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ABSTRACT 

Numerical computations have been performed to predict the lubricating air film 
thickness and pressure for the entire region of smooth rotating support rollers wrapped by 
moving impermeable and permeable webs. Results have been obtained for both steady 
and unsteady web tensions for a range of operating parameters and web properties. TI1e 
numerical predictions required the simultaneous solution of coupled partial differential 
equations. One equation is the dynamic motion equation for the finite length web and the 
other is the transient Reynolds lubrication equation for the air film. In these two­
dimensional computations, the web is assumed perfectly flexible and infinitely wide, 
with negligible air escape at the edges. A finite difference formulation was developed for 
the two governing partial differential equations. Spacing and pressure between the 
moving web and the support roller were obtained as a function of both time and distance 
along the roller for cases of constant tension, step changes in tension, and sinusoidal 
fluctuations in tension. For constant tension, the transient solution converges to the 
steady state solution from approximate initial conditions. For the unsteady tension cases, 
computations are started from a steady state solution. The effects of the web velocity, 
tension, permeability, mass per unit area, roller velocity, radius, and slip flow on the air 
film thickness and pressure distribution were predicted. 

NOMENCLATURE 

b web thickness 
C a constant 
E modulus of elasticity of web 
h air film thickness 
h, constant central region (also initial) air film thickness 

subscript indicating x-position along roller 
I moment of inertia of web cross-section 
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permeability coefficient of web 
permeability of web 

k 
K 
L distance between the two end supports 

location (x coordinates) of points on roller at which boundary conditions applied 
web mass per unit area 

n superscript indicating time step 
p pressure 

ambient pressure p, 
P, 
R 
T 

initial pressure in air bearing region 
roller radius 
web tension 
time 

t* nondimensional time for step change in tension case 
V velocity 
V R roller surface velocity 
V, velocity of the air escaping through the permeable web 
Yw web velocity 
w half width of the web 
x spatial coordinate along the direction of web velocity 
y spatial coordinate along radial direction i.e. along web displacement 
a angle between web and horizontal reference line far from roller 
8(x) function describing roller surface geometry 
qi phase angle for oscillating tension case 
1,. mean free path length 
1c, mean free path length at atmospheric pressure 
fl dynamic viscosity of air 
v kinematic viscosity of air 
p, density of air 

INTRODUCTION 

Background 
A web is Llefint!tl as a material manufactured in continuous strip form, and efficient 

processing demands high speed transport over guide and drive rollers. This motion is 
accompanied by the development of an air film between the web and roller. This air film 
can function as a self-acting air bearing, supporting the web and preventing excessive 
abrasion, but allowing sufficient asperity contact to maintain traclion. \1/11en Lhe air film 
becomes too thick, traction for web drive and lateral position control is lost and excess 
air is wound into winding rolls, leading to undesired roll mechanical properties and 
defects. When the air film is too thin, abrasive surface damage can occur. Daly [I] 
reviewed the important variables affecting the traction between webs and rollers, 
identifying web speed, web tension, web permeability, and roll diameter as important. 
Knox and Sweeney [2] noted that the web roller air film problem matched the 
configuration of the self-acting foil bearing. The foil bearing already had been studied 
by tribologists with particular attention devoted to applications to magnetic tape recorder 
heads. 
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Self-Acting Foil Bearings 
A schematic illustration of a self-acting foil bearing is presented in Figure I. Foil 

bearings function as a result of the pressure developed in the air film between the foil 
(web) and shaft (roller) supporting the flexible foil against the forces of the tension, 
which are pulling the foil toward the shaft. Air is drawn between the foil and shaft 
through the action of viscosity dragging the air with the moving surfaces. No pressurized 
supply of air is used in self-acting bearings. The two surfaces, the foil and the shaft, may 
both be moving, or one may be stationary. Blok and van Rossum [3] introduced the 
concept of the foil bearing and performed the first foil bearing experiments and analysis. 
The analytical solution involves the coupled solution of the governing equations for the 
dynamics of the foil and the dynamics of the viscous air flow. Among the first 
derivations and solutions to simplified versions of these equations were those of 
Baumeister [4], Barlow [5,6] and Eshel and Elrod [7]. Gross [8] presents a concise 
survey of the earlier work on foil bearings with a derivation of the governing equations. 

