By
GLARLO DUYLe BUYTOLS
Bechelor of Sctence Dast Contral State College
Ada, Oklahoma
195

Subnitted to the facalty of the Gradaate School of the Klahoma State University of Asricinture and spplied science in partial fulfilluent of the requirements for the desree of Ehbidit Of BCLDCE way, 195%

A SYLLABUS FOR A UNIT ON HUKAN HEREDITY

FOR SECONDARY BIOLOGY

Report Approved:

ACKMOMLODCUSMBS

The mater $2 s$ mreatly indebted to Dr. Janes Zant, and Dr. W. Merbert Braneau for critical reading of the study and valuable succestions, also to the conuittee on selection of Institute participants for sivine the author the oportunity to study at this mniversity.

Thide of corturs
Chapter Page
T. TaE rioblut 1
The Problen Stated 1
Furpose of thes study. 1
Linitations of this Study 2
Plan of Procedure. 2

1. RISTORICAL BRCRGMOUD 4
TII. BEIUSIS 9
IV. GEMDLIAR LumS. 15
 20
 26
 30
 32
1x. ©OMCLGION 33
BLBTGADMT 39

LIST OF FIGURES

Figure Page

1. The Four Chromosomes 11
2. The Partnershi 11
3. The Chromosones Duplicated 11
4. First Division in Zeiosis 12
5. Second Division in Heiosis. 12
6. First Generation. 22
7. Second Generation 22
8. Result of Different Combinations of Chromosomes 25
9. Possible Blood Types. 27

Chared I

THE PROLRA

The Problen Stated

It is evident that almost overyone is interested in herodity, especlally the herodity that is related directly to their lives. It is a subject whin appeata to all age grongs, the adolescent by or girl, the bride and groon, and the mature person. High school students have shom unusual interest in genetics man pencrally want to know more aboat human heredity However it should be noted that the average youth leaves high school with very little knowledge about haman heredity. This is unfortunate in the light of the fact that completior of high school ends the formal schooline of many students.

Because of these reasons the writer decided to prepare ai syllabus for a unit on human heredity for high school biology.

Purpose of this study

The parpose of this shwiy is three fold: (1) to provide the writer With a satiseactory monledge of a rew selected characteristics of the ricid of human heredity thet ma be easily comunicated to high school blology stucents; (2) ta present a seneral suide which poda serve as resource material for teaciers in the teachanc of fuman heredty on the high school level, and (3) an attengt to build up a background of information about human heredty and provide suticisent reforence for the
teacher to proceed to further studies in particular areas of this topic that he may choose.

Linitations of this Study

This study is limited by several factors. First, since there is so much literature on this subject, hence this stuay will be a survey of the field rather than an attempt to thoroughly investigate it. Secordly, in order to limit the area of study so that adequate treatment could be given to the ideas presented, it has been necessary to select a few topies out of many related and equally important topics. Thirdly, since the mechanism of heredity is so linked with the process of reproduction, it is not possible to get a clear picture of heredity without some understandine of this body function. However information on this topic has been omitted from this study because it is likely that most individuals who read this report mill have a basic knowledge of reproduction.

Plan of Procedure

Generally, this study has been based mostly upon elementary literature in this field. Information was gathered from many different sources. A variety of textbooks on genetics have been surveyed as well as many other books, articles, bulletins, and other research studies devoted to some specific area of the study of genetics.

The first part of the study has been devoted to the historical background of genetics. Mendelian Laws and their application to human heredity have been studied.

Throughout the study the use of hereditary characteristics in man has been used to illustrate such factors as multiple alleles, sex-determanation,
scx-linced, and acx-mphenced characterisutco. Whe Last part of whe repart involwad the stiviy on inkage, crocsing over, and several charactoristios inhented by man.
post of the stady prosente data mon the literatare usod. It is gaite besic to the exert in this ficlu. However, the material hes been grespatad in Buch way that it may be easily commaicated to the hish school stadant.

CHAPMER II

HISTURICAL BACKGROUND

Wost of our knowleage in the field of genetics has been developed since the begining of the present century. As we search back into the history of scientific thought, however we find that speculations on the nature of heredity are as ancient as the history of mankind.

The first accounts of definite attempts to formulate an explanation for conception and irheritance were largely speculation, with little, if any, support. Pythagoras, 500 BC , proposed the theory that a moist vapor descends from the brain, nerves, and other body parts of the male during coitus and that from this, similar parts of the embryo are formed in the uterus of the female. This would give us some explanation of the transmission of likeness from the male parent to the offspring, but leaves unclear hor the ferale could transmit any qualities.

Abont two hundred years later Aristotle proposed that the senen of the male was produced from the blood, and that it was, in fact, highly purified blood. In such a purified state, it possessed the ability to give form to a new life. The nenstrual fluid of the woman was supposed to be semen also, but the woman did not have the pomer to acheive so high a degree of purification of blood as the man. This less purified semen was supposed to furnish the building material while the male furnished the Iife-givin power, which enabled this material to be formed into an embryo.

Little of importance relating to heredity was discovered, fron the
time of the Greeks until about the eishteenth century. The idea that both male and feamle must contribute sonething to the enoryo, as Aristotle had done, was recognized and some anendments were made in these ideas.

In the later part of the seventeenth century anton van Leeuwenhock with the use of his microscope, observed living sperms in the semen of animals. Ile also moted the association of the sperms with the eges of frogs and fishes and believed that the sperm furnished the life of the embryo while the egg provided a place for the nourishaent and development of the embryo.

Jan Swamerdam developed the preformation theory, which held that the development of the embryo was actually only the enlargement of parts that were already present in the sperm or egg. Some scientist of this time even imagined that they could see a miniature human being inside the sperm. 1

There was much disagreenent with the idea that the spera was the sole agent of heredity and it was pointed out that children often show physical characteristics wich are found in the mother and not in the father.

A Dutch scientist, Regniex de Graaf studied the ovaries of manmals and noted the protuberances wich he interpreted as epss which were sim ilar to the eges of birds. He bebieved that the egg breaks from the ovary, is fertilized, and makes its way to the uterus for development.

During the eighteenth century a Fienchman, Pierre-Louis foreau de Mapertuis, thoroughly disagreed with the idea of prefomation, for he felt that a consideration of the plain facts of biparental inheritance mied out the idea that one parent formed a miniature preformed embryo.

