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ABSTRACT

A realistic and adaptive viscoelastic mode! for prediction of transient wound roll
stress distributions is presented. The web maierial is taken to be orthotropic with a
nonlinear radial creep compliance dependent upon interlayer pressure. Viscoelastic
behavior is represented by a generalized Maxwell model for creep wrilten as a
convolution integral. Numerical solutions to the resulting integral boundary value
problem give both initial and transient stress distributions within the wound roll. The
meoedel is successfully compared to the exact solution for a simple case of isotropy as
well as to published works on this topic. In contrasting the solutions, the advantages
and adaptability of this nonlinear formulation will be readily seen.

NOMENCLATURE
Eu, Ei....E, = moduliof the generalized Maxwell model, kPa
E., = corestiffness, kPa

h = size of spatial grid, cm
H{ty = Heaviside step function
I. = nradial creep compliance, kPa?
Jg = circamferential creep compliance, IPa”!
Jgand J,, = Poisson creep compliances, KkPa’
Johy,., ]y = creep compliance coefficients, kPa?
n = munber of relaxation times
N = number of increments in spatial grid
r = rollradius, cm
T, = innerroll radius, cm
I« = oulerroll radius, cm
s = Laplace transform operator
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t = time,s

T, = winding stress, kPa
un = radial displacement, cm
g, = radial strain
gg = circumferential sirain
o, = radial stress, kPa
Gy = circumferentinl stress, kPa
M:Ma---sTw =  Viscosity, s-kPa
(Agy); , (Acp); = change in g, and o, from time =1;, to =t
Aoy . ATy =  Ag, and A at the ith lap
or,08,E = Laplace transform of G,, Gy, and E
At = change in lime, s
Ty, T Ty =  Telaxation times, s
INTRODUCTION

Wound structures, termed rolls, built by winding thin webs with little or no
resistance to bending, such as paper, polymeric films, or magnetic tape, onto a
compliant core develop both radial and circumferential stress distributions along their
radii. Due to the viscoelastic nature of most polymers and many paper products, the
stress distributions within many rolls are dependent upon both storage environment and
time. Hence, rolls wound from viscoelastic material are prone to decreasing stress
profiles and if stored for prolonged perieds of time, may experience significant
reduction in resident stresses. If the interlayer stresses are subsiantially reduced, the
roll structure is subject to damage during iransporiation or snbsequent rewind
operations. Foreknowledge of transient stress distributions atlow operating parameters
or rewind schedules to be devised such that structural integrity of the wound roll can be
maintained. This paper provides a simulation technique which may be used to predict
transient wound roll stress distributions where oplimum winding parameters and roll
geometry may be chosen.

Detailed analysis of initial wound roll stresses began with the work of Gutterman
[1]. Altmanu [2] followed and presented an analytical solution to the winding problem
by assuming homogeneous and anisotropic clastic web properties constant throughout
theroll. Yagoda [3] was the first to accurately treat the inner boundary condition,
which accounted for core deformation. Pfeiffer [4] included a nonlinear radial
modulus, written as an exponential, and provided an approximate solution to the elastic
case using an energy balance formmlation which neglected core flexibility. Prediction
of initial wound roll stresses was modemnized by Hakiel [3] who presented a numerical
method employing a pressure dependent radial modulus. Hakiel solved the resulting
nomlinear second order differenlial equation using finite difference techniques by
employing two boundary conditions including (1) that the deformation of the first layer
be equal to the deformation of the core and (2) that the webline tension be equal to the
wound-on-tension in the current outer fayer of the winding roll. These boundary
conditions are suitable for the condition of centerwinding, and Halkiel verified his
method for that condition. In centerwinding, the roll is wound through the provision of
torgque applied to the core with no driven or undriven rolls impinged on the outer
surface of the winding roll.
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Transient analysis of wound roll stresses was first considered by Tramposch [6,7]
who modeled viscoelastic web behavior with a Maxwell-Kelvin constitutive law.
Tramposch's first work assumed roll isotropy, however he later allowed for the
circumferential and radial modulus to differ by a multiplicative constant. Lin and
Westmann [8] expanded the wortk in viscoelastic winding mechanics by accounting for
winding time in the analysis. Lin and Westmann assumed roll isotropy and chose a
generalized Maxwell model to describe the roll's viscoelastic behavior. Stll, no author
has coupled the nonlinear orthotropic attributes of the wound roll with a complex
viscoclastic constitutive relation.

