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ABSTRACT

The shear forces in a web introduced from an untrammed roller create wrinkles
that are affected by web twisting or slipping on the upstream roller. The web span
bounded between the untrammed and upstream rollers behaves like a beam when
bending in the web plane (2). If the bending stresses exceed the capacity of the friction
forces holding the web on the upsiream roller, strain will migraie over the roller
transferring a portion of the moment {o the upstream span. A model is presented that
predicts the onset of moment transfer based on equilibrium equations for a beam in
bending, and web roller traction.
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NOMENCLATURE

A e e Roller with web plane rotation (tram angle) and its eniry span
B Roller and pre-entry span upstream from A

C ot resre s e Roller npstream from B

E oo enees s Elastic modulus of web (N/m?)

SalM, 3, ol Y Functions describing the tension in spans A and B (N/m)
Foeeiiiiiin e Total shear on roller A (N)

TR Bending inertia of web (m")

L LB e Lengths of spans A and B (m)

Mo e e Total moment on rolier B (N-m)

Ay M Moments on roller B from spans A and B (N-m)

A iy e Maximum possible moment on roller B (N-m)

N ot tesree e eaes Normal force of web on roller (N)

R ooeeeeeeeveiesies s svensneenenn. ' Total shear on roller B (N}
Ry Rioeeoeveeecssviennenrennno. Shiears on roller B from spans A and B (N)

Foveecrmererresremeeeemissieissssraes Web caliper (m)

s TB e Web tensions in spans A and B (N)

Thign Tlow cvovvisvererriniianeans High and low tensions for belt equation (N)

HZ it esie e et Web width (m)

Viighs Vlowseesereceseriensnnrannes Crass web location for onset of eigy(M,Y) and €1.(M,y) (m)
B Wrap angie of web on roiler B (rad)

s OB crveveemeeesriissnrransans Lateral, cross web displacements at roilers A and B (m)

Euighfdd, 1) weveveecrerernnne.... Function describing high tension side moment transfer (N/m)

EionlM, V) ovveereeerreesenen.. Function describing low tension side moment transfer (N/m)

Bl cirivemrereneereresesissrennerans Tram angle and web slope at roller A (rad)

BB vvvveeeiensenerene s eaeens Web slope at roller B (rad)

Heriecireciinanneesis sserteesnesnnes Coefficient of friction between web and roller B
Precsermseesonemsreesesrsmssssnranans Poisson’s ratio for web _

T evesserrneeseeetaeseineseassnsssses Critical shear stress to create wrinkles (N/m?)
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DERIVATION OF EQUATIONS

Wrinkles, that form on a roller rotated in the web plane (untrammed), have been
studied for a single web span bounded by two rollers (1). This study, has found that
wrinkles may aiso be generated on a roller upstream of the untrammed roller. If the
web stress generated by the untrammed roller is high enough to overcome friction on
the upstream roller, strain will transfer from the entry span into the pre-entry span of
the untrammed roller. This strain transfer can generate stresses which exceed the
critical value for the pre-entry span geometry (1). Wrinkles will form on the upstream
roller even though it remains in tram. This paper defines the condition for transferring
strain and generating wrinkles on the upstream roller.

Sirain (or moment) transfer will be derived from the relationship between
bending forces acting on the free spans of web adjacent to a roller and frictional forces
acting on the web as it passes over the roller, The web span between two rollers has
been treated as a simple cantilever beam (1),(2) which this paper extends to include
two web spans and three rollers (fig. 1).

Beam Equations

Let roller C, (fig 1), act as a foundation for a cantilever beam, representing the
web stretched between rollers C, B and 4. Let the entry web span to roller 4 be span A,
and the pre-entry span be span B. The untrammed roller 4 generates a shear F, which
bends the web to the tram angle &,. Priction, between the web and the upstream roller
B, provides an intermediate supporting shear R, and moment A/, Equations can be
writien to express the equilibrium conditions for the web slopes, #; and &5, and
displacements, &, and &, at rollers A and 5.

