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ABSTRACT 

A dancer subsystem may be used as a tension measurement or as a 
disturbance attenuator depending on its design. The design of a dancer subsystem 
to accomplish a desired result requires the development of a dynamic model for 
the subsystem. This paper presents the results of a generalized dynamic model of 
a dancer subsystem. Examples are presented to illustrate the behavior of an 
unwind-rewind web transport system which incorporates a dancer subsystem, and 
which has periodic disturbances from an out-of-round unwinding roll. 

NOMENCLATURE 

A Cross-sectional area of web 
b Width of web 
Br Rotary friction constant of bearing 
¼ Damping coefficient 
E Modulus of elasticity 
h Thickness of web 
J Polar moment of inertia of roll or roller 
k, Spring constant 
L Length of web span 
M Mass of roller 
R Radius of roll or roJler 
s Distance measured along the web 
t Web tension 
T Change in web tension from a steady-state operating value 
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v Roller velocity 
V Change in roller velocity from a steady-state operating value 
x Displacement of dancer roller 
X Change in displacement of dancer roller 
li Effective translation of a roller 
E Web strain 
p Web density 
8 Angle of wrap of web over a roller 
,: Time 
,:b Brake torque 
'Cm Motor torque 
µv Amplitude of sinusoidal disturbances 

Subscripts: 

0 Initial steady state 
n 1,2,3, ... 
r Reference signal 

INTRODUCTION 

A dancer subsystem may be used as a tension measurement or as a 
disturbance attenuator depending on its design. For different applications, a 
dancer subsystem may be designed with a dancer roller and attachments such as a 
pneumatic cylinder, a spring, and a damper. 

The dynamic behavior of a dancer subsystem is influenced by the following 
parameters and variables: (i) the diameter, the mass, and the mass moment of 
inertia of the dancer roller (ii) the angle of wrap of the web over the roller (iii) 
the parameters of the attachments, and (iv) the forces and torques acting on the 
roller. 

Marhauer (D has studied a spring-loaded dancer subsystem used for tension 
measurement. A simplified model was developed but without considering the 
rotary dynamics of the dancer roller and the interacting dynamics between the 
roller and web. Marhauer's model is good for understanding the effects of the 
spring stiffness on the accuracy of the tension measurement. However, the model 
is not adequate for studying the capability of a dancer subsystem for disturbance 
attenuation. 

Tension disturbances transport over a roller because of the rotation of the 
roller. For a dancer roller, the disturbances can be attenuated significantly 
because of the linear translation of the roller. Such counter effects of the rotation 
and translation of a dancer roller on the incoming web tension disturbances was 
described by Pfeffer (2). A classical dancer subsystem partially absorbs tension 
variations. Martin Q) claimed that complete absorption of the disturbances can be 
achieved if the rotary moment of inertia is precisely balanced with a moment of 
inertia based upon the translational inertia. 

However, the Martin approach does not result in attenuation of disturbances 
when the dominant frequency of the disturbances is close to the resonant 
frequency of the web/dancer subsystem ®· To prevent the occurrence of system 
resonance, the dancer subsystem should be designed so that the subsystem does 
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not have a resonant frequency close to any potential disturbance frequency. 
This paper presents a generalized model for a dancer subsystem where the 

dancer roller moves in the vertical direction. Examples are presented to illustrate 
the behavior of a web transport system which incorporates a dancer subsystem, 
and which has periodic disturbances from an out-of-round unwinding roll 

MATHEMATICAL MODEL FOR A DANCER SUBSYSTEM 

Figure I shows a dancer subsystem which includes a dancer roller, a lead-in 
roller, a lead-out roller, a pneumatic cylinder, a spring, and a damper. The 
dancer roller only moves along the central vertical line between the lead-in and 
lead-out rollers. Assumptions listed below facilitate the derivation of the system 
model: 

I.The displacement of the dancer roller is very small in comparison with the 
length of the supporting web spans. 

2. The change of the wrap angle of the web over the dancer roller due to the 
displacement of the roller is negligible. 

3. No slippage occurs between the dancer roller and the web. 
4. The dynamics of the lead-in and lead-out rollers are negligible. 
5. The web thickness is very small compared to the radius of the rollers. 
6. The cross-sectional area of the web is invariant. 
7. The web strain is very small (strain << I) so that the web can be considered 

perfectly elastic. 
8. The strain is uniformly distributed across the width of web. 

