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The shear forces in a web introduced from an untrarnmed roller create wrinkles 
that are affected by web twisting or slipping on the upstream roller. The web span 
bounded between the untrarnmed and upstream rollers behaves like a beam when 
bending in the web plane (2). If the bending stresses exceed the capacity of the friction 
forces holding the web on the upstream roller, strain will migrate over the roller 
transferring a portion of the moment to the upstream span. A model is presented that 
predicts the onset of moment transfer based on equilibrium equations for a beam in 
bending, and web roller traction. 
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NOMENCLATURE 

A ..................................... Roller with web plane rotation (tram angle) and its entry span 

B ..................................... Roller and pre-entry span upstream from A 

C ..................................... Roller upstream from B 

E ..................................... Elastic modulus of web (N/m2
) 

J.,(M, y), fi,(M, y) .............. Fuuctions describing the tension in spans A aud B (N/m) 

F ..................................... Total shear on roller A (N) 

1 ...................................... Bending inertia of web (m4
) 

LA, L8 .............................. Lengths of spans A and B (m) 

M ..................................... Total moment on roller B (N•m) 

J\JA, 1vf8 ............•............... Moments on roller B from spans A and B (N·m) 

1\Jum .................•............... Maximum possible moment on roller B (N•m) 

N ..................................... Normal force of web on roller (N) 

R ..................................... Total shear on roller B (N) 

RA, R8 .............................. Shears on roller B from spans A and B (N) 

/ ....................................... Web caliper (m) 

TA, T8 ...•.•.•••.•..•..••..........• Web tensions in spans A and B (N) 

T,,;,1,. T1o,. ........... ............... High and low tensions for belt equation (N) 

W .... ................................. Web width (m) 

y,,;,,.. y1o,., ........... ............... Cross web location for onset of sh1g1,(M,y) and B1ow(M,Y) (m) 

/3 ...................................... Wrap angle of web on roller B (rad) 

oA, 08 .............................. Lateral, cross web displacements at rollers A and B (m) 

&,,;,,(111, .iv ........................ Function describing high tension side moment transfer (N/m) 

&10,.(AJ, y) ......................... Function describing low tension side moment transfer (Nim) 

0A••·································· Tram angle and web slope at roller A (rad) 

08 ..•......•...•.•••..•.........•..•.. Web slope at roller B (rad) 

µ ...... ................................ Coefficient of friction between web and roller B 

v ...................................... Poisson's ratio for web 

r,, .................................... Critical shear stress to create wrinkles (N/m2
) 
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DERIVATION OF EQUATIONS 

Wrinkles, iliat form on a roller rotated in the web plane (untrammed), have been 
studied for a single web span bounded by two rollers (1). This study, has found that 
wrinkles may also be generated on a roller upstream of the untrammed roller. If the 
web stress generated by ilie untrammed roller is high enough to overcome friction on 
the upstream roller, strain will transfer from the entrY span into the pre-entrY span of 
the untrammed roller. This strain transfer can generate stresses which exceed the 
critical value for the pre-entrY span geometrY (1). Wrinkles will form on the upstream 
roller even though it remains in tram. This paper defines the condition for transferring 
strain and generating wrinkles on the upstream roller. 

Strain (or moment) transfer will be derived from ilie relationship between 
bending forces acting on the free spans of web adjacent to a roller and frictional forces 
acting on ilie web as it passes over the roller. The web span between two rollers has 
been treated as a simple cantilever beam (1),(2) which this paper extends to include 
two web spans and iliree rollers (fig. 1). 

Beam Equations 

Let roller C, (fig !), act as a foundation for a cantilever beam, representing the 
web stretched between rollers C, B and A. Let ilie entrY web span to roller A be span A, 
and ilie pre-entry span be span B. The untrammed roller A generates a shear F, which 
bends ilie web to the tram angle 0A. Friction, between the web and ilie upstream roller 
B, provides an intermediate supporting shear R, and moment M. Equations can be 
written to express the equilibrium conditions for the web slopes, BA and Ba, and 
displacements, oA and 08 , at rollers A and B. 

B = FL1 + FL_;L8 _ RL1 _ ML8 
8 2EI EI 2EI EI 

RLt _ RL1LA _ ML1 _ MLaLA 
3EI 2EI 2EI EI 

1n these equations, the web bending inertia I is given by: 

tW' 
J=-

12 

[!] 

