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ABSTRACT

Web transport systems are composed of multiple tension zones. These zones are
separated by driven rolls such as calenders, bridles or nipped rolls whose speed is
regulated by a closed loop controller. Given that tension regulators regulate tension by
trimming the reference to the closed speed Ioop controller, the designer of the tension
regulator cannot ignore the effects of closing the speed loop, and line speed, on the Web
transport system (WTS) natural frequencies. These natural frequencies are typically
computed as the eigenvalues of an equivalent translational cascaded spring-mass system,
This paper discusses these effects..

NOMENCLATURE
Jmoron molor ineriia [kg m"2]
hoap reflected roll {load) inertia [kg m”2]
J huonor + Juoap [kg m"2
V; i’th roll surface velocity [m/min]
w; i'th motor rotational velocity feedback [rpm]
Gl i'th motor rotational velocity reference {rpm]|
9 i'th motor shafi position [rad]
WML i'th CML bandwid{l [rad/sec]
P 1'th speed loop PI lead freq. [rad/sec]
oo i'th speed loop crossover [rad/sec)
Ksi i'th speed loop PI prop. gain
Ksuarr spring constant of the drive shafi [kg m~2/rad]
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R; 1'th roll radius [m]

D; i'th roll diameter [m]
GR; i'th roll gear ratip
L 1’th tension zone length [m]
T i'th tension zone tension [kgl]
T i’th roll reflected shaft torque [kgf m]
TMAX 1’th motor maximum torque [kef m]
i instantaneous CML current [A].
inax maximum CML current. [A]
E modunlus of elasticity [kgffmm”2]
A cross sectional area [mm”2]
5 Laplace operator
LS maximuim line speed [m/min}
L5; operating line speed [m/min]
Ti i'th per-normal inertia (see Eq. 4)
Ki web-spring constant (see Eq. 8)
Ty web-span velocity time-constant (see Eq. 9)
@3 span natural frequency [rad/sec] (see Eq. 12)
Ko = Tvax/Invax » Torque loop gain [kef m/A)
S, = Ls._c.%&; 1'th motor gear-in speed [rpm}
27R;
INTRODUCTION

Most frequency domain analysis of web transport sysiems (WTS's) involves
obtaining the transfer functions from an input variable of interest to an output variable
of interest, The most common transfer functions used in this type of analysis are those
that provide the analyst with spectral information about sysiem variables that directly
affect product quality, such as web strain (or iension) and roller velocily. For example,
the transfer function from shaft torque {o tenston feedback, or from shaft lorque to speed
feedback are of inlerest to both the control sysiem engineer and the O.E.M. The control
system engineer is interested in these transfer functions because he is responsible for
designing ihe speed and tension regulators and these variables are controlled through
the shaft torque produced by the motor. The O.E.M., because he is inferested in ensuring
the control system vendor satisfics performance guarantees on speed and lension
regulation that directly afTect the quality of the final product.
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System cigenvalues (or natural frequencies) are defined as the roots of the
characteristic polynomial of a system of linear time-invariant (LTI) differential
equations. In a linear analysis of the WTS the denominator of all WTS transfer
functions will be composed of poles whose location in the s-plane are equivalent to the
system eigenvalues. Ofien the analyst assumes the WTS can be modeled analogous to a -
mass-spring system where the roll ineriias (J;) and the web springs (E*A; /L) are
analogous with the translational masses (M;) and springs (k). The transfer functions
from torque (7;) to speed (w;) and tension (T;) are assumed to be analogous to the transfer
functions from a disturbance force (£} acting on the mass (M,) (o the translational speed
of the mass (V;) and the force in the spring {ki(x;-x;1)}. This approach does not Tump the
closed speed loop regulators into the plant model. In a more practical sense, the
cigenvalues resulting from such an analysis can be defined as the poles of the transfer
function from any motor torque T; to any tension feedback T;, or speed feedback o;, in a
WTS where all the speed regulators are operating open loop.