In this paper, a realistic orthotropic viscoelastic model for centerwound rolls is
presented. Viscoelasiic behavior of the wound structure is characterized by a
generalized Maxwell model with allowance for pressure dependent radial behavior.
Choice of a generalized Maxwell nodel enables accurate portrayal of most any material
behavior since the number of retardation times is limited only by computationat
resources. Results are compared to an exact solntion developed herein for a simplified
isotropic case with one time constant. In addiion, this work is successfully compared
1o the published works of Tramposch [6,7] and to that of Lin and Westmann {8].

GOVERNING EQUATIONS

The process of winding has historically been viewed as the addition of
pretensioned conceniric hoops of web material ondo a compliant core. The process is
then one of accretion in which the stresses in the roll are incremenially changed as each
layer is added. Assuming the wound roll is axisymmetric dictates the stresses, strains,
and displacemenis are functions only of roll radius. The govemning equations in polar
coordinates are then the:

Equilibrium Equation:

do
r a"r +g,—ap =0 0}
Strain Compatibility Equation:
e
:-é;--i-ee-—s,.:() (2)
Strain-Displacement Relation:
E.= —?E-l- £y = i (3)
ar r
Viscoelastic Constitutive Equations:
?
do, dog
g, = [ =)L+ dpt—1)—=2] dt )
o ot o
t
fa da, -
eg = [y (=) =L+ Jg, (1=t)—L] dt (3)

a
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Where J (1) and J,(1) are the radial and circumferential creep functions, respectively, and
J 40) and J_(1) are creep functions representing the Poisson coupling between the radial
and circumferential directions. Model development continues by eliminating the
circumferential stress, G, by solving (1) for g, and substiluting the result into (4) and
(3). This yields two eqnations, one for the radial strain and the other for the
circumferential strain. These equations describing the radial strain, &, and
circumferential strain, £, are substituted into the compatibility equation (2). This
treatment leads to the following integral boundary value problem written as a second
order partial differential equation in terms of radial stress, o, the radius, r, and time, t.

el
T 00y + 3ot =)+ Joy(t =) = Tyg (t — )+ 1Tyt =)
o~ ar ot or

! g
£ [Jo(t— rc)ao-'-’

+{f‘—§-(JB (1 =)+ oy f = D)+ Jo 1= 1)+ Sy (1) =T (=T =T g (£ =D} e = 0
a oT

(6)
SOLUTION METHOD

The method of solution consists of first choosing the generalized Maxwell model
to represent the viscoelastic behavior. With this chaice, the creep compliance takes the
following form:

N
Jty=J,+3 Je %)

i=1

The generalized Maxwell model provides for instantaneous deformation followed by
time dependent deformation, termed creep, when subjected to a step change in stress.
For an orthotropic material, the creep compliance in the radial and circumferential
directions must be defined independently. Pleiffer and Hakiel [4,3] have shown the
instantaneous radial modulus 10 be a function of interlayer pressure. As aresult, J, of
ihe tadial creep functinn must be a function of the radial stress. At this point, special
treatment of the nonlinear behavior will not be required. Each integral in the boundary
value problem can now be analyzed separately. All terms in equation (6) can be
segregated into the two distinct forms defined in equations (8) and (9).

)
I={Je- r)?idr (8)
) ot

;.
J={r a—r[J(l -1)]
0

P ©)
ot

It can be seen that each term in equation (6) takes on the appearance of either (8) or (9).
First, intepral 7 is discretized over time in either constant or in some cases variable

intervals by replacing the continuous function, f; with a step function. The integral J
can then be written at some time t=t, as follows:
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I;=Jt; - tj_l)(a%r)jAr-i-J(fj —fj_z)(a%t)j—l Af+ {10
okt Ty &

Substitution of the finite difference approximation

(%)j=Afj/Af an
where,
Afi=j = Ji=j— 1= -1 (12)
enables equation (10) to be rewritten as;
¥R |
I =J -t DA+ DI =1, A, (13)

n=1

Replacing the general form of the creep compliance with the chosen Maxwell model
permits the above integral to be further simplified as follows:

N N
-, 1)/
L=y + Y0 T A T g+ Y T (14)
i=1 i=1
where,
J-1
F1= 24 (1%)
k=1
and,
udi:j — e—gAI/T, Afj-]_ +e—Al/1!a‘i,j.-] (16)

Equation (16) is a recursive formula which allows the current value of «;; to be
calculated from only the previous value. Applying a similar treatment to the irtegral in
(9) yields another recursion parameter defined as B,;. As shown in (6), the partial
derivative with respect to the radius operates on the creep functions I, and J,. 1t is then
appropriate to question whether J, and J,_are functions of roll radius.

