

Table lb - Case 1 Model Results 
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0.690 
100 

Model 
(SS) 

5,991 
5.744 
5.4ll 
5.066 
4.716 
4.408 
4.139 

%Diff 

3.1 
1.3 
0.46 

-0.73 
-2.2 
-2.8 
-2.7 



material polyethylene Ey(GPa) Look up table: 
terephthalate (PE1) ~ Ex~ 

c(m) 0.22 0.0 2.94e-3 
d{m) 0.83 13.8 5.26e-3 
hmean(mm) 0.1362 27.6 l.3le-2 
w{m) 0.0350 41.4 l.84e-2 
core stiffness(GPa) 0.462 138 6.80e-2 
Ex(GPa) 4.69 345 1.84e-l 
friction (kinetic) 0.26 690 4.17e-l 
t(Kn) 0.0193 1380 8.26e-l 
wind tens, nip force (Kn) 0.00890, 0.0400 5520 2.85e0 
V 0.01 9660 3.0leO 
M 9 number of laps 2237 

Table 2 - Model Inputs, Experimental Test Case 

Width 
(m) 

0.035 
0.035 
0.035 
0.016 
0.016 
0.016 

Thickness Maximum Initial Maximum Roll 
Nonuniformity Displacement Deformation 
(mm/35mm) (m) (ml 

0.0 0.0 0.0 
0.00127 -0.724e-3 0.0185e-3 
0.00254 -1.25e-3 0.0378e-3 

0.0 0.0 0.0 
0.00254 -l.58e-3 0.257e-3 
0.00508 -2.62e-3 0.532e-3 

Table 3 - Dishing and Buckling 
Process Study Case 
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"-o 

48.8 
49.2 
50.3 

3.75 
3.72 
3.69 



Question - When I think of 35mm wide web at Kodak, I think of perforated film, how 
does it affect roll behavior, is it helpful or is it more of an hindrance? 

Answer - What we studied here was not perforated, perforations can add an effect 
because the radial modulus is different in the non-perforated area. I haven't studied this 
but I would say that it would cause the roll to be less prone to buckling. Perforated 
areas tend to be stiffer than non-perforated areas of the web. 

Question - Early we heard a talk from DuPont, they mentioned cases where master rolls 
could be wound of flat film and I've had an opportunity to work with DuPont film with 
knurled edge film. How does that relate to telescoping and how layers wind on one 
another? 

Answer - This model provides a starting point as to what would happen to a knurled 
master roll from the standpoint of axial stability. The model we presented in 1992 is 
capable of handling thickness nonuniformity due to knurling. We would like to extend 
todays model to predict axial buckling in knurled master rolls. 

Question - I noticed around equation 3 or 4 that you had Poisson's ratio in there and it 
then dropped out. What happened? 

Answer - This question refers to the out-of-plane solution. It is contained in the 
expression for flexural modulus, D. 

Question - I have a feeling that it would contribute to instability if it was high value. 

Answer - Observation of the expression for D in the paper indicates that a higher value 
of Poisson's ratio results in a lower value of D. A lower value of D means more 
propensity to axial buckling. 

Question - Is your model only valid for center winding? And what changes if you have 
a surfrice winder? 

Answer - The model presented today considers center winding with pressure roller 
assist. Key to the use of the model is a knowledge of the wound-in-tension. This is 
well known for center wind pressure roller assist winding. It is not clearly known for 
surface winding. 

Question - Radial stability is driven by in-roll tension near the outside of the roll. Di<l 
you investigate taper tension to improve radial stability? 

Answer - No, the winding tension profile in cases 2 and 3 was constant. The model can 
handle a general winding tension profile and therefore is able to study the problem you 
pose. 

Question - Is the tension assumed to be constant in the Z direction (across the width)? 

Answer - As stated in the presentation, winding tension can be user specified as a 
function of radius. At any radius, the in-roll stress model partitions the tension between 
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the independent axial segments by means of an outer lap force balance which accounts 
for the axially nonuniform radial profile. The effect of radial displacements is also 
included in the model. This capability was necessary to enable development of the 
model presented today. 

Question - What is the tension level used in the experimental case? 

Answer - Table 2, English units - 2 lbs tension 9 lbs nip force. 
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