Figure 1 shows the rotational system and the equivalent mass-spring translational
system from which the eigenvalues of such an analysis are typically obtained. It is
composed of an entry section fed by a winder that unwinds unprocessed web, a process
section where proprietary web processing is performed, and a delivery section that winds
the processed web into rolls.

Figure 2. Is a single line diagram of a typical WTS including the drives and
speed loops. The entire system may be divided into 'n’ tension zones that are separated
by 'n+1' driven rolls. The unwinder (payoff reel), winder (tension reel) and driven rolls
(bridles, calenders etc.) are in tum driven by a power source (Current/T orque Minor
Loop - CML)). The reference to the CML; is proportional to a desired torque (t) and
comes from & speed regulator {(a PI regulator - SPL) that regulates speed to match a
desired speed reference ar;.

Given that tension regulation in web transport systems is performed by an outer
tension major loop that cascades into a speed minor loop, the cigenvatues of WTS's that
are obtained without the inclusion of the closed speed loops are not useful to the control
systemn cngineer responsible for the design of WTS iension regulators. Rather, the
design of a single-input, single-output (SISO) tension regulator for the 'ith' section in
Figure 2. will requirc an approximation of the transfer function from the speed reference
{(or;) to the tension feedback (T; or Tiy). This transfer function, which includes the
closed speed loop, represents the plant the tension regulator is conirolling. The tension
regulator may use the tension feedback T; (i.e. drawing material 1o control the tension in
the 'ith' section) or Ty (feeding material to control tension in the 'i+1' seclion) 1o
regulate the tension around a desired setpoini.

There are exceptions to the cascaded architecture. Specifically, in winders, a
direct reference to the CML from either a tension or current regulator may be used.
However for the sake of brevity only the cascaded architecture will be discussed in this

paper,

Obtaining a transfer function from er; 1o T; is a fairly simple task if there are
only two masses and one web section (e.g. an unwinder and a winder directly coupled by
the web). Approximate transfer functions for this application are derived in [1]. 12].
However the coupling ol additional sections into the system makes the derivation of an

289



analylically exact transfer function unwieldy and, as sections are added, beyond the
capabilities of even the most sophisticated symbolic math programs.

While the approach taken in this paper is onc based on linear system theory, the
author avoided preseniing cumbersome sets of transfer functions and their derivations.
This was done with the knowledge that, in the analysis of an actmal web process
application, there exists a profusion of non-linear contributions that render exact linear
transfer functions more or less inaccurate, depending on the application. The approach
taken in this paper is one that describes the expected behavior of the transfer functions
in terms of the effect of speed loop bandwidths, and line speed, on the system
eigenvalues. The expected behavior is expressed as a series of observations plirased in
terms of closed speed loop bandwidths, line speed time constants, and natural
frequencies.

Plant Renresentation

. The web tension equation (1) is a commonly used equation {[3], [4], [53])
describing the dynamics associated with the conveyance of web through tension zones. It
is based on the principle of conservation of mass in a mass-flow system and is derived in

[2]..

LS =T A (V= Vi) # Vi Ty -V T M
where:
e @) @
The moior/load torque equation is given as:
.551~5"-’-‘—=ri +£'(T5+,—Ti); : 3
dt GR.

In Figure 3. an s-domain block diagram of equations (1-3) is presenied. It
includes the hooks that allow coupling multiple sections together, it does not include any
damping terms. Note that a rigorous representation of equations (1-3) requires the
integrators in Figure 3 1o be preset to their respective initial conditions.

For a given operating line velocity LS;, an approximate linear representation of
equations (1-3) can be ablained [2], [6]. A block diagram of the linearized model is
shown in Figure 4.

A linear s-domain block diagram approximation of the plant (Figure 3), as seen
by a cascaded tension loop regulator, can be obtained by closing a speed loop around the
speed feedback o; in Figure 4.

Cascading n sections of the model in Figures 4 & 3 provides a plant model from
which an investigation of the effects of speed loop bandwidths on sysiem eigenvalues
can be conducted.



