
THE EFFECT OF SPEED LOOP BANDWIDTHS AND LINE-SPEED ON 
SYSTEM EIGENVALUES IN MULTI-SPAN WEB TRANSPORT SYSTEMS 

ABSTRACT 

by 

B. T. Boulter 
Rockwell Automation 

USA 

Web transport systems are composed of multiple tension zones. These zones are 
separated by driven rolls such as calenders, bridles or nipped rolls whose speed is 
regulated by a closed loop controller. Given that tension regulators regulate tension by 
trimming the reference lo the closed speed loop controller, the designer of the tension 
regulator cannot ignore the effects of closing the speed loop, and line speed, on the Web 
transport system (WTS) natural frequencies. These natural frequencies are typically 
computed as the eigenvalues of an equivalent translational cascaded spring-mass system. 
This paper discusses these efiects .. 

NOMENCLATURE 

J, 

V; 

@; 

ffiovll..i 

Ks; 

Ksr-IAFT 

motor inertia [kg m'·2] 

reflected roll (load) inertia [kg m'2] 

JMoTOR + huAD [kg mA2] 

i'th roll surface velocity [m/min] 

i'th motor rotational velocity feedback [rpm] 

i'th motor rotational velocity reference [rpm] 

i'th motor shaft position [rad] 

i'th CML bandwidtl1 [rad/sec] 

i'th speed loop PI lead freq. [rad/sec] 

i'U1 speed loop crossover [rad/sec] 

i'U1 speed loop PI prop. gain 

spring constant of the drive shaft [kg m'2/rad] 
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INTRODUCTION 

i'th roll radius [ml 

i'th roll diameter [m] 

i' th roll gear ratio 

i'th tension zone length [m] 

i'!h tension zone tension [kg!] 

i'tlt roll reflected shaft torque [kgfm] 

i'th motor maximum torque [kgfm] 

instantaneous CML current [A]. 

maximum CML current. [A] 

modulus of elasticity [kg17mm,.,2] 

cross sectional area [mm"2] 

Laplace operator 

maximum line speed [m/min] 

operating line speed [m/min] 

i'tlt per-normal inertia (see Eq. 4) 

web-spring constant (see Eq. 8) 

web-span velocity time-constant (see Eq. 9) 

span natural frequency [rad/sec] (see Eq. 12) 

Torque loop gain [kgfm/A] 

i'th motor gear-in speed [rpm] 

Most frequency domain analysis of web transport systems (WTS's) involves 
obtaining the transfer functions from an input variable of interest to an output variable 
of interest. The most common transfer functions used in this type of analysis are those 
tltat provide the analyst witl1 spectral information about system variables tliat directly 
affect product quality, such as web strain (or tension) and roller velocity. For example, 
the transfer function from shaft torque to tension feedback, or from shaft torque to speed 
feedback are of interest to botl1 tlte control system engineer and tlte O.E.M. The control 
system engineer is interested in tl1ese transfer functions because be is responsible for 
designing tl1e speed and tension regulators and these variables are controlled through 
tlte shaft torque produced by the motor. The O.E.M., because he is interested in ensuring 
the control system vendor satisfies perfonnance guarantees on speed and tension 
regulation tltat directly affect the quality oftlte final product. 
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System eigenvalues (or natural frequencies) are defined as the roots of the 
characteristic polynomial of a system of linear time-invariant (L Tl) differential 
equations. In a linear analysis of the WTS the denominator of all WTS transfer 
functions will be composed of poles whose location in the s-plane are equivalent to the 
system eigenvalues. Often the analyst assumes the WTS can be modeled analogous to a 
mass-spring system where Uie roll inertias (J;) and the web springs (E,* A; IL;) are 
analogous wiUt Ute translational masses (M;) and springs (k;). The transfer functions 
from torque(,,) to speed (co;) and tension (Tj) are assumed to be analogous to Ute transfer 
functions from a disturbance force (f;) acting on Ute mass (M;) to the translational speed 
of Ute mass (V;) and the force in Ute spring {k;(x,-x,.1)}. This approach docs not lump Ute 
closed speed loop regulators into the plant model. In a more practical sense, Ute 
eigenvalues resulting from such an analysis can be defined as Ute poles of the transfer 
function from any motor torque ,, to any tension feedback Tj, or speed feedback co,, in a 
WTS where all the speed regulators are operating open loop. 

