
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

BARYOGENESIS SCENARIOS FOR NATURAL SUPERSYMMETRIC
PARTICLE PHYSICS MODELS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

Yifan Zhang
Norman, Oklahoma

2019



BARYOGENESIS SCENARIOS FOR NATURAL SUPERSYMMETRIC
PARTICLE PHYSICS MODELS

A DISSERTATION APPROVED FOR THE
HOMER L. DODGE DEPARTMENT OF PHYSICS AND ASTRONOMY

BY THE COMMITTEE CONSISTING OF

Dr. Howard Baer, Chair

Dr. Shihshu Walter Wei

Dr. Xinyu Dai

Dr. Kieran Mullen

Dr. Kuver Sinha



c© Copyright by Yifan Zhang 2019
All rights reserved.



Acknowledgements

I wish to express my gratitude to my advisor, Dr. Howard Baer, for being an

excellent mentor, for encouraging to explore and work in physics, for his guidance,

unconditional support and patience during all these years. His timely, scholarly

advice has helped me to a very great extent to accomplish this work. I am grateful

for having had the opportunity to study with him.

This dissertation would not have been possible without the support of many

people. I gratefully thank my collaborators Kyu Jung Bae and Hasan Serce for

their hard work. I would like to express my sincere appreciation to my com-

mittee members who patiently read this work. I deeply thank all my professors,

especially Dr. Chung Kao and Dr. Shihshu Walter Wei, for teaching me the fun-

damentals of physics and math which served as a good basis for the present work.

Special thanks to my family for their understanding and support throughout all

these years. Finally, it is a pleasure to thank all my friends who supported me

during all my studies.

iv



Contents

Abstract vii

1 Introduction 1

2 The Standard Model and the Supersymmetry 6
2.1 The Standard Model (SM) . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Motivation for the Supersymmetry (SUSY) . . . . . . . . . . . . . 11
2.3 SUSY algebra and Lagrangians . . . . . . . . . . . . . . . . . . . 16
2.4 The minimal supersymmetric standard model (MSSM) . . . . . . 24

2.4.1 The superfields and Lagrangian of the MSSM . . . . . . . 24
2.4.2 Breaking of SUSY in the MSSM . . . . . . . . . . . . . . . 26
2.4.3 The Higgs potential . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Strong CP problem, Peccei-Quinn (PQ) symmetry and axion . . . 31
2.6 KSVZ and DFSZ models . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1 SUSY KSVZ model . . . . . . . . . . . . . . . . . . . . . . 35
2.6.2 SUSY DFSZ model . . . . . . . . . . . . . . . . . . . . . . 36

2.7 SUSY Naturalness . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7.1 Naturalness measurements . . . . . . . . . . . . . . . . . . 39
2.7.2 Radiatively-driven natural supersymmetry (RNS) . . . . . 41
2.7.3 Dark matter with SUSY naturalness . . . . . . . . . . . . 43

3 The Standard Model of Cosmology 45
3.1 The big bang theory . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 Reheat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Baryogenesis via Leptogenesis 55
4.1 Conditions for baryogenesis . . . . . . . . . . . . . . . . . . . . . 57
4.2 Leptogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Leptogenesis via right-handed neutrino decay . . . . . . . 61
4.2.1.1 Thermal leptogenesis (THL) . . . . . . . . . . . . 61
4.2.1.2 Non-thermal leptogenesis via inflaton decay (NTHL) 64

4.2.2 Leptogenesis from coherent oscillating right-handed sneu-
trino decay (OSL) . . . . . . . . . . . . . . . . . . . . . . . 65

v



4.2.3 Affleck-Dine leptogenesis (ADL) . . . . . . . . . . . . . . . 66
4.3 Constraints in the TR vs. m3/2 plane for various fa . . . . . . . . 78

4.3.1 SUSY DFSZ model . . . . . . . . . . . . . . . . . . . . . . 84
4.3.2 SUSY KSVZ model . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Constraints in the TR vs. fa plane for fixed m3/2 . . . . . . . . . . 89
4.4.1 SUSY DFSZ model . . . . . . . . . . . . . . . . . . . . . . 91
4.4.2 SUSY KSVZ model . . . . . . . . . . . . . . . . . . . . . . 95

5 Affleck-Dine (AD) Baryogenesis 99
5.1 AD baryogenesis with R-parity . . . . . . . . . . . . . . . . . . . 100

5.1.1 Q-Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 AD baryogenesis without R-parity in SUSY DFSZ . . . . . . . . . 109

6 Conclusion 115

Appendices 119
A The Einstein equations for the FRW universe . . . . . . . . . . . . 119
B The coupled Boltzmann equations . . . . . . . . . . . . . . . . . . 120

References 125

vi



Abstract

Supersymmetric models with radiatively-driven electroweak naturalness require

a light higgsino of mass ∼ 100 − 300 GeV. Naturalness in the QCD sector is

invoked via the Peccei-Quinn (PQ) axion leading to mixed axion-higgsino dark

matter. The SUSY DFSZ axion model provides a solution to the SUSY µ prob-

lem and the Little Hierarchy µ � m3/2 may emerge as a consequence of a mis-

match between PQ and hidden sector mass scales. The traditional gravitino

problem is now augmented by the axino and saxion problems, since these latter

particles can also contribute to overproduction of WIMPs or dark radiation, or

violation of BBN constraints. We compute regions of the TR vs. m3/2 plane al-

lowed by BBN, dark matter and dark radiation constraints for various PQ scale

choices fa. These regions are compared to the values needed for thermal lepto-

genesis, non-thermal leptogenesis, oscillating sneutrino leptogenesis and Affleck-

Dine leptogenesis. The latter three are allowed in wide regions of parameter

space for PQ scale fa ∼ 1010 − 1012 GeV which is also favored by naturalness:

fa ∼
√
µMP/λµ ∼ 1010 − 1012 GeV. These fa values correspond to axion masses

somewhat above the projected ADMX search regions. AD baryogenesis can gen-

erate appropriate baryon asymmetry and dark matter, while AD baryogenesis

without R-parity in SUSY DFSZ model can also avoid the problem of overpro-

duction of dark matter.

vii



Chapter 1

Introduction

We live in a world that is made of matter, i.e., baryons and leptons. Astrophysi-

cal observations show us there are no large regions of anti-matter in our universe.

Assuming there were initial net baryon and lepton number, inflation in the early

universe will dilute away all existing baryon and lepton asymmetries. So the

baryon and lepton asymmetries have to be generated after inflation. The Stan-

dard Model (SM) tells us that matter and anti-matter are produced in pairs, and

no baryon asymmetry can be generated perturbatively within the SM. The elec-

troweak baryogenesis (EWBG) within the SM required a Higgs mass mH < 50

GeV, but now that mH ' 125 GeV is discovered, SM EWBG is excluded by

experimental data. Thus, the origin of baryon asymmetry is one of biggest mys-

teries in particle physics and cosmology, and seems to require physics beyond the

SM.

There are more problems that the SM cannot solve. First of all, the Higgs

mass is unstable under quantum corrections, so we would expect its mass to

be far above 125 GeV. Also, observational data shows that 85% of the matter

in our universe is dark matter which is massive and doesn’t interact with the
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electromagnetic field, but the SM does not include any such candidate for dark

matter. The best way to solve those problems is the supersymmetric extended SM

(SUSY). SUSY implies that for every particle in the SM there is a corresponding

superpartner of opposite (i.e., fermionic or bosonic) symmetry. The lightest SUSY

particle (LSP) in the minimal SUSY (MSSM) is naturally a good dark matter

candidate.

The strong CP problem is a problem that neither the SM nor the SUSY

can solve. In strong interactions, Charge-Parity (CP) symmetry violation could

occur, but it is never observed in experiment. This is known as the strong CP

problem. Peccei-Quinn (PQ) theory is the most popular solution to it. PQ theory

proposed a global U(1)PQ symmetry that is spontaneously broken, giving us a

new particle: the axion. The axion is super weakly interacting with ordinary

matter, and is also a good candidate for dark matter. The axion term in the

Lagrangian can dynamically cancel the CP-violating term.

There is also a µ problem: the superpotential µ-parameter should be at the

weak energy scale since it gives mass to Higgs, but it is also expected at the

Planck scale since it is supersymmetric. PQ-charged Higgs fields can also solve

the SUSY µ problem, so the higgsino could be the LSP which is also a good

candidate for dark matter. Then we expect axion-higgsino mixed dark matter.

We will use the SUSY version of the PQ axion models. The lack of evidence

for SUSY at the Large Hadron Collider (LHC) has pushed the SUSY particle

mass limits higher. But still the energy of the accelerator is not high enough to

cover all possible SUSY energy scales. The big bang of the universe is naturally

at much higher energy scales, so we can build cosmological models, compare the

results with observational data, and then test our cosmological models as well as

particle physics models.
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We assume that in the early universe there was an inflationary stage, in which

the universe expanded exponentially and became very cold. The inflaton is the

field that causes the inflation. After the inflation ended, the universe expansion

slowed down, and the universe was reheated by inflaton decay which reheated the

universe to a high temperature. This reheat temperature, TR, is an critical pa-

rameter for most baryogenesis models. The gravitino, which is the superpartner

of graviton, can be thermally produced in the early universe at a rate propor-

tional to TR. If the reheat temperature is too high, then the gravitino problem

occurs: too many gravitinos can lead to too much dark matter or violate Big

Bang Nucleosynthesis (BBN) bounds via their late decays. In the case of natural

SUSY (natural means all contribution to the weak scale are comparable to or

less than the weak scale) with mixed axion-higgsino dark matter, then similar

constraints arise from axino and saxion production: weakly interacting massive

particles (WIMP) or axions can be overproduced, or light element abundances

can be destroyed by late decaying axinos and saxions.

The sphaleron process is a mechanism that can convert lepton asymmetry

to baryon asymmetry. We can consider baryogenesis via leptogenesis. First,

the simplest leptogenesis involves thermally produced right-handed neutrinos fol-

lowed by asymmetric neutrino decay to leptons versus anti-leptons. This is called

thermal leptogenesis (THL). The production of the heavy right-handed neutrino

requires a high reheating temperature, so the THL is constrained. Secondly, we

can also have non-thermally produced right-handed neutrino through inflaton de-

cay, called non-thermal leptogenesis (NTHL). The produced lepton asymmetry is

inflation model dependent, i.e., it depends on the inflaton mass and reheat tem-

perature. But not all the inflation models require a high reheat temperature, so

the gravitino problem can be avoided in this case. Thirdly, the right-handed sneu-
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trino, which is the scalar superpartner of right-handed neutrino, can be mainly

produced via coherent oscillations (OSL). The sneutrino decay temperature can

be considered as the reheat temperature. The fourth leptogenesis mechanism

is via an Affleck-Dine condensate, called Affleck-Dine leptogenesis (ADL). The

scalar AD field carries lepton number. It generates net lepton asymmetry through

the coherent oscillation along a flat direction which violates lepton number. The

lepton asymmetry is almost independent of the reheat temperature, but it is

sensitive to the mass of the lightest neutrino. We consider Affleck-Dine baryo-

genesis with and without R-parity. The SUSY R-parity violation can explain

the smallness of neutrino mass without introducing new particles, and can avoid

the gravitino problem. The smallness of R-parity violation is explained by the

couplings between the PQ fields and the baryon number violating terms, so that

it is consistent with the unobservable proton decay.

Baryogenesis

AD baryogenesis

via Leptogenesis

with R-parity

without R-parity

via right-handed neutrino decay

via oscillating sneutrino decay (OSL) 

AD leptogenesis (ADL) 

Thermal leptogenesis (THL) 

Non-thermal leptogenesis via inflaton decay (NTHL) 

Figure 1.1: Logic structure of attempts to solve baryogenesis.

The aim of this thesis is to re-examine the origin of the baryon asymmetry

in different baryogenesis scenarios, and assess their plausibility in the context of

natural SUSY with mixed axion-higgsino dark matter. In this thesis, first, we

review the SM, SUSY, axion models, SUSY naturalness and the standard model

of cosmology. Then we investigate more details of the different baryogenesis
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scenarios. We calculate the mixed axion-WIMP dark matter abundance, and the

constraints on leptogenesis in the TR vs. m3/2 planes assuming a natural SUSY

spectrum, as well as corresponding results in the TR vs. fa planes. We vary the

PQ scale fa from values favored by naturalness (fa ∼
√
µMP where naturally µ

should be at weak energy scale) fa ∼ 1010 − 1012 GeV to much higher values.

While the thermal leptogenesis mechanism is quite constrained depending onm3/2

and TR, the latter three mechanisms appear plausible over a wide range of TR,

m3/2 and fa values which are consistent with naturalness. We also investigate the

AD baryogenesis with and without R-parity, and calculate the baryon asymmetry

without R-parity in SUSY DFSZ model, and show the baryon asymmetry in the

m3/2 vs. TR plane.
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Chapter 2

The Standard Model and the

Supersymmetry

2.1 The Standard Model (SM)

The Standard Model has been a highly successful framework for describing par-

ticle physics. It is a non-Abelian gauge theory that describes strong, weak and

electromagnetic interactions of elementary particles. In the SM, all the forces are

mediated by exchange of the gauge fields of the corresponding local symmetry

group. The symmetry group of the SM is

SU(3)C × SU(2)L × U(1)Y (2.1)

with the electroweak symmetry SU(2)L×U(1)Y spontaneously broken by the non-

zero vacuum expectation value (VEV) of the complex scalar Higgs field< H >6= 0

down to U(1)EM . SU(3)C is unbroken.

The electroweak theory is based on the SU(2)× U(1) gauge symmetry. The
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Lagrangian is

LEW = Lgauge + Lmatter + LHiggs + LYukawa. (2.2)

The gauge part is

Lgauge = −1

4
W i
µνW

µνi − 1

4
BµνB

µν (2.3)

where W i
µ, i = 1, 2, 3 is the SU(2) gauge field, and Bµ is the U(1) gauge field

with field strength tensors

Bµν = ∂µBν − ∂νBµ, (2.4)

W i
µν = ∂µW

i
ν − ∂νW i

µ − gεijkW j
µW

k
ν . (2.5)

B field is associated with the weak hypercharge 1
2
Y = Qem − T 3, where Qem is

the electric charge operator and T 3 is the third component of weak isospin. The

B and W3 fields together mix to form the photon and Z boson.

The matter term is

Lmatter =
∑

generations

(Q̄i /DQ+ L̄i /DL+ ūRi /DuR

+ d̄Ri /DdR + ēRi /DeR).

(2.6)

At this stage, EW gauge bosons and fermions are massless.

The Higgs part is

LHiggs = (Dµφ)†Dµφ− V (φ) (2.7)

where the Higgs scalar field φ =

 φ+

φ0

 is SU(2) complex doublet. The gauge
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covariant derivative is

Dµφ = (∂µ + ig
τ i

2
W i
µ +

ig′

2
Bµ)φ. (2.8)

The Higgs potential V (φ) is

V (φ) = −µ2φ†φ+ λ(φ†φ)2. (2.9)

The mass parameter −µ2 < 0 leads to spontaneous electroweak symmetry break-

ing (EWSB). The quartic coupling λ is the Higgs scalar self-coupling parameter.

