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ABSTRACT 

Fixed-gain and variable-gain PIO control of longitudinal tension in the 
winding section of a simple web transport system were evaluated. An open-loop 
mathematical model for the web transport system was derived and used for the 
design of the PIO controllers. The winding roll radius is a time-varying parameter 
in the model. 

The fixed-gain PIO controller designed for a particular winding roll radius 
did not meet the desired specifications, whereas the variable-gain PIO controller 
compensated for the time-varying parameter and produced accurate tension 
control. In comparison with other controllers, the variable-gain PIO controller is 
easy to implement and shows promise for applications where the time-varying 
parameters are easily measured. 
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Cross-sectional area of web 
Constants 
Rotary friction constant of bearing 
Mass of an infinitesimal web element 
Length of an infinitesimal web element 
Modulus of elasticity 
Error= T2ref - T2
Motor torque/speed constant 
Thickness of web 
Polar moment of inertia of roll or roller 
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Polar moment of inertia of roll or roller when Rb = 1 
Proportional gain in a PIO controller 
Integral gain in a PIO controller 
Derivative gain in a PIO controller 
Motor constant 
Constant 
Length of web span 
Radius of roll or roller 
Initial radius of winding roll 
Build-up ratio = Rn/Rno 
Constant 
Laplace operator 
Time 
Steady-state value of web tension 
Web tension = loo + T n 
Change in web tension from a steady-state operating value 
Reference tension 
Steady-state value of input to a drive motor 
Input to motor = Uno + Un 
Change in input to a drive motor from a steady-state operating value 
Steady-state operating value of web velocity 
Web velocity= vno + V n 
Change in web velocity from a steady-state operating value 
Width of web 
Locations along web 
Constants 
Steady-state operating value of web strain 
Web strain =Eno +E n 
Change in web strain from a steady-state operating value 
Natural frequency associated with desired system characteristic equation 
Damping ratio associated with desired system characteristic equation 
Density of web 
Motor torque 
Motor angular velocity 

Subscripts: 

o Steady-state operating condition
n 0,1,2,3, ... 
u Condition in unstretched web
x,y ,z Cartesian coordinates 
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INTRODUCTION 

The web material may have to pass through several consecutive processing 
sections in the manufacture of an intermediate or final product. Different web 
tension levels and accuracies may be required in the different processing sections. 
If severe tension variations occur, rupture of the material during processing or 
degradation of product quality may occur, resulting in significant economic loss. In 
order to minimize the potential for loss, it is important to monitor and control the 
tension! within the desired limit in a moving web. 

There is an extensive literature concerning mathematical modeling of web 
transport systems and web tension control (1) - (1.2). Campbell (1), Brandenburg 
(1), King (1) conducted fundamental background studies of the longitudinal 
dynamics of a moving web. Working early in the field, Campbell did not consider 
the tension in the entering span when he developed a mathematical model for the 
longitudinal dynamics of a web span. His model does not predict "tension transfer". 
In contrast, King, Brandenburg, and Shelton Q) considered the tension in the 
entering span when they developed mathematical models for tension in a web span. 
Brandenburg and Shelton assumed that the strain in the web is very small, but King 
did not. Campbell, King, and Shelton did not take into account "non-ideal effects" 
(e.g., changes in cross-sectional area, temperature, and moisture in the web; 
viscoelastic characteristics of the web; slippage between the web and rollers, etc.) 
on the tension variation in a span. Brandenburg considered the effects of area 
change resulting from strain change, temperature change, and register error. 

A study related to tension control in a multi-span web transport system was 
reported by W. Wolfermann and D. Schroder (fil in 1987. In their technique, 
optimal output feedback was applied to control the speed of the driven rollers. A 
decentral observer was designed which is able to decouple the drives from the web 
tension acting on the driven rollers. The observer reconstructs the web tensions 
acting on the driven rollers and uses this information to improve the speed control 
of the driven rollers. This method leads to considerable improvement in the speed 
responses of the driven rollers. However, the reference inputs used in the control 
system are the desired "speeds of the driven rollers" rather than the desired 
"tensions" in the web spans. That is, the web tensions are still controlled in open 
loop by the relation of the speeds of the driven rollers (draw control). This control 
method cannot reject disturbances due to "tension transfer" from adjacent web 
spans and interaction between adjacent web spans through an intermediate driven 
roller. 