Figure 1 shows the rotational system and Ute equivalent mass-spring translational 
system from which the eigenvalues of such an analysis are typically obtained. It is 
composed of an entry section fed by a winder that unwinds unprocessed web, a process 
section where proprietary web processing is performed, and a delivery section Uiat winds 
the processed web into rolls. 

Figure 2. Is a single line diagram of a typical WTS including the drives and 
speed loops. The entire system may be divided into 'n' tension zones that are separated 
by 'n+ I' driven rolls. The unwinder (payoff reel), winder (tension reel) and driven rolls 
(bridles, calenders etc.) arc in turn driven by a power source (Current/Torque Minor 
Loop - CML;). The reference to the CML, is proportional to a desired torque (,,) and 
comes from a speed regulator (a PI regulator - SP!;) Uiat regulates speed to match a 
desired speed reference cor,. 

Given that tension regulation in web transport systems is performed by an outer 
tension major loop that cascades into a speed minor loop, Ute eigenvalues ofWTS's that 
arc obtained without the inclusion of the closed speed loops are not useful to Ute control 
system engineer responsible for Ute design of WTS tension regulators. RaUter, Ute 
design of a single-input, single-output (SISO) tension regulator for the 'iUt' section in 
Figure 2. will require an approximation of Ute transfer function from the speed reference 
(cor,) to Ute tension feedback (T; or T;+1). This transfer function, which includes the 
closed speed loop, represents Ute plant Ute tension regulator is controlling. The tension 
regulator may use the tension feedback T; (i.e. drawing material to control the tension in 
the 'ith' section) or T;+1 (feeding material to control tension in the 'i+ I' section) to 
regulate the tension around a desired sctpoint. 

There are exceptions to the cascaded architecture. Specifically, in winders, a 
direct reference to the CML from eiUter a tension or current regulator may be used. 
However for the sake of brevity only Ute cascaded architecture will be discussed in U1is 
paper. 

Obtaining a transfer function from cor; to T, is a fairly simple task if Utere arc 
only two masses and one web section (e.g. an unwinder and a winder directly coupled by 
the web). Approximate transfer functions for Utis application are derived in [!], [2]. 
However Ute coupling of additional sections into Ute system makes Ute derivation of an 
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analytically exact transfer function unwieldy and, as sections are added, beyond the 
capabilities of even the most sophisticated symbolic math programs. 

While the approach talcen in this paper is one based on linear system theory, the 
auti1or avoided presenting cumbersome sets of transfer functions and U1eir derivations. 
This was done with the knowledge that, in U1e analysis of an actual web process 
application, there exists a profusion of non-linear contributions Uiat render exact linear 
transfer functions more or less inaccurate, depending on the application. The approach 
taken in this paper is one Uiat describes the expected behavior of Uie transfer functions 
in terms of the effect of speed loop bandwidti1s, and line speed, on U1e system 
eigenvalues. The e>.'jlected behavior is expressed as a series of observations phrased in 
terms of closed speed loop bandwidti1s, line speed time constants, and natural 
frequencies. 

Plant Representation 

. The web tension equation (1) is a commonly used equation ([3], [4], [5]) 
describing U1e dynamics associated with U1e conveyance of web Urrough tension zones. It 
is based on Uie principle of conservation of mass in a mass-flow system and is derived in 
[2],. 