λ > 0 so that there is a minimum in the potential.

The LYukawa term is

LYukawa = −
∑

generations

[λuε
abQ̄aφ

†
buR + λdQ̄φdR + λeL̄φeR] + h.c. (2.10)

where the matrices λ contain the Yukawa couplings between the Higgs scalar φ

and the fermions.

The strong interaction theory is called quantum chromodynamics (QCD). It

is based on SU(3). The Lagrangian is

LQCD = −1

4
Ga
µνG

aµν +
∑

i=flavors

q̄i(i /D −mi)qi (2.11)

where

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gsfabcGb
µG

c
ν (2.12)

is the field strength tensor of the gluon fields Ga
µ. fabc(a, b, c = 1, · · · , 8) are the

8



structure constants, gs is the QCD gauge coupling constant, and

Dµ = ∂µ + igs
λa

2
Ga
µ (2.13)

and qi contains a color triplet of quarks of flavor i.

The SM fields are:

1. Gauge bosons: The gauge bosons have spin = 1, so they are vector particles

They have the representation of group SU(3)C × SU(2)L × U(1)Y :

gluons Gµ : (8, 1, 0) SUC(3) gs or g3

weak bosons Wµ : (1, 3, 0) SUL(2) g or g2

abelian boson Bµ : (1, 1, 0) UY (1) g′ or g1 =

√
5

3
g′

(2.14)

where g3, g2 and g1 are the coupling constants.

2. Fermions: The fermions have spin = 1/2; they are matter fields. The

fermions are left-right asymmetric: i.e., the SM is a chiral theory - it distinguishes

handedness. The fermions come in three generations i = 1, 2, 3. For quarks

Qi =

 Ui

Di


L

=

 u

d


L

,

 c

s


L

,

 t

b


L

, (3, 2, 1/3) (2.15)

and

UiR = uR, cR, tR, (3, 1, 4/3)

DiR = dR, sR, bR, (3, 1,−2/3).

(2.16)
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For leptons

Li =

 νe

e


L

,

 νµ

µ


L

,

 ντ

τ


L

, (1, 2,−1) (2.17)

and

EiR = eR, µR, τR, (1, 1,−2) (2.18)

where there are 3 colors for each quark.

3. Higgs Boson: The Higgs boson has spin = 0, so it is a scalar boson, with

weak hypercharge Y = 1. The Higgs field is a 4-component complex doublet field

φ =

 φ+

φ0

 , (1, 2, 1) (2.19)

which is introduced to give masses to other particles via spontaneous EWSB.

A non-zero VEV of the Higgs field φ0 will spontaneously break the symmetry

of SUL(2) and U(1)Y groups, so that all the particles can obtain their masses.

Let

< φ >=
1√
2

 0

v

 , v = |µ|/
√
λ. (2.20)

Then

v = 2mW/g ' (
√

2GF )−1/2 ' 246 GeV (2.21)

where GF is the Fermi coupling parameter determined by muon decay measure-

ments. Three components of φ are eaten by W± and Z so these fields gain mass.
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This leaves one neutral physical Higgs boson H. The physical Higgs mass is

mH =
√

2µ2. (2.22)

This Higgs boson was discovered by LHC in 2012. The measured value of Higgs

mass is mH ' 125.09 ± 0.21 GeV, so λ ' 0.13 and |µ| ' 88.8 GeV [1]. As a

result,

SU(3)C × SU(2)L × U(1)Y
EWSB−→ SU(3)C × U(1)EM .

2.2 Motivation for the Supersymmetry (SUSY)

The Standard Model has been successful in describing the elementary particles

and the fundamental interactions. It explains why baryon number and lepton

number are conserved. But it has some problems. For example, the SM

• has the hierarchy problem;

• cannot explain the baryon asymmetry in the universe;

• cannot explain the accelerating expansion of the universe which apparently

requires dark energy;

• cannot explain the existence of dark matter;

• does not include gravitation;

• does not explain CP conservation in the strong interactions.

SUSY has the potential to provide the explanations for some of the phe-

nomenon which SM can not explain while improving other explanations. For ex-
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ample, the hierarchy problem, nonconvergent of the running coupling constants,

and candidates of dark matter.

In the SM, the Higgs squared mass parameter receives large radiative correc-

tions from particles, especially the top quark, that coupled to the Higgs field.

Fig. 2.1 shows an example of one-loop corrections to mH .

Figure 2.1: An example of quadratic divergent Feynman diagram of the correc-
tions to the Higgs boson mass in the SM.

The one-loop radiative corrections to the Higgs boson mass in the SM can be

expressed in terms of the Lorentz invariant cut-off Λ. For example, the correction

of Higgs self-interaction

δm2
H =< H| g

2m2
H

32M2
W

H4|H >' c

16π2
Λ2 (2.23)

where MW is the mass of gauge boson, c depends on coupling constants of the

SM. The correction is quadratically divergent. If Λ is at 1016 GeV (GUT scale)

or 1019 GeV (Planck scale), it is unnatural for mH to be of order of mEW . This

is the Hierarchy Problem. The bare mass has to be fine-tuned to cancel the very

large loop corrections. These quadratic divergences can be removed with SUSY,

which introduces supersymmetric partners to the SM particles.

SUSY suggested that for every boson (fermion), there is a fermion (boson)

supersymmetric partner for all SM particles. We add an “s” to superpartners of

fermions (like slepton, squark) and an “ino” to superpartners of bosons (like wino,

12



bino). These super particles have the same quantum numbers as their partners;

however, their spins are differed by 1/2. They serve as the new perturbatively

coupled degrees of freedom that act to cancel the quadratic divergences. [2] Then

the divergences from the fermion loops will cancel the divergences from the boson

loops. This cancellation will occur to all orders and for all values of particle

masses.

Another main motivation of SUSY is the Grand Unification. The grand uni-

fication theory (GUT) suggests that at some high energy scale, all interactions

unify to a single interaction, associated with a single gauge group GGUT, and the

three running couplings unify to a single running coupling constant. [3]

Low Energy → High Energy

SUC(3) SUL(2) UY (1) → GGUT = SU(5) or SO(10)

gluons W, Z photon → gauge bosons

quarks leptons → fermions

g3 g2 g1 → gGUT

The evolution of running coupling constants is a function of the renormalization

energy scale Q defined by the Beta function: [4]

βg = Q
∂gi
∂Q

with αi =
g2
i

4π
. (2.24)

Applying renormalization group equations (RGE) for the three couplings:

βg ≡
dgi
dt

=
1

16π2
big

3
i , t = ln(

Q

Q0

) (2.25)
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where Q0 is some reference scale. The solution is

1

g2
i (Q)

=
1

g2
i (Q0)

− bi
8π2

ln(
Q

Q0

). (2.26)

For the SM, the coefficients bi are

bi =


b1

b2

b3

 =


0

−22/3

−11

+ ng


4/3

4/3

4/3

+ nH


1/10

1/6

0

 (2.27)

where ng is the number of generations of matter multiplets and nH is the number

of Higgs doublets. For the SM, ng = 3 and nH = 1 give bi = (41/10,−19/6,−7).

For the MSSM, the coefficients bi are

bi =


b1

b2

b3

 =


0

−6

−9

+ ng


2

2

2

+ nH


3/10

1/2

0

 (2.28)

where ng = 3 and nH = 2 in the minimal SUSY standard model (MSSM) give

bi = (33/5, 1,−3). The value of αi at Q = mZ = 91.1876 ± 0.0021 GeV can be

calculated from the experiment results [1], so it can be used as the reference scale

Q0.

Fig. 2.2 shows that in the SM, the three lines cannot unify at one point, and

in the MSSM-2 Higgs Doublet model, the SUSY particles change the slopes of

the coupling evolution curves above the SUSY scale MSUSY ' 1 TeV, so it is

possible for the couplings to be unified at about MGUT ' 1016 GeV. The value

of α−1
3 is a little smaller than the unification point of α−1

1 and α−1
2 . This can be

explained as there exists new particles around 1016 GeV. [5]
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Figure 2.2: Evolution of the inverse of the three coupling constants as a function
of the logarithm of energy in the SM (dot line) and in the MSSM-2 Higgs Doublet
model (solid line).

SUSY also has the potential to include gravity. The graviton has spin 2, but

other gauge bosons like photon, gluons, W and Z bosons have spin 1. Spin 2

and spin 1 gauge fields can be unified only within SUSY algebra. Q is a SUSY

generator, then

Q|boson >= |fermion > and Q|fermion >= |boson > . (2.29)
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Applying the SUSY generator to graviton

spin 2→ spin 3/2→ spin 1→ spin 1/2→ spin 0.

So in SUSY, it is natural to unify all the matters and forces. [3]

2.3 SUSY algebra and Lagrangians

The SUSY algebra is a supersymmetric extension of the Poincare algebra. The

commutation relations of the Poincare group are

[Pµ, Pν ] = 0, (2.30a)

[Mµν , Pλ] = i(gνλPµ − gµλPν), (2.30b)

[Mµν ,Mρσ] = −i(gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ). (2.30c)

The Super-Poincare algebra contains additional SUSY spinorial generators Q and

the conjugate Q̄:

[Pµ, Qa] = [Pµ, Q̄a] = 0, (2.31a)

[Mµν , Qa] = −(
1

2
σµν)abQb, (2.31b)

{Qa, Q̄b} = 2(γµ)abPµ, (2.31c)

{Qa, Qb} = −2(γµC)abPµ, (2.31d)

{Q̄a, Q̄b} = 2(C−1γµ)abPµ (2.31e)

where Pµ = i∂µ is the energy-momentum operator, and Mµν is the second rank

angular momentum generator with Mij = εijkJk and M0i = −Mi0 = −Ki, Ji is
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the rotation generator, Ki is the boost generator. C is the charge conjugation

matrix.

We now introduce new quantum spacetime coordinates θa with a = 1, 2, 3, 4,

which are anticommuting Grassmann variables:

{θa, θb} = 0, {θ̄a, θ̄b} = 0, θ2
a = 0, θ̄2

b = 0 (2.32)

where θ̄ = θTC. θ is also a four component Majorana spinor. The four com-

muting superspace Minkowski spacetime coordinates xµ and four anticommuting

coordinates θa form the Superspace. In some cases, it is convenient to consider

two components of θ and θ̄ as independent variables. Now we move to two-

component notation. The general superfield denoted by Φ̂(x, θ) is a function of

x and θ.

The SUSY group element translation is similar to the ordinary translation

G(x, θ, θ̄) = ei(−x
µPµ+θQ+θ̄Q̄). (2.33)

So the supertranslation in superspace is

xµ → xµ + iθσµε̄− iεσµθ̄,

θ → θ + ε,

θ̄ → θ̄ + ε̄

(2.34)

where ε and ε̄ are Grassmannian transformation parameters. The supercharge
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generator in form of differential operator in the superspace is

Qa =
∂

∂θa
− iσµabθ̄

b∂µ, (2.35a)

Q̄b = − ∂

∂θ̄b
+ iθaσ

µ
ab∂µ. (2.35b)

The left chiral superfield satisfies the condition:

D̄Φ = 0 (2.36)

where D̄ = − ∂
∂θ̄
− iθσµ∂µ is a covariant derivative. The right antichiral superfield

is Φ†. Similarly, it satisfies

DΦ† = 0 (2.37)

where D = − ∂
∂θ
− iσµθ̄∂µ. The expansion of a chiral superfield is

Φ(y, θ) = A(y) +
√

2θψ(y) + θθF (y)

= A(x) + iθσµθ̄∂µA(x) +
1

4
θθθ̄θ̄�A(x)

+
√

2θψ(x)− i√
2
θθ∂µψ(x)σµθ̄ + θθF (x)

(2.38)

where y = x + iθσθ̄, and � = ∂µ∂
µ = ∂2/∂t2 − ∂2/∂x2 − ∂2/∂y2 − ∂2/∂z2. A

is spin = 0 scalar field with mass dimension [A] = 1, ψ is two-component Weyl

spinor field with mass dimension [ψ] = 3/2. F is scalar field with mass dimension

[F ] = 2. It is an auxiliary field and has no physical meaning. It can be eliminated

by Euler-Lagrange equations, but it is useful to write supersymmetric variations

as linear transformations on the fields. [2] The number of degrees of freedom of

bosonic and fermionic fields are exactly same in the superfield.

Under SUSY transformation, the bosonic and fermionic fields convert into
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each other

δεA =
√

2εψ,

δεψ = i
√

2σµε̄∂µA+
√

2εF,

δεF = i
√

2ε̄σµ∂µψ.

(2.39)

The variation of F is a total derivative, so it will disappear when integrated over

superspace.

The Grassmannian expansion of a real vector superfield V is:

V (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x)

+
i

2
θθ[M(x) + iN(x)]− i

2
θ̄θ̄[M(x)− iN(x)]

− θσµθ̄vµ(x) + iθθθ̄[λ(x) +
i

2
σ̄µ∂µχ(x)]

− iθ̄θ̄θ[λ(x) +
i

2
σµ∂µχ̄(x)] +

1

2
θθθ̄θ̄[G(x) +

1

2
�C(x)]

(2.40)

with V = V † and � = ∂µ∂
µ. vµ is the vector gauge field and λ is the Majorana

spinor field. G is a auxiliary field. C, χ,M,N have no physical meaning and can

be removed. The supergauge transformation of V is

V → V + Φ + Φ†. (2.41)
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The transformation of the components are

C → C + A+ A∗,

χ → χ− i
√

2ψ,

M + iN → M + iN − 2iF,

vµ → vµ − i∂µ(A− A∗),

λ → λ,

G → G.

(2.42)

The Wess-Zumino gauge is C = χ = M = N = 0, so V becomes

V = −θσµθ̄vµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄G(x),

V 2 = −1

2
θθθ̄θ̄vµ(x)vµ(x),

V 3 = 0, etc.

(2.43)

The field strength tensors in the Wess-Zumino gauge are

Wa = −1

4
D̄2eVDae

−V ,

W̄b = −1

4
D2eV D̄ae

−V .

(2.44)

The strength tensor satisfies the equation

D̄bWa = 0, DaW̄b = 0, (2.45)

so it is a chiral superfield. The component expression is:

Wa = T i
(
−iλia + θaD

i − i

2
(σµσ̄νθ)aF

i
µν + θ2(σµDµλ̄

i)a

)
(2.46)
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where

F i
µν = ∂µv

i
ν − ∂νviµ + f ijkvjµv

k
ν

Dµλ̄
i = ∂λ̄i + f ijkvjµλ̄

k

(2.47)

In Abelian gauge, the field strength tensor can be simplified as

Wa = −1

4
D̄2DaV

W̄b = −1

4
D2D̄aV

(2.48)

The general SUSY invariant Lagrangian is

L = Φ†iΦi|θθθ̄θ̄ + [(λiΦi +
1

2
mijΦiΦj +

1

3
yijkΦiΦjΦk)|θθ + h.c.]. (2.49)

The first term is a kinetic term when Φ†iΦi is the Kahler potential. It can be

expanded about θθθ̄θ̄ to the ordinary kinetic form. The second set of terms is

the superpotential W so it has to be a chiral field. It can be expanded about θθ

to get an ordinary potential.