[2] 

[3] 

[4] 

[5] 

Equations[!] through [4] maybe solved to give e,qiressions forilie shearsFand 
R, and for ilie momentM. Ex-panding ilie (LA+L8 / term in [3] and substituting into 
[l] provides a general ex-pression for 0_4 in terms of B8 • 
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E:qianding the (L.,+LBJ' term in [4], substituting into [2], and multiplying by 2/LB 
leaves 

2oB 2FL1 FLALB 2RL1 MLB --=--+--------
LB 3EI EI 3EI EI 

[6] 

from which [l] can be subtracted and rearranged to give an expression relating the 
shears R and F, with additional terms of web displacement OB , and angle 0B , at roller 

B. 

12EioB 6EI0B -~~+--
L' Le B B 

[7] 

A similar procedure can be used solve for the moment Mon roller B, in terms of F, oB 
and 0a. 

[8] 

Case I {no moment transfer on roller B) 

Figure 2 shows the beam with roller A untrammed to some arbitrary angle 0A, 
where all of the forces and displacements imposed on the web by the untrammed roller 
are reconciled in span A. The boundary conditions for this case are 0 B = o B = 0 . 

These are substituted into [6], and solved for the shear force Fin terms of the tram 

angle 0A.: 

Applying the boundary conditions to [7] and [8] gives R and Min terms of F. 

M=FL_; 

Case II {moment transfer on roller B/ 

[9] 

[10] 

[11] 

In this case, roller B can no longer support the moment A;/, generated by the shear 
force Fin [I I], and the web will twist (Fig. 3a). As long as there is sufficient friction, 
the web will move laterally to regain normal entry (Fig. 3b). Even though there is 
strain transfer, and the web is displaced by oB, the boundary condition 0 B = 0 still 

holds. It should be noted that [9] applies for Case II as it did for Case I. 
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Applying the boundary condition to [7] and [8] provides e>.-pressions for R and M 
on roller B. 

[12] 

'f-F'L 6Ellia ,.. - ,+--,,. L1 [13] 

The shear, R, [12] and moment, M, [13] on roller B can be attributed to spans A and B 
separately by introducing the shears RA and Ra, and moments MA and Ma. 

R=RA +Ra where RA =F and Ra= 
12Ellia 

[14] 
L1 

M=MA-Ma where MA =FLA and Ms=- 6Ellis [15] 
L2 

S 

From [10] and [11] it is clear that RA andM:, are appropriate Case I solutions for span 
A. By analogy with[!], a beam equation can be written for span Bin terms of Rs and 
Ms. 

0 = _ RaL1 + MsLs 
s 2EI El 

The Case II boundary condition, 0 s = 0, gives Ra in terms of Ms. 

Substituting Ra and Ma from [14] and (JjJ into [17] will show that these are valid 
expressions for the span B shear and moment. 

MOMENT TRANSFER ON A ROLLER 

[16] 

[I 7] 

Consider the web wrapping roller B, (Fig. 4) with a wrap angle /3, and tensions 
Te;gh and T,0 ,. in the spans adjacent to the roller. The maximum tension ratio, that can 
be obtained for a coefficient of frictionµ, is given by the belt equation. 

Thigh :s;; eµp 

Tzow 
[18] 

To simplify the derivation, µ is taken as a representative value and not dependent on 
local tension. 

370 



Distributed Web Stress on the Roller 

For the case ofno moment transfer in Figure. 4(a), fimctionst,(y, lvfo) and 
fn(y, A.Jo) may be constructed to describe the tension al any cross-web locationy, with 
an imposed moment, M0• The following integrals must hold for these functions, where 
T,, and TB are the average tensions for spans A and B. 

IV 

2 

TA= ff, (y,MA) · dy 
-JV 

IV 

2 

2 

TB= J fB(.v,M,,)·<{v 
-IV 

2 

IV 

2 

and MA = J IA (.v, MA)y• <{v 
-JV 
2 

IV 

2 

and M 8 =0= J l 8 (y,MA)y•<{v 
-W 

2 

The following expressions fort,(y, Mo) and fn(y, Mo) satisfy [19] and [20]. 