For most practical wrap angles, the solutions display three distinct regions. In the 
entrance region, as illustrated in Figure 1, the air film thickness smoothly decreases, 
while the pressure increases to the film pressure, p. In the central region, the air film 
thickness, h0 , and pressure, p, remain constant. In the exit region, the air film thickness 
increases :from h0 to infinity, displaying a characteristic dip that the Reynolds equation 
shows is needed to accommodate a change in pressure gradient. 

If simplifying assumptions are made, an equation may be derived for the air film 
thickness in the central, constant thickness region. Assuming incompressible flow for an 
infinitely wide impermeable web with perfect flexibility, the non-dimensionalized air 
film height in the central region is given by the following equation: 

h (6 y)2/J 
_!!_ = C _µ -
R T (!) 

Popularly, the constant C = 0.643, but different researchers have proposed slightly 
different values. See Ma [9] for different values and comparisons to measured film 
heights. Knox and Sweeney [2] proposed a change in Eq. I for application to web 
handling. They showed that for a system in which both the foil and the surface are in 
motion the equation becomes: 

h [l, ,, ]2/3 
_!!_ = 0.643 -µ W 
R T (2) 

It may readily be shown that the two velocities are additive; V in Equation is the sum 
of Vw and VR, 6\/ becomes 12 Vw,= 6(Vw + V1J when Vw = VR. More sophisticated 
analyses are needed to incorporate more complex geometries and conditions that do not 
meet these simplifying assumptions. 

Much of the literature on foil bearings has been concerned with applications to 
magnetic tape recorder heads. Eshel and Elrod [7] first presented accurate numerical 
solutions for the film thickness in the entrance and exit regions. Other works have 
incorporated the effects of compressibility, the bending stiffness of the tape, slip flow for 
very small film thicknesses, non-negligible fluid inertia, more complex geometries, and 
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external pressurization [6, 10-17]. Fully three-dimensional computations have been 
performed using both finite difference and finite element approaches [18,19]. 
Unsteadiness in foil bearing problems has been considered by a number of researchers, 
including, Eshel and Wildmann [20], Eshel [21], and Stahl, et al. [22]. 

A variety of numerical techniques have been used to solve foil bearing problems. 
Stahl, et al. [22] showed that a steady state foil bearing solution could be calculated faster 
by solving the transient problem from initial conditions to steady state rather than by 
direct coupling through a standard relaxation technique. Granzow [23] and Granzow and 
Lebeck [24] describe use of a Crank-Nicholson form of the finite difference equations for 
the time derivative terms allowing larger time steps. Tanaka, et al. [25] used an influence 
coefficient method for the tape equation and the Newton-Raphson iterative method for 
the Reynolds equation. Heinrich and Wadhwa [l 7] employed the Newmark finite 
element algorithm in their solution. Rongen [l 8] presented a finite difference solution 
for the three-dimensional foil bearing problem. Heinrich and Connolly [l 9] describe a 
three-dimensional finite element analysis of a self-acting foil bearing for recording head 
geometries. 

All of these studies were performed for impermeable webs. For paper webs or 
other permeable webs, corrections in the Reynolds lubrication equation are suggested by 
the relationship given by Yamauchi, et al. [26] for the velocity of air leaking through 
permeable webs. The indicate that the air leakage through tl1e web is proportional to the 
pressure difference across it, with a constant of proportionality that is the permeability 
coefficient of the porous medium. Brundertt and Baines [27] present measurements of 
air flow through paper sheets as functions of pressure difference at room temperature. 
Riddiford [28] studied the air entrainment phenomenon between a permeable paper web 
and a dryer surface, showing that the gap may be decreased by the entrained air passing 
through the paper and flowing out at the edges. He developed a mathematical model and 
solved to show the conditions under which axial variation in air film thickness can exist. 
Theoretical and experimental analysis of air films for the case of a pem1eable web by 
Watanabe and Sueoka [29] indicated a linearly decreasing, rather than a constant, central 
region air film thickness. The entrance and exit regions appeared to exhibit 
approximately the same behavior for both cases. Ducotey and Good [30] also performed 
experiments with permeable webs, with results displaying the linear decrease. They 
present an approximate predictive equation for the decrease in air film thickness in the 
central region. 