In the "draw control" scheme, tension in a web span is controlled in an open
loop fashion by controlling the velocities of rollers at either end of the web span. 
Tension is very sensitive to the velocity difference between the ends of the web 
span. For example, a change in the velocity difference of 0.1 % of the operating 
velocity results in a tension variation of 42 lbs (187 N) in a Polypropylene web 
(E=350,000 lbs/in2 (2.4*109 N/m2), h=0.001 in. (2.5*10-5m), w=l20 in. (3.0 m)).
This means that for a nominal operating web tension of 0.5 pli (88.0 N/m), the 
tension variation is 70% of the operating web tension . If an encoder with 0.1 % 
accuracy (typical) is used to sense the velocity of the roller at one end of the span, 

I.Unless slllted otherwise throughout this popcr, the term "tension" refers to the longimdinnl tension in 11 web 
span. 
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accurate control of web tension cannot be achieved. On the other hand, if a load 
cell with a 10% accuracy or better is available to measure tension, feedback control 
of web tension can result in greatly improved accuracy. 

In this paper, an idealized mathematical model for a single-span web 
transport system is derived. This open-loop dynamic model is used as the basis for 
the design of closed-loop systems for the control of longitudinal tension in the web. 
Two specific examples are presented to illustrate the use of closed-loop control in a 
web transport system with a time-varying parameter. 

A fixed-gain and a variable-gain PID controller were designed to control 
tension in a winding section that has a winding roll with a time-varying radius. The 
dynamic performance of the system with a fixed-gain PID controller and with a 
variable-gain PID controller was determined through computer simulation using 
the idealized dynamic model. Only the variable-gain PID controller produced 
accurate tension control for all values of the winding roll radius. 

DERIVATION OF THE MATHEMATICAL MODEL 

To facilitate the modeling and analysis of web transport systems, the concept 
of a "primitive element" was established (ll). Examples of primitive elements are 
a free web span, a roller, a roll, a web interacting with a free roller, a web 
interacting with a fixed roller, etc .. Dynamic models may be derived for these 
primitive elements using a first principles approach involving the law of 
conservation of mass, Hooke's law, and Newton's law of motion. A mathematical 
model for a single-span system can be obtained using these models. 

Tension- Web Velocity Relationship 
Consider the single-span system shown in Figure I. The assumptions listed 

below facilitate the derivation of an "idealized" mathematical model for the single
span system. 

1. The length of contact region between the web material and the rollers is
negligible compared to the length of free web span between the rollers
(i.e., the tension variations in the contact region are negligible).

2. The thickness of the web is very small compared to the radius of the
rollers.

3. There is no slippage between the web material and the rollers.
4. There is no change in the temperature or humidity within the web span.
5. There is no change in the density and modulus of elasticity within the web

span.
6. There is no change in the cross-sectional area of the web span.
7. The strain in the web span is very small (strain<< 1).
8. The strain is uniform within the web span.
9. The web is perfectly elastic.
10. The machine direction stress prevails.
11. There is no change in the moments of inertia of the rollers.
12. The dynamics of the tension sensors are considered to be negligible

compared to the dynamics of the system.
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The law of conservation of mass for the control volume (see Figure I) can 
be written as: 

(I) 

Consider the infinitesimal web element shown in Figure 2. The stretched and 
unstretched states of the web are related by the following equations: 

dx = (I +Ex) dxu 
w = (I +E

y
) Wu 

h = (I +E,) hu 

dm = p W h dx = Pu Wu hu dxu 

The subscript u indicates the unstretched state of the web. 

(2) 
(3) 
(4) 
(5) 

Combining equations (I) through (5) gives the following nonlinear strain
web velocity relationship: 

ul[i:2(t)] = - v2(t)E2(t) + V1(t)E1(t) + v2(t) - V1(t) dt (6) 

Equation (6) can be linearized for the case when all variables undergo small 
perturbations from ah initial steady-state value. Let£ = Eo + E andv = vo + V in 
equation (6), where e and V are small perturbations from initial steady-state 
operating values; the subscript O denotes an initial steady-state operating value. 
With these definitions, the linearized strain-velocity relation is: 

