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This work develops a model to calculate the stressed state of center-wound rolled 
webs, such as film, paper, or foil. The model is built on a lesser known linear model 
developed by Umanskii and accounts for the nonlinear stress-strain relationship of the 
roll in the radial direction as determined from unia'Cially compressing a stack of the 
material. The main cause of this nonlinear behavior is inter-layer air entrapment and 
web surface roughness. The more popular published linear model developed by 
Altmann has been e"1ended by Hakiel to include the roll's nonlinear radial stress-strain 
relationship. However, recent published work shows the radial stresses predicted by 
Hakiel to be significantly greater than measured data using calibrated pull labs for some 
webs. 

Results from this nonlinear model are compared to published measured in-roll 
radial stress data for three materials: PET, newsprint, a.,d bond paper. After 
eliminating the softest portion of the stack test data, the model predicted in-roll radial 
stresses that agree well with Uie experimental data for PET. The predicted in-roll radial 
stresses were less than the experimental data for both papers. However, results from the 
Hakiel model and the new nonlinear model were fonnd to provide bounds for the 
e"1>erimental data for paper. 

NOMENCLATURE 

a :Inner radius of hub 
b :Outer radius of hub 
c :Outer radius of wonnd roll 
r :Radial position 
u :radial displacement 
s, :In-roll circumferential strain 

s, :In-roll radial strain 
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er, :In-roll circumferential stress 

er, :In-roll radial stress 

er w :Winding stress, which is the winding tension divided by the web's cross-sectional 
area 

E, :Effective compliance of the core taken as an isotropic cylinder 
E, :Modulus of elasticity of a linear roll in the radial direction or the instantaneous 

slope of the stress-strain curve of a nonlinear stack. 
E, :Modulus of elasticity of wound roll in the circnmferential direction 

Eh :Modulus of elasticity of the core material 

uh :Poisson's ratio of the core material 

u" :Poisson's ratio of web in the circumferential direction. Ratio of radial strain to 
circumferential strain for an element under pure circumferential stress, 
assumed constant throughout the roll 

u" :Poisson's ratio of web in the radial direction. Ratio of circumferential strain to 
radial strain for an element under pure radial strain, assumed constant 
throughout the roll 

INTRODUCTION 

A convenient and common way to store web materials is in the form of a wound 
roll. Maintaining quality of the wound roll is important to maintaining overall quality 
of the product, and roll quality depends on the residual stresses in the roll. Center
winding is a common winding process where the motor torque is applied to the roll 
through the core which is mounted on a spindle. In center-winding, no external forces 
are applied to the rail's outer surface. 

Currently, roll quality is optimized by conducting designed e,q,eriments. This is 
not a trivial task and is costly as both a trained technician and machine time are 
required. A mathematical model to predict the stressed state of center-wound rolls is 
valuable in optimizing roll quality efficiently. Such a model would reduce the e,qiense 
of providing high quality rolls in which roll defects are minimized and product 
performance is improved. 

Some of the early work modeled the roll as an isotropic cylinder with material 
properties all constant tliroughout the roll. Later models viewed the roll as an 
orthotropic material due to the roll being softer in the radial direction. The stress-strain 
relationship in the radial direction is determined from uniaxially compressing a stack of 
material. Such tests reveal the rail's radial stress-strain behavior to be nonlinear. This 
is attributed to inter-layer entrapped air and material surface roughness (Forrest, 1993). 

This work presents a nonlinear model that predicts in-roll radial stresses that agree 
well ,vith published ex'jlerimental data for PET rolls. However, the paper results are 
interesting in that in-roll radial stresses predicted by an earlier model ofHakiel (1985) 
and the new model were found to bound tl1e experimentally determined stresses. 

First the stack test is discussed, then the nonlinear model is formulated. The 
solution technique for the in-roll stresses is then discussed, and finally the stresses from 
the model are compared to ex'jlerimental radial stress data obtained from Swanson 
(1991). 

