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ABSTRACT 
Tension transients in a moving web can be described and predicted adequately from first 
principles. The resulting mathematical models are very useful for designing and debugging 
web conveyance machines and their controls. The basic equations involved will be 
reviewed. Examples will be presented, including an optimally robust stock roll controller 
and a balanced inertia float arm. These examples demonstrate the advances which can be 
accomplished through the application of mathematical modeling. 

NOMENCLATURE 

A= web cross-sectional area, in2 

c = damping modulus, psi-sec 
d = web span damping rate, sec-lbf/in 
dal = angular velocity of a float arm, radians/second 
ds = web span stretch rate, inches/second 
dth = angular velocity, radians/second 
E = Young's modulus, psi 
gr= gear ratio, motor to stock roll (> 1 implies motor faster) 
h = web thickness, in 
im = motor armature Curren~ amps 
ierror = motor current error, amps 
irer = motor current reference, amps 

Ia, I arm= pivot arm rotational inertia (including counter weight and m*r2 of roller, but not 

gyration of roller), lbf-in-sec2 

J, J, = roller rotational inertia, lbf-in-sec2 

k = web span spring rate, lbf/in 
Kdth = motor back emf constant, volts-sec/radians 
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Kii = current loop integral gain, volts/amps/sec 
Kip= position loop integral gain, l/sec2 

Kis = speed loop integral gain, amps/radians 
Kpi = current loop proportional gain, volts/amp 
Kpp = position loop proportional gain, I/sec 
Kps = speed loop proportional gain, amps-sec/radians 
Ktqm = motor torque constant, in-lbf/amp 
L = span length, in 
Im = motor armature inductance, henries 
n = order of polynomial 
R, R, = roller radius, in 
R., Tann= float arm radius, arm pivot to roller pivo4 inches 
R, = stock roll radius, inches 
rm = motor armature resistance. ohms 
S, s = web span stretch, in; also, symbolic derivative operator or Laplace transform 

operator 
s,.r = motor speed reference, radians/second 
t= time, sec 
T = web span tension, !bf 
Tq. = torque applied to float arm, inch-lbf 
T4m010, = motor torque, in-lbf 
trim= position loop trim outpu4 radians/second 
V = nip drive velocity, in/sec 
vline• vlinerr= web speed line reference feedforward, in/sec 
voltage= motor armature voltage, volts 
w = web width, in 
W = suspended weight, !bf 
a= float roller pivot arm position, radians 
CX.rmr = float roller pivot arm position error radians 
firer= float roller pivot arm position reference, radians 
CX,p = float arm position setpoint, radians 
e = web strain 
p = weight density, lbf/in3 

trr = feedforward torque, in-lbf 
tree= torque reference, in-lbf 
8h = vacuum drum angular position, radians 
Bm = motor angular position, radians 
8, = stock roll angular position, radians 
roerror = roller angular velocity error, radians/sec 
ro = roller angular velocity, radians/sec 
ro0 = natural frequency response, radians/sec 
rorer = roller angular velocity reference, radians/sec 
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BACKGROUND 
A simple web path with active tension control is shown in Figure 1. The basic equations to 
model the web tensions, roller velocities, float arm position, controller stability, etc. are 
developed below. This type of model will be referred to as a longitudinal dynamics model. 

Roller angular accelerations are based on Newton's second law: 

Roller 1: 

;/'lt = inputto model 

Roller 2: 

Roller 3: 
d (T4-T3) 
-ro3= ---R3 
dt 13 

Roller 4 is driven by a motor that is speed controlled based on the float roller angular 
position: 

d (T5-T4)R4+Tqmotor 
-ro4= 
dt 14 

(1) 

(2) 

(3) 

(4) 

Web stretch rates are based on compatibility equations assuming no slip between web and 
rollers (see Appendix A [l] for a derivation of these equations and assumptions that apply): 

Span 2: 

Span 3: 

Span 4: 