[^0]He proposed the belief that both parents produced senen which united during coitus to form the ombryo. The semen, he believed, was made up of tiny particles, each of which was destined to form some specific body part, and that two such particles, one fron each parent, unite to form each body part. One of these might dominate the other, however, to rake a child more like one parent in this one respect. All of this sounds very much like the conclusions dram by hendel over a century later.

Many other theories were advanced such as the encasenent theory which stated that each prefomed enbryo contained the still smaller preformed embryos of the generations to cone.

In the latter part of the eighteenth century Jean Baptiste Lamarck proposed the significance of "use and disuse" and the inheritance of acquired characteristics. He held, for instance, that giraffes have long necks because they have stretched then reaching for food through the ages. He believed it was the habits and mamer of life and the conditions in Which its ancestors lived that have in the course of time fashioned its bodily form, its organs, and its qualities.

Charles Darin proposed the hypothesis of pangenesis. According to this every cell, tissue, and organ produces minute pangenes. These are collected throughout the body by the currents of blood or other fluids and becone a part of the gern cell. These pangenes are passed on to the offispring and they recreate these cells, tissue and organs from whence they came, thus a child represents a blending of the qualities of its two parents.

August von Weismann formulated the germ plasm theory, according to which all organisms possess a special germplasm which preserves itself by repeated divisions. These germ cells were merely carried by the body and
were in no way influenced by what happened to the body during its lifetime. The hereditary factors which a person can transmit to his offspring are detemined at the time his life begins as a single cell and there is nothing he can do to alter the trait which may be transmitted through his reproductive cells.

This theory does not appeal to the imagination as much as the idea of the inheritance of acquired characteristics, but it is essentially correct. Kany people would prefer to believe that soraehow their attainments in life can be transmitted to their children; it seems frustrating to think that each individual must build each achievenent anew. ${ }^{2}$

In 1901, Hago De Vries proposed his mutation theory, that living organisms occasionally but regularly produce new types of offspring through sudden changes, mutations, in the hereditary mechanism. These matations, he believed, were a much greater factor in evolution than the small gradual changes which Darwin thought to be so important. It was evolution through a series of sudien jumps. We now know that sudden changes in the units of heredity do take place to produce new types of organisms and that these changes are very important in providing new characteristics for selection.

Gregor Mendel discovered the principles of heredity for which he is called "the father of nodern genetics". Mendel's greatest discoveries were made possible by the care with which he planned his experinents, his careful records of all phases of his work, and the mathomatical precision with which he analyzed his results. Also he contimed his experiments long enough to accumalate data in large enough quantities to have statis-
24. if. Winchester, Heredity and Your Life (Rew York, 1956), p. 31.
tical significance.
Sone of the details of lemdel's results are given later. Sufrice to say at this pont that he discovered the fundauntal basis for the inherEtance of characteristice, which hold true for all forms of life. fendel presented the results of his work in 1865. In spite of the great significance of his findings, the world took little note of his paper.

It was not until the begrining of the present century that the result of Lendels work and their great, significance were to becone known to the scientiric morld. At this time several investifators began checking the literature in an effort to explain some of their own results from hybridization, and they soon recognized the fmportance of fendel's work. Wost of ow presert day knowledge of genetics dates from the time of this rediscovery.

Within the scope of this report the writer cannot begin to mention all the many outstanding mon wo have built our genetic knowledge during the present centurg. However the writ of mary of them will be referred to in Later chapters.

In man as in other plants and other animals, the key to an understanding of the laws of heredty lies in an anderstanding of the behavior of the chromosones at the time of cell division. phis is because the untts of heredity, the genes, are, fith vory fea exceptions, as integrel part of the chromsomes.

There are regalarly two of each kind of gene in cach cell. These two genes are found on two different chrowosomes within the cell, and the two chromosones will almays be similar to one another. The chromosomes within any cell may be of different lengths and shapes, but for every chromone of a given lench and shape there is, as a rule, another like it. These are called homologous chronosomes, and each bears the same type of genes in the same sequence. For instance if you carry a gene near the center of a V shaped chronosome wich affects the pignentation in your cyes, there mill always be another V-shaped chromosone of the sane kind which will carry a gene for eye pignentation at a corresponding 1ocus. This is true of all chronosones with an exception winich will be covered in conection with sey-detemination. Trus the human chronosones may be growed into twenty-four pairs. These twenty-four wars are found In all of the body cells except the reproductive cells, but the mature human eperm ard ege each contain only twenty-four single chromosomes, one of each of tho different kinds. This condition is brought about through
the process of meiosis. Pssentially the process conststs of two successive cell divisions accompanied by only one splitting of the chromosomes, resulting in a reduction in the nuber of chromosomes from the dipioid number to the haploid number.

This number of chromosones (48) has had general acceptance since 1923 however since 1956 fifteen individuals have been reported to have 46 chromosomes. Some Japanese state that there is no doubt that this number (46) exists in man, but this is not the only possible number in the species; besides inaividuals with 16 chromosones, some with 47 and others With 48 exist. ${ }^{1}$

The number of Whites and Japanese studied so far are too small to provide the basis of reliable estimates of the frequencies of the three karyotypes in the two ethnic groups.

An obvious function of meiosis is the maintenance of a constant chronosome maber in the species, for without it as a consequence of fertilization, there would be a doubling of the chromosome sets in each generation. A second function of meiosis is to serve as a physical mechanism for the segregation, assortment, and recombination of the genes.

A conplete discussion of the process of meiosis will not be given in this report because this infomation is obtainable from alnost all the references used. It was the belief of the writer that simplified methods of presenting this material to high school students would be of more value.

In order for the student to better understand what happens to the chromosomes when a cell divides a model using several strings of beads

[^1]may be used to represent she chromosomes.
We rill assune in this model the cell has form chromosomes: two long and two short chromosones. Use a red siring of polyethylene popbeads to represent one of the long chronosomes and a green string of beads to represent the other long chromosone. A short blue string and a short yellow string represent the pair of short chromosomes.