32 



STACK TESTS 

A stack test is conducted to determine the material's stress-strain relationship in 
the radial direction under pure radial stress. Figure 1 shows a stack test configuration. 
The strain vs. stress data from a stack test (conducted by Swanson, 1991) on PET is 
shown in Fig. 2. This strain vs. stress relationship can be expressed as: 

& = g(cr) (1) 

Similar strain vs. stress relationships from stack tests on newsprint and bond paper 
are presented by Piper (1994). Compressive strain and pressure are the negative of 
radial strain and radial stress respectively in Fig. 2. Superimposed on each graph is the 
fitted curve of the form in Eq. (2). 

An analytical e:q,ression is needed to determine the function g(cr) that 
characterizes a stack's strain vs. stress behavior. The most convenient solution is a 
single function g( er) that fits the stack test data. 1 The best fit was obtained from a 
combination of exponential functions and a linear function. 2 The function is: 

e = k
1
cr-k

2
(1- ek'")-k

4 
(I- ek'") (2) 

The two e:q,onential terms in Eq. (2), k
2 

(I - ek,cr) and k
4 
(1- ek,cr), describe the 

sharp rise and transition region of the curve shown in Fig. 2. However, as is 
characteristic of an e:qmnential function, each e,q,onential term reaches a steady state 

value. For the first e>--ponential term in Eq. (2), k
2 

(I - ek,cr), the steady state value is 

k
2

• The constant k, determines how fast the function rises to the steady state value. 

The linear term in Eq. (2) is included to fit the final linear region. 
The least squares method is utilized to determine the constants k

1 
through k; of 

function g(cr) in Eq. (2) that best fits the stack test data. Since the data and Eq. (2) is 
nonlinear, the constants are determined using a nonlinear least squares fit. 

NONLINEAR MODEL FORMULATION 

This section develops a non-linear winding model built from Umanskii's (1978) 
linear orthotropic model. The model incorporates the mil's non-linear radial stress
strain relationship as determined from a stack test. First the model assumptions are 
presented, then the stress equilibrium equation and strain-displacement relationships are 
utilized. Then the resulting second order differential equation and boundary conditions 
of the roll are presented. 

The model's assumptions are the same as Altrnann's (1968) and Umanskii's 
(1978) except that the radial stress-strain relationship is assumed to be nonlinear as 
determined from uniaxially compressing a stack of material. 

Equilibrium of a differential element of a stressed cylinder gives: 

1 A cubic spline would also probably work, but the spline segrmmt used would depend on the current er value. 
2 A constant term was intentionally omitted in performing the least squares fit to force the curve to pass through the 

origin. 
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da 
r--r +a -a =0 dr r o 

(3) 

This is the standard equilibrium equation in polar form. The circumferential and radial 
strains are as follows: 

(4) 

and 

du crw 
B =--U -

r dr or E11 (5) 

where aw is the original winding stress of that element when it first entered the roll. 

The second (aw) term in Eq. (4) is the circumferential pre-strain of each ring added to 

the roll as presented in Umanskii's (1978) original work. Nole that a radial pre-strain is 
included in Eq. (5) which was not included in Umanskii's (1978) original work.3 This is 
included because the entering web under the winding stress will be strained in the radial 
direction also due to the Poisson effect. 

The stress-strain relationships used for an orthotropic material in polar coordinates 
are: 

(6) 

cro Uer 
B =---a 

' E E ' ' " 
(7) 

The function, g( a,), is used because it describes the stress-strain relationship of 

the roll under pure radial stress. For a linear orthotropic material, g( a,) would be 

replaced by a, /E, . Equation (6) equates the rail's radial strain to the sum of two 

terms. The first is the material's radial strain due to pure radial stress. The second is 
the material's transverse (radial) strain under pure hoop stress. The second term is the 
classical Poisson effect where a material under uniaxial stress has a transverse strain 
directly proportional to the normal strain. 