The Lagrangian density can be rewritten as an integral over superspace:

L =

∫
d2θd2θ̄Φ†iΦi +

∫
d2θ[λiΦi +

1

2
mijΦiΦj +

1

3
yijkΦiΦjΦk] + h.c. (2.50)

with Grassmannian integration

∫
dθa = 0,

∫
θadθb = δab. (2.51)
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This leads to

L = i∂µψ̄iσ̄
µψi + A∗i�Ai + F ∗i Fi

+ [λiFi +mij(AiFj −
1

2
ψiψj) + yijk(AiAjFk − ψiψjAk) + h.c.].

(2.52)

The constraints are

∂L
∂F ∗k

= Fk + λ∗k +m∗ikA
∗
i + y∗ijkA

∗
iA
∗
j = 0 (2.53a)

∂L
∂Fk

= F ∗k + λk +mikAi + yijkAiAj = 0 (2.53b)

The auxiliary fields F and F ∗ can be eliminated now, so

L = i∂µψ̄iσ̄
µψi + A∗i�Ai −

1

2
mijψiψj −

1

2
m∗ijψ̄iψ̄j

− yijkψiψjAk − y∗ijkψ̄iψ̄jA∗k − V (Ai, Aj)

(2.54)

where V = F ∗kFk is the scalar potential. The general form of the scalar potential

V is defined as

V = VD + VF =
1

2
DaDa + F ∗i Fi (2.55)

where

Da = −gT aijA∗iAj, (2.56a)

Fi = −∂W
∂Ai

. (2.56b)

In the Wess-Zumino gauge

W aWa|θθ = −2iλσµDµλ̄−
1

2
FµνF

µν +
1

2
D2 + i

1

4
F µνF ρσεµνρσ (2.57)
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where Dµ = ∂µ + igvµ. The gauge invariant Lagrangian is

L =
1

4
(

∫
d2θW aWa +

∫
d2θ̄W̄ bW̄b)

=
1

2
D2 − 1

4
FµνF

µν − iλσµDµλ̄.

(2.58)

The gauge transformation of matter chiral superfields is

Φ → e−igΛΦ, Φ† → Φ†eigΛ
†
, V → V + i(Λ− Λ†) (2.59)

where Λ is a gauge parameter. Then the gauge invariant kinetic term is

Φ†iΦi|θθθ̄θ̄ → Φ†ie
gV Φi|θθθ̄θ̄. (2.60)

So the gauge invariant Lagrangian is

Linv =
1

4

∫
d2θW aWa +

1

4

∫
d2θ̄W̄ bW̄b +

∫
d2θd2θ̄Φ†ie

gV Φi

+

∫
d2θ(

1

2
mijΦiΦj +

1

3
yijkΦiΦjΦk) + h.c..

(2.61)

The Lagrangian of SUSY QED is

LSQED =
1

4

∫
d2θW aWa +

1

4

∫
d2θ̄W̄ bW̄b

+

∫
d4θ(Φ†+e

gV Φ+ + Φ†−e
−gV Φ−)

+

∫
d2θmΦ+Φ− +

∫
d2θ̄mΦ†+Φ†−

(2.62)

where the superfield Φ+ is the left-handed fermion and Φ− is the right-handed

fermion.
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The non-Abelian SUSY Lagrangian is

LSUSY YM =
1

4

∫
d2θ Tr(W aWa) +

1

4

∫
d2θ̄ Tr(W̄ aW̄a)

+

∫
d2θd2θ̄Φ̄ia(e

gV )abΦ
b
i +

∫
d2θW(Φi) +

∫
d2θ̄W̄(Φ̄i)

(2.63)

where W is a superpotential.

2.4 The minimal supersymmetric standard model

(MSSM)

The MSSM is the simplest supersymmetric version of the SM. It contains the

smallest number of added particles and parameters, but includes soft SUSY break-

ing terms. The MSSM is also characterized by the SU(3)C × SU(2)L × U(1)Y

group. The MSSM is R-parity conserving by definition, so the lightest su-

persymmetric particle (LSP) is stable. We define the new quantum number

R = (−1)3B+L+2S, where B is the baryon number, L is the lepton number, and

S is the spin. Then particles have R = 1, and sparticles have R = −1. An

essential feature of MSSM is the presence of lots of scalar fields, some contain

baryon number and some lepton number. In SUSY, the number of fermionic and

bosonic degrees of freedom are equal, and in the SM they are not.

2.4.1 The superfields and Lagrangian of the MSSM

The MSSM predicts a host of new particles, like squarks, sleptons, charginos

and neutralinos, that ought to exist around the TeV scale. In addition to the

superpartners for each SM particle, another left-chiral scalar Higgs doublet su-

perfield and its superpartner were introduced in the MSSM. The VEV of scalar
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Bosons Fermions SUC(3) SUL(2) UY (1)

g g̃ 8 0 0

W±, Z W̃±, Z̃ 1 3 0

B B̃ 1 1 0

L̃ =

(
ν̃e
ẽ

)
L

L =

(
νe
e

)
L

1 2 -1

Ẽ = ẽR E = eR 1 1 2

Q̃ =

(
ũ

d̃

)
L

Q =

(
u
d

)
L

3 2 1/3

Ũ = ũR U = ucR 3̄ 1 -4/3

D̃ = d̃R D = dcR 3̄ 1 2/3

Hu =

(
h+
u

h0
u

)
H̃u =

(
h̃+
u

h̃0
u

)
1 2 1

Hd =

(
h−d
h0
d

)
H̃d =

(
h̃−d
h̃0
d

)
1 2 -1

Table 2.1: The superfields and group representations of the MSSM in four-
component notation

components h0
u and h0

d of the two Higgs doublet give masses to up-type quarks

and down-type quarks, respectively. The superfields of the MSSM are shown in

Table 2.1.

The Higgs sector of the MSSM has eight degrees of freedom. Three of them

are the Goldstone bosons which are absorbed by W±, Z, so there are five fields

left. Therefore, in the MSSM, there are five physical Higgs bosons: two charged,

three neutral.

The Lagrangian of the MSSM can be written in form of

LMSSM = LSUSY + LBreaking (2.64)

where

LSUSY = LGauge + LYukawa (2.65)
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where

LGauge =
∑

SU(3),SU(2),U(1)

1

4
(

∫
d2θ TrW aWa +

∫
d2θ̄ TrW̄ bW̄b)

+
∑

Matter

∫
d2θd2θ̄Φ†ie

g3V̂3+g2V̂2+g1V̂1Φi

(2.66)

and

LYukawa =

∫
d2θ(WA +WF) + h.c.. (2.67)

where

WA = yuQHuU
c + ydQHdD

c + yeLHdE
c + µHuHd (2.68)

and

WF = (λLLLEc + λL′LQDc + µ′LHu) + λBU cDcDc. (2.69)

The first three terms of WF violate lepton number L, and the last term violates

baryon number B. Since the B or L violation is not observed in experiments, the

WF term needs to be set to zero. It can be avoided by introducing R-parity

R = (−1)3(B−L)+2S (2.70)

where S is the spin of the field. Then the ordinary particles have R = 1, and the

superpartners have R = −1. The superpotential W is required to be invariant

under R-parity. So the WA term is allowed, and the WF term is forbidden.

2.4.2 Breaking of SUSY in the MSSM

From observation, the experiments didn’t find any superparticle with exactly

the same mass as its superpartner, so the SUSY must be a broken symmetry.
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The SUSY is expected to be spontaneously broken. Spontaneous SUSY breaking

develops a non-zero VEV < 0|F |0 > or < 0|D|0 >6= 0 to break SUSY, but does

not cause reappearance of quadratic divergences. So spontaneous SUSY breaking

is a type of soft SUSY breaking. There is no compelling theory of SUSY breaking

yet, so it is more practical to write the expected result of SUSY breaking as soft

SUSY breaking terms explicitly in the Lagrangian.

There is no good field that can break the SUSY within the MSSM, so the

MSSM must be extended to include new fields. The most common choices are

hidden sector + messengers. The MSSM matters are the visible sector. In

the hidden sector, SUSY is spontaneously broken, and the hidden sector does

not interact with MSSM fields directly, so could contain dark matter candidates.

The hidden sector communicates with the visible sector through the exchange of

messengers which mediates the soft SUSY breaking. There are several popular

SUSY breaking mechanism:

1. Gravity mediated SUSY breaking:

In this mechanism, the SUSY breaking effects are mediated from the hidden

sector to the visible sector via the supergravity (SUGRA) interactions. Super-

gravity is a generic consequence of local supersymmetry. To reduce the number of

free parameters, we assume that at some high energy scale, all the spin 0 particle

masses equal to m0, all the spin 1/2 particle or gaugino masses equal to m1/2,

and all the cubic and quadratic terms proportional to trilinear coupling A and

bilinear coupling B corresponding to the Yukawa superpotential.

For an F type SUSY breaking in the hidden sector, there are some scalar

fields that can develop nonzero VEVs for their F component, which leads to

spontaneous SUSY breaking at scale
√
F . Then the spin 3/2 gravitino becomes

massive through the super-Higgs effect, and mediates the SUSY breaking to the
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visible sector. The SUSY breaking scale in the visible sector is [7]:

MSUSY ∼
< F >

MPlanck

∼ m3/2 (2.71)

where m3/2 is the gravitino mass. We want MSUSY ∼ 1 TeV, so
√
< F > ∼ 1011

GeV. The lightest SUSY particle (LSP) could be the lightest neutralino.

2. Gauge mediated SUSY breaking (GMSB):

In this mechanism, gauge interactions mediate the SUSY breaking effects in

the hidden sector to the visible sector. The messengers are new chiral super-

multiplets which are charged under the SM gauge group. The messengers couple

directly to the hidden sector so that they get mass at tree level, and also couple

indirectly to the visible sector through the SM gauge interaction.

For the simplest model, the messenger fields are a set of left-handed chiral su-

permultiplets ψ transforming under SU(3)C×SU(2)L×U(1)Y but not part of the

MSSM. The messenger couple to the hidden sector through the superpotential:

Wmessenger = φψψ̄ (2.72)

where φ is a gauge-singlet chiral supermultiplet. The scalar component and

auxiliary F component of φ acquire non-zero VEVs:

< φ >= mφ, < Fφ >6= 0 (2.73)

Gauge loops transmit SUSY breaking to the MSSM fields. The gauginos

receive masses at one-loop order of the messenger fields, and the MSSM scalars

receive masses at two-loop order, so their masses are comparable. The masses of

gauginos and scalars only depend on the gauge couplings, so there are no flavor
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violating problems. For any model of GMSB, the LSP is the gravitino, whose

mass should be around SUSY breaking scale.

3. Anomaly mediated SUSY breaking (AMSB)

In this mechanism, the SUSY breaking is mediated through the conformal

anomaly. In the hidden sector, the SUSY is spontaneously breaking by< F >6= 0.

The scalar auxiliary component of the supergravity multiplet obtains a non-zero

VEV

< Fφ >∼
< F >

MPlanck

∼ m3/2 (2.74)

The original MSSM Lagrangian is scale invariant, so the Fφ term has no effect.

When we apply quantum effects, the couplings become scale dependent. The

conformal anomaly breaks the scale invariance, so the SUSY breaking effect ap-

pears in the visible sector. Anomaly mediation is flavor blind in general [8]. It

generates sparticle soft masses proportional to the gravitino mass, and they only

depend on the overall scale Fφ.

All these mechanisms have similar results, but they have their own advantages

and disadvantages for solving problems in different conditions.

2.4.3 The Higgs potential

The MSSM Higgs potential is defined by superpotential and the SUSY breaking

terms. The Higgs potential is

VHiggs = Vtree + ∆V (2.75)
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where the tree level potential is

Vtree(Hu, Hd) =m2
1|Hu|2 +m2

2|Hd|2 −m2
3(HuHd + h.c.)

+
g2 + g′2

8
(|Hu|2 − |Hd|2)2 +

g2

2
|H+

u Hd|2
(2.76)

where m2
1 = m2

Hu
+ µ2 and m2

2 = m2
Hd

+ µ2. The simplest model assumes scalar

mass universality so that at the GUT scale m2
1 = m2

2 = m2
0 + µ2

0, m
2
3 = −Bµ0.

The radiative correction of Higgs potential is

∆V =
∑
i

(−1)2si

64π2
(2si + 1)cim

4
i

[
log

(
m2
i

Q2

)
− 3

2

]
(2.77)

where mi are the mass of all the fields that coupled to the Higgs field, and

ci = ccolccha, with ccol = 3, 1 for colored and uncolored particles, and ccha = 2, 1

for charged and neutral particles, and si is the spin quantum number.

The Higgs self-interaction coupling is defined by the gauge interactions. The

potential satisfies

1

2

δV

δHu

= m2
1v1 −m2

3v2 +
g2 + g′2

4
(v2

1 − v2
2)v1 = 0

1

2

δV

δHd

= m2
2v2 −m2

3v1 +
g2 + g′2

4
(v2

1 − v2
2)v2 = 0

(2.78)

where

< Hu > ≡ v1 = v cos β, < Hd >≡ v2 = v sin β,

v2 = v2
1 + v2

2, tan β ≡ v1

v2

.
(2.79)

Write in terms of v2 and sin 2β

v2 =
4(m2

1 −m2
2 tan2 β)

(g2 + g′2)(tan2 β − 1)
, sin 2β =

2m2
3

m2
1 +m2

2

(2.80)
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We can see that if m2
1 = m2

2 = m2
0 + µ2

0, v2 are negative, then the minimum does

not exist. Real positive solutions exist only if

m2
1 +m2

2 > 2m2
3, m2

1m
2
2 < m4

3 (2.81)

which is not valid at GUT scale. So the spontaneous breaking of the SU(2)

gauge invariance in the SM does not happen in the MSSM. The the tree level

potential parameters become running parameters given by the RG equations

which are the function of the energy scale. The running of the parameters leads

to “radiative spontaneous symmetry breaking”. This only occurs for top quark

masses mt ∼ 100−200 GeV. Since the measured top quark mass mt = 173.1±0.6

GeV [1], then radiative EW symmetry breaking does occur.