Applying a force balance on the dancer roller gives: 

where the spring force, f5, is proportional to the displacement of the dancer 
roller from its neutral position, 

(1) 

(2) 

the damping force, fd, is proportional to the translational velocity of the dancer 
roller, 

(3) 

and the force, f0 , generated by the pneumatic cylinder is invariant. 
Applying a torque balance on the dancer roller gives: 

J 
. 2 

n Vn = -Brn Vn + Rn (In· tn-1). (4) 

MATHEMATICAL MODEL FOR A WEB SPAN 

Figure 2 shows a schematic diagram of a web span. If it is assumed that no 
slippage occurs between the rollers and web, the law of conservation of mass can 
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be written as: 

I.
Lo 

_d_ Pn Ands= Pn-1 An-I Vn - Pn An Vn+I • 
di 

' 

(5) 

If the web is assumed perfectly elastic, Hooke's law can be written as: 

(6) 

where [lnlv and [Enlv denote the tension and strain in the web respectively, and 
which are created due to the velocity difference at the ends of the span as shown 
in Figure 3{a). 

Through considering an infinitesimal element in the web span of length ds, 
Equations (5) and (6) can be combined to give the following nonlinear 
differential equation (i): 

Web tension also is influenced by the translation of a roller as shown in 
Figure 3(b). The change of web tension is proportional to the effective 
translation, lin, in the direction of the web span: 

(7) 

(8) 

where [lnld denotes the web tension which is created due to the roller translation. 
As shown in Figure 4, the effective translation of a vertical-displacement 

dancer roller is 

On = Xn sin(Sn/2) 

From assumption 7, 

Combining Equations (7) through (10) gives: 

Ln in= Vn+1En An(! - _tn_ + Xn sin(Sn/2)) -
En An Ln 

(9) 

Vn En An (I - 1n-t + Xn sin(Sn/2)) + Xn sin(Sn/2) (11) 
En-I An-I Ln-1 

Equations (I) and (11) are coupled because of the consideration of the roller 
effective translation that describes the interaction between the dancer subsystem 
and web. 

EXAMPLES 
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Consider the unwind-rewind web transport system shown in Figure 5. The 
system dynamic equations are as follows: 

.. . 
M2 X2 = -Cd X2 - k5 X2 - (T1 + T2) sin(82i2) (15) 

The unwinding roll is resisted by a brake torque, tb, which determines the 
average tension level in the system. The rewinding roll is driven by a motor and 
the speed of the motor is controlled by a feedback controller. It is assumed that 
the dynamics of this speed control system are negligible compared to the 
dominant dynamics of the system. 

First, consider a free-dancer subsystem (i.e., k, =Cd= 0) with an inertia­
compensated dancer roller. An inertia-compensated roller has the foJlowing 
relationship between its mass and mass moment of inertia (:l): 

(18) 

Now, suppose the dancer subsystem is subject to periodic disturbances from 
an out-of-round unwinding roll that are equivalent to sinusoidal disturbances on 
the roll velocity, i.e., 

(19) 

where µy denotes the amplitude of the sinusoidal disturbances. 
The system equations were solved in the time domain based on the initial 

conditions and the parameter values given in Table 1. Also, the same system 
without the dancer subsystem was considered for comparison. The system tension 
responses to the disturbances from an out-of-round unwinding roll are plotted in 
Figures 6(a), 6(b), and 6(c) for the cases without the dancer subsystem, with a 
classical dancer subsystem, and with an inertia-compensated dancer subsystem, 
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respectively. The results show that without a dancer roller web slackness or 
buckling may occur if the operating tension level at the unwinding section is low. 
Web slackness can be prevented by incorporating a dancer into the system. As 
shown in Figures 6(b) and 6(c), the magnitudes of the tension changes have been 
reduced by incorporating a dancer subsystem into the web transport system. The 
inertia-compensated dancer subsystem produces similar results as those with the 
classical dancer subsystem; the former subsystem does not completely absorb the 
disturbances as claimed by Martin Q). 

The resonant frequency of the web/dancer subsystem for the web transport 
system studied is 

Resonant Frequency = -1-
21t 

(20) 

When R1 = 75.9 cm (30 in), the frequency of the disturbances is 3.2 Hz. This 
frequency increases as the processing continues and the unwinding roll radius 
decreases. When R1 = 38.0 cm (15 in.), Figure 7 shows that the disturbances with 
frequency 6.4 Hz are amplified by the inertia-compensated dancer subsystem. 

Consider the system in Figure 5 subjected to a step change in the rewinding 
roll reference velocity from an initial steady-state condition, v3,o. The same 
system conditions and parameter values given in Table 1 were used for simulating 
the system tension responses for a step change of V 3, = 0.05 m/sec (IO fpm). 

Figure 8(a) shows the tension responses for the cases with an inertia­
compensated dancer and without a dancer subsystem. The change in the tension in 
the web spans during the transient is substantially greater for the system without 
the dancer than the system with the dancer. That is, the dancer subsystem for this 
case acts as a low-pass filter and not as a suitable tension measurement device. 