Equation (7) equates the rail's hoop strain to the sum of two terms also. The first 
term is the material's hoop strain while under pure hoop stress. The second term is the 
material's hoop strain while under pure radial stress. This is not the classical Poisson 
effect, because the second term is nol proportional to the radial strain from the stack test. 
This is because wl1ile the material is undergoing large strains due to inter-layer air and 
surface roughness, a transverse strain proportional to the normal strain would not be 
e>.-pected. It is more realistic to e>.-pect the transverse strain to be proportional to the 

3Computer simulations show that including the rndial pre•strain changes the hoop stresses by as much as 20 %. 
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radial stress, not the radial strain. The constant of proportionality is obtained by 
assuming a linear, orthotropic material obeying Ma,,vell's reciprocal theorem.4 

The differential equation developed for the wound roll with a non-linear radial 
stress-strain relationship is expressed in terms of radial stress. The derivation of the 
differential equation in radial stress begins by rearranging the stress equilibrium 
equation (Eq. 3) and differentiating with respect to r: 

dcr, =rd'~, + 2 dcr, (S) 
dr dr· dr 

The Poisson's ratio term, u"', is assumed to be constant. Combining Eqs. (4) and (7) 

and differentiating with respect to r gives: 

du=E.+...:...[da,_u da,_daw] (9) 
dr r E, dr " dr dr 

Combining Eqs. (3) through (9) gives: 

d'a, 3da, I E, l+u" ldaw 
-,-+---+----,-ar --, g(a,)=--. -aw+---

dr rdrr- r r- rdr 
(JO) 

Equation (JO) is the second order differential equation that must be solved to 
obtain the internal stress field of the roll. In order to solve this equation for the radial 
stress, two boundary conditions are needed. 

The first boundary condition is at the core's outer radius. This states that the core's 
outer surface deflects linearly with the radial stress applied from the roll (Timoshenko, 
1967), or: 

This boundary condition at the core can be written as (Piper, 1994): 

--=- -+u -1 a +a da, l[(E, J ] 
dr b Ee or r w 

The other boundary condition is at the outer surface of the wound roll: 

when r:;:;;c 

(11) 

(12) 

(13) 

These two boundary conditions can be used to solve the second order differential 
equation for the radial stress. The ne:-.1 section e:-.11lains how the differential equation is 
solved using these boundary conditions. 

SOLUTION TECHNIQUE 

Equation (JO) is a nonlinear second order differential equation which does not 
have a closed form solution. Therefore, a numerical method is employed. Since one 

4Equation (7) was proposed by rvLR. Hubie, 11 Ph.D. candidate in the Mech. Eng. DepL of the University of 

Minnesota. It is also discussed in her Ph.D. thesis, which is not yet published nt the time of this writing. 
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boundary condition is at the core (Eq. 12) and the other at the outer surface (Eq. 13), 
this is a boundary-value problem. The specific numerical methods and the rationale for 
selecting them are briefly discussed here. 

Solution methods for boundary-value problems fall into three general categories. 
The first is a technique that reduces the problem to solving multiple initial-value 
problems. This is known as the "Shoaling Method." In this method, the initial value 
that satisfies the known boundary condition is solved for iteratively using an 
optimization scheme. The second general method involves writing the differential 
equation in a finite difference form. This results in a finite difference equation at each 
of a series of discrete points. The resulting system of equations can then be solved using 
standard methods. This is known as the Finite Difference Method. The third method 
divides the domain into subintervals or elements connected at points called nodes. The 
separate element equations are combined or "assembled" to give a set of equations which 
can be solved for the nodal values once the equations are adjusted to meet the boundary 
conditions. This method is the Finite Element Method. These methods are treated 
ex1ensively in numerical methods texts such as Gerald and Wheatley (1994). 

Since a single differential equation is available lo quantify tl1e stresses throughout 
the roll (Eq. 10), the complexity of a finite element solution was not justified. 
Furthermore, when t11e original differential equation is non-linear, the finite difference 
method yields a system of non-linear equations. In these cases Gerald and Wheatley 
(1994) state that the shooting method is normally preferred. Therefore, the shooting 
metl1od was used to solve the boundary-value problem. 