2.5 Strong CP problem, Peccei-Quinn (PQ) sym-

metry and axion

The QCD Lagrangian for N flavors when the quark masses mf → 0 has a global

symmetry U(N)V ector × U(N)Axial. We take the case N = 2 for two light quarks

u and d. From experiments, we know U(2)V = SU(2)Isospin × U(1)Baryon. The

axial symmetry SU(2)A and U(1)A are broken down spontaneously by quark

condensate, and should give us four Nambu-Goldstone bosons. So in addition to

the three pions, we should have another boson. But the mass of pion mπ ' 0,

and the mass of meson eta mη � mπ, so we cannot say the fourth boson is η since

the fourth boson should have similar mass as pions. The missing fourth boson is

the U(1)A problem. [9] This problem can be resolved if we approximate the QCD

path integral in the classical limit ~ → 0, then we can solve the semi-classical
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field equations by summing over a kind of configuration called instanton. [10]

This introduces a new QCD vacuum phase parameters θ and makes the U(1)A

not a real symmetry of QCD. The more physical parameter is θ̄ ≡ θ + arg detM

where M is the quark mass matrix, because the computations are done in mass

basis. The U(1)A is explicitly broken by an effective breaking term

L ∼ θ̄
g2
s

32π2
Ga
µνG̃

µνa (2.82)

which is caused by instanton, even though the U(1)A is assumed to be broken

spontaneously. For a non-zero θ̄, CP symmetry will be violated, and the neutron

electric dipole moment (EDM) will be non-zero. The current EDM experiment

shows θ̄ � 10−10 rad. [11] So the solution of U(1)A problem bring us a new

problem: Why θ̄ is so small? This is the strong CP problem.

The most popular solution of the strong CP problem is the Peccei-Quinn

theory. The theory introduces a new global chiral U(1)PQ symmetry. This sym-

metry is spontaneously broken, and the Goldstone boson of this broken symmetry

is axion a. Under U(1)PQ symmetry, the axion translates [12]

a→ a+ αfa (2.83)

where fa is the axion decay constant. The effective axion-gluon-gluon interaction

term is

Leff = θ̄
g2
s

32π2
Ga
µνG̃

µνa +
a

fa

g2
s

32π2
Ga
µνG̃

µνa. (2.84)

The effective potential has a minimum at < a >= −faθ̄. The CP-violating θ̄ term

can be canceled by the dynamical axion term. The axion mass can be estimated
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by [13]

m2
a '

m2
πf

2
π

f 2
a

. (2.85)

In the original PQ model fa ∼ v ' 240 GeV was ruled out by experiments,

but fa � v is still viable. The axion mass and interactions are suppressed

by fa, so in invisible axion models, large fa makes the axion mass too small

to be easily measured in experiments. fa is constrained in the axion window

109 GeV ≤ fa ≤ 1012 GeV by cosmology data. [14] The lower limit comes from

stellar cooling bounds while upper limit avoids overproduction of axion dark

matter.

2.6 KSVZ and DFSZ models

Two invisible axion models are KSVZ (Kim, Shifman, Vainshtein and Zakharov)

[15,16] and DFSZ (Dine, Fischler, Srednicki and Zhitnisky) [17,18]. These models

introduce new fields to the SM. Both of them include a new SM singlet scalar field

S carrying global PQ charge. The S field develop a large VEV with fa =< S >

that is much larger than the electroweak scale. The coupling of the S to Higgs field

should not give large mass correction to the Higgs boson while solving the strong

CP problem. KSVZ model introduces a scalar field S, and a superheavy vector-

like PQ charge carrying quark Q with MQ ∼ fa and couples to S. The Higgs

fields do not carry PQ charge. The axion does not interact with leptons, but only

interacts with light quarks through the strong and EM anomaly terms. [15, 16]

DFSZ model adds a PQ charge carrying singlet field S to the two Higgs doublet

model (2HDM) which has two scalar doublets, φu and φd with hypercharge −1

and +1, respectively. The Higgs doublets are charged under the PQ symmetry.
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φu couples only to right-handed charge 2/3 quarks, φd only to right-handed charge

−1/3 quarks and to right-handed charged leptons. [17,18] The axion field should

have a mass ma ∼ 620 µeV
(

1010 GeV
fa/N

)
where N is the color anomaly of the PQ

symmetry. N = 1 for KSVZ and N = 6 for DFSZ. The axion can be produced

via axion field coherent oscillations in the early universe and serves as a candidate

for cold dark matter. [19–24]

The large fa could give large correction to the Higgs mass, bringing in the

hierarchy problem. So we consider both SUSY and PQ symmetry. In the PQ

augmented Minimal Supersymmetric Standard Model (PQMSSM), the axion su-

perfield is

A =
s+ ia√

2
+
√

2θã+ θ2Fa (2.86)

where s is the saxion, the scalar superpartner of axion, with R-parity even and

spin-0. a is the pseudoscalar axion field. θ is the spinorial Grassmann coordi-

nates. ã is the axino field, the fermionic partner of axion, with R-parity odd and

spin-1/2. Fa is the axion auxiliary field. Under a U(1)PQ transformation, the

PQ scalar field Lagrangian is invariant. The axion superfield transforms as

A→ A+ iαvPQ (2.87)

below the PQ breaking scale vPQ = fa/
√

2, where α is a real parameter. The

kinetic and self-couplings terms are

Lasã =

(
1 +

√
2ξ

vPQ
s

)(
1

2
∂µa∂µa+

1

2
∂µs∂µs+

i

2
¯̃a/∂ã

)
(2.88)

where ξ = Σiq
3
i v

2
i /v

2
PQ, and qi are the PQ charges, vi are the VEVs of PQ fields

Si, and vPQ =
√

Σiq2
i v

2
i . ξ is 0 or 1 depending on if saxion decays into axino and
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axion. [25]

2.6.1 SUSY KSVZ model

The heavy quark superfields Q and Qc with PQ charges are introduced in the

SUSY KSVZ model. The superpotential of KSVZ model is

WKSVZ = λSQQc. (2.89)

The heavy quark acquires mass of mQ ' λvPQ/
√

2 after PQ symmetry breaking.

The axion superfield couples to QCD gauge fields leading to thermal production

rates for axinos and saxions proportional to the reheat temperature TR after

inflation. The thermal production rates for axino, saxion and axion are calculated

to be [26]

ρTPã
s
' 0.9× 10−5g6

s ln

(
3

gs

)(
1012GeV

fa

)2(
TR

108GeV

)
mã (2.90)

ρTPs
s
' 1.3× 10−5g6

s ln

(
1.01

gs

)(
1012GeV

fa

)2(
TR

108GeV

)
ms (2.91)

ρTPa
s
' 18.6× g6

s ln

(
1.501

gs

)(
1012GeV

fa

)2(
TR

1014GeV

)
ma. (2.92)

In the KSVZ model, axino and saxion decay primarily to gauge bosons and

gauginos. [27] For heavy axino scenario mã ∼ 100 TeV, the KSVZ heavy PQ

charged matter fields could be the gauge mediation messengers. [28]
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2.6.2 SUSY DFSZ model

The SUSY DFSZ model introduces a PQ singlet superfield S carrying PQ charges

−1, and the Higgs doublet superfields Hu and Hd carries PQ charges +1, so the

PQ superfield can directly couple to the Higgs superfields. The superpotential is

WDFSZ = λ
S2

MP

HuHd. (2.93)

An advantage of this model is that it provides a simple solution of the SUSY

µ Problem: µ is supersymmetric, so it is expected to be at the order of Planck

scale, but it gives mass to Higgs, so it should be around weak scale. The general

way to solve the problem is to forbid the µ term, and then regenerate it at soft

SUSY breaking scale. There are some popular solutions to the µ problem: i.e.,

Next-to-Minimal Supersymmetric Standard Model (NMSSM) [29–31], Giudice-

Masiero (GM) [32], and Kim-Nilles (KN) [33] solutions. In the KN solution,

PQ charge assignments to the Higgs fields forbid the usual µ term at tree level.

After the PQ symmetry breaking by a VEV of the scalar component of S, where

< S >∼ fa, an effective µ term

µ ∼ λf 2
a/MP ∼ λm3/2 (2.94)

is generated. For λ ∼ 1 and fa ∼ 1010 − 1011 GeV, then µ is around weak scale.

For small λ, µ can be around weak scale while mq̃ ∼ m3/2 ∼ 10 TeV. The µ term

arises from PQ symmetry breaking, and m3/2 might arise from hidden sector

SUSY breaking. So the PQ breaking scale is much smaller than the hidden

sector mass scale fa � mhidden leads to a Little Hierarchy Problem (LHP): µ is

much smaller than the SUSY particle masses µ� m3/2.
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A model proposed by Murayama, Suzuki and Yanagida (MSY) [34] showed us

the LHP is not a real problem, but just a reflection of the mis-match between PQ

breaking scale and hidden sector mass scales. In the MSY model, PQ symmetry

is broken by a PQ scalar X radiatively driven to negative mass-squared value. It

is very similar to electroweak symmetry being broken by Higgs mass-squared m2
Hu

radiative corrections driven to negative. The radiatively-broken PQ symmetry

generates a 100 GeV scale µ and an intermediate mass for right-hand Majorana

neutrino mN ∼ 1011 GeV. Although we get different PQ scales by setting m3/2

to different masses at Planck scale, the PQ scalar X is driven to negative mass-

squared values independent of m3/2 mass. [35]

In the SUSY DFSZ model, the axion supermultiplet couples directly to the

Higgs fields below the PQ symmetry breaking scale. The superpotential is non-

linearly realized

W = µecHA/vPQHuHd (2.95)

where cH is the PQ charge of the Higgs bilinear operator HuHd, and and cH = 2

since both Hu and Hd carry PQ charge +1. Higgs fields transform as

HuHd → e−icHα (2.96)

where α is an arbitrary real number. The interaction term of axion supermultiplet

and Higgs fields is

LDFSZ =

∫
d2θ(1 +Bθ2)µecHA/vPQHuHd (2.97)

where θ is the Grassmann coordinate. B is the soft SUSY breaking term in

the Higgs sector. 1 +Bθ2 is a SUSY breaking spurion field; it parameterizes the
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SUSY breaking and determines the operators invariant under the symmetry. Due

to the direct coupling of axion to Higgs superfields, the thermal production rates

of axions, saxions and axinos are independent of TR in the SUSY DFSZ model.

The saxion and axino thermal yields are [26]

Y TP
s ' 10−7ζs

( µ

TeV

)2
(

1012GeV

fa

)2

(2.98)

Y TP
ã ' 10−7ζã

( µ

TeV

)2
(

1012GeV

fa

)2

(2.99)

where the ζi are model-dependent constants of order unity determined by the mass

spectrum. The axions and saxions can be produced via coherent oscillations. The

saxions decay mainly to Higgsino pairs or axion pairs when ξ ∼ 1. The axinos

decay mainly into Higgsino and Higgs, or Higgsino and gauge bosons. In the

SUSY DFSZ model, for a given vPQ, saxion and axino have larger decay rates,

and many more decay final states than in the SUSY KSVZ model. [36]

2.7 SUSY Naturalness

The discovery at LHC of the Higgs boson [37] with mass mH = 125.09 ± 0.21

GeV is within the range that MSSM predicted mH ' 115 ∼ 135 GeV [38].

This adds credence to SUSY. But at the same time, there is no SUSY particle

signal at LHC yet, pushing the mass limits to gluino mass mg̃ & 2 TeV and top

squark mass mt̃1 & 1 TeV within context of simplified decay models. [39] The

Higgs, squark and gluino mass limits have raised concern for the naturalness of

the SUSY model. Weak scale SUSY can solve the gauge hierarchy problem via

the cancellation of quadratic divergences by introducing new superparticles, but
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these new particles might not reduce loop corrections to Higgs mass enough to

make the renormalized Higgs mass completely natural.

2.7.1 Naturalness measurements

To see if a model is natural or fine-tuned, we have several ways to quantify natu-

ralness: 1. the electroweak measure ∆EW , 2. the Higgs mass fine-tuning measure

∆HS, 3. the traditional EENZ/BG measure ∆BG. [40] These three measures

should agree with each other without overestimate the fine-tunings if applied

properly.

1. The electroweak measure ∆EW [41] requires that there are no unnatural

cancellations in deriving the value ofmZ from the weak scale scalar potential

m2
Z

2
=

(m2
Hd

+ Σd
d)− (m2

Hu
+ Σu

u) tan2 β

tan2 β − 1
− µ2

' −(m2
Hu + Σu

u)− µ2.

(2.100)

where Σu
u and Σd

d are the one-loop corrections of particles that couple to the

Higgs doublets, such as t̃1,2, b̃1,2, τ̃1,2, W̃1,2, Z̃1−4, h, H, H
±, W±, Z, and

t. Here we assume tan β is large, so the m2
Hd

and Σd
d terms are suppressed

by tan2 β − 1. The largest contribution of Σu
u comes from top squarks t̃1,2.

So we can get the reduced expression of electroweak fine-tuning parameter

∆EW :

∆EW = max

(∣∣∣∣−m2
Hu

tan2 β

tan2 β − 1

∣∣∣∣ , ∣∣∣∣−Σu
u(t̃1,2) tan2 β

tan2 β − 1

∣∣∣∣ , | − µ2|
)
/

(
m2
Z

2

)
(2.101)

where m2
Hu

is a small negative value. It means the largest corrections should

be comparable to m2
Z/2, that is |m2

Hu
|, µ2 ∼ m2

Z/2. The biggest advantage
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of ∆EW is model-independent. [42]

2. The Higgs mass fine-tuning measure ∆HS [43] compares the radiative cor-

rection δm2
Hu

of the m2
Hu

soft term to the physical Higgs mass m2
h

∆HS =
δm2

Hu

m2
h/2

(2.102)

where

m2
h ∼ µ2 +m2

Hu(Λ) + δm2
Hu . (2.103)

Λ is some high energy cutoff. δm2
Hu

can be determined from the RGE:

dm2
Hu

dt
=

1

8π2

(
−3

5
g2

1M
2
1 − 3g2

2M
2
2 +

3

10
g2

1S + 3f 2
t Xt

)
(2.104)

where t = ln(Q2/Q2
0), S = m2

Hu
−m2

Hd
+ Tr(m2

Q −m2
L − 2m2

U +m2
D +m2

E)

and Xt = m2
Q3

+ m2
U3

+ m2
Hu

+ A2
t . M1 is the bino mass parameter, M2 is

the wino mass parameter, At is the top quark trilinear coupling. Neglecting

gauge terms, m2
Hu

contribution to Xt, and S, and integrating from mSUSY

to the cutoff Λ, we can get: [35]

δm2
Hu |rad ∼ −

3f 2
t

8π2
(m2

Q3
+m2

U3
+ A2

t ) ln (Λ2/m2
SUSY). (2.105)

3. The EENZ/BG measure ∆BG was proposed by Ellis, Enquist, Nanopoulos,

and Zwirner, [44] then later studied by Barbieri and Giudice [45]. The ∆BG

measures the variation in m2
Z due to the variation of high scale parameter

pi:

∆BG ≡ max[ci] where ci =

∣∣∣∣∂ lnm2
Z

∂ ln pi

∣∣∣∣ =

∣∣∣∣ pim2
Z

∂m2
Z

∂pi

∣∣∣∣ (2.106)
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where ci are the sensitivity coefficients. We write m2
Z in weak scale, and

then in high scale

m2
Z ∼ −2µ2(weak)− 2m2

Hu(weak)

∼ −2µ2(Λ) + a ·m2
3/2

(2.107)

where a is some real number. [46] Since the high scale SUSY parameters are

not independent, we can combine the dependent soft term contributions of

m2
Z in terms of m2

3/2. The naturalness requires no large cancellations in

m2
Z , that is µ2 ∼ a · m2

3/2 ∼ m2
Z . Since µ do not evolve much from Λ to

weak scale µ(Λ) ∼ µ(weak), so −2m2
Hu

(weak) ' a ·m2
3/2. The low value of

∆BG requires a low value of m2
Hu

, leads to the same requirements as a low

value of ∆EW .