Nonlinear behavior in the radial direction has been attributed fo factors including
cnirapped air and the contact of asparities, There are no such mechanisms in the
circomferential direction. This coupled with the fact that circumferential material
properties presented in [1-8,11] are independent of radial pressure sugpasts that [, is
also radially independent. The Poisson term accounting for the portion of
circumferential stress caused by radial strain was measured by Willett and Poesch [11]
1o be approximately 0.07. Any variation of this term with roll radias would then be
small. Hence, the derivative with respect to roll radins is insignificant and all recursion
parameters, [3;; , will be neglected. However, if thermal influences are to be accounted
for and the thermal profile is radially dependent, these creep functions may vary with
roll radins. Special attention must then be given to the differentials of the creep
compliance. A detailed derivation of the recursion parameters occurring from the
generalized Maxwell model was published by Zak [9] in analyzing thermoviscoelastic
stresses in solid rocket propellants.
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As a direct result of this particular method of solution, the terms oy and f,
contain all history effects of the viscoelastic material. Since all history effects are held
within the recursion formulas, significant storage space in the form of computer
memory is saved. Once the integrals in equation (6) are replaced by the discretized
form, the boundary value problem collectively reduces to the following:

'1
[F oy

+F,()J

+F3(1)Acr +F;;(r)]JH =0 (a7

Where in the above second order differential equation, Ac_ is the change in radial
stress from time t={ to time t=t. An exact solution is not possible since the
coelficients are functions of the radius. As a result, a numerical solution technique is
employed. The wound roll is discretized radially and the derivatives replaced by finite
difference operators. Central difference approximations for the first and second
derivatives of the radial stress are;

o, A0y — A,
ar 2h (152
%G, _ AGus) ~ 280, + A, (18h)

2 P

or h*

Substituting these into equation (17) vields (19), which is written once for each
internal layer within the roll. Writing equation (19) at each spatial location leads to a
set of N-1 simultanecus algebraic equations with N+1 unknowns. When boundary
conditions are applied, the tridiagonal system of equations is solved by Gaussian
elimination for the change in radial stress at the current time step.

2 ’J

(A )— + By (r ) )A51{1+]) +(F3(r) - 25 (r )—)AG,(,) +

2 (19
(Fl(.f)——f'q(l) )AG‘,(,_I) +F (=0

Inner Boundary Condition

The inner boundary condilion provides for continuity of displacement at the core.
This condition is one which many researchers have implemented in previous winding
algorithms. However, this specific application is more delicate in that it contains an
integral subject to temporal discretization, Taking the deformation of the core and the
first lap of wound material to be equivalent requires:

(Gr )_]
E,

=(eg); (20)

where E_is the core stiffness, and the subscript, j, refers to the current time, =t
Replacing the circumferential sirain by its integral form defined in (5) and substimting
for the total stress, (o}, the sum of the total stress at the previous time step, A

the change in stress from the previous to the current time step, (AG) gives a form

65



which can be discretizad temporally and radially. The result of this operation is shown
below.

(o,.)j +(Ao,); 1 &, o, i, 8o,
= [~ 1)+ Jpli =1 )+ Ty (f =) —=L 1 df
= {[ D=+ I (=)t gy (=) ]

c

21
Once the right band side is discretized and the derivatives replaced by their
correspending finite difference operators, an equation is developed in terms of the
unknown change in radial stress, As_, and Ac_, , at the current time, t=t, This

equation will become the first row in the tridiagonal system of equations.

Outer Boundary Condition

The outer boundary condition is developed by taking the strain in the outer layer
to be constant and equal the winding stress, T, multiplied by the circumferential creep
function, I, evaluated at time, =0. In taking the strain in the outer layer as constant, it
is assumed the deformation, u, at the outside radius caused by changes in the underlying
structure is negligible. The outer boundary condition becomes (22) when the
circumferential strain is replaced with its definition in (5).