:~4 = [R4 · ;44 _ R3 · ::] . (i + 2:f 
l+- l+-

L4 L3 
Float arm motion, is based on Newton's second law (assuming arm weight to be small 
compared to suspended weight and ignoring cosine effects): 

d2 (T3 + T1- ~}arm 
-a = --~----
dt2 1arm 
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Web tensions are based on the following constitutive Jaws: 

Span 1: 
T 1 = input to model 

Span 2: 

Span 3: 

Span 4: 

Span 5: 

T 5 = input to model 

The spring rates and damping rates are defined as 
w·h·E 

k; = £. 
I 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

W· h· C 
d; = -£.- (15) 

I 

The web path shown in Figure 1 has active tension control. Three cascaded loops are used 
to control the armature voltage of the motor connected to roller 4. The position of the float 
arm is used to trim the speed of the motor. The position control loop logic is 

Vlincff K' ft ( d 
OJref = -R + (Kpp. a,rro,) + IP. a.,ro,) t 

4 0 

The speed control loop logic is 

i,.1 = Kps · ro,rror + Kis · f~ (ro.,,0 ,)dl 

The current control loop logic is 

voltage = Kpi · i.,,0 , + Kii · J~ (i,,,0 ,)dt 
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(16) 

(17) 

(18) 

(19) 

(20) 

(21) 



A simple model of an armature-controlled D.C. motor [2] is 

(22) 

lqmotor = Ktqm. im (23) 

The equations above are a mixture of ordinary differential equations and algebraic 
equations. To solve this set of ordinary differential and algebraic equations it is necessary 
to transform them into a set of equations that can be solved directly by integration and 
simple algebraic operations. This is accomplished by expressing the highest order 
derivative of a variable in terms of its lower order derivatives and other variables. An 
example of this is the classic model of a mass, spring and dashpot system. If the mass is 
excited by a force that is a function of time and the mass is connected to ground by a spring 
and dashpot in parallel, the general form of the equations can be written as 

2 
1 d X r dx Oln -·-+2·,·-+0J ·X = -·F(t) 

Oln dt dt n K (24) 

Expressing this equation in terms of the highest order derivative yields 
2 2 

~(x) = 
00

" ·F(t)-(2-'·ro -~(x)+ro2 ·x) 
dt2 K ' n dt n 

(25) 

This above equation can then be integrated once for the first derivative of x and integrated 
twice for x. The output of the integration is referred to as a state variable; thus the number 
of state variables will equal the number of integration operations. The important state 
variables for the model of the web path shown in Figure 1 are 

Roller angular velocity: 

00; = J~:/ro;)(dt) + initial conditions 

Web span stretch: 

S; = f~f/s ;Hdt) + initial conditions 

Float arm angular velocity: 
? 

d
da = J' d

2
-( a)(dt) + initial conditions 

I Od1 

Float arm position: 

a = Jo f /a)( di) + initial conditions 
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(27) 

(28) 

(29) 



Motor current: 

im = f
0

:
1
(im)(dt) + initial conditions (30) 

The easiest way to solve the above set of equations is with a commercially available code. 

EXAMPLE PROBLEMS 
The longitudinal dynamics of three different web paths will be discussed next ACSL 
(Advanced Continuous Simulation Language, by Mitchell & Gauthier Associates) was 
used to model these examples. 

Example 1. Long:itndinal dynamic model or the web oath shown in Figure 1 
A step change in the float arm position reference of 5' will be analyzed. Roller surface 
speeds, span tensions, and float arm angular position are the outputs of interest. Figure 2 
shows the model's response to a float arm disturbance for two different speed loop 
controller proportional gains. For a lower speed loop proportional gain (Kps = 0.25 amps
sec/radians), the system is unstable (see column 1 of Figure 2). By exercising the model it 
can shown that the bandwidth of the speed loop (inner loop) is similar to the bandwidth of 
the position loop (outer loop), thus causing the instability. One obvious solution is to 
increase the speed loop's proportional gain to make the system stable. For a higher speed 
loop proportional gain (Kps=l.0 amps-sec/radians), the system is stable, see column 2 of 
Figure 2. 