2.7.2 Radiatively-driven natural supersymmetry (RNS)

Since the top quark is so massive, it must have a large Yukawa coupling yu3. Then

large yu3 can drive the soft SUSY breaking Higgs mass m2
Hu

to negative value at

weak scale ∼ −m2
Z ∼ −(1002 ∼ 3002) (GeV)2 so EW symmetry breaks properly,

and keep the higgsino mass low with |µ| ' 100 ∼ 300 GeV, so ∆BG is low. This

is Radiatively-driven natural supersymmetry (RNS). [42] RNS does not require

large cancellations at the electroweak scale when constructing mZ = 91.2 GeV

while keeping the light Higgs mass at mH = 125 GeV. The measured Higgs mass

requires highly mixed TeV-scale top squarks t̃ while LHC requires gluinos g̃ at

multi-TeV scale. Electroweak gauginos are between 300 ∼ 1200 GeV, gluinos g̃

between 2 ∼ 6 TeV, top squarks t̃1 around 1-3 TeV. The first/second generation

matter scalars may exist between 10 ∼ 30 TeV and can potentially solve the
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SUSY flavor, CP and gravitino G̃ problems by decoupling. [47]

The RNS is based on MSSM without adding extra matter and keep features

such as gauge coupling unification and radiative electroweak symmetry breaking

due to a large top quark mass. The model can be realized in the SUSY GUT

type models with non-universal Higgs masses (NUHM). But it cannot work in

the mSUGRA/CMSSM models where scalar mass universality is assumed since

µ is not a free parameter in these models. For example, mSUGRA/CMSSM have

the following parameters:

m0,m1/2, A0, tan β, sign(µ) (2.108)

but the two-extra-parameter non-universal Higgs model (NUHM2) has the pa-

rameters:

m0,m1/2, A0, tan β, µ,mA (2.109)

where m0 is the soft SUSY-breaking scalar mass, m1/2 is the soft SUSY-breaking

gaugino mass, A0 is the trilinear supersymmetry-breaking parameter, mA is the

pseudoscalar Higgs boson mass. Low electroweak fine-tuning is obtained due to

large cancellations between m2
Hu

(Λ = MGUT) and δm2
Hu

,

m2
Hu(MSUSY) = m2

Hu(Λ) + δm2
Hu . (2.110)

The radiatively-induced low fine-tuning at the electroweak scale can be at the

∆−1
EW ∼ 3− 10% level. [47]
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2.7.3 Dark matter with SUSY naturalness

In a highly natural model where the electroweak sector is stabilized by SUSY,

the QCD sector is stabilized by the axion, the µ problem is resolved by PQ-

charged Higgs fields and the Little Hierarchy µ � m3/2 emerges from radiative

PQ breaking, then the dark matter is expected to be composed of two dark matter

particles: an axion-higgsino admixture. The axinos can be produced thermally.

The saxions can be produced thermally and via coherent oscillations. The axions

can be produced thermally, via saxion decays, and via coherent oscillation. The

higgsino-like weakly interacting massive particles (WIMP) are produced ther-

mally, and also can be produced via axino and saxion production/decay in the

early universe. The saxion decays into axions increases the effective number of

additional neutrinos ∆Neff, so the energy density which is parameterized by ∆Neff

increases. We can get an estimate of the mixed axion-higgsino dark matter via

simultaneously solving eight coupled Boltzmann equations which track the abun-

dance of radiation, WIMPs, thermal- and oscillation-produced axions, thermal-

and oscillation-produced saxions, axinos and gravitinos. [48, 49] See Appendix

B for coupled Boltzmann equations. The results are model dependent. In the

SUSY KSVZ model, thermal production of axinos and saxions is proportional

to the reheat temperature TR. [50–52] The decay modes arise from heavy quark

induced loop diagrams due to the superpotential term

WKSVZ = mQe
A/faQQc (2.111)

where Q is the intermediate scale heavy quark superfield with mQ ∼ fa. In

the SUSY DFSZ model, the axion superfield has tree level couplings which are
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proportional to the SUSY µ parameter [53–55]

WDFSZ = µe−2A/faHuHd. (2.112)

Due to this interaction, thermal production of axions, axinos and saxions is inde-

pendent of TR unless TR . µ. [56] Decays also dominantly proceed through this

tree level coupling so the axino and saxion tend to be shorter lived than in the

KSVZ case.
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Chapter 3

The Standard Model of

Cosmology

From observations, we know the universe is expanding, the distances between

galaxies increase. The distance between two objects is proportional to R(t), the

“scale factor” or “radius” of the universe. We use the Hubble parameter to

describe the cosmological expansion rate:

H(t) =
Ṙ(t)

R(t)
. (3.1)

The present value today is [57]

H0 = 67.80± 0.77
km

s ·Mpc
∼ 10−42 GeV. (3.2)

This leads to the big bang theory, the most popular cosmological model for the

development of the early universe. The simplest model suggests that all spaces

was contained in a single point. After the big bang, the universe went through an
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accelerating phase called inflation. To generate the appropriate amount of infla-

tion, the new inflation (slow-roll inflation) suggests that the inflaton potential

has to be nearly flat, so the inflaton cannot be too heavy. The inflation occurs

when the scalar field rolled much slower than the expansion of the universe. Dur-

ing the inflation phase, the universe became flat, homogeneous and very cold. To

exit inflation, the inflaton reached a steeper position of the potential and headed

toward the minimum of the potential. The inflaton began to oscillate about the

minimum and decay, and inflation ended. The inflaton must transfer its energy

to a radiation dominated plasma at a temperature sufficient to allow standard

nucleosynthesis. The decay of the inflaton produced a lot of relativistic particles,

which made the universe radiation-dominated (RD), and reheated the universe

to temperature TR. The universe had to reheat to at least 4 MeV to produce

enough light nuclei in the standard Big Bang Nucleosynthesis (BBN). [26] This

is the starting point of thermal cosmology.

3.1 The big bang theory

The big bang theory assumes the universe is homogeneous and isotropic. It leads

to the Friedmann-Robertson-Walker (FRW) metric

ds2 = dt2 −R2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
(3.3)

where the coordinates (t, r, θ, φ) are the comoving polar coordinates which follow

the cosmological expansion. k is the spatial curvature constant. k = −1, 0, 1

corresponding to a universe which is open, flat and closed respectively. So the
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physical distance dH(t) can be calculated through comoving distance

dH(t) = R(t)

∫ r

0

dr√
1− kr2

= R(t)

∫ t

0

dt′

R(t′)
. (3.4)

The energy momentum tensor T νµ with energy density ρ and pressure p is

T νµ = diag(−ρ, p, p, p). (3.5)

Then we can get the continuity equation

ρ̇+ 3(ρ+ p)
Ṙ

R
= 0. (3.6)

The Einstein equations for the FRW universe is

Rν
µ −

1

2
δνµR = 8πGT νµ (3.7)

where Rν
µ is the Ricci tensor and R is the scalar curvature. G ≡ M−2

P is the

Newton’s constant. T νµ is the energy momentum tensor. The 00-component give

us the Friedmann equation

H2 ≡

(
Ṙ(t)

R(t)

)2

=
8πG

3
ρ− k

R2
. (3.8)

If the universe is flat, k = 0, the corresponding energy density is critical energy

density

ρc =
3H2

8πG
= 3M2

PH
2 (3.9)
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where MP is the reduced Planck mass given by

M2
P =

1

8πG
=
m2
P

8π
(3.10)

where mP is the Planck mass, and

MP ' 2.44× 1018 GeV, mP ' 1.22× 1019 GeV. (3.11)

Then we can get the Friedmann acceleration equation [156]

H2 + Ḣ =
R̈(t)

R(t)
= − 1

6M2
P

(ρ+ 3p). (3.12)

The Hubble parameter H and ρc are functions of time. The density parameter

Ω is

Ω ≡ ρ

ρc
. (3.13)

The current value of Ω is around Ω0 = 1.

If the equation of state is of the form p = wρ, Eq.(3.6) give us

ρ ∝ R−3(1+w). (3.14)

Plug Eq.(3.14) into Eq.(3.8), we get

R(t) ∝ t2/3(1+w). (3.15)
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So, for matter dominated (MD) universe,

w = 0, p = 0, ρ ∝ R−3, R ∝ t2/3, H =
2

3
t−1, ρ ∝ t−2, dH(t) = 3t

(3.16)

where ρ ∝ R−3 is due to Hubble expansion in 3D. For radiation dominated (RD)

universe,

w = 1/3, p =
1

3
ρ, ρ ∝ R−4, R ∝ t1/2, H =

1

2
t−1, ρ ∝ t−2, dH(t) = 2t

(3.17)

where ρ ∝ R−4 is due to expansion in 3D and redshift by the expansion.

For an inflationary universe

p = −ρ, R(t) ∝ eHt, dH(t) =
1

H
(eHt − 1) (3.18)

with ρ = constant, and H is approximately constant.

For RD, the energy density is

ρ =
π2

30

(
Nb +

7

8
Nf

)
T 4 ≡ cT 4 (3.19)

where T is the cosmic temperature. Nf and Nb are the number of degrees of

freedom of fermion and boson, respectively. The entropy density s is

s =
2π2

45
g∗T

3. (3.20)

where g∗ = Nb + 7
8
Nf is effective number of massless degrees of freedom.

If the universe evolves adiabatically or in thermal equilibrium, then sR3 =
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constant, so

R(t)T = constant. (3.21)

From Friedmann Eq.(3.8) with k = 0, Eq.(3.19) and Eq.(3.21), we got [155]

T =

(
MP√
c/3 t

)1/2

∝ t−1/2 for radiation domination (3.22)

where c is some constant. For MD, Eq.(3.21) still holds, so

T ∝ t−2/3 for matter domination. (3.23)

3.2 Inflation

The big bang theory has been a successful theory, but it is limited to the time

when the universe is cool enough that the low energy scale physics is well under-

stood. We believe that the universe went through a period of “inflation”. During

the inflation, the scale of the universe expanded from a small Hubble volume by

a factor of order at least 1026. It solves the two major problems in the big bang

theory: The horizon and the flatness problems. And also there are some obser-

vational data to support the inflation theory. Any asymmetry generated before

inflation would be diluted away by the inflation, so the baryon asymmetry we

observe today has to be generated after the inflation.

There are different ways to define inflation

R̈ > 0 ⇔ d(H−1/R)

dt
< 0 ⇔ p < −ρ

3
⇔ φ̇2 < V (φ).

(3.24)

However, there is no known field, neither ordinary matter p = 0 nor radiation
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p = ρ/3, satisfy this condition. We need to find another kind of field as inflaton.

Let’s consider a scalar field φ with Lagrangian density

L =
1

2
∂µφ∂

µφ− V (φ) (3.25)

where V (φ) is the effective potential. And the energy-momentum tensor for the

scalar field is

T µν = ∂µφ∂νφ− δµν
[

1

2
(∂λφ∂

λφ)− V (φ)

]
. (3.26)

Since we assume the scalar field is homogeneous and isotropic, φ only depends

on time. So the energy density and the pressure are

T 0
0 = ρ =

1

2
φ̇2 + V (φ), (3.27a)

T ij = −pδij = −
[

1

2
φ̇2 − V (φ)

]
δij. (3.27b)

Apply Euler-Lagrange equation

Dµ(∂µφ) = −V ′(φ) (3.28)

where Dµ is the covariant derivative. Let’s assume φ is homogeneous, so ∇φ = 0.

Now we have the equation of motion (EOM)

φ̈+ 3Hφ̇+ V ′(φ) = 0. (3.29)

When the φ is in a slow roll approximation, the frictional term 3Hφ̇ is dominant.

∣∣∣∣∣ φ̈

3Hφ̇

∣∣∣∣∣� 1. (3.30)
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The φ̈ can be neglected, so the slow roll EOM become

φ̇ = −V
′(φ)

3H
. (3.31)

So we can get

φ̈ = − 1

3H(φ)
V ′′(φ)φ̇+

H ′(φ)

3H2(φ)
V ′(φ)φ̇. (3.32)

From Eq.(3.9), we have

H2 =
8πG

3
ρ =

8π

3m2
P

ρ =
1

3M2
P

ρ. (3.33)

If the potential energy V (φ) dominates the energy density ρ, we have

H2 =
1

3M2
P

V (φ). (3.34)

So

H ′(φ) =
1

2

V ′(φ)

3M2
P

=
V ′(φ)

2V (φ)
H. (3.35)

Plug Eq.(3.35) and Eq.(3.34) into Eq.(3.32), then Eq.(3.30) become

∣∣∣∣∣ φ̈

3Hφ̇

∣∣∣∣∣ =

∣∣∣∣∣−1

3
M2

P

V ′′(φ)

V (φ)
+

1

3

M2
P

2

(
V ′(φ)

V (φ)

)2
∣∣∣∣∣� 1. (3.36)

We define the Potential Slow Roll Parameters εV and ηV , and the slow roll con-

ditions are

εV ≡
M2

P

2

(
V ′(φ)

V (φ)

)2

� 1, (3.37)

ηV ≡M2
P

V ′′(φ)

V (φ)
� 1. (3.38)

If V (φ) is flat enough, the slow roll conditions can be satisfied. We can plug
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different types of V (φ) into the slow roll EOM to get different types of inflation.

3.3 Reheat

During the inflation, the matter and the existing radiation were diluted to a

very low density by the inflation, so the temperature was very low. At the end

of inflation, φ̈ became dominant in Eq.(3.29). The slow-roll condition was not

satisfied anymore, and Eq.(3.29) switched from overdamped to underdamped. φ

started the coherent oscillation about the true minimum of the potential. The

inflaton decayed into conventional matter and radiation, reheating the universe.