! fa oG
Ty la (0= alt =) —FtJo, (1 =) —2 1 df @2)
o

The right hand side is discrelized temporally using methods aforementioned.

Equation {22) is then solved explicitly for the change in circumferential siress, (A,
With the change in circumferential stress known, the corresponding change in radial
siress beneath the outer layer can be determined by employing the hoop stress formula.

A ]
(AG,); = (_GEL’__I. (23)

Fout

Where, b, is ilie thickness of the radial segment and r_, is the current owler
radivs of the roll. This condition provides the final constraint needed 1o solve the
simultaneous set of equations.

Accretion of the Wound Rell

Accretion of initial pressures within the wound roll is accomplished using a
similar method to that employed by Haldel [5]. The stress state within a rell wound of
N layers is taken to be the superposition of stress states resulting from the addition of
each layer from 1 1o N, Thus, the roll is considered to be composed of N subrolls or
substroctares. The first subroll consists of only one layer, the second consists of two
layers, etc. The Nth and final subroll contains N layers. The stress siate of each subroll
consists only of that resulting from the addition of that subroll's outermost layer. The
total stress of a single layer in the actual wound roll is found by supedimposing the
stress state corresponding to that layer from all subroils. Pressure dependent material
properties are evaluated at each spatial location from the total pressure existing in the
wound roll at the time that material property is first needed,
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EXACT SOLUTION

An exact solution will be developed by employing the common method of
viscoelastic analogies, in which the viscoelastic problem is transformed by an integral
operator to an associated elastic problenm. Once the solution to the elastic problem is
found. the expression is inveried back to time domain giving the solution io the
viscoelastic problem. In this work the Laplace transform will be used exclusively with
the frequency variable, s. For the viscoelastic problem both the radial and
circomferential siress are functions of time. Let the Laplace transform of the radial

stress be denoted o, and that of the circumferential stress be denoted og. The stress
distribution for an axisymmetric hollow cylinder with homogeneous and isotropic
material properties is given by Timoshenko [10]. Taking the Laplace transform of
these stress distributions vields:

+2C @24

a0 =——A7+2C 25)
2

The parameters A and C are unknown and must be evaluated by applying

appropriate boundary conditions sufficient to consirain the problem. Boundary
conditions similar to those aforementioned will be used with some modification. When
the strain is replaced by the transformed circumferential stress divided by the
iransformed modulus the inner boundary condition can be given as;

- at r=r, (28)
where,

E= @7

=) Q|

The outer boundary condition remains conceptually identical to that given in
(22} and (23), but the form slightly dilfers. Equating the hoop stress formula, o =T, v,

with the core displacement relation, then solving for the transformed radial siress in
terms of the winding tension yields (28).

Gy = al r=r (28)

where E,, is the value of the modulus at time, 1=0. With these boundary conditions, the
two unknown coefficients can be found algebrically.
To this point the constitutive law has remained arbitrary and represented only as

£ . Tt is necessary to define this function so the it is consistent with the generalized
Maxwell model. As shown in Figure 1, a generalized Maxwell model with one time
constant consists of an elastic element connected in series with a parallel combination
of a viscous and elastic element. This is equivalent to a series connection of an elastic
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element with a Kelvin model. As a resuli, total (he strain can be wriiten as the sum of
the Kelvin and elastic components.

Eng +EE (29)

Replacing the Kelvin and elastic components of strain with their stress-modulus
equivalents gives:
- & G

E= —
E+ms 30)

Using (27) allows the transformed modulus to be written in terms of specific material
properties, E, E,, and 1, as shown in (31).

T B G1)
Ey, Ey

As stated, each concentric layer s pretensioned at the winding stress when added to the
roll structure. The layer is then assumed to have undergone a step change in stress.
Making use of the Heaviside operator, the Laplace transform of the preload is found.

Tw
L= -~ (32)

Maldng the substitution of T /s for the winding tension and performing the
inverse transform gives the siress distribution throughout the roll as a function of time.
Of primary interest is the radial stress, which simplifies to that shown below.