Active tension control is provided by the float arm in this example. When active tension 
control is used, equations 5, 6 and 7 can be simplified as shown in appendix A. Using 
compatibility equations of the form of equation AIO in appendix A, the system response 
for a value for the higher speed loop proportional gain (Kps = 1.0 amps-sec/radians) is 
shown in column 3 of Figure 2. There is no difference in the response between 
compatibility equations of the form of equation A9 or AIO in appendix A when active 
tension control is used. 

The equations developed for the web path shown in Figure 1 only show the essential 
elements needed for a simulation. This simple model shows the generic methodology used 
to create a longitudinal dynamic model of any web path. Larger models or additional 
features such as float roller hysteresis, different constitutive laws (e.g., corrugated webs in 
dryers), motor gearbox backlash, motor to roller coupling stiffness, models of 
accumulators, different type of controllers, etc. can easily be added. The modeler's 
imagination and technical knowledge are the only limitations lo what can be modeled with 
the above approach. 

Example 2. Optimally robust stock roll controller; 
Synthesis of a control system is best performed on the very simplest description of a 
system which retains only the dynamics of primary importance. In the case of a stock roll 
(Figure 3), it is the rotation of the stock roll itself which is of primary concern. The 
simplest system which retains stock roll motion and contains the control system of interest 
has the following characteristics: 

• ideal motor: torque delivered is simply setpoint torque 
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• ideal web drive: vacuum drum drive delivers constant web speed 

• ideal web: inextensible 

These assumptions dramatically simplify the system of equations which describe the 
system. Once a control system is designed which operates as desired using this simplified 
system, the full system complete with motor behavior, web stretch, drive shaft flexibility 
between the stock roll motor and the stock roll, and the like is modeled with the proposed 
controller. If all these "extra" factors are truly of secondary importance, the control system 
will function nearly the same in the full model as it does in the simplified model. If the 
resulting predicted control behavior is acceptable, the system may be implemented and the 
result observed. 

The above simplifying assumptions lead Lo the following set of equations: 

From Newton's second law: 
d2 - 'tref +Rs . T w 
70, -
dt J, 

(31) 

From the inextensible web, we see that the float arm velocity is determined by the vacuum 
drive and stock roll velocities: 

d (R, · fl,- (Rh· 81,)) 

dta. = 2-R
0 

(32) 

The speed loop controller gives 

'tref = K ps · E, + 't ff 

e, = s,ef- em 
em= 0, · gr 

Vr 
;ne. + trim 

s 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

Expressing the time-derivative operator as an algebraic variable "s", these equations may 
be rewritten into a format suitable for the Macsyma algebra and calculus symbolic 
manipulator: 

/*variable dictionary: 
al= float arm position, radians 
alsp float arm position setpoint, radians 
errp = position loop error, radians 
errs= speed loop error, rad/sec 
gr= 
js = 
kip 
kpp 
kps 

gear ratio, stock roll motor to stock roll 
stock roll inertia, including motor, rollers, 
position loop integral gain, l/sec~2 
position loop proportional gain, 1/sec 
speed loop proportional gain, in-#-sec/rad 
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ra float arm radius (pivot to pivot distance), inches 
rh vacuum drum radius, inches 
rs stock roll radius, inches 
s = derivative operator (d/dt), 1/sec 
sref = speed loop reference, rad/sec at motor 
thh vacuum drum position, radians 
thm = motor speed, rad/sec 
ths = stock roll position, radians 
tqff = motor torque feedforward, in-# 
tqref = motor torque reference, in-# 
trim= speed trim from position loop, rad/sec 
tw = web tension, # 
vline = line speed reference, in/sec 

*/ 

/*float arm position as a function of stock roll and vacuum drum position*/ 
al: (rs*ths-rh*thh)/2/ra; 
/*position error*/ 
errp: alsp-al; 
/*speed trim*/ 
trim:kpp*(errp+kip*errp/s); 
/*speed reference*/ 
sref:vline/rs+trim; 
/*motor speed*/ 
thm:ths*gr; 
/*speed error*/ 
errs:sref-s*thm; 
/*torque reference*/ 
tqref:kps*errs+tqff; 
/*stock roll dynamics*/ 
ths=(tqref*gr+rs*tw)/js/s~2; 
/*solve for stock roll position*/ 
solve(\,ths); 