00000000	00000000	000000	000000
red	green	jellov	blue

Fig. 1. The Iour chromosomes

The first significant thing that happers during metosis is the forming of partnerships. The two long chromosomes come together. Also the two short chromosomes cone together as shown in Pig. 2 .

red	0000000000	000000	yellow
green	0000000000	000000	blue

Fig. 2. The partnership

The next thing that happers is duplication, however, this does not yet involve the centromeres, the bodies shown as smal circles, in the center of the chromosome.

red	0000900000	000000	yellow
	000000000	000000	
green	0000900000	000000	blue

Fig. 3. The chromosones duplicated

In meiosis there are two divisions. First, there is the separation of the partner chromosomes. That is to say, the original red chromosome and its duplicate separate from the original green chromosome and its
duplicate. The yellow chromosome and the blue chromosones separate in a similar manner. Mow we have two pairs of chromosones in each of the two cells, one long pair and one short pair.

0000000000	000000	0000000000	000000
000000000	000000	000000000	000000
red	$y e 1 l o w$	green	blue

Fig. 4. First division in meiosis
In the second division in neiosis there is the splittine of the centromeres. Thus in the splitting one of the red and one of the yellow chromosomes go into one cell. The other red and yellow chromosomes go into a second cell. Precisely the same thing occurs, in the cell, with the green and blue chromosome.

0000000000 red	000000 yellow	0000000000 green	$\begin{aligned} & 000000 \\ & \text { blue } \end{aligned}$
Cell 1			
Cell 3			
$\begin{gathered} 0000000000 \\ \text { red } \end{gathered}$	000000 yeilow	0000000000 green	$\begin{gathered} 000000 \\ \text { blue } \end{gathered}$

Fig. 5. Second division in meiosis

We now have four cells and each one has two chromosones, one half tho numer present in the cells from which they developed. This is meiosiz in its simplest form. ${ }^{2}$

Meiosis would always occur like this if it were not for the fact that the individual strands that make up the chronosome become intertwined and entancled. This is crossing over and will be discussed later

[^2]in this report.
Waturation of the male sex cell is known as spermatogenesis; maturation of the female sex cell is known as oogenesjs. Four spermatozoa rem sult from the maturation of one spermatogonium. The result of the two maturation division in the female is one large cell, the ovun, and three small, nonfunctional cells, the polar bodies.

The human ovum has twenty-four chromosomes, and the spematozoon has the same number; thus at fertilization the chromosone number, which is forty-eight, is restored.

There are several points a student should understand after a study of meiosis. First, the chromomes (genes) are passed on from parent to oflspring. Second, the chronosome number is roduced by one half when the ganetes are forned. Third, the chromosome number is restored at the time of fertilization. Fourth, chance operates in reduction division and fertilization. Firth, each parent contributes one half of the chromome present in the ofispring and one of each homologous pair. Sixth, in the offspring there is a "nixing" and some chromosomes present in the parent and grandparents will be absent.

A very likely question that mignt be asked at this point is: what is there in living organsms that cause the developnent of different characteristics in humars? What we inherit is nothing nore than a very tiny bit of cytopiasm and some chromosomes.

There is "something" in the chromosome that determines these characteristics called genes. Some geneticists think of genes as separate mol-ecules-tiny invisible chenical particles. Unfortunately, we can't see these tiny genes. 1 on onows how mangenes there are in a single hu$\operatorname{man} \operatorname{coll}$.

We can say that a gene is a molecule or part of a molecule located in a specific position in a chromoson and is responsible for controlling certain chemical chanten in the cytoplnsm. Thus detemunes different charectaristics in diferent individals.

In a living chronoma each gene is found only in a certain position on the chromosome. A gene mich can produce its effects even though the other gene is prosent is known as a dominant gene. The other gene is knom as a recessive gene.

CRAMTE IV

MEMOLTEN LhNS

The first person to conduct decisive experiments in heredity and to fommatate the basic laws of genetios was Gregor temdel. Nexdel planned carefally his experiments with sarden peas and spent two years in selecting races with distinctive and contrasted characters and in naking certain thet each of his original stock man pare. During the next six years he made mayy crosses by artificial pollination, each of which was carried throxh three or more generatione. Fendel kept an acourate statistical record of all phants and seeds of each hind that was probuced, analyzed these resalts, and iron tim deduced the two most inportant hanamental haws of heredity

The first of thene lams states that the factors for a pair of charactertatics are sogresated. The ractors responsible for a par of alternative or contrasted characters are mown as alleles. This can be illustrated by a monohybrid cross. A eross in which the parents differ in one pair of alternative chanacters. It will be easy to follow if we take a specific case as an axamle. Sufficient femilies have been studied in which it has been fomd that the gene for albinism is recessive, while the gene for normal pigmentation is dominant over it.

Parst lets consider a mamiage betmeen an albino and a honozygous
 pignented, no mattex which parent is pignonted and which is an aloino.

All these children will carry the gene for albinism amd can pass it on to their children.

If one of the heterozygous pigmentod children marries a heterozygous pignented individual, on the average three fourths of the children are pigented and one fourth have no pigrent in their shin. Burther stady of the podicroe would shon on the average one fourth momid be homozyous pigmented, one halt would be heterozygous pigmented and one fourth would be albinoc.

In case of a maxriage between two abinos all the children from such a. merrigec will be albinos.

In the case of internediate genes, inheritance prediction is much simpler becaus there are no hidden genes. It is possible to tell the type of genes which a person carries when they are of this nature simply by observation of the person. For instance, if a meabor of the Caveasian race has wavy hair we know that he has a gene for curly and a gene for stratght hair since waviness is the intermediate axpression of these two genes. We do not need to depend upon ancestry in such cases.

When races difer for each other in two or wore patrs of factors, the inveritance of one peix of factors is independent of that of the others. 1 This is Wendols socond Law and can be illustrated with a athybrid crost, thet is a crose between parents which difer in two pairs of characters. This can be illustrated by the use of tro well known huran neritable characters, polydacty and athaned eas Lobes. Polydactyly a condition in whon there is an extra finger on ore hand an an extro toe on one root, This is dominant over the gene for nomal fingeris and toes.

1Tracy 1. Storer, General 200logy (Hew Yori, 1957), p. 156.

In the case of attached ear lobes, free ear lobes are dominant over attached ear lobes.

If an individual honozggous for both of the tho dominant traits marries an Ampidual homozyous for the two recessive trata all their offspring mill be heterogygous for cach of the two traits and will express the dominant trait in each case.