Some Usefull Quantitics:

To simplify the analysis of the multi-span web iransport system the following set
of quantities are most useful.

Per-Normal Inertia

Let the per-normal inertia of a syslem be defined as the time it 1akes [sec] fo
accelerate the motor and load inertia to the application gear-in speed (§;) with maximum
motor lorque (T,..) It is defined as:

ji{sec] =-:I-'——— 1G]

Speed Loop Bandwidth

The bandwidth of a closed speed loop is limited to the frequency at which the
magnitude of the speed feedback in 1esponse to a sinusoidal input is attenuated 3[db]
from the setpoint magnitude. It is also approximated as the crossover of the open speed
loop Bode plot. For the speed loop shown in Figure 3. it can be shown that the open loop
crossover and hence the approximate bandwidth of the speed loop is:
=K1E'Ksi 60 (5)

T ' ?.JT; Wy < Opg;

1

mCCIi

In any drive systemn the bandwidth of the speed loop will be constrained by the
mechanical inteprity of the drive train, As a general rule the bandwidth must be an order
of magnitude lower than the lowest torsional frequency in the drive train. This
constraini can typically be satisfied by:

1., ) +J
@ <1_0\{}‘5HAFT LOAD ]MUTDH_ (6)

Joan * Tyoron
In addition, to avoid torque jitler in the motor shafi, the per-normal controller

proportional gain should be limited to 60. For industrial motors, this constraint can be
accommodated by limiting the bandwidth to:

il Q.

Web Spring Constant

Let the web spring constant be equal to:

Ki[kg/m]=E—iI;ini ()
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Web-Span Velocity Time-Constant

Let the web-span velocity time constant be equal to:

T, [sec] = ]_I,H—E‘: 60 ®)
!

Normal Eipenvalues

The simple mass-spring system (Figure 1) can be defined in rotational terms as a
set of differential equations expressed in the Laplace domain (10):

1] e+, K 0 0 - 0 0 o [
T K KtlsaE K, 0 0 0 8, (10)
5| 0 K K+ld+K Ko 0 0 0 8
a1 0 0 0 0 - Ko Ko+l #+K, Ky (|G
EYRE: 0 0 0 - 0 Ko K, +15 [ 6
¥ A X
Let the normal eigenvalues be defined as the roots of the determinant of A.
eig(A) = roots|A| (11

Span Natural Frequency:

Let the span natural frequency be a measure of the frequency at which the web
span spring (K;) and attached inertia (J;) would exchange energy if the web spring was
lerminated at an infinitely large mass.

Q=

%, (12)

OBSERVATIONS

Following is a series of observations that are intended to provide the reader with
an intuitive undersianding of the effect of speed loop bandwidths and line speeds on
WTS sysiem eigenvalues (or transfer function poles).

Analysis of a 9 section - 10 inertia WTS provides supporting bode plots for each
observalion. The WTS is comprised of sections structured the same as shown in Figures
4 and 5. Each Observation is followed by a brief discussion, and a plant description for
the particular set of Bode plots presented. The plant description is in terms of the
quantities described in seclion 2.3.
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The short discussion is provided to clarify the observation in terms of the stated
effect on the poles of the transfer functions (or the svstem eigenvalues) from speed
reference or; to tension feedback T; and speed feedback ;. The discussions are intended
lo be of practical use 1o the control system engineer responsible for the design of WTS
tension regulators.

In addition, it is assumed that the bandwidth of each CML is high enough that in
the frequency range of intercst it behaves as a linear gain element. Its dynamics can,
therefore, be ignored,

Ohservation No.1

As additional driven sections are added to a WTS the magnitude of all existing
eigenvalues will decrease.

Discnssion: Consider a multi-span WTS  without speed regulators, the
denominator of the transfer function from any 7; to any tension feedback T; will be
composed of poles that can be factored into real poles or complex pole pairs. If a section
is added 1o the WTS the magnitndes of all the existing poles and complex pole pairs in
the transfer function from any 7; to any tension feedback T; will decrease.