L dT; ~ E -A. · (V - V ,) + V 1 • T 1 - V · T; 'dt I I I 1- 1- I- JI 
(1) 

where: 

(2) 

The motor/load torque equation is given as: 

(3) 

In Figure 3. an s-domain block diagram of equations (1-3) is presented. It 
includes U1e hooks that allow coupling multiple sections together, it does not include any 
damping terms. Note that a rigorous representation of equations (1-3) requires U1e 
integrators in Figure 3 to be preset to their respective initial conditions. 

For a given operating line velocity LS,, an approximate linear representation of 
equations (1-3) can be obtained [2], [6]. A block diagram of Uie linearized model is 
shown in Figure 4. 

A linear s-domain block diagram approximation of U1e plant (Figure 5), as seen 
by a cascaded tension loop regulator, can be obtained by closing a speed loop around the 
speed feedback m, in Figure 4. 

Cascading 11 sections of U1e model in Figures 4 & 5 provides a plant model from 
which an investigation of U1e effects of speed loop bandwidU1s on system eigenvalues 
can be conducted. 
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Some Usefull Quantities: 

To simplify the analysis of the multi-span web transport system the following set 
of quantities are most useful. 

Per-Normal Inertia 

Let the per-normal inertia of a system be defined as the lime it tal,es [sec] to 
accelerate the motor and load inertia to the application gear-in speed (S;) with ma\'.lltlum 
motor torque (T=) It is defined as: 

- J. -S. ?,r 1 J1(sec]=-'-1 _.::_ __ 
T MAX 6Q 9.8 

(4) 

Speed Loop Bandwidth 

The bandwidth of a closed speed loop is limited to the frequency at which the 
magnitude of tlie speed feedback in response to a sinusoidal input is attenuated 3 [db] 
from the setpoint magnitude. It is also approximated as the crossover of tl1e open speed 
loop Bode plot. For the speed loop shown in Figure 5. it can be shown tlrnt the open loop 
crossover and hence the approximate bandwidth of tlie speed loop is: 

(5) 

In any drive system the bandwidth of the speed loop will be constrained by the 
mechanical integrity of tl1e drive train. As a general rule the bandwidth must be an order 
of magnitude lower than the lowest torsional frequency in tl1c drive train. This 
constraint can typically be satisfied by: 

I 
WcOi < 10 

K .J LOAD + J MOTOll 
SHAFT 

J 1.0AD • J MOTOR 

(6) 

In adclition, to avoid torque jitter in the motor shaft, the per-normal controller 
proportional gain should be limited to 60. For industrial motors, tl1is constraint can be 
accommodated by limiting tl1e bandwidth to: 

Web Spring Constant 

60 
Wc□i $ ji 

Let tl1e web spring constant be equal to: 

E--A­
K;[kg/m]=-' -' 

L, 
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Web-Span Velocitv Time-Constant 

Let the web-span velocity time constant be equal to: 

L. 
r [sec]=-' •60 

" LS1 

(9) 

Normal Eigenvalues 

The simple mass-spring system (Figure I) can be defined in rotational terms as a 
set of differential equations expressed in the Laplace domain (10): 

'I J/+K1 -Ki 0 0 0 0 0 0, 

'2 -Ki K1+J~+K2 K 0 0 0 0 s, 
(10) - 2 

'3 0 -K2 K,+J,s'+K; -K; 0 0 0 03 

tn-1 0 0 0 0 ... -K.-, Ku-2+Jn-i+K.i-1 -K,,_, 0n-l 

'n 0 0 0 0 0 -K.-1 ¾-1+Jns2 s. 
'-v--' '-v--' y A X 

Let the normal eigenvalues be defined as the roots of the determinant of A. 

eig(A) = rootslAI (II) 

Span Natural Frequency: 

Let tl1e span natural frequency be a measure of the frequency at which tl1e web 
span spring CK,) and attached inertia (J,J would exchange energy if tl1e web spring was 
tenninated at an infinitely large mass. 

(12) 

OBSERVATIONS 

Following is a series of obsen•ations that are intended to provide the reader with 
an intuitive understanding of the effect of speed loop bandwidths and line speeds on 
WTS system eigenvalues (or transfer function poles). 