APPROACH 

Problem Formulation 
To obtain solutions for these problems, a numerical technique was formulated to 

predict the air-film thickness and pressure between the moving web and the roller surface 
as functions ohime starting from prescribed initial conditions and developing to either a 
steady state or steady state oscillations. This was done for the two dimensional case, an 
infinitely wide bearing, with constant cross-web air film thiclmess and pressure. The 
effects of web permeability are incorporated in the formulation. 

To predict the lubricating air film thickness between the web and roller requires the 
simultaneous solution of coupled equations: one, the equation of motion for a finite 
length of the web and second, the transient lubrication equation for the air film. The 
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partial differential equations governing both the hydrodynamic lubrication and the web 
motion are described here. Almost all web handling applications involve an air film 
thickness which is much smaller than the radius of curvature of the lubricating film, 
allowing use of a Cartesian coordinate system. 

Reynolds Lubrication Equation. The hydrodynamic lubrication equation, or 
Reynolds lubrication equation, represents a dynamic equilibrium of forces due to fluid 
pressure and viscous stresses in combination with conservation of mass. The form of the 
equation employed for this study is the following: 

For this lubrication equation, fluid inertia and the variation of pressure across the 
thickness of the thin film are assumed negligible. This version of the equation further 
assumes that the lubricating fluid is an isothermal ideal gas with constant viscosity. The 
equation accounts for motion by both the web and the roller through the separate 
velocities, Vw and V •· Slip flow effects, which are important for very small film 
thicknesses, are accounted for by the second term, with An, the molecular mean free path 
at ambient conditions, following Granzow [23] and Granzow and Lebeck [24]. Fluid 
compressibility effects are accounted for by the derivatives of the (ph) product. The 
effect of the flow through the permeable web is given by the last term. The flow through 
the web is proportional to the local pressure difference across the web, with the through­
flow velocity V, = K(p·pJ, as suggested by Yamauchi et al. [26]. "K" is the permeability 
of the web, with units of(m3/s)/(m2-Pa). 

Foil Equation of Motion. The foil equation of motion is a representation of 
Newton's second law for the foil or web in the direction normal to the direction of web 
travel. It is assumed that the deflection of the web is very small 
dimension of the support roller. The general equation is the following: 

compared to the 

(4) 

If we consider the web as a plate in tension, an order of magnitude analysis indicates that 
the bending stiffness term is very small compared to the tension term for many webs. 
Then, neglecting this term, the equation becomes the equation for a web with zero 
stiffuess, a perfectly flexible web: 

r a
2y a2 y 2 a2y) T a2y 

pb -,-+2Vw--+Vw --, ---,-=P-Pa , at· axat ax· w ax· (5) 

This is the form of the equation used in this study. 

Geometric Configuration, lnitial Conditions and Boundary Conditions. The 
geometric configuration used in the computations is illustrated below in Figure 2. A 
finite length of web moves at constant velocity, Vw, over a roller located between two 
other support rollers. Deflection of the web away from its equilibrium position is 
denoted by y(x,t) and the air film thickness between the roller and web is denoted by 
h(x,t). Following the approach of Granzow [23] and Granzow and Lebeck [24], a 
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function 6(x) is used to describe the roller surface geometry in terms of distance from the 
reference line shown in Figure 2. Also using their approach, boundary conditions are 
applied as the free spans of the web approach the roller, points L1 and L2, rather than at 
great distances from the roller. These points are significantly outside the points at which 
the web run is approximately tangent to the roller. Computations then are performed 
only within these points. Granzow and Lebeck showed that this is an accurate and 
efficient means of solving foil bearing problems. 