This implies that the longer a WTS process line is, the lower the eigenvalues will
become. A good way to visnalize this is to create a purely symmetlric WTS and observe
the effect of adding symmetric sections to the WTS on the Bode plot of the transfer
function from a loTque T..... to a tension feedback T.... in a WTS with ‘n’ sections. A
symmetric WTS is one that has been designed so that the web span natural frequencies
are all approximately the same. Similarly, a symmetric WTS will have sections with
very similar per-normal inertias. Figure & is a collage of 3 Bode magnitude plots of the
transfer function of ..., to a tension feedback T....,. The number of sections varies from
five to nine in increments of two.

Plant Description

Ji =1 [sec]; i=1..6810
£), =100 {rad /sec]; i=1,..579
Bon =10 [rad /sec], i=1.. 651

T, = co [sec] (Stally

In Figure 6, the solid line is from the analysis of the 9 section WTS, the dotted
line: the 7 section WTS, and the dashed line: the 5 section WTS. It is clear that as
symmetrical sections are added the magnitude of the eigenvalues decreases,

From the perspective of the tension regulalor designer, the problematic plant
poles in long WT'S’s are significantly lower than the web span natural frequencies
calculated using (12), It is important to keep this perspective in mind when
commisioning the tension regulators, In the authors experience the dominant
problematic natural frequencies in WTS’s are typically lower than those caleulated using
linear analysis techniques.



Observation No.2

2a If . <<|Eig(A)Mm[;i=1’m’n the eigenvalues of a WTS system that

includes the closed speed loops are approximately equal to  eig(A).

Discussion: I the magnitude of all the WTS normal eigenvalues are much
greater than the bandwidth of all of the speed loops, the poles of the transfer function
from any or; to any closed speed feedback @; or any tension feedback T, will be
approximately the same as the poles in the transfer function from any torque T; to any to
any speed feedback o; or any tension feedback T; in a WTS with no speed loops.

20)If wep, »>lcig(A)bi=Loun  the eigenvalues of a WWTS system that includes
the closed speed loops are approximately equal to 0,0, x /2,0, x1/242; i=1...n

Discussion: If the bandwidths of all the speed loops are significantly higher than
the magnitude of the maximum normal eigenvalue, the denominator of the transfer
function from any speed reference or; 1o any speed feedback w; or any tension feedback
T;: will approximately consist of a pole at zero and two real poles al ©.,x (0.7 and

w ., x035

2.¢) The damping of all normal eigenvalues with magnitudes greater than the
speed loop bandwidth for a given lension zone will increase as the ratio of the
eigenvalue magnitude 1o the speed loop bandwidth decreases.

Discussion: Speed loops produce a damping effect on natural frequencies. The
closer the natural frequency is to the speed loop crossover the more pronounced this
damping effect will become,

To demonsirate the effects described in Observation No.2 a collage of 10 Bode
plots (Figure 6.) of the transfer function from ers to Ts for the example WTS is
presented. The per-normal inertias, speed loop crossovers and span natural frequencies
for all 9 sections are identical in each plot. This results in a highly symmetrical plani.
The 10 plots are obtained from an analysis performed with 10 logarithmically spaced
span natural frequencies that vary from 6 to 600 [rad/sec]. For each plot the natural
frequency of all 9 tension zones is identical.

Plant Description
Ji=1[sec); i=1,..10
Q,=6— 600 frad /sec];, i=1..9
By =10 [rad fsec],  i=1,...10
7, = w [sec] (Stall)
Some additional observations from Figure 6:

1. The low frequency gain of the transfer function does not change significantly until
the eigenvalues are low enough for the speed loop to provide damping. For a system
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that is highly symmetrical, the gain changes linearly with £3; when Observation 2.b
is satisfied.

2. The speed loop PI lead frequency ws; provides the observed lead break frequency at 2
[rad/sec]. os; effectively cancels the lower pole of the real pole pair that results when
Observation 2.b is satisfied.