Analysis of a 9 section - 10 inertia WTS provides supporting bode plots for each 
observation. The WTS is comprised of sections structured tl1e same as shown iu Figures 
4 and 5. Each Obsen•ation is followed by a brief discussion, and a plant description for 
tl1e particular set of Bode plots presented. The plant description is in tem1s of the 
quantities described in section 2.3. 
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The short discussion is provided to clarify the observation in terms of the stated 
effect on the poles of the transfer functions (or the system eigenvalues) from speed 
reference mr, to tension feedback T, and speed feedback m,. The discussions are intended 
to be of practical use to the control system engineer responsible for the design of WTS 
tension regulators. 

In addition, it is assumed that the bandwidth of each CML is high enough that in 
the frequency range of interest it behaves as a linear gain element. Its dynamics can, 
therefore, be ignored. 

Observation No.1 

As additional driven sections are added to a ffTS the magnitude of all existing 
eigenvalues will decrease. 

Discussion: Consider a multi-span WTS without speed regulators, the 
denominator of the transfer function from any ,, to any tension feedback T, will be 
composed of poles that can be factored into real poles or complex pole pairs. If a section 
is added to the WTS the magnitudes of all the existing poles and complex pole pairs in 
the transfer function from any,, to any tension feedback T, will decrease. 

This implies that the longer a WTS process line is, the lower the eigenvalues will 
become. A good way to visualize this is to create a purely symmetric WTS and observe 
the effect of adding symmetric sections to the WTS on the Bode plot of the transfer 
function from a torque '~"" to a tension feedback T,m,n in a WTS with 'n' sections. A 
symmetric WTS is one that has been designed so that the web span natural frequencies 
are all approximately the same. Similarly, a symmetric WTS will have sections witi1 
very similar per-normal inertias. Figure 6 is a collage of 3 Bode magnitude plots of the 
transfer function of Tr1i.111 to a tension feedback T,.,hlll• The number of sections varies from 
five to nine in increments of two. 

Plant Description 

J, = 1 [sec]; i = 1, ... ,6;8;10 

n, = 100 [rad I sec]; i = 1, ... ,5;7;9 

Wco, = IO [rad I sec]: i = 1, ... ,6:8;10 

•v = co [sec] (Stall) 

In Figure 6, the solid line is from U1e analysis of Uie 9 section WTS, U1e dotted 
line: U1e 7 section WTS, and the dashed line: the 5 section WTS. It is clear that as 
symmetrical sections are added U1e magnitude of U1e eigenvalues decreases. 

From the perspective of the tension regulator designer, U1e problematic plant 
poles in long WTS's are significantly lower tlian the web span natural frequencies 
calculated using (12). It is important to keep Ulis perspective in mind when 
commisioning U1e tension regulators. In the autl1ors experience the dominant 
problematic natural frequencies in WTS's are typically lower than those calculated using 
linear analysis techniques. 
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Observation No.2 

2.a) If m00, «leig(A)MINl;i=l, ... ,n the eigenvalues of a WTS system that 

includes the closed speed loops are approximately equal to eig(A). 

Discussion: If the magnitude of all the WTS normal eigenvalues are much 
greater than the bandwidth of all of the speed loops, the poles of U1e transfer function 
from any ffir; to any closed speed feedback m, or any tension feedback T, will be 
approximatelv U1e same as U1e poles in Uie transfer function from any torque ~, to any to 
any speed feedback ffi; or any tension feedback T, in a WTS wiU1 no speed loops. 