_FLy FLly Rly ML

g 1
BT aRr T B 281 EI 1]
3 2 3 12
Sy="Ts  Flalp Rlg Ml 2]
7 3Er 0 2K 3E 2E]
F(Ly+Lg) RIL M,
8, = R 3]
2EI 2E  EI
5 o ALy +Lg) RI, RIGL, My MIpL, (4]
4 3RS 3K 2K 2E EI
In these equations, the web bending inertia 1 is given by:
i
1= 5
T (5]

Equations [1] through [4] may be solved to give expressions for the shears /¥ and
R, and for the moment Af. Expanding the (L +Lp )2 term in [3] and substituting into
[1] provides a general expression for 4, in terms of &,
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FI},
2E1

[6]

Expanding the {L,+Lz J? term in [4], substituting into [2}, and multiplying by 2/L5
leaves

285 2FLY JFLiLy 2RI MLy

Ly 3ET o 3E7 Ef

from which [1] can be subtracted and rearranged to give an expression relating the
shears R and F, with additional terms of web displacement & , and angle &, at roller
B.

_12EI5; | 6EI6,

R=F 3 2
Ly Ly

(7

A similar procedure can be used solve for the moment Af on roller B, in terms of F, Jp
and 53.

M =FL, + 65{,53 JAEG (8]
Ly Lg

Case I {no moment transfer on roller B)

Figure 2 shows the beam with roller 4 untrammed to some arbitrary angle £,
where all of the forces and displacements imposed on the web by the untrammed roller
are reconciled in span 4. The boundary conditions for this case are 5 =55 =0.
These are substituted into {6], and solved for the shear force F in terms of the tram
angle 8,

2Elg,

F= 2 9

Applying the boundary conditions to {7] and [8] gives R and M in terms of £.

R=F [10]

M =FL, {11}

Case II (moment trapsfer on roller B)

In this case, roller B can no longer support the moment M, generated by the shear
force Fin [11], and the web will twist (Fig. 3a). As long as there is sufficient friction,
the web will move laterally to regain normal entry (Fig. 3b). Even though there is
strain transfer, and the web is displaced by &, the boundary condition #5 =0 still

holds. It should be noted that [9] applies for Case II as it did for Case L
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Applying the boundary condition to [7] and [8] provides expressions for R and Af
on roller B,

pe g 12E5; 121
L3
B
M=FL, + 3208 [13]
4 I3
B

The shear, R, {12] and moment, A4, [13] on roller B can be attributed to spans .4 and B
separately by introducing the shears R and Rp, and moments AM; and M.

R=R,+R; where R,=F and RB=—12§£53 [14]
[
6

M=M,-M; where M;=FL, and Mz=- EIZJB [15]

B

From [10} and [11] it is clear that R, and A, are appropriate Case I solations for span
A. By analogy with [1], a beam equation can be written for span B in terms of Ry and
Mp.

_Rel} +MalLg

B0 YT [16]
The Case I boundary condition, #; =0, gives Rp in terms of Mp.
RB = 2.%; {17]
LB

Substituting Ry and A from [14] and [15] into {17] will show that these are valid
expressions for the span B shear and moment.

MOMENT TRANSFER ON A ROLLER

Consider the web wrapping roller B, (Fig. 4) with a wrap angle £, and tensions
Thign and T, in the spans adjacent to the roller. The maximum tension ratio, that can
be obtained for a coefficient of fiiction 4, is given by the belt equation.

T;‘:igh < E'uﬂ [18}
I

O

To simplify the derivation, # is taken as a representative value and not dependent on
local tension.
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Distributed Web Stress on the Roller

For the case of no moment transfer in Figure, 4(a), functions fy(v, M and
fa(¥ Ap) may be constructed to describe the tension at any cross-web location y, with
an imposed moment, A, The following integrals must hold for these functions, where
T, and Ty are the average tensions for spans 4 and B.

I id

2 2
Ty= [ i) dy and M= fa(nMyy-dy [19]
BiA B4
v W
) 3
Ty= | fatv M)ty and Mp=0=[f0.M )y [20]
W -

2

'
|

The following expressions for f3(y, M) and fp(y, M) satisfy [19] and [20].

T, 123M,
Ja(v M) =t =

T,
d M) =2 21
and [y M) = [21]

The onset of moment transfer occurs when, at any position y, the tension ratio
exceeds the belt equation [18]. For this derivation, the web is treated as individual
ribbons which can transfer strain independent of one another. Moment transfer can
occur either on the high or low tension edge in span 4 which leads to the following two
solutions for y.