Introducing the decay rate Γφ of the inflaton, then the Eq.(3.29) becomes

φ̈+ 3Hφ̇+ Γφφ̇+ V ′(φ) = 0. (3.39)

The rate of the energy transferred from the inflaton is given by Eq.(3.6) [155]

ρ̇φ =
d

dt

(
1

2
φ̇2 + V (φ)

)
= −(3H + Γφ)φ̇2. (3.40)

For simple harmonic oscillations, we have [6]

1

2
< φ̇2 >=< V (φ) >=

1

2
< ρ > . (3.41)

So we have

ρ̇φ = −(3H + Γφ)ρφ. (3.42)

The H term is the radiation diluted by inflation, and the Γφ term is the energy of

inflaton decayed into radiation. The evolution of the energy density of radiation
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is described by

ρ̇r = −4Hρr + Γφρφ + Γth(ρr − ρeqr ) (3.43)

where ρr is the energy density of radiation, ρeqr is the equilibrium energy density,

and Γth is the reaction rate for thermalization of the radiation.

When t ∼ Γ−1
φ , the inflaton decayed and reheated the universe to the reheat

temperature TR, although no supercooling and reheating actually took place. The

TR is given by Eq.(3.22)

TR =

(
45

4π3
(
Nb + 7

8
Nf

))1/4

(ΓφMP )1/2 (3.44)

where Nb+ 7
8
Nf = 427

4
for SM, and 915

4
for SUSY. After that, the universe entered

the RD era.
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Chapter 4

Baryogenesis via Leptogenesis

From the observation of present universe, we know that there are much more

matter than antimatter. Planck Collaboration gave the ratio of the components

of the universe’s total energy density [57]. Ωdarkmatter = 0.268 is the ratio of

dark matter to the critical energy density. Ωdark energy = 0.683 is the ratio of

dark energy, a kind of negative pressure, which causes the acceleration of the

expansion of present universe. ΩB = 0.049 is the ratio of the ordinary baryonic

matter. So we can see about 85% of matter is dark matter, which is non-baryonic

non-luminous. The contribution of neutrinos and photons is small and negligible.

The inflation diluted both nB and the photon number density nγ as R(t)−3. So

we use their ratio

η ≡ nB
nγ

(4.1)

to measure the asymmetry. nγ can be calculated from the Boltzmann distribution

nγ = 2 ξ(3)
π2 T

3, where T is the temperature. From the present values of microwave

background [57], T = T0 = 2.725± 0.002 K, we get nγ ≈ 411 cm−3. The current
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critical density is

ρc =
3

8π2
m2
PH

2
0 = 1.88h2 × 10−29 g · cm−3 (4.2)

where h ≡ H0/100 km · s−1 ·Mpc−1, and mP ≡ G
−1/2
N = 1.22 × 1019 GeV is the

Planck mass. The current net baryon number density is

nB =
ΩB

mB

ρc = 1.1× 10−5ΩBh
2 cm−3 (4.3)

and η = 2.737× 10−8ΩBh
2 where ΩB ≡ ρB/ρc is the ratio of baryon density and

the critical density. The measured primordial deuterium and hydrogen abun-

dances require ΩBh
2 = 0.024±0.001. [58] The ratio of baryons to photons is: [57]

η =
nB
nγ

= (6.103± 0.38)× 10−10. (4.4)

η is determined both from light element production in BBN and also from CMB

measurements. This tells us that there is no large regions of antimatter in the

universe, because if the universe was matter-antimatter symmetric, the baryon

to photon ratio at 1 GeV should be: [59]

nb
nγ

=
nb̄
nγ
' 10−18. (4.5)

The entropy density s scales as R(t)−3. So we can also use the ratio of the

baryon number density and entropy density

ηB ≡
nB
s

(4.6)
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to measure the baryon asymmetry, where

s =
2π2

45
g∗S,TT

3 = 7.04
(g∗S,T

3.91

)
nγ, (4.7)

and

g∗S,T =
∑

bosons

gi

(
Ti
T

)3

+
7

8

∑
fermions

gi

(
Ti
T

)3

(4.8)

is the total effective number of massless degrees of freedom at the temperature

T . So η = 1.8g∗S,T
nB
s

.

4.1 Conditions for baryogenesis

In order to produce the baryon asymmetry of the Universe (BAU), Andrei Sakharov

suggested that three conditions must be satisfied:

1. Baryon number (B) violation.

2. C and CP (charge conjugation and parity) violation.

3. Thermal inequilibrium.

The big bang theory said the universe starting with all quantum number zero,

and now the baryon number is not zero. Obviously, the baryon number must be

violated. There must be some baryon number non-conserving interactions. But

until now, there is no experiment shows that such interactions exist. For any

theory that contains the baryon number violation must be constrained by the

current lower bound of the proton lifetime (τP ) [60]

τP & 1031 ∼ 1033 years (4.9)
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C and CP symmetry must be violated so that the matter and antimatter can

generate at different rates, and net baryon number can be generated. We know

that C symmetry is violated by weak interactions, and CP symmetry can be

violated in kaon decays and the strange B0 meson decays [61].

When the universe approaches thermal equilibrium, the baryon number den-

sity tends to be zero, the baryon asymmetry could be washed out. The baryon

number non-conserving interactions must be able to occur in thermal inequilib-

rium. The universe was in thermal equilibrium at the beginning of the big bang,

and remain in thermal equilibrium as long as the particles interaction rate is

higher than the expansion rate of the universe. When the universe cooled down,

and photons were free as the electrons were bounded to atoms, then the universe

was out of thermal equilibrium.

Early baryogenesis proposals like GUT scale baryogenesis which takes place

before inflation is not favored since the inflation will dilute away the baryon

asymmetry. Modern proposals for developing the BAU take place after the end

of the inflation, at or after the reheating. The SM electroweak baryogenesis and

first order phase transition requires a low Higgs mass mH ≤ 50 GeV, which is

excluded by experimental data. However, the SUSY electroweak baryogenesis

can relax the limits of Higgs, sparticles mass to higher value, and the naturalness

limits the value mA . 4 − 8 TeV. We are going to discuss several baryogene-

sis mechanisms: thermal leptogenesis [62–67], non-thermal leptogenesis [68–73],

leptogenesis from oscillating sneutrino decay [74, 75], leptogenesis via AD con-

densate, and AD baryogenesis. [74, 76–78] If in a model where gravitinos can be

thermally produced in the early universe at a rate proportional to the reheat

temperature TR, then it may have the cosmological gravitino problem. [79, 80]

If TR is too high, then too much gravitino could be generated from the thermal
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production. If gravitino decays to or is the LSP, then there will be too much

dark matter. If the gravitino is too long-lived and decays after BBN, it could

decay to photons, leptons or mesons, and destroy the successful BBN predictions

of the light nucleus abundances. [81–83] In the case of natural SUSY with mixed

axion-higgsino dark matter, then similar constraints arise from axino and saxion

production: WIMPs or axions can be overproduced, or light element abundances

can be destroyed by late decaying axinos and saxions. [84]

4.2 Leptogenesis

Sphaleron process is very important for baryogenesis via leptogenesis. If net

lepton number is generated, then baryon asymmetry can be generated due to the

sphaleron process. Sphaleron process can convert baryons and anti-leptons (or

anti-baryons and leptons) into each other. The baryon and lepton violation rate

equations are [85]

Ḃ(t) = −γ(t)

[
B(t) + η(t)

nG∑
i=1

Li(t)

]
(4.10a)

L̇i(t) = −γ(t)

nG

[
B(t) + η(t)

nG∑
i=1

Li(t)

]
+ fi(t) (4.10b)

where nG is the number of generations, fi(t) is the sources of the lepton numbers,

and η(t) ' 0.52± 0.03. So the rate is proportional to the baryon number (lepton

number) at time t. Sphaleron conserves the B − L, and violates the B + L, so

we need B−L violation process to get baryon number asymmetry. So if we have
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an initial B − L value, then after the sphaleron, we have a final B

Bf =
8Nf + 4Nϕ

22Nf + 13Nϕ

(B − L)i =
28

79
(B − L)i (4.11)

where Nf is generations of fermions, and Nϕ is number of Higgs doublets. In the

SM, Nf = 3, and Nϕ = 1. Leptogenesis provides a way to generate lepton asym-

metry that can be realized in seesaw mechanism for neutrino mass generation.

Baryon or lepton asymmetry that created before electroweak phase transition

could be washed out by sphaleron process. Sphaleron process is efficient at tem-

perature

102GeV < T < 1012GeV.

The wash out rate k(T ) obeys the equation

∂nB
∂t

= −k(T )nB. (4.12)

The wash out rate is high at high temperature, the rate is [86,87]

k(T ) = −13nf
2

Γsph(T )

V T 3
∼ A(T )e−Esph/T (4.13)

where nf is the number of fermion generations, the prefactor A(T ) doesn’t contain

exponential dependence on T , the sphaleron energy Esph is of order

Esph =
c

g2
MW . (4.14)

and the sphaleron rate per unit volume Γsph(T )/V is

Γsph(T )/V = T 4e−Esph/T/V. (4.15)

60



We can solve the Boltzmann equation to determine the right-handed neutrinos

decay and inverse decay. Sphaleron process can convert the remaining net lepton

number to net baryon number.

4.2.1 Leptogenesis via right-handed neutrino decay

4.2.1.1 Thermal leptogenesis (THL)

Thermal leptogenesis introduces three intermediate mass scale right-handed sin-

glet neutrinos Ni (i = 1, 2, 3) so that the type I see-saw mechanism generates a

very light SM neutrino mass. The superpotential is

W =
1

2
MiNiNi + hiαNiLαHu (4.16)

where we assume a basis for the Ni masses which is diagonal and real. α is the

lepton doublet generation index and hiα are the neutrino Yukawa couplings. The

see-saw mechanism generates a spectrum of three sub-eV mass neutrinos m1, m2

and m3 and three heavy neutrinos M1 < M2 < M3. In GUT-type theories, the

typically mass of third generation heavy neutrino is M3 ∼ 1015 GeV. If the three

generations heavy neutrino masses are hierarchical like the quark masses, then

we have M1/M3 ∼ mu/mt ∼ 10−5, and so M1 ∼ 1010 GeV. [88]

After inflation, the universe reheats to a temperature TR &M1 thus thermally

produces heavy neutrinos N1. The N1 decay into LHu and L̄H̄u asymmetrically

due to interference between tree and loop level decay diagrams which include CP
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violating interactions. The CP asymmetry factor ε1 is [89–91]

ε1 ≡
Γ(N1 → LHu)− Γ(N1 → L̄H̄u)

ΓN1

(4.17a)

' 3

8π

M1

〈Hu〉2
mν3δeff (4.17b)

where 〈Hu〉 ' 174 GeV sin β. δeff is an effective CP-violating phase which depends

on the MNS matrix elements and is expected to be δeff ∼ 1. For hierarchical heavy

neutrinos

ε1 ∼ 2× 10−10

(
M1

106 GeV

)( mν3

0.05 eV

)
δeff. (4.18)

The ultimate lepton asymmetry can be calculated from a coupled Boltzmann

equation. [92] When N1 is in thermal equilibrium, its ratio of number density nN1

to entropy density s is proportional to 1/g∗ where the effective degrees of freedom

g∗ = 232.5 for the MSSM. The lepton number density nL to entropy density s

ratio is then

nL
s

= κε1
nN1

s
' κ

ε1
240

(4.19)

where κ is the coefficient for washout effects and the efficiency of N1 thermal

production. Numerical evaluations of κ imply κ ' 0.05− 0.3.

The induced lepton asymmetry converts to baryon asymmetry via B + L

violating but B − L conserving sphaleron interactions. The ultimate baryon

asymmetry is then [93]

nB
s
' 0.35

nL
s
' 0.3× 10−10

( κ

0.1

)( M1

109 GeV

)( mν3

0.05 eV

)
δeff (4.20)

provided that TR is large enough that the N1 are efficiently produced by thermal

interactions: TR & M1. Naively, this requires TR & 1010 GeV although detailed
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calculations allow for TR & 1.5× 109 GeV. [92] This rather large lower bound on

TR potentially leads to conflict with the gravitino problem and violation of BBN

bounds or overproduction of dark matter. In the event that late decaying relics

inject entropy after N1 decay is complete, then nL/s is modified by an entropy

dilution factor r: nL/s→ nL/(r × s).

In some variant thermal leptogenesis scenarios, the lower bound of TR can

be relaxed to a lower value. In the simple scenario of thermal leptogenesis, the

flavor dependence is normally neglected by assuming the alignment of final state

leptons and anti-leptons, i.e., CP (L) = L̄. In general, however, one can consider

the case in which the final state leptons and anti-leptons are not aligned and

thus the flavor effect must be taken into account. Depending on the temperature

at which dominant lepton asymmetry is generated, flavor effect can enhance the

final asymmetry by up to an order of magnitude. [94, 95] On the other hand,

one can also consider the case of nearly degenerate right handed neutrinos rather

than a hierarchical spectrum. If the mass difference is as small as its decay width,

i.e., (M1 −M2) ∼ ΓN1 , the CP asymmetry factor is resonantly enhanced so that

a successful leptogenesis scenario is possible with O(TeV) right handed neutrino

mass. [96–98]

We will examine the viability of various leptogenesis scenarios for natural

SUSY with mixed axion-higgsino dark matter. We do not specify the structure

of the neutrino sector, and only consider the simplest scenarios for the thermal

leptogenesis. If one considers a specific neutrino sector in which flavor and/or

resonant effects are important, then bounds from thermal leptogenesis may be

modified.
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4.2.1.2 Non-thermal leptogenesis via inflaton decay (NTHL)

As an alternative to thermal leptogenesis, non-thermal leptogenesis posits a large

branching fraction of the inflaton field χ into N1N1 : χ→ N1N1 which is followed

by asymmetric N1 decay to (anti-)leptons as before. In this case, the N1 number

density to entropy density ratio is given by [68–73]

nN1

s
' ρrad

s

nχ
ρχ

nN1

nχ
(4.21a)

=
3

4
TR ×

1

mχ

× 2Br =
3

2
Br

TR
mχ

(4.21b)

where ρrad is the radiation density once reheating has completed. ρχ is the energy

density stored in the inflaton field just before inflaton decay. Thus, ρrad ' ρχ and

ρχ ' mχnχ. Here also Br is the inflaton branching fraction into N1N1. So the

generated lepton asymmetry is inflation model dependent. The lepton number to

entropy ratio is then given by nL/s ' ε1nN1/2 where ε1 is CP asymmetry factor.