Equations (10), (12), and (13) describe tl1e boundary-value problem. To solve this 
boundary-value problem nsing the shooting method, the correct initial conditions must 
be determined so that the problem can be solved as an initial-value problem. Only one 
initial condition ( cr,) needs to be set since the other can be calculated using Eq. (12). 

Determining the correct radial stress at tl1e core is accomplished using a one 
dimensional optimization technique. This technique systematically reduces the design 
variable's initial interval of uncertainty to a desired interval where the merit function is 
at an ex1reme (maximum or minimum) value. In this case, the design variable is cr, at 

tl1e core. The merit function is the square of the radial stress at the rail's outer surface (r 
= c): 

Since the merit function is always positive, the desired interval of uncertainly is 
determined by evaluating where the merit function is a minimum lo be consistent with 
Eq. (13). 

The golden section search method was chosen as it reduces the interval of 
uncertainty while utilizing every merit function evaluation. This makes it a highly 
efficient optimization technique. 

The numerical integration metl1od used to solve each initial-value problem is a 
fourtl1 order Runge-Kutta method with automatic error checking. The automatic error 
checking feature automatically reduces the step size to meet a desired prescribed level of 
accuracy. 
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RESULTS 

This section discusses the experimental data obtained by Swanson (1991) and the 
stresses predicted by the nonlinear model. Swanson (1991) wound 152.4 mm (6 in) 
wide rolls of PET film, newsprint, and bond paper. Both Force Sensing Resistors 
(FSRs) and pull tabs were inserted in the rolls during winding to measure the pressure at 
three radial locations on the left and right side of each roll. 

The wound roll parameters and material properties of the PET, bond paper, and 
newsprint rolls are shown in Table I. All the rolls were wound using constant tension. 
Swanson (1991) wound FSRs and pull tabs into rolls at different radial locations to 
measure inter-layer radial pressures. FSRs are thin, flexible, resistance sensors which 
change resistance with applied pressure. Their application as a viable tool for 
measuring inter-layer pressures in wound rolls was investigated and confirmed by Fikes 
(1988). 

Pull tabs used by Swanson (1991) consisted of two strips of thin steel feeler gauge 
inserted end to end in an envelope of brass shim stock. A hand held force gauge was 
used to measure the force required to initiate slippage of the steel feeler gauge tab in the 
brass envelope. 

Swanson (1991) calibrated the FSRs and pull tabs in an lnstron testing machine to 
obtain pressure values from the resistance and force data respectively. There is large 
variation in the pressure data which is most probably attributed to the effect of cross-web 
thickness variation on the FSRs. Fikes (1988) showed the resistance across the FSR can 
vary by as much as 150% when the load is not centered on the sensor. Since the wound 
roll model assumes a web of uniform thickness, the model's predicted radial stresses are 
compared to the average of the left and right side data. 

PET film 
The model calculations for wound rolls of PET film are now presented. The 

predicted radial stresses are compared to the in-roll radial stress data measured by 
Swanson (1991). First the soft initial behavior of the stack is discussed. Then an 
analytical method of eliminating this initial softness is presented followed by the actual 
model predictions. 

Figure 2 shows the stress-strain relationship from stack test where a stack of the 
PET being wound is under uniaxial compression. The stack appears to be softer at low 
stresses then stiffens as the stress increases. This nonlinear behavior is most probably 
due to inter-layer air effects and contact asperities. 

The model is provided with a means to reduce or eliminate the veiy soft initial data 
by placing the origin of the strain versus stress curve at different locations on the data. 

For each new origin location, (cr 0 ,s 0 ), the stress-strain curve is obtained from the 

original stack test data using the following transformations: 

a'=cr-a 0 

E 1 =E-E 0 

(15) 

The adjusted stack test data for PET is curve fitted with the function of the type 
described in Eq. (2). The constants k

1 
tluough k

5 
were evaluated by tl1e least squares 

methodfororiginsplacedat cr 0 of69.0, 172.4,344.8,and689.5KPa. For cr 0 ofat 
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least 172.4 KPa, just one exponential term is sufficient to fit the data. Figure 3 shows 
the stress-strain relationship of a PET stack corresponding to placing the origin at a 
magnitude of 344.8 KPa. 