2 2 2.,9 2. =¥ 4 a.  —HE+E
QE: Ep T;I’I'i?:"aulh(razut - ’_'J Wi +"‘:u) “1:]“{: EgTyromh(r® - "t:) ___&'1.__1)
a.(rt)= — et b e 1
ro(rgy — T )XY Fr{r o S Eg + Ey)
PO a2 2 2 2 2
- BTt (B iy + 720 + By (% — V14 B B (1 +07)}
rHE, + E)Y
(33)
where,
- 2, .2 2 .2
A =E, (riu +ont )+ EU (Fowr —7in) (EEY]
Y=E8X+ 0Ly, ("irgr + "r?ut ) (35)

These expressions give the radial stress in an isotropic hollow viscoelastic cylinder
supported clastically at the inner surface and subjected to a time dependent ymiform
external pressure. The wound roll stress distribution is found by superimposing stress
states of all substructures.

NUMERICAL SOLUTIONS AND RESULTS

Nuinerical results are first compared to the exact solution just presented.
Comparison serves to shown the numerical model degenerates to the exact solution for
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an isotropic viscoelastic material with one retardation time. Values for creep
parameters, J) and J|, and the relardation time .T,» were laken from Lin and Westmann
[8] and are presented in Table 1(a). Asboth Figure 1 and equation (27} imply, strains
are not effected by out of plane stresses. Consequently, values for all Poisson terms
will be selecled as zero. This approach is supporied by Altmann [2] who suggests
taking Poisson’s ratio to be nearly zero.

For comparison of solutions, a relation between coefficienis of the creep

compliance, I(t), and the modulus, £(s), must be made. Il can be showa that by
applying the Laplace transform to the integral form of the constitutive equation, solving
for the ratio of stress to strain and equating the result to the transformed modulus in
(31}, the parameters are related in the following manner.

1 E 1 . T
= - L =— = — ~
Jo—J, J| g, (36)

Ey

Figure 2 presents the results for the normalized radial stress as a function of
roll radius at various times steps. In this degenerate isotropic case, it is possible to plot
the radial stress normalized by the winding stress. However, when nonlinear material
properties are used, normalization is not possible as solutions are no longer linearly
dependent upon the winding stress. In this illustration, the decaying stress profile can
be observed. In all cases shown, the numerical results agree very well with the exact
soluiion,

Comparison with the results of Lin and Westmann {8} requires special
consideration. Lin and Westmann require the circomferential stress at the outer
boundary to be constant. As a result, the roll is viewed as a viscoelastic hollow cylinder
subjected to an invariant external pressure and supported elastically at the inner surface.
The response of the system just described should be clear. As the viscoelastic material
becomes more fluid-like, the external pressure will be supported less by the roll
structure and more by the elastic core. The circumferential stress in the outer layer of a
wound roll is typically the maximum level of circumferential siress in the entire roll,
Thus, the propensity for viscoelastic relaxation will be maximum at the outer layer.
Although forcing the outer layer to remain constant is unrealistic or the case of a
wound roll, the work of Lin and Westmana is an invaluable reference for comparison of
results. A modification of the boundary condition presented in this work will then be
required to allow this comparison.

Once (he task of altering the outer boundary condition is accomplished,
comparison with Lin and Westmann's results is simple since ihey also utilized the
generalized Maxwell model. Again, ihe orthotropic viscoelastic model developed
herein was reduced to the tsotropic case as to make comparisons possible, Isotropic
material properties shown in Table 1(b) and winding parameters used by Lin and
Westmann are employed to construct this comparison, Using a total of seven
relardation times and taking Poisson's ratio as a constant, the radial stress distribution
was numerically obtained. Figures 3 and 4 present results which can be likened to Lin
and Westmann's {8] Figure 6 and 7. The remarkable agreement of ithe numerical results
to that of Lin and Westmann's is apparent, It can also be seen that by altering the outer
boundary condition, the projected stress distribution now increases with iime. Even so,
this viscoelastic model has been proven to yield accurate results even when multiple
retardation times are needed to represent material behavior,
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At first an accurate comparison of solutions to that of Tramposch in [6] and [7]
seems unlikely since they employed a Maxwell-Kelvin model, whereas a generalized
Maxwell model was used in this work. At this point, the adaptivity of the generalized
Maxwell model will be shown. It was found the generalized Maxwell model could
represent those material behaviors depicted by (he Maxwell-Kelvin model used by
Tramposch. This requires converting the viscoelastic operators in Tramposch's
equations (20) and (21) to the equivalent creep functions as shown in (37) and (38).

