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The prediction of bobbin stresses generated by wire winding is now possible 
by combining a finite element structural code and a rigid body motion code. In this 
combination of computer codes, the bobbin and the individual wire wraps are 
considered to be axisymmetric. Each wire wrap is modeled with a single one-node 
element that has stiffness, mass and radius. The distributed radial load that a wire 
wrap exerts on the bobbin or other wires is calculated by using a relationship 
developed for a thin ring with a circular cross section. 

In this analysis, a layer of wire wraps with a specified tension is applied to a 
bobbin. The bobbin contracts radially until an equilibrium position is reached. When 
a second layer is added, the bobbin and each wire in the first layer reach a new 
equilibrium position. The tensions and the distributed radial loads associated with 
each displaced wire in the first layer change accordingly. As additional layers are 
added, the tensions and the distributed radial loads for all the previously applied 
wires are adjusted to reflect their new positions. The stresses in the bobbin can be 
determined for any number of wire layers. Bobbin fixturing during winding can be 
simulated by imposing suitable boundary conditions on the bobbin's finite element 
mesh. 

A simple test problem is presented, providing a comparison between the finite 
element results and a closed-form solution. Quantitative results for bobbin stresses 

* This work performed at Sandia National Laboratories supported by the U. S.
Department of Energy under contract number DE-AC04-76DP00789.
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and wire tensions are then presented for more realistic coils. The impact of bobbin 
fixturing and wire packing structure on the stresses in the bobbin are also discussed. 

NOMENCLATURE 

A = area of a wire cross section, mm2 

Br = inner bobbin radius, mm 
E = elastic modulus, 0Pa 
G = shear modulus, 0Pa 
F = cross sectional shape factor 
I = area moment of inertia of a wire cross section, rnm4 

L = axial length of bobbin, mm 
n = number of discrete radial loads 
r = radius of a wire cross section, mm 
R = radius to the centroid of a wire wrap, mm 
Ro = initial equilibrium value of R, mm 
LI.R = change in R, mm 
T = tension in a wire wrap, N 

lb = bobbin base thickness, mm 
tf = bobbin flange thickness, mm 
To = initial tension in a wire wrap, N 
w = discrete radial load, N 
0 = half-angle between discrete radial loads, deg 
0) = distributed radial load, N/mm 

INTRODUCTION 

Wire winding can produce stresses high enough to cause excessive 
deformation or cracking in a bobbin. However, predicting the stresses in a bobbin is 
difficult for several reasons. When a wire wrap under tension is added to the bobbin 
and any previous wraps, it exerts a distributed radial load which must be supported. 
The tension and the radial load associated with a given wire wrap will change as 
additional wraps are added. The analysis is complicated by the fact that the bobbin 
contracts less in the radial direction at the flanges than it does midway between the 
flanges. The bobbin's flanges also deflect nonuniformly. Furthermore, each wire 
wrap is in contact with and influenced by several other wraps. In this study, these 
difficulties were overcome by modeling the wire winding process axisymetrically 
using a computer code which combines finite elements and discrete elements. 

The finite element code PRONT02D W was used to model the bobbin. 
Discrete elements, based on the DMC (2) code, were used to model the individual 
wires in the winding. PRONT02D is an explicit dynamics code that uses four-node, 
quadrilateral elements with single-point integration and hourglass control. DMC is a 
two-dimensional rigid body motion code developed to analyze the interactions of 
spherical particles. A quasi static solution was obtained by slowly ramping on the 
wire tension and damping the dynamic response. 

Each wire wrap in the winding was modeled using a single discrete element, 
which treats the wrap as a ring with a circular cross section. Although these cross 
sections remain circular, some overlapping is allowed, based on the elastic moduli of 
the elements in contact. The displacement of a given wire wrap is determined by its 
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contacts with the other wire wraps, and possibly the bobbin. Wire overlaps andreaction forces are calculated based on a Hertz contact algorithm (2). It should benoted that the bobbin's contact surface is defined by a group of discrete, circularelements inscribed in each of the quadrilateral elements on the surface of thebobbin's mesh. Therefore, the bobbin must be meshed with small, square elementsto approximate a flat bobbin surface. 
WIRE WRAP MODEL 

In this study, wire winding is simulated by applying thin, circular rings to anaxisymmetric bobbin. Each ring, or wire wrap, lies in a plane perpendicular to thebobbin's axis of symmetry. This precludes the consideration of any helix or crossovers present in the winding. Figure 1 shows a circular ring subjected toseveral equal, discrete, radial loads. The relationship between the loads and theradial displacement at each load point is given in Q). 
LiR =(k1(0-sc) + k2c _ k1) WR!_