Using analytical expressions of the type in Eq. (2) for the original stack test data, 
the model did not converge on a radial stress distribution that made physical sense. The 
radial stress at the rail's outer surface was actually greater in magnitude than at the core, 
which violates the outer free surface boundary condition, and the hoop stress was 
negative. This suggests that the soft region of the stack test dominates the stack's stress
strain behavior. The roll is so soft that the web's decrease in hoop strain in the roll due 
to radial displacement is more than the hoop pre-strain, causing the residual hoop strain 
to be negative in the outermost wrap. 

The theoretical model converged for origins at magnitudes of 68.95 KPa and 
higher. The in-roll stresses corresponding to placing the origin at a magnitude of 68.95, 
172.4, 344.8, and 689.5 KPa are shown in Figs. 4 and 5. Figure 4 shows the predicted 
in-roll hoop stress profiles. Figure 4 shows that for a "soft" roll, the hoop stress is 
positive at the core. However, as more of the initial "soft" stack test data is eliminated, 
the hoop stress at the core goes negative and increases in magnitude. Since the radial 
stresses are greater in magnitude also, the layers squeeze down harder on the layers near 
the core, causing them to go into circumferential compression. 

Figure 5 shows the predicted radial stress profiles. With the origin at 68.95 KPa, 
the radial stress is maximum at the core and decreases to zero at the outer roll surface. 
This is quite different from the C:\')lcrimental data obtained by Swanson (1991). The 
data shows the pressure as increasing from the core into the roll before decreasing as the 
rail's outer surface is approached. This is encouraging as this adjusted stack test data 
may still exhibit some air entrainment effects causing the stack to be somewhat soft 
compared to the core. Therefore, the shape of the pressure profile for this case is to be 
expected. 

The radial stress profile starts lo resemble the e:\')lerimental data in both magnitude 
and shape when the origin is placed at 172.4 KPa. The maximum radial stress is now 
not at the core but at a location in the roll. The magnitude of the radial stresses are 
higher because the roll is stiffer as more of the assumed air effect is eliminated. The 
root mean square error is used to quantitatively indicate the agreement between the 
calculated radial stresses and experimental data. The root mean square error is 110.3 
KPa. 

The in-roll radial stresses corresponding lo placing lhe origin al a magnitude of 
344.8 KPa fit the e:\')lerimental data best. The root mean square error between the 
predicted radial stresses and experimental data is 43.44 KPa. 

The in-roll radial stresses corresponding to placing the origin at a magnitude of 
689.5 KPa are larger than the experimental data, and the root mean square error is 
158.6 KPa. 

Piper (1994) showed the predicted in-roll radial stresses are larger than the 
e:\')lerimental data with a root mean square error of 276 KPa when the origin is placed at 
a location where the original stack test data exhibits a more linear character. 

These results show that the predicted in-roll radial stresses agree best with the 
ex')lerimental data when the origin of the stack test data is placed at 344.8 KPa. Figure 
6 illustrates how this "best fit" solution compares with Hakiel's (1985) model. Note that 
Hakiel's predicted radial stresses were obtained directly from Swanson (1991) at the 
specific radial locations. The root mean square error between Hakiel's predicted radial 
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stresses and the exiierimental data is 1.172 MPa. 

Newsprint 
Like the analysis for the PET, the model was run with sections of the stack test 

data eliminated. A curve was fitted to the stack test data with origin locations of 34.48, 
68.95, 137.9, and 206.9 KPa. 

For the original stack test data and the origin at 34.48, 68.95, and 137.9 KPa, the 
model did not converge on a solution that made physical sense. lu all cases, the radial 
stress at the outer surface was greater than at the core, which violates the rail's outer free 
surface boundary condition, and the hoop stress was negative. 