If an individul heterozyous for each of the two traits marries an individual neterowgous for each of the traits and a large numer of offspring were exantiad from this same type of cross, on the average the phenotypic resulis would be as follows: $9 / 16$ polydactyl fith free ear lobes; $3 / 16$ polydactyl with attached ear lobes; $3 / 16$ with nomal finger and free ear lobes; $1 / 16$ with normal fingers and attached ear lobes.

The different pcrotypes noted under these conditions would have been: 1/16 pure bred polydactyl and pure bred for free ear lobes, 1/8 pare bred polydactyl and hybria for free ear lobes, $1 / 8$ hybrid polydactyl ans pure bred for free ear lobes, $1 / 4$ hybrid polydactyl and hybrid for free ear lobes, 1/16 pure bred polydactyl and attached ear lobes, $1 / 8$ hybrid polYdactyl and attached ear Iobes, 1/16 nomal fincers and pure bred for free ear lobes, $1 / 0$ normal fincors and rybrid ree ear 2000 , $1 / 26$ normal finers and attached ear lobes.

This can be vary cleariy inlustrated by using symols for the characteristios and 16 squares, filling in the genotype of ach of all possible types of afspring.

There are sone vary good class denonstrations whion can be carried on an illustrate random or chance combination. For instance, if we toss a penny in the air, the chance of it falling heads is one half. The chance of it falling tails is one half. Yet we do not think it lapossible if we
toss a pemy four tines and get heads four thes. If we should toss the peny four hundred tines, however, we would get a ratio very close to 1:1, Tais will illustrate what happens to a gene pair during meiosis. It is just a $1: 1$ ohance as to whek gene whl be fourd in a given ganete.

Tho coins can be used in the toss to illastrate ramon or chance combintion of two objecte which can combine in only three way. This is essentially wat occurs during fertilization, when a pair of entities, the gene pair, recomine atter being separated during meiosis.

There are three types of head-tail combinations that night appear, a head-head combination, a head-tail comination, or a tail-tail combination. If a lare nuber of tosses were made the results would be about 1/4 head-iead, $1 / 2$ head-tail, and $1 / 4$ tail-tajl combinations.

This can also be shom by the use of red and white marbles, beans, beado or sone other small object. Place equal numbers of red and white beans in a container on a table. In another container place equal numbers of red and white beans. To minimize errors due to picking of unequal nombers of red and white boans from the container, mary more beans should be provided then are needed. This helps to insure that the chance selection of baans is not interfered with through an inbalance of colors present in any one box.

Select a group of students and each will take his turn in taking one bean from each container. Be sure the stwdent does not look at the beans as he picks then from the container. Place the tao beans nexit to each other on the table. Have each student pick several pair or beans from the containers and place thea on the table. Now the group will decide into how may row the pairs of beans can be grouped. The decision will be based on two facts: the beans aelected together must romain together as
a pair, and beans of two dinfercnt colors are beinc selected. The students whll find there are three groups into which the parts of beans can be placed. The red-red combination, red-mite combination, and the whitewhito combination. If a large nuber of samples are picked the ratio mall be close to 1:2:1.

These exercises can be used to allow the students to discover for thenselves ocrtain principles applicable to genetics.

CHAPTER V

SEX Cmomeons and inderiname mante to sex

Attemots of all sorts have been made artificenly to cause an unborn child to be a male or female at will. Bat all such atterpts have failed. The fact is a permon is male or fenale at the moment he begins his existence as a fertilized ege

The difference botween the sexes is due to a difference in their chromosomes. Of the twenty-four pairs of caronosomes in each cell of human beings twenty-three paire are similar in both sexes. The twentyfourth pair determines the sex of the individual. In females this pair consists of two stmilar chromosones called X-chromosones. In tales the patr consists of one X-chromosome and one Y-chronosome. The X-chromosome is smaller. Thas the genotype of wales is XX and the genotype of females is XX .

Wen reduction division takes place in the fenale all the eges receive an X chromosone. In the male, half the sperm cells receive an X and haff receive a Y. An ege (X) may be fertilized by either an X or Z sperm. The fertilized eges, therefore, will be cither $X X$ or X. all the cells of the body produced by ritosis are like the fertilized egr and are either XX or K, , ad so they develop into etther a girl or a boy. half the sperm cells contain en X and halif a Y. Hence, the maver of fertilizations that produce girls ($X \mathrm{XI}$) and boys (XY) are about equal.

However, there is a slight inequality in the sex ratio. Male births
somewhet cxceed the female birthe - about 106 males to 100 ferales.
Several explanations have been suggested to account for the slight departure from equality in the sex ratio. However none of the theories are supportod by any definite evidence. It has been suesested that the I containing sperm cells can move a little faster than the ones containing the X chromsome and so reach the ess a littie more often at the time of ferinization. Other surtestions are perhape the Y contaming sperm enters the ege more readily after contact than do the X containing sperms.

It mas been sugeested that at fertilization the ratio is 150 males to 100 fenales. At birth the nales outmuber females by a ratio of about 106 to 100 , but the doath rate is greater for males at every stage of life. During childood the rate is aboat 103 deles to 100 females. During the young adult stage or the time for marriage the proportions of the two sexes is about equal. at fifty years of age we find that the males have shruk from equality to a point whore there will be about 85 men to every 100 wonen. At eighty-five the momen outnumber men almost two to one and at one hundred there are about five times as many women as men.

Knowledge of the X and Y chronosome has explained certain traits associated with sex, such as color blindness in man. Momen are mach less often color blind than gen. But if a woman doos happen to be color blind, and if the maries a nomal than, all of her sons are color blind but none of her drughtere are.

Ge can readly explain this fact with a simple illustration. The X chromosone contains genes not only for sex but also for other traits, such as nomal color vision, or a recessive color bind gene. we can designete the recescive color bind gene as c, and its nomal allele as G. A color blind whan carries a in each of her X chromosones. A
nomal man carries 0 , the nomal allele in his X chronosome. We may regard his I chromosome as a partially empty sack that carries no gene at the locus under discussion.