J)=g +g,(l-e )t gyt (37
J,,(r):%gol—+%3(1—e")+%3t (38)

All terms, with the exception of the tast, t, can be directly incorporated into the
generalized Maxwell model. Fitting a curve consisting of five exponentials to the linear
term in time, over an interval consistent with that nsed by Tramposch, gives a
correlation coefficient of approximately one. Once these exponentials are united with
equations (37) and (38), the behavior of the Maxwell-Kelvin model was accurately
represented by the generalized Maxwell model. Malterial properties resulting from the
above procedure are presented in Table 2. Figure 3 presents resulls for the normalized
radial stress in an isotropic wound roll at normalized times, t=0, 1, 10, 100, and 1000.
Note, that Tramposch's definition of the core flexibility, F, is inversely proportional to
the core stiffness as defined in this work. For example a hub flexibility, F=0, implies
the core is perfectly rigid and has infinite stiffness. As shown, the wound roll can
approach a siress free state when stored for a sufficiently long period of time. These
results can be directly compared to those found in Tramposch 's [6] Figure 3(a).

In Tramposch's second work [7], allowance was made for the circumferential and
radial moduli to differ. In doing so, Tramposch defined a proportionality factor, k,
which was restricted to values greater or equal to unity. Interpretation of the
proportionality faclor is given as k=E/E_. Extension of this faclor to the creep
compliances, J () and J (t) is simply made and is the ratio of the radial to
circumferential creep compliance, k=J (1)/J (). Parameter values used for this
comparison are essentially the same as those shown in Table 2. The circumferential
creep compliance will rewain unchanged and the radial compliance will be equated to
the circumferential compliance multiplied by the proportionality factor, k. Results of
this comparison are given in Figure 6, which displays the initial radial and
circumferential stress profiles for various values of k at normalized times, =0 and t=10,
These illustrations can be compared to Tramposch's [7] Figures (3a) and (3b). Both
initial and iransient stress distributions for various proportionality factors show
excellent apreement with Tramposcl's results, Here it is shown how the
compressibility of the material in the radial direction directly affects the stress profiles.
Larger values of k are shown to produce substantially higher stresses in the radial
direction given all other winding paranelers are held constant, This observation was
also made by Pfeiffer and Hakiel [4,53].

To illustrate the importance of the nonlinear creep function on the wound roll
stress distribution, an exampie is presented in Figure 7. The predicted radial stress
distributions are shown for two cases (1) for anisotropic material properiies with
J{t)/1,(8=10, constant coefficients, and J (1) described in Table 1(a) and (2) fora
nonlinear radial creep function with material properties described in Figure 7. Pressure
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dependent properties were chosen such that the ratio of J(t) to J(1) throughout the 1oll
is approximately equal to ten. This figure shows the significance of the nonlinear term
and it's necessity for accurate prediction of transient wound roll stress distributions.

CONCLUSIONS

The model presented here can be used to predict transient stress profiles in wound
tolls constructed of arthotropic viscoelastic material with nonlinear moduli. One
limitation of this work is thermal inflnences are not accounted for. As many
viscoelastic creep functions are thermally dependent, a thermoviscoelastic model would
yield more accurate predictions of the stress state in wound rolls which are subjected to
changing environments.

Numerical results presented have been shown to agree very well with exact and
accepted solutions. Model implementation must be predeceased by determination of
various material properties. We suggest measuring the instantaneous radial and
tangential moduli and associated creep functions separately and then combining the
results. Also, it is suggested that all Poisson terms be taken as zero, based upon
suggestions by Altmann [2] and measured values provided by Willett and Poesch [11].
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Figure 1. Mechanical Representation of the Generalized Maxwell
Model with One Time Constant,
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Figure 2. Comparison of Numerical and Exact Solutions at Various Times
using E =uo, /r, =0.02 and At=t/10 sec.
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Figure 3. Predicted Radial Stress Profile using E=2.128 GPa, I/r,=0.02 and
At=1/1G sec. For Comparison with Lin and Westmann [8].
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Figure 4, Predicted Circumferential Stress Profile using E =2.128 GPa, h/ir; =0.02 and
At={/10 sec. For Comparison with Lin and Westmann [8].
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Fignre 5, Numerical Solution using' E =0, h/r, =0.02 and At=t/10. For Comparison
with Tramposch's Isotropic Results [6].
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Figure 6. Numerical Solution using E =e0, lv/r,=0.02 and At=t/10. For Comparison
with Tramposch's Anisotropic Results [7].
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Figure 7. Comparison of Predicted Radial Stress Distributions Using (1) Nonlinear

Material Properties and (2) Anisotropic Material Properties with Constant Coefficients.
Winding Parameters T =6.893 MPa, E =w, I/1,;=0.04. and At=t/10 sec.
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Table 1. Isotropic Material Properties Talken
From Lin and Westmann [8].