The result of running Macsyma on this program is a complicated expression which forms 
the basis of a set of transfer functions: 

2 
(dl □) [tbs = (2 gr kps ra s vline + 2 ra rs s tw + 2 gr ra rs s tqff + 

(gr kpp kps rh rs s + gr kip kpp kps rh rs) thh + 2 alsp gr kpp kps ra rs s 

3 2 2 
+ 2 alsp gr kip kpp kps ra rs)/(2 js ra rs s + 2 gr kps ra rs s 

2 2 
+ gr kpp kps rs s + gr kip kpp kps rs )] 

It is the denominator of this expression which affects control behavior. We would like to 
control the position of the roots of this cubic polynomial in "s" to be at a particular spot, 
namely as far left of the imaginary axis as is possible, consistent with the response 
capabilities and requirements of the stock roll system. For a given polynomial, this occurs 
when the polynomial is of the form 

(in+ 1 j (39) 
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Expanded, this polynomial is of the form 

(.!....)3 + A2. (.!.... 'f +Al . .!....+ l 
00n 00n) 00n 

(40) 

The denominator of our transfer function above may be converted to this form and the 
individual coefficients obtained using some additional Macsyma code: 

(ell) /*grab denominator -- denominator determines control behavior*/ 
denom(rhs(dlO)); 

J ' ' ' (dlll 2 js ra rs s + 2 gr kps ra rs s + gr kpp kps rs s + gr kip kpp kps rs 

(cl2) /*place into canonical form, with units coefficient 1*/ 
ans:expand(%/ratc□ef(%,s,0)); 

3 2 
2 js ra s 2 gr ra s s 

(dl2) ----------------- + ---------- + --- + 1 
gr kip kpp kps rs kip kpp rs kip 

(c13) /*now compare to the canonical form {s/wn+1)~3*/ 
q3:ratcoef(ans,s,3)=1/wn~3; 

2 js ra 1 
(d13) 

gr kip kpp kps rs 3 
wn 

(c14) q2:ratcoef(ans,s,2)=a2/wn~2; 
2 gr ra a2 

(dl4) 
kip kpp rs 2 

wn 

{cl5) ql:ratcoef(ans,s,l)=al/wn; 
1 al 

(dl5) 
kip wn 

(c16) /*and solve for the control gains*/ 
solve ( [ql, q2, q3 J, [kpp, kip, kps] l; 
/packages/macsyma2/Sun0S5/libraryl/algsys.so being loaded. 
/packages/macsyma2/Sun0S5/libraryl/grobner.so being loaded. 

2 al gz ra wn ~n 
(dl6) [[kpp = -------------, kip= kps 

a2 rs al 

a2 js wn 
--------] l 

2 
gr 

' 

Solving for the three gains (shown immediately above) gives expressions for the gains in 
terms of the natural frequency, system parameters, and the A; coefficients. Then, for a 
given machine and a desired natural frequency, A1 and A2 may be set to 3, and the gains 
needed to obtain this behavior are obtained. 

These control gains may now be put back into a "full-blown" model of the control system. 
Such a model includes factors such as motor behavior, web stretch, and stock roll shaft 
flexibility. The model is implemented in the ACSL simulator (Advanced Continuous 
Simulation Language), but is not shown due to space considerations. 
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In this model, the resulting control behavior may be observed for deviation from the 
desired behavior and for robustness problems. If none are found, the scheme may be 
implemented, and the results of the implementation compared to the desired behavior. The 
results of one such implementation are shown in Figure 4. 