If a color blind moman, x^{c}, marries a normal man, $X^{C y}$, the posstble types of offerings would be as in Fig. 6.

$$
\begin{gathered}
X^{\mathrm{C}^{-}} \\
X^{\mathrm{C}} \text { or } \mathrm{Y}^{-} \quad X_{X^{c}}^{\mathrm{c}} \text { or } X^{\mathrm{c}} \\
\mathrm{X}^{\mathrm{C}} \mathrm{Y}^{-} \quad X_{X^{c}}^{C} \\
\text { Fig. } 6 . \quad \text { First generation }
\end{gathered}
$$

In the males of the first generation wond be color blind and all the feales wold be carriers of the color olind gene but would have nomal vision. If one of the fendes of these parents marries a noram male the types of chilorea would be as in 7 . 7 .

$$
\begin{aligned}
& \mathrm{X}^{\mathrm{C}^{-}} \quad \mathrm{X}^{\mathrm{C}_{\mathrm{C}}{ }^{\mathrm{c}}} \\
& X^{\mathrm{C}} \text { or } \mathrm{Y}^{-} \quad X^{6} \text { or } \mathrm{X}^{\mathrm{C}} \\
& X^{6} X^{c} \quad X^{c} X^{c} \quad X^{c} Y^{-} \quad X^{C} Y^{-}
\end{aligned}
$$

Fie. 7. Second generation

All the daughters mold have nomal vision but aight be carriars of the color blind gene and the sons might be color blind or have nomal vision. The enpected ratio would be 50\% sons color blind and 50, with normal vision.

It is now apparent why color blindness is less often found anong momen than men. The wale way show a tratit whon only one gene is present. Both rocessives mast be present in the feasle for the trait to show.

Herophilia is also innerited as a single sex-linked recessive. The prinary symptons of the disease is an abnomal tendency to blea because of an extrencly slow rate of coagulation of the blood. In hemophilious the coagulation time is greaty prolonged, varyme from one-half hour to 22 hours or more, according to the severity of the disease. Thus it is a lethal gene because it canses death before matarity of the najority of indiviauals expressine the gene.

The ract that it is a sex-1inked recessive indicates that a fenale can develop the disease only if she receives the gene from her father who has the gene and therchore the discase, as well as from her mother, who may be heterosygous. In viem of the rarity of the disease, and the failure of most affected males to leave offsprings, this coincidence mould seldom happen. Thus explains the fect, with a few donbtful exceptions, hemophilia has not been reported in women.

The most famous pedigree of hemophilia is that of ueen Victoria of England. ${ }^{1}$ Victoria was heterorycous for the gene, perhaps as the result of a new matation since there is no record of hemphilia among her ancestors.

Nany false conceptions related to sex-linkaye should be corrected. A popular misconception is that boys tend to innerit most of their characteristics from the nother while girls mherit most frow the fiather. It is true that a man receives all of his sex-1inked genes fron his mother and none from his father, but this represents only about one twentyfourth part of his total inveritance.

Sex-Limited genes are ofton connubed with sex-1inked genes but are

IShurd C. Colin, Blements of Ceneties (Mew York, 1956), p. 245.
entirely different in methods of inheritance. Sex-imited genes are those which produce characteristics that are expressed in only one of the sexes. 2 They may be located on any of the chromosones, whereas sex-1inked genes are located on the X chromosone. Sex-limited eenes are responsible for some secondary sewul characteristies, such as the beard on men, as well as primary sexual charactoristics.

All the ovidence indicates that the expression of sex-limited characteristics depends upon the presence or absence of one of the sex homones. A moman, nomally does not have a beard, yet she camies all the genes necessary to produce a beard, and they will express thenselves only when the male homone is present. In rare cases abnomalities in hormone secretion may ocur in a woman and allow these renes to express themselves.

Sex-influenced geres are genes that are dominant in man and recessive in women. Baldness is the only one which is commonly observed. To detemine the heredity of daughters, we treat the trait as a recessive and to detemine the heredity of sons we treat it as a dominant. Thus a wonan may carry the gene for baldness without showing it, and she will pass it on to one-half of her children. The sons who receive the gene will becone bald, but the daughters will have nornal hair growth, provided the father gave them the normal gene. A bald man, may have only one gene for beldness and, In this case, one-half of his sons will be bald, but all the daughtens will be nomal if the mother carries nomal genes. Other combination of genes for this trait can be worked out by

[^3]reference to a chart. ${ }^{3}$
Sex-linkege can be shown with pipe eleaner "chrowosones" ard test tube "cells".4 If we use a sea-linked character such as color blindness, the results of the mating of parchts of any gerotype can be show. To show the carrier monan and norma man mang, for example, we need four "cenl" (test tubes) to reprosent the aygotes, in aduition to the cells we nead eight "chromosones", (pipe cleaners), 24 's, $4 x^{c}$ and $2 X^{c} . X^{c}$ represents the X chromosones with the normal gene and X^{c} represents the X chromosones with the color blind gene.

H11 each test trobe about $3 / 4$ full of water and add a litue bromthyor blue indicator to each tost tuve and adi just enome acid or base to get a light blue color.

Soak the x^{C} chromosomes in a weak solution of sodium hydroxide, and the X^{c} ehrosoopocs in about a 10% hydrochoric acta solution. Do this about half an hour before usine then. Leave them in solution until the last minute. Remove then with forceps and place then on papor towels labeled x^{c}, x^{c}, and X. Wake the desired cross and the results are as indicated in Fig. 8.

Deop blue

$x^{2}+$
Deep blue

Fig. 8. Results of different combinations of chronosomes
3. \%. Winchestor, Heredity and your life (tern York, 1956), p. 154.
ity. B. Borahan ot el., Laboratory and pield Studies in Biology (Washington, D. C., 1257), p. 703.

reny cases are now know of more than two altemative factors that affect the sane character; these are called mathole alleles. Gutiple alleles refers to all genes that occapy the same locus on a chronosone.

One of the best examples of sulthplemalleles in man is the four blood types called, A. B. AB, and O. It was found that blood cells of man nay contain two distinct antigens. Persons with type o blood posses neither of these antigens, but posses both anti-n and anti-B antibodies in the plabaia. Type A persons have the a antigen in the red blood cell and anti-B antiboiles in the plasma. Type B persons have the B antigen and anti-A antibody and people win type AB have both anticens and no antioodica in the plasma. Neither A nor B is dominant over the other, but both are dominant to 0 .