The film thickness, h, and the foil displacement, y, are related through the 
following equation: 

h(x, t) = y(x, t) - 8(x) (6) 

Boundary conditions are applied at the points, L1 and L2, within which the tangency 
points occur. The boundary conditions amount to clamped ends. The boundary 
conditions specify the displacement, y, and the slope of the displacement, By/ax, or Y.,: 

y(L 1, t) = y(L 1 ,0 )= constant 

y(L 2,t)= y(L2,0)=constant 

Y x{L1, t)= y x (L1 ,0)= constant 

Yx (L2, t)= Yx (L 2,0)= constant 

p(L1 , t)= p(L2,t)= Pa 

(7) 

For the steady state calculations, for the domain within the tangency points, the initial 
conditions for air film thickness and the pressure are taken as the values that may be 
calculated for the constant thickness region: 

( 
(Va + Vw )J 2/3 

h = h0 = 0.643R 6µ T ) = constant (8) 

(9) 

For the region outside the tangency points the displacement is taken to be linear and the 
pressure to be atmospheric. The coordinates of the two tangent points are calculated 
directly from the geometry, using the length, the roller radius, and the web angle: 

x 0 =0.5L-(R+h 0 )sina 

Yo= (&max -R)+(R+h 0 )cosa 
(IO) 

For the step change in tension and sinusoidal tension fluctuation cases, the program was 
started and allowed to reach the steady state solution from these initial conditions before 
the transient tension was applied. 

Numerical Formulation and Solution Technique 
The numerical solution to the governing equations is accomplished through a finite 

difference fonnulation. The two governing equations, Equations 3 and 5, are coupled 
through the pressure and Equation 6, which links the web displacement and the 
lubricating air film thickness. The equations are converted to finite difference form and 
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solved sinmltaneously using the boundary conditions and initial conditions described 
earlier. The solutions start from the initial conditions and step forward through time, 
providing transient and finally the steady state results. 

The coupling of the equations is accomplished by first, at a given time step, solving 
the finite difference form of the lubrication equation for the pressure, p(x,t), using the 
existing solution (for the first step, the initial conditions) for the air film thickness, h(x,t). 
Then the finite difference form of the web equation of motion is used with the newly 
computed values of the pressure to compute new values of the web displacement, y(x,t). 
This procedure is performed iteratively until steady state is reached. 

After converting to finite difference form, the equation of motion for the web 
reduces to the form: 

B y~+l + D y!I+l + A y~+l - E 1 t-1 1 1 1 t+l - I (11) 

where, 8 1, Di, and A1 are constants containing coefficients from Equation 5 and E1 
contains the values of foil displacement, y(x,t) at time step II and (n-1) and, pressure, pat 
time step n. Similarly the finite difference form of the lubrication equation is the 
following: 

B n+l D n+l A n+l E 
2Pi-l + 2Pi + 2Pi+l = 2 (12) 

where, 82, D2, A2 , and E2 contain the values of pressure, p, at time step, n, and values of 
air film gap, h(x,t), at time step, n, and (n+l) obtained solving Equation 11. The 
nonlinear finite difference form of the Reynolds Lubrication equation is linearized using 
the approach of Stahl, et al. [22] with an approximation at the old time step n instead of 
the new time step (n+l) in those terms involving products of p and its derivatives. For 
more details, see Kothari [31]. 

The finite difference forms of the governing equations reduce to tri-diagonal 
matrices (a benefit of assuming perfect flexibility for the web), and solutions are obtained 
using the Tri-Diagonal Matrix Algorithm. This applies the Gauss elimination method as 
described by Lilley [32]. The solution grids of mesh size ~x and time steps ~tare chosen 
with ~t limited to maintain numerical stability. A mesh of 125 points in the x direction 
covering the distance between the points L1 and L2 was found adequate and used for all 
calculations. For the parameters studied, time steps of 5 µs or smaller were necessary to 
maintain numerical stability. 

Convergence criteria for the steady state computations were applied to the air film 
thickness. Convergence was judged to occur when the sum of the 125 nondimensional 
changes in air film thickness between iterations was less than 10-4. The same 
convergence criterion was applied for the two sides of the step increase case. For the 
sinusoidal tension fluctuation case, the same magnitude criterion was applied, but the 
comparisons were made for points 21t apart in angle; iterations at the same phase point in 
the steady state oscillation cycle. 