I =Jy Jrg = Jor

J, 521697E-07  -1.56508E-07 (1/kPa)
J; -2.82132E-07  B.46396E-08

T 1.0E+04 1.0E+04  (sec)

(a) N=1

J, 5.20247E-07  -1.56074E-07 (1/kPa)
J; -1.31723E-10  3.95169E-11

J, -2.45140E-08  7.35446E-10

J, -1.52125E-08  4.56374E-09

gy -2.50471E-08  7.51414E-09

Js -5.66933E-08  1.700B0E-08

Js -8.05888E-08 2.71766E-08

g -9.35722E-08  2.80716E-08

T 1.0E-H 1.0E-01 {=sec)
T, 1.0E+00 1.0E+00

Ty 1.0E+01 1.0E+01

T, 1.0E+02 1.0E+02

5 1.0E+03 1.0E+03

Tg 1.0E+04 1.0E+04

T, 1.0E+05 1.0E+05

{by N=7

Table 2. lsotropic Mechanical Properties used

for Comparison with Tramposch [6].

Jr=Jg Jrg = o

Ju 2.800685E-04 -1.10225E-04 (1/kPa)
.]1 -3.80131E-03 2.90065E-05

J g -56.68644E-05 3.34322FE-05

Ja 4.73443E-03 -2,38896E-03

.]4 -2.89276E-01 1.44638E-01

J5 2.84565E-01 -1.42282E-01

T 1.0E+00 1.0E+00  (sec)
Ty 1.0E+03 1.0E+03

T, 1.0E+04 1.0E+04

T, 1.0E+05 1.0E+05

Ts 1.0E+08 1.0E+06

N=3
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A Nonlinear Orthotropic Viscoelastic Winding Model
6/19/95  Session! 11:33-12:00 am.

Question - T wanted to ask you a practical question say for instance concerning a paper,.
I you were to apply this model on practical level how many material properties would
you have to determine, what are those properties, and how would you measure them.

Answer - Well, I would begin with the machine direction creep function which is very
simple measured by taking a sample, applying a fixed load to the end and measuring
displacement or strain through time. For the radial creep function, I propose separating
elastic and viscoelastic properties, you can later combine these, quit efficiently. For
instance, we have methods for measuring elastic properties. I say we keep those
methods, so when we apply this load, we have an instantaneous elastic deformation.
Remove that from your creep data and only look at the transient data. You can then add
that transient proportion back to your elastic modulus. Same thing for the radial; you can
measure the radial creep function by applying a known pressure to a stack, measure the
deformation of the stack, remove the instantaneous portion, and then combine your radial
modulus data to that. Have I answered your question.

Yes. OK
Question -- What about the Poisson terms?

Answer - Right off the bat I would ignore the Poisson terms. Or, you can make a great
deal of simplification if you use Maxwell's relationship. But for simplicity, 1 would
either assume them to be either zero or constant,

Question - When you derive the model you started with the creek compliance equation
with a elastic component and viscous component. Is there any reason you don't include a
pure viscous component?

Answer - The Viscous component?
Question - In what terms could you discuss this component relating to a plastic material?

Answer - For a plastic material, well T gness that is one of the limitations of this study,
I'm not quit sure what your meaning for one, so I'll admit that. Of course any constitutive
law like a generalized Maxwell Model that contains dash pots is modeling viscous
behavior. So beyond that, this development is not meant for plasticity; so that would be a
limitation. Dr. Good would you agree? You might have an additional comment.

Comment - Although the viscosity term is not seen instantaneously it is accounted for
through time with the generalized Maxwell model.

Answer - As time goes on in this storage condition you have discussed the component,
you have continued formation. Will, you can actuaily model this behavior with your
constitutive model, your constitulive law is as good as your time span used in conducting
your material test.

Thank you.
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