Folp e M 372
LOu ™) _ b sielding  yygy = {1y - -T,) 2]
T5 (Vg Mo) 12M,
72
Lo Wi M) _ s yielding  yy, = L (TB e M _ T,;) (23]
j:—l (ylaw'ﬂ’fﬂ) 12.&10

— A
Limits are imposed by [L8] such that %Vs Viow <0 and 0 <y s-g-.

Following the onset of moment transfer in Figure 4(b}, tension will decrease on
the high tension side of the roller and increase on the low tension side. Let the
function
EnighV, M) represent the strain transfer across the roller in the region yug, to +H72.
The following form of the belt equation [18] holds in this region.

fA (y, Af{g) - ghr‘g.’l (y’ 'AJU) = e#ﬁ

Ta(y. My) + Epigy (v, My )
VAy) = [y M) e
& high (.V- A{[]) = ./:4 (y D) pr (y 0 [24]
e’ +1
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Moment iransfer in this region can be integrated from gugn(y, Ayl

3
W 1 (Vign
w Wi oY par| Lol Lt
¥ - (T -Tz-e )+Mo[2+2[ W] ]
Mygy = | gl Moy -dy= 25]
high . high 0 E‘u’ﬁ 1 [
Jigl]

* A similar function & (¥, M) can be construcied for - 72 to i, with 2 sign change
indicating that strain transfer is from span B to span 4 in this region.

L 3
Piow K(TB _.T:4 .g#ﬁ)+ﬂ4’08#ﬁ l_z(ykm’)
8 2 \w
Mgy =— J. Epow (¥ Mo )y -dy = py [26]
L e +1

2

The moment remaining in span 4 is reduced by the sum of {25] and [26] which is the
moment transferred into span B,

AJA = A'!O - (A'fhigh + A'Ii'aw) -AJB = AJJ:J‘gh +AJIaw [27]

Since Yaigh Viows Mpigh and M), depend on the imposed moment Ay, it is necessary to
iterate J22] through [27] to find an A} so that the expression for A, in [27] matches
the one in [15].

There is a limit to the moment that can be obtained by twisting the web on roller
B. This can be seen by imposing a very large moment Af;, in [22] and [23] in which
Case Viow and Vs become zero. Using [15], {27], [25] and [26] gives a limiting
moment, Ay,

My =My — Mg =My — 2(M 0, + M)

{7 LI
f«{»(zr;1 ~Ty -e"ﬁ)+M0 %(TB -7, <e”ﬁ)+ﬂ/fge”ﬁ

My =My

e"f 11 e’ +1

o T 4T (e# -1)
Fiim = 4 '(e*“"i + 1)

[28]

EXPERIMENTAL RESULTS

Figure 3 shows a schematic diagram of the experimental setup used to verify the
theory, The tram angle 8,, was adjusted by mounting roller 4 on adjustable slides such
that the rotation was always about the center of the web, and in the plane of span A.
The forces F, R, Ag, Aur,, Bo, and By, were measured by force {ransducers mounted on
the roller shafts. The shear forces, F and R, were measured directly, but the moments,
My and Mg had to be compuied from Ap, 4u Bo, and By, Web displacements, &; and
&g, were measured by edge sensors placed in span A, close to rollers 4 and B. By
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keeping the wrap angle on rollers.4 and B at 90°, the tension distribution in the input
and output spans did not interact with each other, and the transducers measured forces
in a single span.

The theoretical compuiations were based entirely on &, span dimensions, and
web physical properties. One additional variable, the web-roller friction coefficient,
was needed to make the theoretical computations. This was done as a special test
measuring the tension drop across roller B as a function of speed and tension(5). The
computed forces, moments, and displacements were done according to, and in the order
shown in Table 1.

All force, moment and displacement data are plotted against roller 4 tram angle,
&,. The web used for verification of the theory was a 0.037 mm thick, 254 mm wide,
polyester film with a modulus of 4.137 GPa. The friction coefficient was measured
from tension velocity tests. A constant coefficient of 0.25 was used for the 133 N
tension at a velocity of 0.254 m/s,

Additional wrinkle experiments were run using the same web and velocity, but
different tensions. These data were used to determine the wrinkle failure criteria as a
function of the tensile siress in the web.