2.b) If wco, »lcig(A),_,,,_,.r,i = l, ... ,11 the eigenvalues of a WTS system that includes 

the closed speed loops are approximately equal to 0,ffico, x 1/Ji,roco, x I/2Ji; i = 1, ... ,n 

Discussion: If the bandwidths of all U1e speed loops are significantly higher than 
the magnitude of tl1e maximum normal eigenvalue, the denominator of Uie transfer 
function from any speed reference ffir; to any speed feedback ffi; or any tension feedback 
T; will approximately consist of a pole at zero and two real poles at '°co, x 0.7 and 

{l) COi X QJ5 

2.c) The damping of all normal eigenvalues with magnitudes greater than the 
speed loop bandwidth for a given tension zone will increase as the ratio of the 
eigenvalue magnitude to the speed loop bandwidth decreases. 

Discussion: Speed loops produce a damping effect on natural frequencies. The 
closer the natural frequency is to U1e speed loop crossover the more pronounced this 
damping effect will become. 

To demonstrate U1c effects described in Observation No.2 a collage of 10 Bode 
plots (Figure 6.) of U1e transfer function from ffir5 to T 5 for the example WTS is 
presented. The per-normal inertias, speed loop crossovers and span natural frequencies 
for all 9 sections are identical in each plot. This results in a highly symmetrical plan!. 
The IO plots arc obtained from an analysis performed with 10 logariU1mically spaced 
span natural frequencies U1at vary from 6 to 600 [rad/sec]. For each plot the natural 
frequency of all 9 tension zones is identical. 

Plant Description 

J, = I [sec]; i = 1, ... ,10 

n, = 6--,. 600 [rad I sec]; i = 1, ... ,9 

Wea,= 10 [rad I sec]; i = 1, ... ,10 

Tv = oo [sec] (Stall) 

Some additional observations from Figure 6: 

I. The low frequency gain of the transfer function does not change significantly until 
U1e eigenvalues are low enough for the speed loop lo provide damping. For a system 
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that is highly symmetrical, the gain changes linearly with n, when Obsen,ation 2.b 
is satisfied. 

2. The speed loop PI lead frequency "'si provides the observed lead break frequency at 2 
[rad/sec]. o,5; effectively cancels the lower pole of the real pole pair that results when 
Observation 2.b is satisfied. 

Observation No.3 

Dominant speed loop damping effects result ji-o,n the immediate speed regulator 
and the speed regulators acting on the preceding and following sections. 

Discussion: Damping of the normal eigenvalues for a given tension zone is 
dominated by the bandwidth of Uie speed loop driving that section, U1e second most 
dominant factors are the speed loop bandwidths of U1e sections preceding and following 
the given tension zone. 

To demonstrate this observation, consider a process line ilia! is composed of two 
sets of high bandwidth speed regulators separated by a single low band,vidti1 speed 
regulator. Poor damping of the system eigenvalues will be observed around U1e section 
driven by the low bandwidth regulator. Figures 7,8,9 represent U1e transfer functions 
from o,r3 to T3, o,r4 to T4• o,r5 to T5, respectively. The WTS has 10 [rad/sec] speed loop 
regulator bandwidths for sections 1,2,4-10. The bandwidth of Section 3 is set at 0.1 
[rad/sec]. Note that there is little difference between Figure 9 and Figure 6. This 
indicates that the drive in section 4 provides section 5 with considerable isolation from 
section 3. As in Figure 6 Figures 7,8,9 are composed of a collage of 10 Bode plots 
resulting from an analysis of the WTS with 10 logariti1mically spaced Q;'s Uiat vary 
from 6 to 600 [rad/sec]. 

Plant Description 

J, =I [sec); 

n, = 6-> 600 [rad I sec]; 
cv co, = 10 [rad I sec]; 

cv co, = O.l [rad I sec); 
'v =co[sec) 

Observation No.4 

i = 1, ... ,10 

i = 1, ... ,9 
i = 1,2,4, ... ,10 

i=3 
(Stall) 

Damping of the normal eigenvalues will increase with line speed. 