482 2s 20 EI 
where s = sin0 and c=cos0. For thin rings,

ki = 1 __ I_+ FEI 
AR2 GAR2

k2 = 1 __ I_AR2 

(1) 

(2) 

(3)
where F is a shape factor dependent on the ring's cross section. For a distributedradial load (0 approaches zero), the k1 term in Equation (1) disappears. As thenumber of concentrated loads,n, gets large, a distributed radial load can beapproximated with 

co'= nW = W 21tR 2R0 (4) 

A true distributed load, w, is obtained by taking the limit of w' as 0 approacheszero. When the appropriate substitutions are made for I and A, the distributedradial load in a thin ring with a cross sectional radius, r, simplifies to 

Allowing for multiple load steps,
co =coo+ 41tEr2 LiR4Ri\ - r2 

(5) 

(6) 

The radial load that a wire wrap exerts on the bobbin or other wraps thatsupport it can be updated as the wrap's radius, R, changes using Equation (6). When
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a wire wrap is first applied, the distributed radial load is just the initial tension , To, 
divided by the radius, R. In the computer code, a wire wrap with a specified tension 
is applied to the bobbin and any previously applied wires. The specified tension is 
maintained in the wrap until the new structure reaches equilibrium and the current 
wrap radius, R, is stored. If more wire wraps are applied or if the boundary 
conditions of the bobbin change, R will change. The distributed radial load that the 
wire wrap exerts on the bobbin or other wraps also changes, in accordance with 
Equation (6). 

TEST CASE 

A test case was devised to demonstrate that the computer code correctly 
applies wire wraps and allows the wire tensions (and the associated distributed radial 
loads) to relax. Figure 2 shows the axisymmetric finite element mesh used for the 
test case. The centerline of the flangeless bobbin and each wire wrap were 
prevented from translating in the axial direction. The first wire wrap was applied to 
the bobbin and the structure was allowed to reach equilibrium. The rest of the wraps 
were then applied in succession, allowing the existing structure to reach equilibrium 
before the next wrap was applied. Each wire wrap is applied with an initial tension 
of 0.3 N. For comparison, an approximate closed-form solution was obtained in 
which the flangeless bobbin is treated as a thin cylinder subjected to a uniform 
pressure and the wire wraps are modeled as rings which cannot overlap the bobbin 
or each other. Elastic moduli of 13.86 GPa and 117 GPa were used for the bobbin 
and the wire wraps, respectively. See Figure 2 for geometric parameters. 

The bobbin hoop stress calculated by the code varies from -28.8 MPa to -30.4 
MPa. The closed-form solution yields a uniform hoop stress of -27.7 MPa. Figure 
4 shows how the tensions in all five wraps are ramped up to the specified values and 
then relax as additional wraps are added. The timesteps shown are nonphysical. 
Note that the tension in each wire wrap is not quite zero before it is applied. At the 
beginning of each run, all wire wraps are assigned an initial tension equal to one
percent of the values with which they will eventually be applied. These small initial 
tension values allow wire wraps to migrate towards their eventual equilibrium 
positions before they are applied and reduces the computer run time. The closed
form tension values for the first wire wrap are shown in parentheses in Figure 3. 
The tension relaxation calculated by the code is within 10 percent of the closed-form 
solution. Some difference was expected for several reasons. The closed-form 
solution requires several idealizations. Additionally, in the code, each wrap exerts a 
small load on the structure before it is actually applied. Given the differences in the 
solution techniques, the differences in the results appear reasonable. More 
complicated windings will now be considered. 

RESULTS 

Combining PRONTO2D and DMC provides a versatile tool for evaluating 
wire winding problems. Material properties, bobbin geometry and fixturing, the 
size and number of wire wraps, and the initial wire tension can be arbitrarily 
defined. In order to focus on a few parameters, however, the same bobbin 
geometry, wire size, and material properties were used for all of the cases 
considered in this paper. Additionally, the wire wraps in a given layer were turned 
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on as a group rather than individually to simplify the process and significantly 
reduce the run times. Figure 4 shows the axisymmetric finite element mesh of the 
bobbin that will be used in this study. A thickness of 0.3 mm was used for both tb 
and ff· The bobbin radius, Br, was 5.7 mm. Elastic moduli of 13.86 GPa and 117 
GPa were used for the bobbin and the wire wraps, respectively. 