Displacement Verification

Figure 6 compares the experimental displacements with those computed from
theory. For Case I, 8y was zero. At around 0.0028 radians tram angle, &,,, there was
sufficient moment in span .4 o transfer into span B, The negative web displacement,
8z, returned the web to normal entry on roller 5 in agreement with theoretical
prediction. Figure 3(b) shows the final web shape for Case 11 The poorer fit at larger
tram angles indicates an overestirnation of R from the model.

Shear Force Verification

Figure 7 compares the experimental shear forces on rollers 4 and B with theory.
According to [10], 7 and R are equal throughout Case 1. In Case II, R becomes greater
than F for a negaiive web displacement, &z as predicled by [12]. The transition from
Case I to Case IT was about 0.0028 radians tram angle which agrees with the transition
observed for the web displacement above. In the derivation of the beam equations [1]
through [4], all of the deflecting force on the beam was attributed to the shear force, F,
on roller 4. As shown in Figures 2 and 3, a small component of the web tension, 7,
produces a deflection not accounted for in the derivation. The experimental shear was
found io be lower than that predicted by theory. A better fit between experimental and
theory can be cbtained by applying a tension compensation factor to the shear
forces.(3) The theoretical shear force, F, in figure 7 was corrected for tension by
multiplying by a factor of (1-7Z,%/2EJ).

Moment Verification

Figure 8 compares the experimental moments measured from the load cells with
those derived from theory. For Case I, A£; increased linearly with &, as predicted by
[9] and [11], while Adz was zero. Afier the transition to Case II, at &, of about 0.0025
radians, My started to increase according to [27]. The Case II transition agreed
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favorably with both displacement and shear data. The lack of fit may come from either
the experimental transducers or the theoretical model. The transducers, made
especially for the experiment, were found to be subject to hysteresis and interactions
with one another. A special calibration was made to minimize this interdependency,
and the final accuracy for measuring force was better than 15%.

The model for computing moment transfer was based on a monoaxial stress field.
The web width was divided into ribbons where the belt equation strain transfer for any
ribbon acted independent of its neighbor. In reality, the web stresses were in a biaxial
stress field over the roller, where interactions would retard moment transfer. The
mode! predicted more moment than was measured, indicating some error in the
simplified approach.

Wrinkle Verification

Figure 9 shows data for wrinkles in span B. During the tests, there were no
wrinkles observed in span 4. The critical shear 7., for wrinkling on an untrammed
roller, has been derived (1)(4) and verified experimentally. The upper curve in Figure
9, labeled “Wrinkie failure from tension and compression” and computed using this
theory, shows a poor fit to the experimental data.

In reference (6), Timoshenko develops buckling criteria for thin plates in bending
as well as tension and compression. The tension/compression models have been
successfully applied to wrinkle creation.(1)(4) The stress field in span B includes a
bending moment, M , that does not exist in span 4. The curve marked “Wrinkle
failure from bending only” uses a simplified expression for buckling from pure bending
as an alternate wrinkle criteria which predicts failure well below the experimental data.
The tension/compression and pure bending failure curves bracket the experimental
data. A good theoretical prediction may be possible from combining tension stiffening
with the pure bending failure.
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Figure 4.-Distributed tensions on roller B from web spans A and B.
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Figure 5.- Experimental force and displacement measurements.
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Figure 6.- Experimental and theoretical web displacement as a function of
tram angle,
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stress.

VARIABLE DETERMINATION

F Direct from 9]

My Direct from [15]

Mg Iterating [22] through [27]
M From {15], 3£, and Mg
Ry From [17] and Mg

R R, From [14] and Rp
O From [2], F, R, and Af
8y From [4], F, R, and A

Table 1.- Computation process for finding theoretical variables.
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Question - In your beam equations you neglect the tension?

Answer - We're not putting the tension in the beam equation as such. The defleclions are
very small. In the data we mention we collect the shear force F for tension component.
But other than that we neglect that. Obviously, John on his Ph.D. thesis did a far more
rigorous attack on that problem. But we've neglected it in the actual beam equations and
we only correct our shear force F for tension component.

Answer - Its a simplification.

Thank you.
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