Discussion: The damping of the normal eigenvalues is worst case al stall. When 
U1e web begins moving U1ere is a damping effect Uiat is U1e result of the bulk flow of the 
material Uuough U1e tension zone. As a result of U1e lack of damping at stall, it is not 
uncommon for drive system vendors to operate tension regulators as proportional only 
controllers at stall, switching to a PI configuration at a pre-determined web line speed. 
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To demonstrate this a plant with a fixed a set of .01's equal to 600 [rad/sec] is 
analyzed with a set of 10 logaritlunically spaced velocity time constants ~. varying from 
10 to 0.01 [sec] (Figure 10). 

Plaut Description 

J, = 1 [sec]; 

n, = 600 [rad /sec]; 

m co, = 10 [rad I sec] 

r,., = 10➔ 0.01 [sec] 

Observation No.5 

i=l, ... ,10 

i=l, ... ,9 

i = 1, ... ,10 

The pure integration in the transfer function fi·om OJ'; to Ti at stall appears as a 
real pole that gravitates fi'om the origin of the s-plane towards a value of -!Irv as bulk 
movement of the web occurs. The higher the damping of the eigenvalues the better the 
approximation of -JI r, as the pole location. 

Discussion: At stall, a pure integration is observed in the transfer function from 
cor, to T,. The moment the bulk movement of the web begins, the integration becomes a 
real pole. For most systems this pole is very low in frequency and does not significantly 
alter U1e low frequency gain of U1e plaut. When the damping of Uie normal eigenvalues 
is such Uiat Observation 2.b is satisfied, the pole location cau be approximated as -lh,. 

This phenomena can be problematic in certain tension regulation schemes. For 
example, assume a proportional tension regulator is used in a WTS with au extremely 
high top line speed of 3000 [mlmin] and a length between driven sections of 10 [m]. In 
addition, assume Uiat U1c speed regulators have ample bandwidU1 aud satisfy 
Observation 2.b. The transfer function from cor, to T, in a system with such a line speed 
will result in a pole at 5 [rad/sec]. A significant loss in low frequency gain can be 
expected aud a steady state error in the closed tension loop will be observed. To 
demonstrate this a plant wiU1 a fixed a set of Q;'s equal to 10 [rad/sec] is analyzed with 
a set of IO logariU1mically spaced velocity time constants varying from 10 to 0.01 [sec] 
(Figure II). 

The movement of Uris pole can also result in a type oflow frequency instability in 
PI tension regulators. If U1e designed crossover of U1e tension loop is less U1an lh,, the 
loop will tend to "die" and loose its ability to regulate tension as U1e speed of U1e line 
increases past a certain threshold speed. The exact speed at which this will occur will 
vary depending on the speed loop bandwidU1, the associated eigenvalue damping, and 
U1e phase margin built into U1e tension loop. This instability is not a true instability in 
the classical sense of the word, it is raU1er an observed drifting or wandering of U1e 
tension Uiat can be attributed to a combination of integral action in the regulator, low 
tension loop bandwidU1, and system noise. 
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Plant Description 

J, = 1 [sec]; i = 1, ... ,10 

n, = 10 [rad I sec]; i = 1, ... ,9 

mco, = 10 [rad I sec] i = 1, ... ,10 

Tv =10➔ O.Ql [sec] 

CONCLUSIONS 

It is clear from the above discussion that the designer of cascaded tension 
regulators for multi-span web transport systems should consider the effect of t11e speed 
loop bandwidths on tlie s-plane location of the WTS eigenvalues when designing tension 
regulators. Based on the above discussion several conclusions can be drmm: 

1. The higher the bandwidt11 of t11e WTS speed regulators t11e greater the damping of 
problematic WTS natural frequencies. 

2. lf possible, the 0.E.M. process design team should strive to create S}1nmetric systems 
(similar O;'s in all t11e sections and per-normal inertias that are approximately 
equal). This enables consistent damping of WTS eigenvalues wit11 section speed 
regulators tlmt have identical bandwidt11s. 