This scheme has the advantage of permitting control gains to be automatically computed 
for product changes such as product width or density. The method eliminates field tuning 
of stock roll behavior and generates control behavior which does not ring and does not vary 
with stock roll radius. Mathematical modeling of machine control systems coupled with 
control system synthesis procedure can lead to dramatically improved results. For this 
machine, the control computer vendor recommended a float arm capacity of four feet; the 
machine was actually constructed with nine inches of float arm capacity, which was a large 
cost and space savings. 

Example 3, Balanced inertia float arm 
A balanced-inertia float arm is a regular float arm, but with flanges added to the roller in 
such a fashion that 

J, = Ja·(;'f 
Applies only lo float arms with 180 • 
degree roller wrap and roller transla
tion nominally parallel to web spans 

a 

,-..._ _________ ,,·"'1-::c-. __ __,,7 
The equations which define the essence of this system are 42 through 46: 

T. =K. ·s. +D. ·ds. ln zn w m zn 

T = K · s +D · ds out out out out out 

for the "in11 and the "out" web spans 
R · (T -T. ) 

ddth = r out in 

J, 

ds- =R·dth-V.-R·dal m r zn a 

As before, these equations are converted to the frequency domain with the Laplace 
transform by replacing the time derivative d/dt with the algebraic variable "s". The 
equations are represented in Macsyma as 
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(45) 
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/*roller acceleration*/ 
ql:jr*sA2*th=(tout-tin)*rr; 
/*arm acceleration*/ 
q2:ja*sA2*al=ra*(tout+tin)-tqa; 
/*incoming span stretch rate*/ 
q3:s*sin=rr*s*th-vin-ra*s*al; 
/*outgoing span stretch rate*/ 
q4:swsout=vout-rrws*th-ra*s*al; 
/*incoming span stretch rate*/ 
qS:tin=kin*sin+din*s*sin; 
/*outgoing span tension*/ 
q6:tout=kout*sout+clout*s*sout; 

These algebraic equations are solved for a judicious choice of variables with 

solve([ql,q2,q3,q4,q5,q6], (tout,tin,th,al,sin,sout])$ 

Skipping over the voluminous algebra involved and removing the components of the result 
which are attributable to things other than incoming speed variation (float arm torque 
variation and outlet speed variation), the following expression for the outlet tension is 
obtamed: 

2 2 
(dll) tout = - (ja rr - jr ra I s (dins+ kin) (clout s + kout) vin 

4 2 3 2 3 2 3 2 3 
/(ja jr s + clout ja rr s + din ja rr s + dout jr ra s + din jr ra s 

2 2 2 2 2 2 2 2 2 
+ 4 din clout ra rr s + ja kout rr s + ja kin rr s + jr kout ra s 

2 2 2 2 2 2 
+ jr kin ra s + 4 din kout ra rr s + 4 clout kin ra rr s 

2 2 
+ 4 kin kout ra rr l 

The thing to note above is the term Ga*rr2-jr*ra2
) which is a factor of the entire expression. 

By setting this expression to zero, incoming speed variation does not generate outgoing 
tension variation. This result was demonstrated in the laboratory on equipment shown 
schematically in Figure 6. Results of the laboratory demonstrations and model 
comparisons are shown in Figures 7 through 11. 

The model may be exercised to determine the sensitivity to flange radius, as shown in 
Figure 12. With a validated simulation of the process, "experiments" such as this 
sensitivity demonstration may be performed in a few minutes at a desk rather than 
spending days fabricating flanges for laboratory experiments. 

REFERENCES 

[l] Kee-Hyun Shin, "Distributed Control of Tension in Multi-Span Web Transport 
Systems." Ph.D. Thesis, Web Handling Research Center at Oklahoma State University, 
1991, pp. 20-24. 