Placing the origin at 206.9 KPa, the solution converged. The corresponding in-roll 
stresses are shown in Figures 7 and 8. The hoop stresses are slightly negative in the 
middle region of the roll. The radial stresses are significantly lower in magnitude than 
the experimental data. However, the shapes seem to be similar. Piper (1994) showed 
tl1e in-roll stresses for a linear stack stress vs. strain curve are similar to those in Figs. 7 
and 8. 

Figure 8 shows the model developed in tl1is thesis is no better than Hakiel's (1985) 
model at predicting the in-roll radial stresses for newsprint. However, the e,-iierimental 
data is bounded below by the model developed in this work and above by Hakiel's (1985) 
model. 

Bond uauer 
Like the analysis for PET and newsprint, the model was run for wound rolls of 

bond paper with sections of the stack test data eliminated. For the origin at 34.48, 
68.95, and 137.9 K.Pa, the solution did not converge as in the case of the original stack 
test data 

For the origin at 275.8 KPa, the solution converged. The predicted hoop stress 
profile for bond paper is similar in shape to newsprint as shown by Piper (1994). The 
corresponding in-roll radial stresses are shown in Fig. 9. The root mean square error 
between the predicted radial stresses and the experimental data is 82. 74 KPa. Figure 9 
shows the model's radial stress predictions compared to Hakiel's (1985). Hakiel's (1985) 
model produces superior results for this material. The root mean squared error between 
Hakiel's predicted radial stresses and U1e experimental data is 48.27 KPa. However, as 
for newsprint, the experimental data is bounded by both models. 

Piper (1994) showed Uiatfor U1e origin in tl1e linear region oftl1e original slack 
test data, the in-roll stresses are similar to those ,vith the origin placed at 275.8 KPa. 

CONCLUSIONS 

This section summarizes the work conducted and presents the conclusions drawn 
from this work. 

A non-linear, orthotropic model has been developed based on Umanskii's linear 
model. This model uses the non-linear stress-strain relationship of a stack to represent 
the rail's radial stress-strain behavior. A linear combination of a straight line and two 
eC\iionential functions were found to describe the strain as a function of stress of a stack. 
The best curve fit was determined using the least squares method. The function was 
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found to fit the stack test data of all three materials tested: PET, bond paper, and 
newsprint. 5 The fitted curve was within I% of the data for all three materials. 

In-roll stress profiles were generated for PET, bond paper, and newsprint rolls 
using tl1e non-linear model. The radial stress profiles were compared lo experimental 
data obtained by Swanson (1991) who wound FSRs and pull tabs into the rolls. For all 
three materials, some portion of the stack test data had lo be eliminated to obtain a 
solution that made physical sense. This gives credence to Forrest (1993) who contends 
that stack tests should be conducted in a vacuum chamber to reduce the inter-layer air 
effect. 

For PET, good agreement with the e,qierimental data was obtained when the stack 
test data below 344.8 KPa was eliminated. Placing the origin in the linear region 
worked as well as the nonlinear model for newsprint and bond paper. For newsprint, 
tl1e Umanskii-based models predicted radial stresses about 20% of the e>,.-perimental 
data. For bond paper, the Umanskii-based models predicted radial stresses about 30% of 
the e>,.-perimental data. 

Based on the limited data set for the PET rolls analyzed, placing the origin of the 
stack test data al approximately the radial stress at the core appears to produce the best 
agreement between the Umanskii-based non-linear model and e,--perimenlal data. 
However, eliminating tl1e non-linear region of the stack test altogether still lead to 
substantially under-predicting the stresses measured in the paper rolls. 