3. The per-normal inertias (and by implication the motor horsepowers) and t11e torsional 
stiffness of t11e drive shafts should be selected such that the speed regulators can be 
tuned for CDro's tliat will provide adequate damping oft11e e:1.-pected WTS eigenvalues. 
This significantly improves t11e performance of t11e tension regulators. 

4. O.E.M. 's should be aware tl1at compensation as a function of line speed may be 
required in tension loops as line speeds increase and t11e length between spans 
decreases. 

5. lf an LT! linear system analysis is used to determine tl1e WTS eigenvalues it can be 
considered a worst case analysis if tl1e eigenvalues are computed to detem1ine t11e 
minimum bandwidth of the speed regulators required to satisfy Observation 2.b. The 
actual eigenvalues of the system will always be less tlmn or equal to tl1ese 
analytically derived values. 

Tuning The Tension Remdator 

As a note of interest, t11e Inning of a tension regulator for a WTS with speed loop 
bandwidths tliat satisfy Observation 2.b for all tl1e product that is processed through tl1e 
system becomes a fairly simple task. The lead and lag frequencies of a lead/lag 
compensator and a Pl regulator lead are tuned as shown below: 

m corrENJ; [ rad / sec] ,; m co; [ rad / sec J 

PI lead frequency = mcorrrNJ; x 0.2[rad I sec] 

Lead/LagLeadfrequency = mco; x0.7[rad/sec] 

Lead /Lag Lag frequency = m co; x 7[ rad / sec J 
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Briefly, the PI lead frequency of U1e PI controller should be set to 1/5 U1e desired 
tension loop crossover. The tension loop crossover should be less U1an or equal to U1e 
speed loop crossover. The lead/lag lead frequency is set to approximately cancel U1e 
damped pole from the plant at 0. 7 limes UJC speed loop crossover. Recall Uiat U1e pole al 
0.35 limes the speed loop crossover is approximately canceled by U1e transmission zero 
from U1e speed PI regulator (i.e. UJC speed loop PI lead frequency). The lag of U1e 
lead/lag compensator is U1en placed at 10 limes the lead/lag lead frequency to ensure 
that only a minimum of phase margin is lost in the tension regulator. The gain can then 
be adjusted on-site so that UJC step response of each tension regulator satisfies a lime to 
peak measure that reflects the desired tension loop bandwidth. Equation (13) can be 
used to make this determination. 

/ 
3.1 

m c□CTEN) [ rad sec] = ---
1 TpeDk[scc] (13) 
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Figure 1. A Typical Mass-Spring WTS Representation 
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Figure 2. A Typical WTS Including Drives and Speed Loops. 
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Figure 3. Block Diagram of a Web Tension Zone 
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Figure 4. Linearized Block Diagram of a Web Tension Zone 
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Figure 5. Plant Model Including the Speed Loop 
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Figure 6. Observation I. Bode Magnitude Plot of T~.,n to T ~.,,, for n=5, 7, and 9 Section 
WTS's 
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Figure 6. Observation 2. Bode Plot of mr5 to T5 

1 □ -10 ~~-~~~~-~~~=~-~~~=~-~~~=~-~~~~~ 

10·
2 

10·
1 

10 10
1 

10
2 

10
3 

0 

-200 
-2 

1 0 
-1 

1 0 

Frequency frad/secJ 
Phase 'Plot 

1 0" 
Frequency 

1 0 
1 

[rad/sec] 
1 a' 

Figure 7_ Observation 3. Bode Plot ofmr3 to T3 

302 

1 0 
2 



Magnitude Plot (Output In Section 4) 
10 

10 
~-----~-----~---~~~---~-~---~~~ :::: 

...... 