TA 12vMo I,, (.v,M0) =-+-· -3 -. w w and 
Tn 

J,B(.v U 0)=-·' w 

[19] 

[20] 

[21] 

The onset of moment transfer occurs when, at any position y, the tension ratio 
exceeds the belt equation [18]. For this derivation, the web is treated as individual 
ribbons which can transfer strain independent of one another. Moment transfer can 
occur either on the high or low tension edge in span A which leads to the following two 
solutions for y. 

f, (Y1,;g1,, Mo) 

fB [Y1,;gh• A1o) 

fn [V1ow, A.fa) 

f, (Y1ow•A.fo) 

yielding 

yielding 

w2 
y --(T •eµp -T) 
• Mgh - 12Mo B A 

w' (T -µP ) Y1ow=-- s•e -TA 
12M0 

-W W 
Limits are imposed by [ 18] such that 2 S: Y1ow S: 0 and O S: Yi,;gh S: 2 . 

[22] 

[23] 

Following the onset of moment transfer in Figure 4(b), tension will decrease on 
the high tension side of the roller and increase on the low tension side. Let the 
function 
1'h;g1,(Y, J..10) represent the strain transfer across the roller in the region J'h;gh to HV /2. 
The following form of the belt equation [18] holds in this region. 

IA (y, Mo) - 0 1,;,1, (y, Mo) 

ln(Y,Mo) + 0 1,;gh(Y,Mo) 
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Moment transfer in this region can be integrated from Bh1gh(y, A1r,). 

f(i:, -TB ·eµP)+Mo(½+2(~)') IV 

2 

.Al1r;g11 = f 81i;g1,lv,li✓fo)Y•dy [25] 

Ylrigll 

A similar function e tm.Cv, Mr,) can be constructed for -W/2 to Yta"' with a sign change 
indicating that strain transfer is from span B to span A in this region. 

2 

The moment remaining in span A is reduced by the sum of [25] and [26] which is the 
moment transferred into span B. 

[27] 

Since Yhigh, Ytaw, A1high and .M10,. depend on the imposed moment M0, it is necessary to 
iterate [22] through [27] to find an Mo so that the expression for ,vIA in [27] matches 
the one in [15]. 

There is a limit to the moment that can be obtained by twisting the web on roller 
B. This can be seen by imposing a very large moment M0, in [22] and [23] in which 
casey1a,. andyhigh become zero. Using [15], [27], [25] and [26] gives a limiting 
moment, Alum-

(28] 

EXPERIMENT AL RE SUL TS 

Figure 5 shows a schematic diagram of the e,-.-perimental setup used to verify the 
theory. The tram angle eA, was adjusted by mounting roller A on adjustable slides such 
that the rotation was always about the center of the web, and in the plane of span A. 
The forces F, R, A0 , Au,, Bo, and BM were measured by force transducers mounted on 
the roller shafts. The shear forces, F and R, were measured directly, but the moments, 
M., and MB had to be computed from.4 0 , AM, B0 , and Bu. Web displacements, <I:, and 
oB, were measured by edge sensors placed in span A, close to rollers A and B. By 
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keeping the wrap angle on rollers A and Bat 90°, the tension distribution in the input 
and output spans did not interact with each other, and the transducers measured forces 
in a single span. 

The theoretical computations were based entirely on BA, span dimensions, and 
web physical properties. One additional variable, the web-roller friction coefficient, 
was needed to make the theoretical computations. This was done as a special test 
measuring the tension drop across roller Bas a function of speed and tension(5). The 
computed forces, moments, and displacements were done according to, and in the order 
shown in Table 1. 

All force, moment and displacement data are plotted against roller A tram angle, 
BA. The web used for verification of the theory was a 0.037 mm thick, 254 mm wide, 
polyester film with a modulus of 4.13 7 GP a. The friction coefficient was measured 
from tension velocity tests. A constant coefficient of 0.25 was used for the 133 N 
tension at a velocity of 0.254 mis. 

Additional wrinkle experiments were run using the same web and velocity, but 
different tensions. These data were used to determine the wrinkle failure criteria as a 
function of the tensile stress in the web. 

Displacement Verification 

Figure 6 compares the experimental displacements with those computed from 
theory. For Case I, 8a was zero. At around 0.0028 radians tram angle, ~,,, there was 
sufficient moment in span A to transfer into span B. The negative web displacement, 
8a, returned the web to normal entry on roller B in agreement with theoretical 
prediction. Figure 3(b) shows the final web shape for Case II. The poorer fit at larger 
tram angles indicates an overestimation of R from the model. 