A[E2(t)] = _ �2(t) + V!QE 1(t) + V2(t) _ V 1(t)
dt L L L L 

Under assumptions (4) through (10), Hooke's law can be written as: 

Combining equations (7) and (8) gives the tension-velocity relationship: 

.!!.. [T2(t)] = -
v

20T2(t) + v10T 1 (t) + AE (V2(t) - V1(t))
dt L L L 

Tension-Roller Velocity Relationship 

(7) 

(8) 

(9) 

It is assumed that the roller at each end of a free span is driven by a motor. 
A motor characteristic linearized around an operating point is shown in Figure 3. 
Under assumptions (3) and (II) (i.e., the roller tangential velocity equals to the 
web velocity at contact), the following linearized equation can be derived from the 
torque balance on the roller at position 2 in Figure I: 
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(10) 

CLOSED-LOOP CONTROL OF LONGITUDINAL TENSION 

Consider the single-span system with feedback control of tension as shown in 
Figure 4. The PID controller, commonly used in industry, will be used here. 

PID Controller 
The PID controller is described by the following equation: 

(11) 

The linearized mathematical model given by equations (9) and (10) can be used 
for the single-span system. Figure 5 shows a block diagram of the closed-loop 
system. The closed-loop transfer function can be written as follows: 

(12) 

For the special case when T1 = V1 = T3 = 0, the closed-loop transfer function 
reduces to: 

o r

T2 = GcGp 
T 2rcr I +GcGp 

..I._= b2s2 + b1s + bo 
T2rcr s3 +a2s2 + a,s + ao 

where 

and 

ao = 13oK;, 
a, =Clo+ 13oKp, 
a2 = a 1 + 13oKd, 

b2s2 + b1s + bo 
F(s) 

V20 (B12+C2) AFR� V20 B12+C2 
ao = Ll + -Ll 'a, = T +-1-

2 2 2 

AER2 �o =K2 Ll2 

bo = 13oK;, 
b1 = 13oKp, 
b2 = 13oKd, 

(13) 

(14) 

The characteristic equation of the closed-loop tension control system is third 
order (see equation (14)). The third-order characteristic equation of the desired 
closed-loop tension control system can be rewritten as follows CH): 

F(s) = (s + r)(s2 + 2�ffin + ffii) = 0 (15) 

where 
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r = k, l�ron I 

If kr > 10, the third order system behavior is similar to that of a second order 
system with natural frequency '°n and damping ratio �- The gains of the PID 
controller can be obtained as follows by comparing terms in equations (14) and 
(15). That is: 

(16) 

(17) 

(18) 

Using equations (16) through (18), a PID controller can be designed for a given 
set of open-loop system parameter values and to meet the desired specifications of 
the closed-loop tension control system. 

DESIGN OF A CLOSED-LOOP CONTROL SYSTEM FOR A 

WINDING SECTION 

Consider the winding section with feedback control of tension as shown in 
Figure 6. Two controller types will be evaluated: (1) a fixed-gain PID controller, 
and (2) a variable-gain PID controller. 

The radius of the winding roll, R2, and the inertia of winding roll, J2, in 
equation (14) are time-varying. The moment of inertia of the winding roll can be 
expressed as a function of the radius of the winding roll if the density of the roll is 
known. A "build-up ratio", Rb, can be defined as: 

(19) 

The system parameters a 0, a 1, and Po in equations (16) through (I 8) can be 
rewritten as functions of the build-up ratio, Rb, as follows: 

(20) 

(21) 

(22) 
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It is assumed that the winding roll has a uniform density. 

Fixed-Gain PID Control 
A set of fixed-gains for the PID controller can be obtained at a particular 

instant of time or for a particular build-up ratio by using equations (I 6) through 
(22). Since the build-up ratio changes as the parameters (radius and inertia of the 
roll) in the winding section change, a fixed-gain PID controller designed for a 
particular build-up ratio cannot meet the desired specifications (see example later). 

Variable-Gain PID Control 
A simple variable-gain control technique is proposed to overcome the 

deficiency of the fixed-gain PID controller. The concept of variable-gain control is 
to continuously update the gains of the PID controller as the parameters change. A 
schematic diagram of a variable-gain tension control system is shown in Figure 7. 
The radius R2 (and build-up ratio, Rb) is time-varying. The gains in the controller 
are functions of the build-up ratio, Rb, The resulting controller gains can be 
determined using the algorithm contained in equations (16) through (22), where 
Clo, c,1, and �o are functions of the build-up ratio and therefore functions of time. 