The genotype of individuals with type a blood could be Ad or AO, of trpe B either $B D$ or $B O$, of type $A B$ it is n, and of type o it is oo.

The method of inheritance of blood types is well uncerstood. It is easy to see irom PLe. 9 the possible blood types of chilaren from parents of varrous blood types.

By knoming the possible genotypes a parent of a given blood type might have, one can readily follow the table and see why chiluren of the Eiven type are possible.

IV, and IN. These three have no relationship to the ABO blood group; that is, a person of group A might belong to any one of the three kiv blood groups. However, unlike what applies in the case of ABO groups, people who belong to N, N or MN blood groups do not contain natural antibodies against those of another or group. Generally a transfusion from a person with a different in N group than the recipient leads to no complication.

BLOOD TYPE OF PIFATS
POSBIBLE BLOOU TYFS OF CHLLDREN
0×0
0
$0 \times \mathrm{A}$
0, \&
$0 \times B$
O, B
$0 \times A B$
A, B
A×A
$A \times B$
$A \times A B$
$B \times B$
$B \times 4 B$
$A B \times A B$
$0, A, B, A B$
$A, B, A B$
$\mathrm{B}, 0$
$A, B, A B$
$A, B, A B$

Fig. 9. Possible blood types

There is another interesting series of multiple alleles related to the blood known as the fhesus blood groups or fin blood groups. Actually there are about eight kinds of h alleles but these will not be considered in this report. For simplicity and ability to explain to kigh school students the writer selected to present this material as if some people have the Rin antigen, while others do not. Those with the antigen are designated Rh-positive; those without it Rh-negative. About 35% of the people in the United States are Rh-positive and 15% Rh-negative. No one has been found who contains the natural Anti-Rh antibody, but it has been found that an Rh-negative person can develop these antibodies if exposed to the Rh antigen. This is important in transfusion and in childbirth. If a Rin-negative mother and a Rh-positive father have children the
child may be either Rh-negative or positive, because the Fh antigen is produced by a dominant gene. Then this gene is absent a Ph-negative individual results. A Rh-negative person is homozygous for the recessive allele. If the child inherits the Fh antisen fron the father and the mother's blood has been sensitized either fron a previous fh positive child or a blood transfusion and there is a leakage across the placenta so the antibodies of the mother may pass into the blood streams of the child it destroys the red blood cells of the child and is often fatal. to the child unless special precautions are taken in advance by the physician.
ranere are many characteristics which are not clearly defined or divided into distinct group, but show variations from one extreme to another. It is not possible to explain such variations on the basis of two or nore alleles at a certain chromosome locus. However this can be explained on the basis of a number of different genes located at different Ioci on the chromosome. Characters such as this show multiple gene inheritance.

Skin color inheritance in man depends upon quite a number of genes. Also the body height in man illustrates multiple gene inheritance. The color of the skin is dependent upon the amont of a pigment, melanin, deposited in the skin. This depends upon the genes and of course the anount of sunlight the skin receives. According to the hypothesis negroes differ in skin color from members of the Gaucasian race mainly because of the nature of two gere loci wich influence skin color.

A cross between a white person and a negro show segregation of genes according to the dipybrid ratio. The first generation offsprings results In a mulatto, an intermediate skin pigmentation. When two mulatos marry
thet children may have any one of five different skin shades, raselng from white to the nerroid pigatration. The ramber of genes for the nempin pronen could rone from aero to por genes for dark enin. The onfarings widh sero genes were white; one gene, ormette; two genes, talatto; three cencs, choolate; and four eenes, regroza. ${ }^{2}$

Body holeht in nan may be illustrated if me assume there are fome gencs involved. Actanly there are more anvolved bat the principle of trenemission is the same.

Tro aediun sized parents can produce a tall child. The parents may bo heterozyons for a mumer of recessive zenes for tallness and an ofispring recuive bose recessive genes and bo tall.

CHAPTBR VII

LINKED GMES AMD CROSSIMG OVER

It is very obvious, that the number of genes in man is far greater than the number of chromosomes, and hence not all genes can be independent. A given chromosome must contain mumerous genes. The genes located on the same chronosome are said to be "linked". Linkage is the tendency of two genes to remain together in the process of inheritance.

Two genes may be closely linked, that is, they almost always stay together in transmission, or they may be loosely linked, and frequently are not transmitted together to the offspring. These genes are subjected to irequent alterations by a segmental interchange between chromatids of the homologous chromomes. When this segmental interchange occurs, the genes are said to have "crossed over". The frequency of crossing-over between two genes is used as a measure of the relationship of their location on the chronosome.

The number of linkage eroups corresponis to the haploid nunber of chronosones, also the linear order of the genes within a linkage group can be specified by a study of the irequency with which genes within this group cross over with one another. The distance between these genes are specified in terns of their recombination frequencies.

The amont of crossing over between linked genes varies with their distance apart in the chromosome. The further apart they are, the greater amount of crossing over between them.

Crossind over occurs during the firet division of meiosis. At this stave each chrowome consists of four enromatha. The chromatha become tudsted about one another, and often a breakago am a resthachamt of portions of the chromatids fron homologos chromesones.

Hhts proeess can be Llustrated better than words can describe it. The tocher or stuants on nake very adequate urawines on coarta to ilLustrite the rrocess or erossher over and Ankago. Beads can also be wed to show thas. Strags of two difurat colord beads can represent two chomoones. part of one string can be rempud and attached to the other string shanhe cxosenmover durne netosis.
 age, however is meh wore reanly stathed, and considerable progeas has beon made in the rapping of the sex chromososes of wan. in han there should be 24 lingege sroups, but it will probably be a long time before manter gencs are known for all 24 pairs of chrobosones.

On the basis of present krowledeg, a list at a nusber of more or Less definte antosonal hinhage grops or linked pains, and a List of genes known to be in the X and Y chronosme can be given. ${ }^{1}$

1. . W. Gates, Maman gonetices (Her York, 12L6), p. 32.

CRAPTET VIII

Wany huana characteristics have been studied besides the ones menthoned so far, and since the knomledge of some of those may be useful in high school teaching and are interesting, this chapter will be devoted to some of then.