The lepton number asymmetry is converted to a baryon asymmetry via sphaleron

interactions as before

nB
s
' 0.35

nL
s
' 0.5× 10−10Br

(
TR

106 GeV

)(
2M1

mχ

)( mν3

0.05 eV

)
δeff (4.22)

The resultant baryon asymmetry can match data provided mχ > 2M1 and that

the branching fraction is nearly maximal. The key difference from THL is that

NTHL only requires a relatively low reheat temperature TR & 106 GeV, so there

is no gravitino problem for a wide range of gravitino mass. For TR . 106 GeV,

then ρrad and consequently ρχ are reduced so that there is insufficient energy

stored in the inflaton field to generate the required nN1 number density.
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4.2.2 Leptogenesis from coherent oscillating right-handed

sneutrino decay (OSL)

In the previous two mechanisms, right-handed neutrinos and sneutrinos are pro-

duced by thermal scattering or inflaton decay. On the other hand, for sneutrinos,

coherent oscillation can be a dominant production process. The decay of oscil-

lating right-handed sneutrino produces lepton asymmetry which is given by [75]

nL = ε1M1

∣∣∣Ñ1d

∣∣∣2 (4.23)

where Ñ1d is the sneutrino amplitude when it decays.

Once the universe is dominated by sneutrino oscillation, pre-existing relics

are mostly diluted away and the universe is reheated again by sneutrino decay at

H = ΓN1 , where ΓN1 is the sneutrino decay rate. The decay temperature TN1 is

determined by

TN1 =

(
90

π2g∗

)1/4√
MPΓN1 (4.24)

where g∗ is the number of degree of freedom at T = TN1 . And the entropy density

is

s =
2π2

45
g∗T

3
N1
. (4.25)

At the time of sneutrino decay, the energy density of sneutrino oscillation is

dominantly transferred to radiation energy density, so one can find an additional

relation as

ρN1 = M2
1

∣∣∣Ñ1d

∣∣∣2 =
π2

30
g∗T

4
N1
. (4.26)
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From these relations, one finds the lepton number to entropy ratio

nL
s

= ε1
ρN1

M1

1

s
=

3

4
ε1
TN1

M1

(4.27a)

' 1.5× 10−10

(
TN1

106 GeV

)( mν3

0.05 eV

)
δeff. (4.27b)

The baryon asymmetry is obtained via sphaleron process, and thus baryon num-

ber is given by nB/s ' 0.35nL/s. Thus, enough baryon number can be generated

for TN1 & 106 GeV.

In this scenario, it is interesting that the effective reheat temperature is

O(TN1) for thermal relic particles, since sneutrino domination dilutes pre-existing

particles when it decays. [75] It is assumed that inflaton decay after sneutrino os-

cillation starts. If sneutrino oscillation starts after inflaton decay, effective reheat

temperature is given by 2TN1(TR/TRC ) where TRC is the temperature at which

sneutrino oscillation starts. Therefore, we will consider TN1 a reheat temperature

for production of gravitinos, axinos and saxions in the case of leptogenesis from

oscillating sneutrino decay.

4.2.3 Affleck-Dine leptogenesis (ADL)

Affleck-Dine (AD) [76–78] leptogenesis makes use of the LHu flat direction in the

scalar potential. [74,99] This direction is lucrative in that it is not plagued by Q-

balls which are problematic for flat directions carrying baryon number [100] and

also because the rate for baryogenesis can be linked to the mass of the lightest

neutrino, leading to a possible consistency check via observations of neutrinoless

double beta decay (0νββ). [101]

In the case of the LHu flat direction, F-flatness is only broken by higher dimen-
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sional operators which also give rise to neutrino mass via the see-saw mechanism:

W =
1

2Mi

(LiHu)(LiHu) (4.28)

where Mi is the heavy neutrino mass scale. Here Mi contains neutrino Yukawa

coupling, i.e., 1/Mi = y2
νi/MNi , so it can be larger than MP for small yνi. The

most efficient direction is that for which i = 1 corresponding to the lightest

neutrino mass: mν1 ∼ 〈Hu〉2 /M1 in a basis where the neutrino mass matrix is

diagonal. The Affleck-Dine field φ then occurs as

L̃1 =
1√
2

φ
0

 Hu =
1√
2

0

φ

 . (4.29)

The scalar potential is

V = VSB + VH + VTH + VF (4.30)

where

VSB = m2
φ |φ|

2 +
mSUSY

8M
(amφ

4 + h.c.) (4.31a)

VH = −cHH2 |φ|2 +
H

8M
(aHφ

4 + h.c.) (4.31b)

VTH =
∑

fk|φ|<T

ckf
2
kT

2|φ|2 +
9α2

s(T )

8
T 4 ln

(
|φ|2

T 2

)
(4.31c)

VF =
1

4M2
|φ|6 (4.31d)

where cH ' |aH | ' 1, |am| ∼ 1, M ≡ 〈Hu〉2 /mν1 , and 〈Hu〉 = 174 GeV × sin β.

We take sin β ≈ 1 for simplicity. The first contribution VSB is the SUSY breaking
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contribution where m2
φ = (µ2 + m2

Hu
+ m2

L)/2. [102] The second contribution

arises from SUSY breaking during inflation [77,78] where 3H2
I m

2
GUT ' |Fχ|2 with

HI being the Hubble constant during inflation and where Fχ is the inflaton F -

term which fuels inflation, and χ is the inflaton field which dominated the energy

density during inflation. In the expression VH , the coefficient cH is generally to

be expected > 0. When cHH
2 > m2

φ, this negative −cHH2|φ|2 term provides an

instability of the potential at |φ| = 0. Then a large VEV of φ can form at one of

the four minimum points of the potential V

〈φ〉 '
√
MHI (4.32)

arg(φ) = [(− arg(aH) + (2n+ 1)π]/4 (4.33)

where HI ∼ 1013 GeV � mφ and m3/2 |am|, and n = 0 ∼ 3. See Fig. 4.1.

The second term in VH is the Hubble induced trilinear SUSY breaking term. The

term VF is the up-lifting F -term contribution arising from the higher dimensional

operator W . Lastly, the term VTH arises from thermal effects after the inflation

ended. [103,104] The first term is generated when the light particle species which

couple to the AD field are produced in the thermal plasma, while the plasma

are produced by the oscillation and decay of the inflaton χ with temperature

T ' (T 2
RMGH)

1/4
. The second term is generated by effective gauge coupling

running from heavy effective mass of particles which couple to the AD field.

Here, fk represents the Yukawa/gauge couplings of φ and ck is expected ∼ 1.
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Figure 4.1: The four minimum points of the potential V are at 〈φ〉 '
√
MHI ,

arg(φ) = [(− arg(aH) + (2n+ 1)π]/4. We take arg(aH) = 0 in the figure.

After the end of the inflation, H started to decrease from HI to a much smaller

value, so 〈φ〉 was getting smaller but still tracking the minimum of the potential

at 〈φ〉 '
√
MH. The absolute value of the negative H term would exceed by one

of these three terms in the potential V :

m2
φ|φ|2,

∑
fk|φ|<T

ckf
2
kT

2|φ|2, agα
2
S(T )T 4. (4.34)

The potential V became dominated by the largest of above three terms. φ started

to oscillate. The net lepton number is fixed when φ started to oscillate, after the

end of inflation and before the end of reheat. The evolution of φ was determined

by which term dominated the potential in the equation of motion.
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The equation of motion for the AD field is

φ̈+ 3Hφ̇+
∂V

∂φ∗
= 0 (4.35)

which is the usual equation for a damped harmonic oscillator. Once the AD

condensate forms, then the universe continues expansion and the Hubble-induced

terms decrease. The minimum of the potential decreases as does the value of the

condensate. When H decreases to a value [105]

Hosc = max

[
mφ, Hi, αsTR

(
9MP

8M

)1/2
]

(4.36)

where

Hi = min

[
1

f 4
i

MPT
2
R

M2
, (c2

i f
4
iMPT

2
R)1/3

]
. (4.37)

where the value of ci and fi are in the Table 4.1. Then the AD field begins to

ci 1/4 1/2 3/4 1/4

fi

√
g21+g22

2
g2√

2

yu√
2

yL1√
2

Table 4.1: The value of ci and fi where yu ' mup/ 〈Hu〉 and yL1 ' 0.4× 0.061.

oscillate, and a non-zero lepton number arises

nL =
i

2
(φ̇∗φ− φ∗φ̇). (4.38)

70



−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
ϕ (GeV) 1e14

0.0

0.5

1.0

1.5

2.0

2.5

V 
(G

eV
)

1e40

Figure 4.2: Shape of the potential of φ for different H before and after the
inflation in φ vs. Vφ plane. The solid line is for H = HI during and at the end
of the inflation, and the φ field stay at the minimum. The dashdotted line is
for H < HI after the inflation, and the φ field keep tracking the minimum. The
dotted line is for small H that the negative H|φ|2 term was exceeded by other
positive |φ|2 term, and the φ field oscillates around the true minimum.

So we can get

ṅL =
i

2
(φ̈∗φ− φ∗φ̈), (4.39)
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and since |φ|2 = φφ∗ and |φ|6 = φ3φ∗3, we can obtain expressions for ∂V/∂φ∗ and

∂V ∗/∂φ, then plug into Eq. (4.35), and use relation φ4 − φ∗4 = 2iIm(φ4) to get

ṅL + 3HnL =
mSUSY

2M
Im(amφ

4) +
H

2M
Im(aHφ

4). (4.40)

The first term on the RHS is dominant, and using

d

dt
R3nL = R3ṅL + 3R3HnL (4.41)

where R3nL ∝ t is the total lepton number. We can integrate from early times

up to t = 1/Hosc to find

nL =
mSUSY

2M
Im(amφ

4)tosc (4.42a)

' 1

3
(mSUSY|am|)MHoscδph (4.42b)

where δph = sin(4 arg φ+ arg am). We have used the relations, φ(tosc) ∼
√
MHosc

and tosc = 2/(3Hosc) for an oscillating field/matter-dominated universe. After φ

started to oscillate, the net lepton number is fixed. During the inflaton oscillation

dominated era, the produced lepton number density is diluted by an (H/Hosc)
2

factor. The entropy density at TR is determined by the relation 3M2
PH

2
R = ρrad =

s × 3TR/4 where HR is the Hubble parameter at TR. The lepton number to

entropy ratio is conserved once the era of reheat is completed

nL
s

=
MTR
12M2

P

(
mSUSY|am|

Hosc

)
δph. (4.43)

This quantity has the virtue of being TR independent if Hosc is determined by

the third (thermal) contribution in Eq.(4.36). The lepton asymmetry is then
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converted to a baryon asymmetry via sphaleron interactions nB/s ' 0.35(nL/s)

and replacing M by 〈Hu〉2 /mν1, the baryon to entropy ratio is

nB
s

= 0.029× 〈Hu〉2 TR
mν1M2

P

(
mSUSY|am|

Hosc

)
δph. (4.44)

It is found [105] that nB/s ∼ 10−10 can be developed roughly independent of TR

for TR & 105 GeV for mν1 ∼ 10−9 eV and for mSUSY|am| ∼ 1 TeV.
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Figure 4.3: Plot of nB/s = 10−10 in mν1 vs. TR plane.

In Fig. 4.3, we chose |am| = 1, δph = 1, mup = 3 MeV, sin β = 0.995,

mφ = m3/2 = 1 TeV and nB/s = 10−10. The blue segment of the line is when

Hosc = mφ. The pink segment is when Hosc = 4MPT
2
R/(M

2y4
u). The black

segment is when Hosc = (9y4
uMPT

2
R/64)1/3. The orange segment is when Hosc =

αsTR
√

9MP/(8M). The yellow segment is when Hosc = 4MPT
2
R/(M

2y4
L1). The
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cyan segment is when Hosc = (y4
L1MPT

2
R/64)1/3. However, TR > 1012 GeV is not

favored, we will focus on TR < 1012 GeV. We can see that fi = yu/
√

2 played

an important role in this situation. The thermal effect terms greatly reduced the

baryon asymmetry dependence of TR.

10−12 10−11 10−10 10−9 10−8

mν1 (eV)

104

106

108

1010

1012

1014

T R
 (G

eV
)

10−8 10−9 10−10 10−11 10−12

Figure 4.4: Plot of nB/s = 10−8, 10−9, 10−10, 10−11, 10−12 and mup =
1.5 (dot line), 2.2 (solid), 3 (dash) MeV in mν1 vs. TR plane. Here, we assume
mφ = m3/2 = 1 TeV.
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In Fig. 4.4, we showed plots of nB/s = 10−8, 10−9, 10−10, 10−11, 10−12

and mup = 1.5, 2.2, 3 MeV. We can see that lighter mν1 produce more baryon

asymmetry. Heavier mup gives more impact on the thermal effect. For small

baryon asymmetry, thermal term T 2|φ|2 took place early, but less impact on the

baryon asymmetry. For nB/s = 10−12, the T 2|φ|2 term even has no contribution

for mup . 2.2 MeV.
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Figure 4.5: Plot of mφ = m3/2 = 1, 5, 10, 20 TeV where nB/s = 10−10, mup = 2.2
MeV in mν1 vs. TR plane.

In Fig. 4.5, we compared m3/2 = mφ = 1, 5, 10 and 20 TeV in the

mν1 vs. TR plane where we took nB/s = 10−10 and mup = 2.2 MeV. The

solid/dotted/dashdotted/dash lines are for m3/2 = 1, 5, 10, 20 TeV, respec-

tively. Heavier m3/2 and mφ produce lower baryon asymmetry. This is because
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the larger value of mφ, the later thermal term exceeds the mφ value and dominates

Hosc, so later oscillation of φ field and higher TR are needed to start oscillation.

4.3 Constraints in the TR vs. m3/2 plane for var-

ious fa

To compute the mixed axion WIMP dark matter abundance in SUSY axion

models, we adopt the eight coupled Boltzmann equation computation. [48, 49,

106] See Appendix B. The Boltzmann equations track the energy densities of

the various constituents of the early universe while accounting for: 1. Hubble

expansion and dilution, 2. particle production and annihilation from scattering

reactions, 3. particle production from decay and inverse decay processes, 4.

particle disappearance due to decays and 5. particle production via bosonic

coherent motion (BCM). The Boltzmann equations allow for species which may

be in or out of thermal equilibrium. The number densities ni and energy densities

ρi for thermal species i = a, s, ã obey the following equations

dni
dt

+ 3Hni =
∑

j∈MSSM

(n̄in̄j − ninj) 〈σv〉ij − Γimi
ni
ρi

(
ni − n̄i

∑
i→a+b

Bab
nanb
n̄an̄b

)

+
∑
a

ΓaBima
na
ρa

(
na − n̄a

∑
a→i+b

Bib
Bi

ninb
n̄in̄b

)
,

(4.45)

dρi
dt

+ 3H(ρi + Pi) =
∑

j∈MSSM

(n̄in̄j − ninj) 〈σv〉ij
ρi
ni
− Γimi

(
ni − n̄i

∑
i→a+b

Bab
nanb
n̄an̄b

)

+
∑
a

ΓaBi
ma

2

(
na − n̄a

∑
a→i+b

Bib
Bi

ninb
n̄in̄b

)
(4.46)
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where Bab ≡ BR(i → a + b), Bib ≡ BR(a → i + b), Bi ≡
∑

b Bib. Here number

densities in thermal equilibrium are denoted by n̄i. The zero temperature decay

widths are denoted by Γi. Among terms on the RHS of Eq. (4.45), the first term

describes the scattering processes of the species of concern with ordinary MSSM

particles. On the other hand, the second term shows particle disappearance

(production) via decay (inverse decay) processes while the third term represents

particle production (disappearance) via decay (inverse decay) of heavier particles.