Observation No.3

Dominant speed loop damping effects result from the immediate speed regulator
and the speed regulators acting on the preceding and fallowing sections.

Discussion: Damping of the normal eigenvalues for a given tension zone is
dominaied by the bandwidth of the speed loop driving that section, the second most
dominant factors are the speed loop bandwidths of the sections preceding and following
the given iension zone,

To demonstrate this observation, consider a process line that is composed of two
sets of high bandwidth speed regulators separated by a single low bandwidth speed
regulator. Poor damping of the system eigenvalues will be observed around the section
driven by the low bandwidth regulator. Figures 7,8,% represent the transfer functions
from wr; to Ts, @ryto T, ors 1o Ts, respectively. The WTS has 10 [rad/sec] speed loop
regulator bandwidths for sections 1,2,4-10. The bandwidth of Section 3 is set at 0.1
[rad/sec]. Note that there is little difference between Figure 9 and Figure 6. This
indicates that the drive in section 4 provides section 5 with considerable isolation from
section 3. As in Figure 6 Figures 7.8,9 are composed of a collage of 10 Bode plots
resulting from an analysis of the WTS with 10 logarithmically spaced €);’s that vary
from 6 to 600 [rad/sec].

Plant Description
Ji=1[sec]; f=1_.10
0, =6— 600 [rad / sec]; i=1..9
@ o, =10 [rad / sec], i=124,..,10
@ o, = 01 [rod { sec]; i=3
T, = o [sec) (Stail)

Chservation No.4

Damping of the normal eigenvalues will increase with line speed.

Discussion; The damping of the normal eigenvalues is worst case at stall. When
the web begins moving there is a damping effect that is the resulf of the bulk flow of the
malerial through the tension zone. As a result of the lack of damping at stall, it is not
uncommon for drive system vendors 1o operate tension regulators as proportional only
controliers at stall, swilching to a PI configuration at a pre-delermined web line speed.
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To demonsirate this a plant with a fixed a set of ;s equal to 600 [rad/sec] is
analyzed with a set of 10 logarithmically spaced velocity 1ime conslants T, varying from
10 10 0.01 [sec] (Figure 10).

Plant Description
Ji =1 [sec]; i=1..10
0, =600 [rad /sec]; i=1..9
Wep; =10 [radisec] i=1..10

7, =10— 001 [sec]

Observation No.5

The pure integration in the transfer function from aw; to T; af stall appears as a
real pole that gravitates from the origin of the s-plane towards a value of -1/%. as bulk
movemen! of the web eccurs. The higher the damping of the eigenvalues the better the
approximation of -1/ 1, as the pole location.

Discussion; At stall, a pure integration is observed in the transfer function from
or; lo Ty The moment the bulk movement of the web begins, the integration becomes a
real pole, For most systems this pole is very low in frequency and does not significantly
alter the low frequency gain of the plant. When the damping of the normal eigenvalues
is such that Observation 2.b is satisfied, the pole location can be approximated as -1/t..

This phenomena can be problematic in certain tension regulation schemes. For
example, assume a proportional tensiont regulator is used in a WTS with an extremely
high top line speed of 3000 [m/min] and a length between driven sections of 10 [m]. In
addition, assume that the speed regulators have ample bandwidih and satisfy
Observation 2.b, The transler function from wr; to T; in a system with such a line speed
will result in a pole at 5 [rad/sec]. A significant loss in low frequency gain can be
expecled and a steady state error in the closed tension loop will be observed. To
demonstrate ihis 2 plant with a fixed a set of (s equal to 10 [rad/sec] is analyzed with
a set of 10 logarithmically spaced velocity time constanis varying from 10 to 0.01 [sec]
(Figure 11).