Bye color is probably one of the nost often talked about muman characteristic. Ordinary eye colors are due to the presence of pigment in the cells of the iris. The difference in eye color depends largely upon the relanin pigment which develops in the front layer of the iris. It is an optical effect. In fact, all oyes are basically just as "blue" as blue eyes. The other eye colors are dae to the addition of pigment in the front of the iris. ${ }^{2}$

In blue eyes no pignent whatsoever is produced in front of the iris. In green eyes there are diluted brow pignent cells in front of the iris superimposed on the blue background produces the effect of green. Oray oyes are due to scattered dars pigment in front of the iris screening the blue. Brom eyes are due to the concentration of dark pigment in front of the iris masking the blue. Pink "albino" eyes are due to the reflection from pink blood vessels, because they have no pigment in their eyes at all.
$I_{\text {Ararair Scheinfeld, You and }}$ Leredity (Nem York, 1950), p. 56.

With the exception of mutations when both parents are blue-eyed, all their children have blue eyes; when one parent is heterozygous brown-eyed and one blue-eyed the children are partly brown-eyed, partly blue-eyed. marriage of two brom-eyed persons usually results only in brow-eyed children; yet blue-eyed ones may appear. Ihese facts indicate that brown is dominant to blue, and blue-eyed individuals are honozygous recessive for eye color.

Hair color follows the same general principles as does that of the eyes. In hair the color is due to the pignentation of hair cells.

There seens to be two primary plgneats in the hair each of wich is subjected to variation through multiple genes. One is black the other light blond. In addition to this there seens to be another pignent which ranges fron sandy red to yollow. Various genes influence the intensity of these pignents in such a way as to produce the wide variations in hair color. Red hair seems to result fron a single pair of recessive genes. A marriage between two light blondes alrost always yields light blonde children, a fact wich indicates the recessive nature of the blonde gene. Cbildren resulting from marriages between dark haired persons are typically dark haired. This indicates a dominance of the genes for dark hair over the genes for light hair.

There is not complete agreement as to the exact cause of the graying of hair. It is known that the age at which the hair begins turning gray is influenced by heredity. It is difficult to establish the exact method of inheritance, however, because of environmental effects of diet and other factors.

Some persons are born with a white forelock of hair which is given the genetic desipnation of blaze. This isolated island of white hair
grons out srom the central portion of the seale whem it joins the forchead and is usadiy combed back over the head to produce a wite streak In a hoad of hair otnexwise nomal in picmentation. This condition re sults from an antosonal dominant gene.

The development of the sheloton is also affected by senes. There are about tho huntred bones in the adutt hwan body, and their size, shape, and arrangcasmt to a laree extent detcrnines the body build. Achorm droplastic dwarfism sess to result from the influence of a dominant gene.

 bones. The genes for this condt tion are iond dn entire human drows such as the Congo pyenes. A sinilat ondition has boen acioved by gelection in one breed of dogs. bete dachshund has short bowed legs and was bred for this character so that it could get into the urroms of foxes and bederers easily.

The Ateliotic duari is tell proportioned but sadal in all pants of the skeloton. Mins characteristio is due to a deficiency of the growth hormone of the pitultary, which indmences the grobth or the skeleton. Mormal-sized chiluren nave been born of parents both of whon were midgets.

Wamy stuaiss in haman grenebues dealing with the relative effect of hereaity an enviroment have been made of twins, "Identical", monozygous, or one-age twhe, when arbe srom a sixte zypte; and the fratermal,
 thins have taenduch genes and, es a result, raike ideal subjects for studLes of the offoct of onviroment upon development, sance amy aiferemce which they show mast be onvironoched. Praternal trins serve vexy neoly
to inustrate the effects of difference in heredity in a constant environsent. They bill have afierences in many of their genes, since they are no more alike genetically than any other brother or sister in the family, yet they are most likely to have a very sindar onveroment. The results of many of these stwies makes it apparent that heredity places its imprint upon almost every aspect of mamar developaent and behavior did the environment modities the effects of these genes. Thus the individual is a product of his emviroment as it acts upon his hereditary potentialities.

The inheritance of twinind ts not well establishod, however, cortain facts associated with twin birth segn to be reasonably well established: (1) twin births tend to chuter in specirio faminies, and (2) the frequency of twinnes varies with maternal age and sone extent with parity. It has been esthatod that a nother who has given birth to one set of twin winl at her next delivery repeat whth another twin birth approximatidy 3.6 of the time. This per cent varies on the babis of whether the firat trin pair was monozyous or dizygous. If the first pair was dizyeos, then the probability that the rother mill repeat with another set of twins is 4.55 . However, if the first pair was monozyous, then the chance of a second set of twins is oniy 1.43 , not rach higher than the probablity of a twin birth in the general population.

One of the most inportant ham factors influenced by hereaity for the fature of man is intelligence. Fhere is ample evimence to show that the extreme varations in mental capactity anong human being are partiy heroditary and partly environembal. Praining plays an indortant part in bringing out inherent goteatialities, but evon anong persons with similar training there ane great vanations in general intelitgence, atitudes,
and other characteristics. Since these variations are generally continuous and not clear-cut, it is obvious that multiple genes are involved. Thus there are many cases in which variations in a single eene may have a very obvious effect on mental ability. A person may be born with a whole gene complex for a brilliant mind, yet also inherit a single pair of recessive genes for a particular type of idiocy, which woula be epistatic to the entire complex and thas make the person an idiot.

In spite of the extremely complicated problem of the inheritance of mental characteristics, a great deal of information has been given on the relative significance of hereditary and onviromment factors in determining mental capacity. In general bright parents tend to nave bright children, and dull parents, dull ones, however there are many exceptions to this case. Generally the children of parents at either extreme of the intelligencerating scale will show a tendency to regression toward the averare of the population.

Special aptitudes, are independently inherited and may not have any close correlation to general intelligence. This phenomenon is well illustrated by the interesting case of a woman moron with an I.Q. of about 60 who could never learn to tell tine by a clock, bat could play the piano very nicely by ear. ${ }^{2}$

Roilepsy is a disease characterized by suden seizures known as epileptic fits. In the most extrene forms this develops into unconsciousness and muscular spasns. Sone people have the disease in a milder form in which the fits are minor. Brain injury is knom to be an environaental agent which can induce the onset of epilepsy, but the majority of cases

[^4]arise whot such ingury and have a heredtary basis. Bufficient studies have been made to indicate that it is inherited as a doninat trait.