Shear Force Verification 

Figure 7 compares the experimental shear forces on rollers A and B with theory. 
According to (JO], F and Rare equal throughout Case I. In Case II, R becomes greater 
than F for a negative web displacement, oa as predicted by [12]. The transition from 
Case I lo Case II was about 0.0028 radians tram angle which agrees with the transition 
observed for the web displacement above. In the derivation of the beam equations [I] 
through [4], all of the deflecting force on the beam was attributed to the shear force, F, 
on roller A. As shown in Figures 2 and 3, a small component of the web tension, T, 
produces a deflection not accounted for in the derivation. The experimental shear was 
found to be lower than that predicted by theory. A better fit between e:qierimental and 
theory can be obtained by applying a tension compensation factor to the shear 
forces.(3) The theoretical shear force, F, in figure 7 was corrected for tension by 
multiplying by a factor of (1-TL}/2EI). 

Moment Verification 

Figure 8 compares the e:1.-perimental moments measured from the load cells with 
those derived from theory. For Case I, MA increased linearly with BA as predicted by 
[9] and (11], while Ma was zero. After the transition to Case II, at BA of about 0.0025 
radians, Ma started to increase according to [27]. The Case II transition agreed 
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favorably with both displacement and shear data. The lack of fit may come from either 
the e;,.')Jerimental transdncers or the theoretical model. The transducers, made 
especially for the e;,.')Jeriment, were found to be subject to hysteresis and interactions 
with one another. A special calibration was made to minimize this interdependency, 
and the final accuracy for measuring force was better than 15%. 

The model for computing moment transfer was based on a monoaxial stress field. 
The web width was divided into ribbons where the belt equation strain transfer for any 
ribbon acted independent of its neighbor. In reality, the web stresses were in a biaxial 
stress field over the roller, where interactions would retard moment transfer. The 
model predicted more moment than was measured, indicating some error in the 
simplified approach. 

Wrinkle Verification 

Figure 9 shows data for wrinkles in span B. During the tests, there were no 
wrinkles observed in span A. The critical shear r,,., for wrinkling on an untrammed 
roller, has been derived (1)(4) and verified experimentally. The upper curve in Figure 
9, labeled "Wrinkle failure from tension and compression" and computed using this 
theory, shows a poor fit to the e:,,')Jerimental data. 

In reference (6), Timoshenko develops buckling criteria for thin plates in bending 
as well as tension and compression. The tension/compression models have been 
successfully applied to wrinkle creation.(1)(4) The stress field in span B includes a 
bending moment, ld,, that does not exist in span A. The curve marked "Wrinkle 
failure from bending only" uses a simplified expression for buckling from pure bending 
as an alternate wrinkle criteria which predicts failure well below the experimental data. 
The tension/compression and pure bending failure curves bracket the experimental 
data. A good theoretical prediction may be possible from combining tension stiffening 
with the pure bending failure. 
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ILLUSTRATIONS 

Figure 1.- Two span, three roller web line represented as a beam. 

C B A 

Figure 2.- Case I bending in Span A only. 

C B A 

Figure 3.- Case II bending with moment transfer. 

376 



NO MOMENT TRANSFER 

SpanB 

Pre-entry Web 
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transfer (a} 
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MOMENT TRANSFER 
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Moment (b) Untrammed 
Transfered Roller Moment 

Figure 4.-Distributed tensions on roller B from web spans A and B. 
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Figure 5.- Experimental force and displacement measurements. 
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Figure 6.- Experimental and theoretical web displacement as a function of 
tram angle. 
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Figure 7.- Experimental and theoretical shear force on rollers A and B as a 
function of tram angle. The theoretical force, F, was corrected for web 
tension. 
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Figure 8.- Experimental and theoretical moments at roller B as a function of 
tram angle. 
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Figure 9.- Shear stress to create wrinkles in S(lan B as a function of web tensile 
stress. 

VARIABLE DETERMINATION 

F Direct from f9] 

MA Direct from fl 5] 

Mn Iterating 1221 throuoh [27] 

M From [15], Ma and Mn 

Rn From [17] and Mn 

R,RA From f!41 and Rn 

on From [2], F, R, andM ~. From [4], F, R, andM 

Table 1.- Computation 11rocess for finding theoretical variables. 
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Dobbs, J.N.; Kedl, D.M. 
Wrinkle Dependency on Web Roller Slip 
6/21/95 Session 5 9:00 - 9:25 a.m. 

Question - In your beam equations you neglect the tension? 

Answer - We're not putting the lension in the beam equation as such. The deflections are 
very small. In the data we mention we collect the shear force F for tension component. 
But other than that we neglect that. Obviously, John on his Ph.D. thesis did a far more 
rigorous attack on that problem. But we've neglected iL in the actual beam equations and 
we only correct our shear force F for tension component. 

Answer- Its a simplification. 

Thank you. 
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