The movement of this poie can also result in a type of low frequency instability in
P1 tension regulators. If the designed crossover of the tension loop is less than i/t., the
loop will tend 1o “die” and loose its ability to regulaie tension as the speed of the line
increascs past a certain threshold speed. The exact speed at which this will occur will
vary depending on the speed loop bandwidth, the associated eigenvalue damping, and
the phase margin built inlo the lension loop. This instability is not a true instability in
the classical sense of the word, il 1s rather an observed drifting or wandering of the
tension Lhat can be attribufed to a combination of integral action in the regulator, low
tension loop bandwidth, and system noise,



Plant Description
Ji=1 [sec]; i=1..,10
Q, =10 [rad /sec]; i=1,..
Oep; =10 [rad sec] i=1,..,10
7, = 10— 001 [sec]

It
—

CONCLUSIONS

It is clear from the above discussion that the designer of cascaded tension

regulators for multi-span web transport systems should consider the effect of the speed
loop bandwidths on the s-plane location of the WTS eigenvalues when designing tension
regulators. Based on the above discussion several conclusions can be drawn:

L.

The higher the bandwidth of the WTS speed regulators the greater the damping of
problematic WTS natural frequencies.

If passible, the O.E.M. process design team should sirive to create symmetric systems
(similar s in all the scctions and per-norma! inertias that are approximately
equal). This enables consistent damping of WTS eigenvalues with section speed
regulators that have identical bandwidths.

3. The per-normal inertias (and by implication the motor horsepowers) and the torsional

stilfness of the drive shafis should be selected such that the speed regulators can be
tuned for @.,’s that will provide adequate damping of the expected WTS eigenvalucs.
This significantly improves the performance of the tension regulators.

O.EM’s should be aware that compensation as a function of line speed may be
requircd in lension loops as line speeds increase and the length between spans
decreases.

If an LTI linear system analysis is used to determine the WTS eigenvalues it can be
considered a worst case analysis if the eigenvalues are computed 1o determine the
minimum bandwidth of the speed regulators required to satisfy Observation 2.b. The
actual eigenvalues of the system will always be less than or equal o these
analytically derived values.

Tuning The Tension Regulator

As a note of inierest, the funing of a tension regulator for a WTS with speed loop

bandwidths that satisfy Observation 2.b for all the product that is processed through the
system becomes a fairly simple task. The lead and lag frequencies of a lead/lag
compensator and a PI regulator lead are tuned as shown below:

@ oo [ T2d / 5e¢] € @ [rad / sec]
Pliead frequency = @ oqpg, x 0.2[rad / sec]

Lead / Lag Lead frequency = wqq x 0.7[rad / sec]
Lead / Lag Lag frequency = @ x 7[rad / sec]



Briefly, the PI lead frequency of the PI coniroller should be set to 1/5 the desired
tension loop crossover. The tension loop crossover should be less than or equal to the
speed loop crossover. The lead/lag lead frequency is set to approximately cancel the
damped pole from the plant at 0.7 times the speed loop crossover. Recall that the pole at
0.35 times the speed loop crossover is approximately canceled by the transmission zero
from the speed PI regulator (ie. the speed loop PI lead frequency). The lag of the
lead/lag compensator is then placed at 10 times the lead/lag lead frequency to ensure
that only a minimum of phase margin is lost in the tension regulator. The gain can then
be adjusted on-site so that the step response of each tension regulator satisfies a time to
peak measure that reflects the desired tension loop bandwidth. Equation (13) can be
used to make this determination,

3.1

T]'lanl; [SBG]

@ oy [Tad / sec) =

(13}
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Figure 6. Observation 2. Bode Plot of mrs to T
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Figure 7. Observation 3. Bode Plot of mr3 10 T
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Figure 11. Observation 5. Bode Plot of ors 10 Ts
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Question - With respect to observation 1. When did the natural frequencies become
lower? Were the additional web section lengths the same?

Answer - Yes, the extra sections were the same as those sections that formed the base
symmetrical system.

Question - The web-line sections were all the same?

Answer - Right, I you analyze steel lines you will observe natural frequencies as low
as 1 to 3 radians per second, and you may wonder where they come from? In these
lines the accumulators store hundreds of feet of material. This long length of steel with
multiple drive sections results in the observed low naturai frequencies as described in
observation number 1.
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