RESULTS AND DISCUSSION 

Results are presented in this section for computed air film thicknesses for steady 
state cases with steady, constant tension and for transient cases with step increases in 
tension and sinusoidal oscillations in tension. For all of the results presented, the non-
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dimensional distance coordinate in the figures corresponds to (x-L 1)i(L,-L 1). Thus 0.0 
corresponds to x = L1, the upstream point at which boundary conditions are applied, and 
1.0 corresponds to x = L,, the downstream point at which boundary conditions are 
applied. The tangency points used in the initial conditions lie between L1 and L2 • 

Results for Constant Tension 
Computations were performed with steady constant tension for a vaiiety of 

operating parameters. Initial computations were performed to allow comparison and 
code validation with results in the magnetic recording tape literature for a web (magnetic 
tape) moving over a stationary cylinder (recording head). A 40 mm diameter roller was 
used for this case with tension, T = 277 Nim and web velocity, V w= 2.54 mis. The angle 
of wrap was approximately 20 degrees. The transient air film thickness development 
from initial conditions to steady state is shown in Figure 3. Steady state is reached in 
approximately 6 ms. The steady state time depends upon the wrap angle and the 
combined speed of the web and roller surface. The points of tangency are recognizable 
as the corners in the initial condition profile. These steady state results yield air film 
thicknesses in the central region that are within 4% of the results given by Stahl, et al. 
[22] and within 5% of the value predicted by Equation 2. The shapes of the profiles also 
agree well with results in the literature. These comparisons were judged to validate the 
computational approach. The transient pressure profiles display smaller transient 
oscillations than the film thickness. 

Incorporating the effects of slip flow tends to reduce the air film thickness, with the 
effect decreasing at higher web velocities. This effect is expected, for high speed web 
handling applications have higher air film thicknesses, which are very large compared to 
the 10·• m mean free path of air. Thus neglecting slip flow effects is a good 
approximation for many web handling applications. 

Results for Impermeable Webs with Constant Tension. After validations against 
magnetic recording literature results, computations were performed for web handling 
configurations with both the web and the support cylinder moving. A roller radius of20 
cm was used for computations with tensions varying rrom 88 to 262 Nim and velocities 
varying from 5.1 to 15.2 mis. For this roller, L = 0.85 m, L, = 0.35 m, and L, = 0.50 m. 
The tangency points corresponded to x = 0.390 m and 0.453 m, corresponding to 
nondimensional positions of 0.2893 and 0.7107. The magnitudes of the computed air 
film thicknesses in the central region showed the trends expected rrom Equation 2 with 
increasing tension reducing and increasing velocity increasing the air film thickness. It 
was also observed that the length of the central constant gap region increases with 
increasing tension or decreasing velocity. Likewise, the amplitude of the dip in the exit 
region scaled with the central region air film tl1ickness increases noticeably with 
increasing tension and decreasing velocity. The period for the transient computations to 
reach steady state also exhibited decreases as the velocity of the web increased, other 
parameters remaining the same. 

The effect of web mass per unit area on the steady state air film thickness profiles 
also was investigated. A tension of 263 Nim was used with velocities of 5.1 mis and 
15.2 mis with web mass varying from 0.02 to 0.1 kgim2

• For the lower velocity, the air 
film profiles for different web mass virtually coincide, with Jess than a I% change in 
central region film tl1ickness for nearly a 400% increase in web mass. The results for the 
higher velocity case are shown in Figure 4. For this case the increase in steady state air 

212 



film thickness is about 11.5% in the central region for the same increase in web mass, 
showing that the effects of mass increase significantly with velocity. The exit region dip 
seems to show effects very similar to those that can be observed in tlie central region. 
llms for the same velocity, a heavier web should have a slightly larger film thickness, 
which might have implications for web traction. 