[2] Katsuhiko Ogata, Modem Control Engineering. 3rd ed. Prentice Hall, 1997, pp. 143-
144. 
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Appendix A- Derivation of Web Stretch Rates 

This derivation of web slretch rates follows closely a derivation by Dr. Kee-Hyun Shin [l]. 
Figure Al shows web entering a nip drive at x1 and leaving a nip drive at x2• Using a 
conlrol volume just to the left of both nips and assuming no slippage between web and 
roller, the law of conservation of mass can be written as follows: 

(Al) 

Figure A2 shows an infinitesimal element of unstretched web. Mass must be conserved 
when this element is slretched, thus 

P,·w,·h, dx P,·A, dx 
p · w · h = dx, = p · A = (1 + E;) · dx (A2) 

Note, the lelter "i" is an index referring to the number of the web span (e.g. p2, is the 
density of the web in span 2 after it is slretched). Simplifying equation A2 further yields: 

p·A 
P, · A, = 1 + E· 

' Substituting equation A3 into equation Al yields 

(A3) 

(A4) 

Assuming that the slrain state is uniform within span 2, equation A3 can be written as 

!!..(__!2_)- 2_2 (AS) 
di 1 + E2 - 1 + E1 1 + E2 

From here the derivation differs from Shin's in that no simplifying assumptions are made 
in order to solve the above equations. Trucing the derivative of the left hand side of equation 
AS yields equation A6: 

d [ V2 V 1 ] 2 L2 • T.(ei) = -- - -- · ( 1 + E2) 
di I+ E2 1 + E1 

At steady state equation A6 reduces lo tl1e draft tension control law 
(l+e1)•V2-V1 Ez = 

VI 
Using the relationship 

(A6) 

(A7) 

~=~-~ ¼~ 
Equation A6 can also be written in terms of web slretch: 

:~2 = [ v~2 - v~l] • (1 + 1:f (A9) 
l+- l+-

L2 L1 

When draft tension control is used equation A6 or A9 must be used. When active tension 
control is used (float roller or load cell feedback), equation A6 can be simplified further 
under the assumption that strains are much less than unity: 

d dS2 
d

1
L2·E2 = dt = V 2-V1 (AID) 

Obviously equation AID cannot be used for draft tension control. 
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T 1, Tension Input Motor Driven 

Velocity Input 
web span 

T2 
T 5, Tension Input 

arm pivot point 

Float Roller 

weight 

r,rm 

Figure 1- Web path with active tension control 
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Figure 2-Web path model results 
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Figure 3: Stock roll system 
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Figure 4: Float arm behavior at stock roll start, model and machine 
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web_..,_ Note: web may travel either direction 

Disturbance side Constant-speed side 

Figure S: Typical balanced-inertia float arm 

e :::::::....... 

Tin Tout 

Figure 6: Generic float arm with inlet and outlet web spans 
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Figure 7: Schematic layout of laboratory equipment 

Laboratory measured load cell responses, no flange present 
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Figure 8: Laboratory measurement of load cell response with no flange present 
on the float arm (typical float arm, not a balanced inertia float arm) 
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Laboratory measured load cell responses, flange present 
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Figure 9: Laboratory measurement of load cell response with the balanced 
inertia flange present 
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Figure 10: Model prediction of load cell positions with no flange present 
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Figure 11: Modeled web tension before and after the balanced-inertia float arm 
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Figure 12: Tension variation sensitivity: the effect of flange radius 
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Question - In equation #10 what does 'D' represent? 

Answer - It is the viscous damping coefficient of the material. Some form of damping 
is needed or oscillations would continue indefinitely throughout the controller loops. 
The value of "D" was obtained experimentally by suspending a weight from a 
mechanical ground by the web. The weight was tapped, and both the modulus and the 
damping of the web were observed in the resulting decaying oscillation. 

Question - Why did you use a dancer roller in example #I instead of n load cell? 

Answer - Either could have been used, this example was for illustrative purposes only. 
Generally a load cell requires very high controJJer band widths with stiff web spans to 
achieve good tension control. Also, a stock controller with a dancer roller is much 
more forgiving of out-of-roundness defects in the stock rolJ, and is the method of 
choice if web damage is to be minimized. 

Question - Was there earlier work involving the balanced-intertia float arm? 

Answer - Yes. Lance Stryker of Eastman Kodak1 reviewed the technique years ago. 
Also, John Martin of Martin Automatic holds a patent (expired) on the technique. 
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