10° Ii: i 

1 
O -10 '-------'--'---.:-'--'-=II • ; ''---'-:----'----'--'-', • .. '---'------'---:-'--'--'-'" ! ... '-----'---'-'-==---..~"; i f 

1 0 ·2 1 □ -1 10° 10
1 

Frequency [rad/secJ 
Phase Plot 

10
2 

10
3 

100 ~--~~~~~~==--~~=-~~~=~--~=~ 

0 -i-1n1:-----,---· 

-100 

-200 
10 

-2 
10° 10 

1 
10

2 
10

3 

Frequency [rad/sec] 

Figure 8. Observation 3. Bode Plot of mr, to T, 

1010 
Magnitude Plot (Output in Section 5) 

1 0 o 

1 o-10 ~-~-~~-·~·~· -~-~~=---~~=--~~~~-~--~· ~-~--~-
1 □ -2 

100 

0 

-1 00 

1 0 o 10 1 

Frequency [rad/sec] 
Phase Plot 

1 · illlll 
10° 10 1 

Frequency [rad/sec] 

1 D 
2 

1 D 
2 

Figure 9. Observation 3. Bode Plot of mr5 to T5 

303 

1 D 
3 

1 0 
3 



Magnitude Plot {Out ut in Sectlon 5) 1 o' r---...,...,-,-,,c,,---"',:..e.:.:.:;:;..;:,;,..:....:~.;.::,c;..;~r'-;..,:c:;..::,:.;::,:;,.,,:.,.~~-~'" 

:.:.i.· :.: .....•... .:, .!. :., .. !',, '·•, !.,,·• ... !:.,, ..... · .... ::': ... :· ..... ;·· ..... ;·... : : ; : :: :: )( ... !.!.' ! t• : . 
1 o' 

1 o' 

jjjiiJ i ijjjJJI ..... 
1 □' L.-,--'--'--'-.Ll_'-lll_,_J_L.J.-'..!.='---'--'-L'-'-'.LJ.L-, --'--'--'-.Ll_Ll..ll_,_.__L.J._L!..!.l.:J , 

10 10· 10 10 10 10 
Frequency rrad/secJ 

Phase Plot 1oor----~~----~--,...c.,~~---~~--~~ 
: : ::::: :. • .. i. t. i.i.i.i.: .. 

• ••••• :-!/-/!/!!····<··-u:-:~:::4>=··~Nt : : :::::: 
i 1 i l n 1 l 

0 

:: : : L_l_l_L1:L !:u 1
• /1H1:i __ .:_iui 1i 1i ui i.uii_u· _;_i 1i1i1i1i luiL. _1._1i_LL.W.L_jLJ:f~· ~· ·~· , 

10·
2 

10·
1 

10 10
1 

102 10 
Frequency [rad/sec] 

Figure 10. Observation 4. Bode Plot of mr5 to T5 

1 o' 

1 o
0 : . : ::::: . '. ""' ... 

1 o·' '----'--'-'-'-'-'-'"'----'--'-'-'-'-'-"'--'--'-'-' ;_;"_.'...;· ·.1---1-1......c.;.;.;.i.L_;_.cc..;_=•-'"·. 

1~ 1~ 1~ 10
1 

1i 1~ 

0 

·100 ..... 

. .... 

Frequency rrad/sec] 
Phase Plot 

-200 c_--'--_._.c..c.;_· cc· ·a·_.,_;_;_;_;·_;_• ·ca· _ _;__;__;__;_;_;_;c· •.1-_;__._.c..c.;_=--'-'-'-'-'-'-'" 

10·' 10·1 
10° 10

1 
1 o' 1 o' 

Frequency [ra d/secJ 

Figure I I. Observation 5. Bode Plot of mr5 to T5 

304 



Question - With respect to observation I. When did the natural frequencies become 
lower? Were the additional web section lengtl1s the same? 

Answer - Yes, the extra sections were the same as those sections that formed the base 
symmetrical system. 

Question - The web-line sections were all the same? 

Answer - Right. If you analyze steel lines you wi1l observe natural frequencies as low 
as 1 to 3 radians per second, and you may wonder where they come from? In these 
lines the accumulators store hundreds of feet of material. This long length of steel with 
multiple drive sections results in the observed low natural frequencies as described in 
observation number 1. 
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