Results for Permenble Webs with Constant Tension. Results are presented here 
for computations that include the effects of web permeability. As shown previously, the 
effect of web permeability may be modeled as a flow through the web that is 
proportional to the difference between the film pressure beneath the web and the 
surrounding ambient pressure. Watanabe and Sueoka [29] have presented experimental 
measurements of air film thicknesses for permeable webs along with a limited description 
of an analytical treatment of the problem. Ducotey and Good [32] present measurements 
along with an approximate equation for the prediction of the film thickness. Both works 
show that the film thickness in the central region exhibits a nearly linear decrease as air 
flows out through the web. Ducotey and Good's equation predicts the linear decrease as 
follows: 

h = 0.643R[ 6µ(VR + Vw )]2/J -2[ KT ]s 
T (vR +Vw) 

( 13) 

Here, 0 is the spatial coordinate along the surface in radians and K is the web 
permeability. This equation is based on tl1e assumption that the air flow through the web 
and the film pressure remain constant and independent of 0. The computations presented 
here were performed for a roller radius of 30.48 cm to allow comparisons with the results 
of Ducotey and Good. For this roller, L = 1.26 m, L1 = 0.520 m, and L, = 0.7455 m. 
l11e tangency points corresponded to x = 0.585 m and 0.679 m, corresponding to 
nondimensional positions of0.2902 and 0.7098 .. Figure 5 compares the air film profiles 
for impermeable and permeable webs running at a web velocity, Yw = 15.2 mis, and 
tension, T = 124 Nim. For the permeable case, one may observe the characteristic, 
nearly linear decrease in the air film thickness as well as a decrease in the magnitude of 
the exit region dip, although the minimum film thickness is smaller. Ducotey and Good 
observed that web touch downs are possible in the exit region for permeable webs. 
Figure 6 displays the effects of web and roller velocity on air film thickness profiles for 
the web permeability K = 0.3 x 10·5 (m3/s)/(m2-Pa) for conditions of constant tension, T = 

124 Nim. The results display nearly linear decreases in air film thickness for the central 
region, and entrance and exit region behaviors similar to those of impermeable webs. 

The decrease in the air film gap for the central region is a function of web-roller 
velocity, web tension and web permeability. The decrease is not precisely linear, for the 
flow rate through the web varies with the film pressure, which must change as the air 
film thiclmess and radius of curvature of the web decrease. Figure 7 displays the results 
of computations for conditions matching those of Ducotey and Good [32], T = 88 Nim, 
Yw = 15.2 mis, and K = 0.52 x 10·5 (m3/s)/(m2-Pa). It may be observed that tl1e 
computed decrease is not precisely linear, but that Equation 13 provides a very good 
approximation to the decrease for typical web handling parameters and web permeability. 
This behavior also was observed in computations for other parameters. 
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Results for Unsteady Tension 
The transient computation capabilities of the technique, already displayed in the 

steady state results, also were used to examine web response to transients in the applied 
tension. The response of webs to tension transients is of interest because of possible 
oscillations that may result in the web making damaging contact with tl1e roller. Cases of 
step increases in tension and sinusoidal oscillations in tension were examined for both 
impermeable and permeable webs. 

Step Tncreases in Tension. The computations for step increases in tension were 
performed by starting the computations at the approximate initial conditions used for the 
steady state studies, letting the solution converge to the steady state value for the low 
tension condition, and then applying the step increase in tension, running the code until 
the solution converged to steady state for the increased tension. The air film profiles at 
various times in the response to the step increase in tension are presented for a 50% step 
increase in tension from an initial tension, T = 175.334 Nim, at a web velocity, Vw = 
10.16 mis, for a web with a mass of0.0922 kg/m2 in Figure 8. The times in the figure are 
nondimensionalized with t* - (tVw)/(2irR). Thus for a value oft* - I, the time would 
equal the time for one revolution of the roller. 

One may observe that for these conditions the profiles do display something of a 
traveling wave response with little evidence of overshoot that could result in damaging 
contact between the web and roller. Figure 9 displays results for a case that is identical 
except that the web is permeable, with permeability, K - 0.052 E"5 (m3/s)/(m2-Pa). The 
behavior is similar to that of the impermeable web, but the response appears to be 
slightly more rapid. It may be reasoned that the decrease in film thickness is aided by the 
escape of air through the web. 