The study of herwitary mental defocts 10 of increaskec importanco. Xt segms that mental defects are increasing in frownong. Several milLion people in tho fnited States have an I. 2 of about 70 or lower. A lareg maber of these cases are of hereditary oricin, The feobleminded becone fuvenile delinquents, problem chilaren, ard cases for phalic charity and relief. hoy breed early and ofton so tend to increase their kind. Tre ond result is rapidy mounting bill of their cara and for dealing with the crimes that tney comit.

Bany organizations and persons are now interested in eugenics, a fiela of ondeavor winch seeks to better the human race by applying the arinciples of gonetics. Since it is not possible to controi the matines between hwan beines, attempts are wade to dotermine the facte of huan horedity, to equcate the general public on tre effects of rood and bad mathas, and to encouruge legislation that will prevent matings between obvioumy defective persons. Attonats are aloo nade to improve the chVironental conditions under which hanan beings develop ana live so as to give the best possible expressions to the getetic constitutions presext in each fraiviadal. So measurable aid in haman genctics mill be posebie whtil mach fuller recurds on huan inhertence are available.

CHAPTER IX

comclusion

The result of this study revealed mary facts which can be used by the taacher in teaching biology. It seers evident that everyone should have sone practical knowledge about heredity, especially human heredity. Because this knowledge will not be attained at home, it is left up to the teacher of biology to supply this information.

The study did reveal many denonstrations, illustrations, and experiments that can be performed by the teacher and pupils which would help the pupil understand the principies and phenomenon of heredity.

Many models and charts can be made by the students and teacher which will be very helpful as teaching aids in teaching different principles. plaster of Paris rodels, charts, and polyetnylene beads can be used to illustrate the different phases of cell division, types of offsprings expected from a particular cross, chronosomes, genes, crossing over, and many other phenomenon that occur in heredity.

Recognizing the fact that haman heredity is one of the most interesting phases of the study of heredity to most stadents, the teacher can do much to interest the students by using the inheritance of haman characteristics to illustrate many genetic principles. with this in mind this study has been presented.

Altenburg, Edgar. Genetics. New Tork: Henry Rolt and Company, 1957.
Colin, Edmerd. Elements of Genetics. Philadelphia: The Blakinston Company, 1956.

De-Robertis, E. D. P., W. W. Morwinski, and Saez A. Francisco. General Gytology. Philadelphia: T.B. Saunders Company, 1948.

Gates, R. R. Human Genetics. New York: The Macmillan Conpany, 1946. Neel, Janos, and Willian J. Schull. Muman Heredity. Gnicago: University of Chicago Press, 1954.

Riley, Herbert. Genetics and Cytogenctics. New York: John Miley and Sons, Inc., $\overline{1949 .}$

Schoinfeld, Amran. You and Heredity. Mew York: Frederick A. Slokes Company, 1950.

Storer, Tracy. General Zoology. New York: McGraw-Hill Book Company, Inc., 1957.
"Three Chromosome Mumbers in Whites and Japanese." Science (June 6, 1958), 127:3310.

Wilson, Bernard. Nuclear Cytology. Bichigan: Nizhigan State College Press, 1950.

Winchester, A. 1. Qenetics. Canbridge, Lassachusetts: The Riverside Fress, 1958.

Winchester, A. N. Heredity and Your Life. New York: Vantage Press, 1956.

VITA

Gerald Doyle Botions
Candidate for the Degree of Laster of Science

Najor Field: Natural Science
Biocraphical:
Personal data: Born at Holdenville, Oklahona, April 10, 1930, the son of lidgar and Lorene Bottoms.

Education: Attended grade school at Spaulding, graduated from Spaulding High School, a rural school in lughes County, Oklahoma, in 1948; received the Bachelor of Science degree from East Central State College, Ada, Oklahoma, with a major in Biology, in July, 1955; did graduate work at Oklahona State University during the summer of 1957; attended Oklahoma University during the sumeer of 1958; attended Oklahoma state University, 1958-1959; completed requirements for the Laster of Science degree in bay 1959.

Professional experience: Entered the United States Army in 1950; taught general science, violoey, and physics at Bowlegs, Oklahoma, 1955-19s6; taught general science, biolowy, chemistry, and physies at Holderville, OkIanoma, 1956-1958.
Name: Gerald Doyle Bottoms Date of Degree: May 24, 1959
Institution: Oklahoma State University Location: Stillwater, Oklahoma
Title of Study: A SYLLABUS FOR A UNIT ON HUMAN HEREDITY FOR SECONDARY BIOLOGY
Pages in Study: 39Candidate for Degree of Master of Science
Major Field: Natural Science
Scope of Study: The purpose of this study is three fold: (1) to providea general knowledge of a few selected human hereditary characteristicsthat may be easily communicated to high school students; (2) presenta general guide which may serve as resource material for teachers,and (3) an attempt to provide illustrations, demonstrations, and sui-ficient reference for the teacher to proceed to further studies.Throughout the study hereditary characteristics in man have been usedto illustrate basic principles of heredity. Many class room demon-strations, their use and effect, have been considered.
Findings and Conclusions: A thorough understanding of heredity must be left to the expert, however the result of this study revealed many facts, demonstrations, and experiments which can be used by the teacher in teaching biology. Plaster of Paris models, charts, and polyethylene beads can be used to illustrate many principles and phenomenon which occur in heredity.
Recognizing the fact that human heredity is one of the most interesting phases of the study of heredity to most students, the teacher can do much to interest the student by using the inheritance of human characteristics to illustrate many genetic principles. With a few general principles and some facts, the high school teacher can do much toward enlightening the future generation in regards to its own weifare with respect to heredity.

[^0]:

[^1]: InThree Chromosome Numbers in Whites and Japanese," Science (June 6, 1958), 127:3310.

[^2]: ${ }^{2}$ N. B. Abraham et al., Laboratory and Field Studies in Biology (mashington, D. C., 1957), pp. 671-673.

[^3]: 2. M. Winchestar, Genetics (New York, 1951), p. 122.
[^4]: 2A. W. Winchester, Genetics (New York, 1951), p. 336 .