The best prediction obtained from tl1e new Umanskii-based model for a PET roll 
was substantially better than that provided by the Hakiel (1985) model. However, the 
Hakiel model worked as well as the new non-linear model for newsprint and 
outperformed the new non-linear model for bond paper. Nevertheless, the Hakiel model 
and tl1e new non-linear model provided approximately equally spaced upper and lower 
bounds for both paper rolls. Thus the results of this study would indicate that both 
models may have conunercial value. 
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Fig. 3 PET stack test data and curve fit for cr, = 344.8 KPa 
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Fig. 6 Predicted radial stress for PET compared to Hakiel (1985). 
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Hakiel's data is taken directly from Swanson (1991). 
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Fig. 7 Predicted hoop stresses for newsprint with cr O = 206.9 KPa . 
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Fig. 8 Predicted radial stresses for newsprint compared to Hakiel (1985). 
Hakiel's data is taken directly from Swanson (1991). 
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Fig. 9 Predicted radial stresses for bond paper compared with Hakiel's model. 
Hakiel's data is taken directly from Swanson (1991). 
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PET a= 38.1 mm (1.5 in) b = 45.97 mm (I.SI in) 

c = 114.3mm (4.5 in) Uor =0.3 
E, =3.07 GPn er w = 6.895 MPn 

Eh = 689.5 MPa Uh =0.33 

Newsprint a= 38.1 mm (1.5 in) b = 45.97 mm (1.81 in) 

c = 127 mm (5.0 in) Uor = 0.3 

E, =3.37 GPa er w = 6.895 MPa 

Eh= 689.5 MPa Uh = 0.33 

Bond paper a= 38.1 mm (1.5 in) b = 45.97 mm (1.8 I in) 

c= 127mm (5.0 in) uor=0.3 
E, =3.82 GPa er w = 3.45 MPa 

Eh = 689.5 MPa Uh = 0.33 

Table 1. Wound roll properties (from Swanson, 1991). 
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Piper, C. 
A Nonlinear Model to Calculate the Stressed State of a Center-Wound Ron 
6/19/95 Session I 10:45 - 11: 10 a.m. 

Question - You use significant cropping of your data and I just wanted to point out that if 
you use the energy solution method the energy under the curve is very small at those low 
levels and it does come out in the solution, so you can use the stack test data directly and 
you don't have to manipulate it by cropping it artificially. That's another approach you 
might want to consider in your work. Also, the Umanskii model the first curves you 
showed of it showed that it predicted only 25 percent tension in the outer rack as anyone 
who has done winding knows there is significant tension in the outer wrap all you need to 
do is slice that wrap off with a razor cut and you will see it spring apart; that's known as 
the Cameron Gap Test to the old people in the industry, but its wen known that a 
significant amount of tension is contained in the outer wrap, so I'm a little curious as to 
whether the Umanskii model is valid for that reason. 

Answer - I haven't looked at any literature that presents the actual tension in the outer 
wrap. That's something that if I'm looking al this model further, I would do. 

Question - Chris one thing I noted in your paper, you blame some of the none correlation, 
if you will, between data and model on air entrainment, as I read the paper I couldn't get a 
good grasp of what sort of air entrainment would be expected in your experimental tests. 
There were no winding velocities I saw no roughness for the PET and for the newsprint 
and this sort of thing; and quit frankly you've reany got to wind newsprint reasonable fast 
to really get some air entrainment effects into it because the air penneates out through the 
substrate. I guess what sort of velocity were you winding at or what was Ron winding at. 

Answer - This experimental data was taken by Ron Swanson, it was work he did at OSU, 
Ron is also an employee of 3M, as far as I understand that was a 50 to I 00 ft per minute 
range which is in the 15 to 16 to 30 meters per minute per range. I guess if you look at 
entrapped air during winding its a function of velocity and radius of the surface 
roughness, wouldn't think that air entrainment would be important under those winding 
conditions, it wouldn't be dominant. 

Question - Wen you say that's the predominate difference why the model does not meet 
the experiment data. Ron's in the audience, do we know what that Web was? It was a 
polyester, was it a 3M polyester? 

Answer-No. 

Comment - So it was either the 442 or 377 or the S, one of those, OK very good. As wen 
as the winding velocity in things that were used, right? 100 feet per minute; very good. 

Thank you. 
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