Sinusoidal Tension Oscillations. The computations for sinusoidal oscillations in 
tension were performed by starting the computations at the approximate initial conditions 
used for the steady state studies, letting the solution converge to the steady state value for 
the mean tension, and then applying the sinusoidal oscillations in tension, running the 
code until the solution reached steady state oscillating conditions. Convergence to steady 
state oscillations was checked by evaluating the differences in the air film thickness 
profiles from one cycle to the next. The mean tension was 175.334 Nim, the same as the 
initial tension for the step increase cases. All other parameters also were the same as 
those of the step increase case. The amplitude of the tension fluctuation was 50% of the 
mean tension. 

The frequency of the tension oscillation for the results presented was set to a value 
corresponding to twice an expected natural frequency for a web span ofL/2. The natural 
frequency equation used was the following: 

( )

1/2 

r-(2~) rn+p~mv/4 
(14) 

Results for these oscillating tensions are shown in Figure IO for an impermeable web and 
in Figure 11 for a web with permeability K - 0.052 E"5 (m3/s)/(m 2-Pa), as used for the 
step increase computations. The results shown are identified with a phase angle ~ 
representing the position in the cycle ofoscillations. 
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While the results presented do not include a complete and uniform distribution of 
points in the cycle, they do present a good view of the web response to sinusoidally 
oscillating tension. For this case of large amplitude tension fluctuations, the web 
response also is rather large. It is evident that the nonlinear steady state dependence of 
the air film thickness on the tension is reflected in this dynamic response as well. It 
appears that somewhat larger amplitude movement of the web occurs at positions above 
the steady state film thickness than below. 

Summary 

111e development of a computational method to predict the time-dependent air film 
thickness distribution and film pressure between an infinitely wide, smooth, perfectly 
flexible web and a smooth roller has been presented. The web may be either permeable 
or impermeable. The method accounts for the mass of the web, the compressibility of 
the air and slip flow effects. Results of computations using the method have been 
presented for steady and unsteady cases of impermeable and permeable webs. 

CONCLUSIONS 

The following conclusions may be drawn from the results of this study based upon 
the range of web parameters considered. 

J.) A relatively simple program has been developed to predict time-dependent air film 
thicknesses and film pressures for infinitely wide, perfectly flexible, smooth webs 
moving over smooth rollers. The results obtained display good agreement with 
results for cases in the literature. The results obtained from the program effectively 
show the influence ofa number of web handling parameters. 

2.) The length of the central constant air film thickness region increases with 
increasing tension or decreasing velocity. 

3.) The effects of web mass per unit area are small at low velocities, but increased mass 
results in somewhat thicker air films as web velocities increase. 

4.) Slip flow effects are very small and become insignificant as web speeds and film 
thicknesses increase. 

5.) Permeable webs display nearly linear reductions in central region air film thickness 
with distance along the roller. These effects depend upon web tension and velocity. 
The minimum air gap at the exit region for these webs is less than for impermeable 
webs. 

6.) The transient response of wa:b air films to skp incn:mses in tension displays 
traveling wave-like characteristics and is not predicted to result in roller contact for 
the conditions studied. Permeable webs display slightly faster response than 
impermeable webs. 

7.) The response of air films to sinusoidal oscillations in tension is nonlinear with 
larger amplitude fluctuations above the location of the web at mean tension 
conditions. 
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Question - In the transition case the flow conditions at the center are complicated. I'm 
not sure how to detennine air l and air 2, and how to determine the air flow and the 
pressure condition? Please comment. 

Answer - I'm not sure about reverse flow whether thats likely within the calculation or 
not the pressure there, I think that we are far enough away that it is atmospheric, we 
haven't verified these results otherwise I would show you, and for the dynamic case 
and I am also concerned about the clamped boundary conditions. I think the pressure is 
a good approximation at those points. Its something I can't answer very wel1, but it is 
something to take n look at. 
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