Two types of bobbin fixturing were considered. In the first case, the bobbin's 
flanges were supported with rigid, flat washers. The washers prevent axial 
displacement but do not affect radial contraction. In the second case, the bobbin's 
hub was supported at either end with rigid cones. The cones allow the hub ends to 
contract radially only if the bobbin contracts axially. For both types of fixturing, 
the supports were removed after all of the wire wraps had been applied . Figures 5
and 6 show the von Mises stresses in the bobbin and the tensions in the wires for the 
flange-supported and hub-supported cases, respectively. The initial tension in each 
wire was 1.2 N. The wire wraps in both windings were completely hexagonally 
packed. The only difference was the bobbin fixturing. Clearly, bobbin fixturing can 
have a significant impact on the stresses in the bobbin as well as the final wire 
tensions. 

The flange supported case was run again with an initial wire wrap tension of 
0.6 N. The stress and tension contours (scaled by 0.5) are quite similar to those 
shown in Figure 5. This basically linear relationship between the initial wire tension 
and the final bobbin stresses and wire tensions was expected since the bobbin 
deformations were quite small. Another variation on the flange supported case is 
shown in Figure 7. The only change was in the wire packing structure, which 
deviates from the purely hexagonal packing considered in the other cases. The 
stresses in the bobbin with the slightly disordered packing are slightly higher than 
those with a totally hexagonal packing. 

Table I shows a few of the outputs available from the computer code. The 
total radial load, Pt, that a coil with I wire wraps exerts on a bobbin is simply 

t t 

P, = L {2rrRi)<oi = 2rr L Ti 
i= 1 i= l 

(7) 

Several items stand out in Table I. Doubling the initial wire tension roughly 
doubled the maximum bobbin stresses and deformations. The bobbin whose flanges 
were supported by flat washers had lower stresses and Jess change in axial length 
than did the bobbin whose hub was supported by cones. Finally, it is interesting to 
note that even though the disordered coil exerted a lower radial load on its bobbin 
than the purely hexagonal coil did, the disordered coil produced slightly higher 
bobbin stresses. This occurs because a hexagonal packing minimizes the lateral loads 
the wire wraps exert on the flanges. A coil with a random packing structure could 
cause considerably higher bobbin stresses than a hexagonally packed coil . 

SUMMARY 

Winding wire on a bobbin can be modeled axisymmetrically using a computer 
code which combines finite elements and discrete elements, allowing the user to 
arbitrarily define material properties, bobbin geometry and fixturing, the size and 
number of wire wraps, and the initial wire tension. The code updates the tension 
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and the radial load associated with a given wire wrap as additional wraps are added 
or bobbin constraints are removed. 

Although only one bobbin and wire size were considered, the results presented 
show that bobbin fixturing and the wire packing structure can have a significant 
effect on the bobbin stresses and dimensional changes. It is evident from this study 
that bobbin stresses and dimensional changes can be minimized by supporting the 
flanges during winding. A hexagonally packed coil will also yield lower bobbin 
stresses, when compared to a disordered coil. 
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Figure 2. Finite Element Mesh for the Test Case 
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Figure 3. Computed Wire Tensions for Test Case 
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Figure 4. Bobbin Finite Element Mesh 
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Figure 5. Flange Supported Bobbin with Hexagonal Wire Packing 
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Figure 6. Cone Supported Bobbin with Hexagonal Wire Packing 
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Figure 7. Flange Supported Bobbin with Disorderd Wire Packing 
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Maximum von Mises Maximum Change 
Case Total Radial Stress in Bobbin in Axial Length 

Load (N) (MPa) (mm X lQ-3) 
Hexagonal Packing 
Flange Supports 278 34.2 11.6 
To-1.2 N 
Hexagonal Packing 
Cone Supports 309 41.1 19.8 
To=l.2 N 
Hexagonal Packing 
Flange Supports 139 17.1 5.55 
To=0.6 N 
Disturbed Packing 
Flange Supports 268 36.2 11.4 
To-1.2 N 

Table 1. Summary of Computer Code Outputs 

BOBBIN STRESSES GENERA TED BY WIRE WINDING 
K. Metzinger

Would it be possible for you to taper the wire-winding tension? 
Dave Pfeiffer, McGill 

Yes. We apply each wire wrap as a ring. Each ring can have a different tension. 
We wouldn't even have to do it by l ayers. We could do it individually. That's not a 
problem. Well it's a problem if you've got to type them in, but it's not a problem 
for the code. 

Maybe I should clarify it's a very generic technique. The finite element bobbin can 
be any size, any shape. We can use elastic properties, elastic plastic, we can use 
power law hardening. It's pretty flexible on what we can do. We have not explored 
all the possibilities. 
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