A spring-loaded dancer normally responds to tension variations faster than a 
free dancer does. As the stiffness of the spring increases, the influence of the 
dancer on the system dynamics decreases. Figure 8(b) shows the step responses 
for the system with high spring stiffness (k, >> l, such as a load cell). The 
responses are very close to those for the system without a dancer. That is, for this 
case the dancer subsystem acts as a high-pass filter and serves as a suitable tension 
measurement device. 

CONCLUSIONS 

This paper presents a generalized model which includes the dynamics of a 
dancer subsystem and its interacting dynamics with the web. The model can be 
used to study the dynamic behavior of a dancer subsystem when it is used for 
disturbance attenuation or for tension measurement. 

An inertia-compensated dancer subsystem is useful for disturbance attenuation 
providing the disturbance frequency is well below or well above the dominant 
natural frequency of the system. The manufacturer's claim of complete rejection 
of disturbances is overstated! 

In the design of a dancer subsystem, the possible occurrence of system 
resonance should be considered. The system model can be used to select 
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appropriate system parameter values or web processing speed to avoid the 
potential of operation near resonance. 
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Table 1 System Conditions and Parameter Values for Simulation 

To= 98.3 N-m (70 !bf-ft) 
VIO = V20 = VJ0 = 15.2 m/sec (3000 fpm) 
t10 = 120 = 5.2 N/cm (2.8 pli) 
L1 = L2= 0.9 m (3 ft) 

E1 = E2= 2.4*10 9 N/m2 (350,000 psi) 
b1 = b2= 25.3 cm (IO in.) 
h1 = h2= 2.53*10-3cm (I mil) 

Bn = B12= B□ = 0 
Cct=O 
R1 = 75.9 cm (30 in.) 
R2= 7.6 cm (3 in.) 
RJ = 15.2 cm (6 in.) 
M2= 15.2 N-sec 2/m (1 slug) 

J1 = 175.5 N-m-sec 2(125 lbf-ft-sec 2) 

12= 0.088 N-m-sec 2(O.O63 lbf-ft-sec 2) 
J3 = 14.0 N-m-sec 2(10 lbf-ft-sec 2) 
82= 180° 
µv = 0.152 m/sec (30 fpm) 
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Fig. I Schematic of a Dancer Subsystem 

Fig. 2 Schematic of a Web Span 
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(a) tension variation due to the incoming tension 
and the velocity difference of the rollers 

tn-1 Vn [In] V Vn+l -r,..... -'-+.,--,---------,T.:\~+ 
\.:__J Ln En An \.:__,; 

(b) tension variation due to the translational 
displacement of the roller 

[In] d 

Ln En An 

Fig. 3 Dominant Factors Which Influence Web Tension 

Fig. 4 Geometry of the Displacement of a Dancer Roller 
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Fig. 5 Unwind-Rewind Web Transport System 
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(a) without dancer 
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(b) with classical dancer (J2 = 0.047 lbf-ft-sec2) 
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(c) with inertia compensated dancer (J2 = 0.063 lbf-ft-sec2) 
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0 1 sec 2 3 

Fig. 6 Tension Variations due to the Sinusoidal Disturbances, 
R1 = 75.9 cm (30 in.) 
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Fig. 7 Tension Variations in the System with Inertia-Compensated Dancer 
due to the Sinusoidal Disturbances, R1 = 38.0 cm (15 in.) 
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(b) k, >> I 
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Fig. 8 Tension Responses to the Step Change of V 3, = 0.05 m/sec (10 fpm) 
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QUESTIONS AND ANSWERS 

Q. In addition to a dancer subsystem, a driven roller also can attenuate system 
tension disturbances. What's the difference between a dancer subsystem and 
driven roller on the attenuation of tension disturbance~? 

A. Yes, you are right. A driven roller or an idle roller does attenuate tension 
disturbances somewhat. But, driven and idle rollers have no translational 
displacement. Such displacement is a dominant factor for disturbance 
attenuation. As shown in the paper, a dancer subsystem does significantly 
(although not completely) attenuate tension disturbances if the translational 
inertia of the dancer roller is designed in good balance with its rotary inertia. 

Q. Is the dancer subsystem considered in this paper the same as that considered in 
the Martin's inertia compensation? What's the difference between the Martin's 
mathematical equations and yours? 

A. In the Martin's derivation of inertia compensation, only the rotary and 
translational dynamics of the dancer roller are considered. Since the rotation 
and translation of a dancer roller have the opposite effects on the web tensions, 
the effects can be canceled if the moment of inertia of the dancer roller is 
equal to its mass times radius square. That is the basic concept of inertia 
compensation. However, if web dynamics and the interaction between the 
dancer roller and web are considered, the concept of inertia compensation is 
no longer adequate, especially when the dominant frequency of tension 
disturbances is close to the system natural frequency. 