The locations of the poles of the closed-loop transfer function change with 
time. The variable-gain control algorithm continuously updates and places these 
closed-loop poles at locations in. the left half s-plane such that the design 
specifications are met for all values of Rb, 

EXAMPLES OF FIXED-GAIN AND VARIABLE-GAIN PID 

CONTROL 

For illustrative purposes, it is desired to design a closed-loop control system 
which satisfies the following specifications: 

Steady-State Error 
Damping Ratio of Closed-Loop System (equation (15)) 
Natural Frequency of Closed-Loop System (equation (15)) 
Real root (equation (15)) 

Fixed-Gain PID Control 

ess = 0 !bf 
� = 0.7 

con = IO rad/sec 
r = 13j�co� 

An example is solved to illustrate the dynamic performance of a winding 
section with fixed-gain PID control of longitudinal tension (see Figure 6). It is 
desired to obtain the response of the tension, T 2, to a step change in the reference 
tension, T2ref· Parameter values and conditions of the system for simulation are 
shown in the Appendix. The controller was designed for Rb = 1.0. Simulation 
results are shown in Figure 8 for different values of the build-up ratio. Equation 
(15) was used to obtain the "desired response". The desired response and the
response for Rb = 1.0 are identical. Since the build-up ratio changes as the
parameters (radius and inertia of the roll) in the winding section change, the fixed
gain PID controller designed for Rb = 1.0 cannot meet the desired specifications
for tension control in the winding section for all values of Rb.
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Variable-Gain PIO Control 
An example is solved to illustrate the dynamic perfonnance of a winding 

section with variable-gain PIO control of longitudinal tension (see Figure 7). 
Parameter values and conditions of the system for simulation are shown in the 
Appendix. The step responses of the tension control system with a variable-gain 
PIO controller are compared with the step responses for the tension control system 
with a fixed-gain PID controller in Figure 9. The system with a variable-gain 
controller satisfies the desired specifications for all values of Rb; the system with a 

fixed-gain controller does not satisfy the desired specifications except for Rb = 1.0. 

CONCLUSIONS 

The advantage of a variable-gain PIO controller compared to a fixed-gain 
PIO controller is that it compensates for time-varying parameters. The advantage 
of variable-gain PID control compared to other "adaptive control" techniques is its 
simplicity. The variable-gain PIO control is easy to implement and shows promise 
for applications where the time-varying parameters are easily measured. A 
weakness of this approach is that it may not be robust against measurement noise. 
An error in measurement directly affects the gains of the controller. 
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APPENDIX 

System Conditions and Parameter Values for Simulation 

System Conditions: 
To(0) = 0.0 (lbf), n = 1, 2 
V0(0) = 0.0 (ft/sec), n = 1, 2 

Parameter Values: 
A = 0.12 (in2) 
E = 350,000 (lbf/in2) 
J20 = 94.0 (lbf-in-sec2) 

J2 = 94.0 Rt (lbf-in-sec2) 
L = 120 (in) 
R! = l to 1.75
v00 = 1,000 (ft/min), n = 1, 2 
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Figure 1. Single-Span System. 
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Figure 2. Infinitesimal Mass Element from a Web Span. 
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Figure 3. Motor Characteristic Linearized around an Operating Point. 
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CON1ROLLER MOTOR 

Figure 4. Single-Span System with Closed-Loop Tension Control.
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Gc(s) = Kp + Ki + Kcts (PIO controller), Gp(s) = l K2 
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t,, Ll2 t,, 2 t,, 2 

• _ 2 (V20 B12+<::2) v20(B12+C,l +AER� ,_. - s + y+
----i;-

s+ 
Ll2 

Figure 5. Block Diagram for a Single-Span System with Closed-Loop
Tension Control. 
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Figure 6. Winding Section with Closed-Loop Tension Control. 
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Figure 7. Winding Section with Closed-Loop Tension Control Using 
a Variable-Gain Controller. 
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Figure 8. Step Responses for System with Fixed-Gain PID Controller. 
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Figure 9. Step Responses for System with Fixed-Gain PID and 
Variable-Gain PID Controllers. 
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