The same explanation also holds for the ρi equation in Eq. (4.46). The BCM

components of the axion and saxion are simply determined by their initial energy

density and decay widths as follows

dnBCM
i

dt
+ 3HnBCM

i = −Γimi
nBCM
i

ρBCM
i

nBCM
i , (4.47)

d(ρBCM
i /nBCM

i )

dt
= 0. (4.48)

The initial amplitudes are parametrized as θi = a0/fa and θs = s0/fa. In the

following analyses, we consider θs = 1 as its natural initial condition while the

axion amplitude is adjustable to complete the dark matter density if the Higgsino-

like neutralino is underabundant.

In this treatment, one begins at temperature T = TR and tracks the energy

densities of radiation, WIMPs, gravitinos, axinos, saxions (BCM- and thermally-

produced) and axions (BCM-, thermally- and saxion decay-produced). Whereas

WIMPs quickly reach thermal equilibrium at T = TR, the axinos, saxions, axions

and gravitinos do not, even though they are still produced thermally. In SUSY

KSVZ, the axino, axion and saxion thermal production rates are all proportional

to TR while in SUSY DFSZ model they are largely independent of TR. The
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calculation depends sensitively on the sparticle mass spectrum, on the reheat

temperature TR, on the gravitino mass m3/2 and on the PQ model (KSVZ or

DFSZ), the PQ parameters fa, the axion mis-alignment angle θi, the saxion angle

θs and on a parameter ξs which accounts for the model dependent saxion to axion

coupling. [25] Here, we adopt the choices ξs = 0 (s → aa, ãã decays turned off)

or ξs = 1 (s→ aa, ãã decays turned on).

In order to solve the coupled Boltzmann equations, it is important to know the

axino, saxion and gravitino decay rates. The gravitino decay rates are adopted

from Ref. [107] while the axino and saxion decay rates are given in Ref. [108,109]

for SUSY KSVZ and in Ref. [36] for SUSY DFSZ. The axino decays via loops

involving the heavy quark Q field such that ã → gg̃, Z̃iγ and Z̃iZ in SUSY

KSVZ. In SUSY DFSZ, the axino couples directly to Higgs superfields yielding

faster decay rates into gauge/Higgs boson plus gaugino/higgsino states. In SUSY

KSVZ, the saxion decays via s → gg, g̃g̃ and, when ξs = 1, also to aa and

ãã (if kinematically allowed). The decay s → aa leads to production of dark

radiation as parametrized by ∆Neff which is the effective number of neutrinos.

In SUSY DFSZ, the saxion decays directly to gauge- or Higgs-boson pairs or to

gaugino/higgsino pairs. [36] If ξs = 1, then also s→ aa or ãã. In the case where

axinos or saxions decay to SUSY particles (leading to WIMPs), then WIMPs

may re-annihilate.

For the SUSY mass spectrum, we generate a natural SUSY model within

the context of the 2-extra parameter non-universal Higgs (NUHM2) model with

m0 = 5 TeV, m1/2 = 0.7 TeV, A0 = −8.4 TeV and tan β = 10. We take µ = 125

GeV and mA = 1 TeV. The spectrum is generated using IsaSUGRA 7.84. [110]

The value of mg̃ = 1.8 TeV, so now the model is slightly below LHC13 constraints.

The value of mh = 125 GeV and ∆EW = 20 so the model is highly natural.
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Higgsino-like WIMPs with mass mZ̃1
= 115.5 GeV are thermally underproduced

so that ΩTP
Z̃1
h2 = 0.007 using IsaReD. [111] In all frames, we take mã = ms = m3/2

as is roughly expected in gravity-mediated SUSY breaking models. [25,112] Since

we take mã = ms, then s→ ãã decays are never a factor in our results.

The results of the dark matter abundance calculation for natural SUSY may

be found in Ref. [48, 49, 106] where the relic abundance of WIMPs and axions

are plotted typically versus the PQ scale fa. At low fa ∼ 109 − 1011 GeV, then

the axion supermultiplet couplings are sufficiently large that axinos and saxions

decay well before neutralino freeze-out so that the thermally-produced neutralino

abundance is valid while axions make up the remainder of dark matter via axionic

BCM. As fa increases, then axinos and saxions decay more slowly. If they decay

after neutralino freeze-out, then they may add a non-thermal component to the

neutralino relic abundance. If a sufficient amount of neutralinos are produced at

the axino/saxion decay temperature, then they may re-annihilate yielding again

an enhanced abundance. At very large fa ∼ 1013 − 1015 GeV, then saxion pro-

duction via BCM can be huge. Saxion decays to SUSY particles may bolster the

neutralino abundance to values far beyond the measured DM abundance in which

case the parameter choices are excluded. However, if saxions dominantly decay

to SM particles then entropy dilution occurs which can reduce the abundance of

any relics present during decay. In either case, saxion decays after the onset of

BBN can lead to disolution of light elements and such cases would be ruled out by

BBN limits on late decaying neutral relics. [113] If ξs is large, then s→ aa decay

can produce large amounts of dark radiation, frequently violating observational

limits on ∆Neff .

It is reasonable to ask: is it sufficient to present results based on a single

SUSY benchmark point? In our case, it is for the following reasons. We restrict
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our analysis to natural SUSY where µ ∼ 100−300 GeV but where the remaining

sparticles lie in the multi-TeV regime as required by recent LHC search limits

and by the measured value of mh. Now the sparticle mass spectrum enters the

dark matter abundance calculation mainly through the decay widths (lifetimes)

of the axinos and saxions. For natural SUSY, in the KSVZ case the axino decays

dominantly to g̃g when this mode is open and where mg̃ . 2− 4 TeV is bounded

from above by naturalness. [42, 114, 115] Since this decay mode is almost always

open, the axino decay width mainly depends on mã(≡ m3/2) and fa and not on

the SUSY spectrum. In SUSY KSVZ, the saxion mainly decays as s→ gg (and

s → aa in the ξs = 1 case). Thus, the saxion decays are rather independent

of natural SUSY spectrum variations. In the DFSZ case, the axino decays to

higgsino+Higgs or higgsino+vector boson and since µ is required small, these

decay modes always dominate and again the axino decay pattern depends mainly

on µ, mã and fa and not upon variations in the natural SUSY spectra. In SUSY

DFSZ, the saxion decays dominantly into higgsino pairs (or into aa for ξs = 1)

and as these modes are always open, is again quite independent of the natural

SUSY spectrum.

In all the ensuing plots, the light-blue region corresponds to the parameter

space where all BBN, DM and dark radiation constraints are satisfied. The

red region corresponds to BBN excluded region, gray to overproduction of dark

matter and brown to ∆Neff > 1. Red and brown solid lines show the boundaries

of excluded regions due to BBN and dark radiation respectively.
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Figure 4.6: Plot of allowed regions in TR vs. m3/2 plane in the SUSY DFSZ axion
model for a) fa = 1011 and 1012 GeV, b) fa = 1013 GeV, for ξs = 0 and 1 and c)
fa = 1014 GeV for ξs = 1. For fa = 1011 GeV, TR > 1011 GeV is forbidden to
avoid PQ symmetry restoration. We take ms = mã ≡ m3/2 in all plots.
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4.3.1 SUSY DFSZ model

Our first results of allowed regions in the TR vs m3/2 plane are shown in Fig.

4.6. In frame a), we first take fa = 1011 GeV and 1012 GeV and show allowed

and excluded regions. For lower values of fa, DM density is enhanced by grav-

itino decay only and BBN constraints are violated by late-decaying gravitinos

since axinos and saxions are short-lived. For fa < 1011 GeV, BBN bounds and

DM exclusion contours can be read from Fig. 4.6 once the region TR > fa is

omitted. As we increase fa to 1011 GeV, then the axino and saxion decay rates

are suppressed and they decay later. However, they still typically decay before

neutralino freeze-out and thus do not change the picture.

The gray band at the top of frame a) is forbidden due to overproduction of

WIMP dark matter due to thermal gravitino production and decay well after

WIMP freeze-out. This occurs for TR & 3 × 1010 GeV when fa = 1011. The

red-shaded region occurs due to violation of BBN constraints on late-decaying

neutral relics. In the case of frame a), this comes again from gravitino production

along with decay after the onset of BBN. Here, we use a digitized version of

BBN constraints from Jedamzik [113] which appear in the ΩXh
2 vs. τX plane

where X stands for the quasi-stable neutral particle, ΩXh
2 is its would-be relic

abundance had it not decayed and τX is its lifetime. The curves also depend

on the X-particle hadronic branching fraction Bh and on the mass mX . Ref.

[113] presents results for mX = 0.1 and 1 TeV and we extrapolate between and

beyond these values for alternative mass cases. Together, the red- and gray-

shaded regions constitute the well-known gravitino problem: thermal gravitino

production, which is proportional to TR [116], can lead to overproduction of

decay-produced WIMPs or violations of BBN constraints.
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In comparison, we also show several lines. The black vertical lines show the

upper bound on gravitino mass from naturalness (∆EW < 30) that arises on m0 in

the NUHM2 model (labelled “RNS” at m3/2 = 10 TeV for universal generations

and “RNS SF” at m3/2 = 20 TeV for split families [42, 114]) if m0 were directly

determined by m3/2, i.e., m0 = m3/2. In our numerical study, however, the

SUSY spectrum is fixed in order to examine various leptogenesis scenarios in the

context of a natural SUSY model. We scan m3/2 values independently of the

SUSY spectrum in order to separate out constraints from the gravitino problem

(augmented by the axino and saxion problems). Thus larger m3/2 may be allowed

if one can find a UV model to realize the natural SUSY spectrum that we show

here. Although these bounds are not directly applicable to our numerical results,

we regard the parameter space with m < 10 TeV (or 20 TeV) as the natural

gravitino mass region. In addition, we show the regions where various leptogenesis

mechanisms can account for the BAU. The region above TR = 1.5 × 109 GeV is

where thermal leptogenesis (THL) can occur. From the plot, we see the viable

region, colored as light-blue, is bounded by m3/2 & 5 TeV by BBN, by m3/2 . 10

TeV by naturalness and by 1.5 × 109 GeV< TR < 5 × 109 GeV by BBN and by

successful baryogenesis. Thus, THL is viable only in a highly restricted region of

parameter space. In contrast, non-thermal leptogenesis (NTHL) and sneutrino

leptogenesis (OSL) are viable in a much larger region bounded from below by

TR & 106 GeV while Affleck-Dine LHu flat-direction leptogenesis (ADL) is viable

in an even larger region for TR & 105 GeV. These latter three leptogenesis regions

are fully viable for m3/2 > 1 TeV.

As fa is increased to 1012 GeV, then decays of axino and saxion are suppressed

even further. In this case, the DM-excluded region expands to the black contours

labelled by fa = 1012 GeV and ξs = 0 or 1. The ξs = 1 region is smaller than the
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ξs = 0 region because for ξs = 1 the saxion decay width increases due to s→ aa

and the saxion lifetime is quicker. The important point is that SUSY electroweak

naturalness expects fa ∼
√
µMP/λµ ∼ 1010−1012 GeV and for these values then

there are wide swaths of parameter space which support NTHL, OSL and ADL,

and even THL is viable in some small region.

Instead, if we increase fa to ∼ 1013 GeV as in frame b), then we are somewhat

beyond the natural value of fa, but also now the DM-forbidden region has in-

creased greatly so that only values of m3/2 & 5 TeV are allowed for ξs = 1, while

for ξs = 0 then all of natural gravitino mass region is forbidden. For low values

of m3/2(= ms ⇒ long-lived saxions) and at high TR, the decay s→ aa produces

too much dark radiation for ξs = 1 case only. This region is colored brown and

triply excluded by DM, BBN and dark radiation constraints. In frame c), with

fa = 1014 GeV, then natural gravitino mass region is mostly forbidden by over-

production of WIMPs for ξs = 1 and totally forbidden for ξs = 0 (not shown in

the Fig. 4.6c). In addition, the brown-shaded region (∆Neff > 1) has extended

and imposes an additional excluded region for m3/2 & 15 TeV and TR & 108 GeV.

These results have important implications for axion detection. Currently, the

ADMX experiment is exploring regions of fa/N & 1012 GeV. Future plans include

an exploration of regions down to fa/N & 1011 GeV. To make a complete explo-

ration of the expected locus of the axion in natural SUSY, then such experiments

should also aim for exploration down to fa/N ∼ 1010 GeV. For even smaller

fa/N < 1010 GeV values, then axion BCM-production requires θi values very

close to π and the axion production rates would be considered as fine-tuned. [35]
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4.3.2 SUSY KSVZ model

In this subsection, we show baryogenesis-allowed regions in the TR vs. m3/2 plane

for the SUSY KSVZ model. We regard the SUSY KSVZ model as less lucrative in

that one loses the DFSZ solution to the SUSY µ problem and the connection with

electroweak naturalness. In addition, if the exotic heavy quark field Q is not an

element of a complete GUT multiplet, then one loses gauge coupling unification.

Nonetheless, it is instructive to view these results for comparison to the SUSY

DFSZ case.
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Figure 4.7: Plot of allowed regions in TR vs. m3/2 plane in the SUSY KSVZ
axion model for a) fa = 1010 GeV, b) 1011 and 1012 GeV for ξs =0 and 1 and c)
fa = 1013 GeV for ξs = 0. For fa = 1011 GeV, TR > 1011 GeV is forbidden to
avoid PQ symmetry restoration. We take ms = mã = m3/2 in all plots.
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In Fig. 4.7a), we show results for fa = 1010 GeV. Even for fa as low as

1010 GeV, the gray-shaded WIMP-overproduction region occupies the region with

m3/2 . 1.3 TeV. In this region, since mã = m3/2, then thermal axino production

followed by decay after neutralino freeze-out leads to WIMP over production

across a wide range of TR values. This is because the axino decay is suppressed

by Q-mediated loops as compared to SUSY DFSZ. As fa is increased to 1011 GeV

(Fig. 4.7b)), then the DM-forbidden region expands out to m3/2 ∼ 2 TeV region.

For fa = 1012 GeV (Fig. 4.7b)), then the DM-forbidden region expands out to

m3/2 ∼ 4 TeV. Even for this high value of fa, there is still room for leptogenesis

in natural SUSY models for each of the cases of THL, NTHL, OSL and ADL. For

this case only, we have found that there exists some mild entropy dilution r of

nL due to thermal axino production for TR ∼ 1010 − 1011 GeV by up to a factor

of 2. Since these TR values are beyond the lower limit, our plots hardly change.

Alternatively, the THL lower bound on TR may be interpretted as a lower bound

on TR/r.

For the SUSY KSVZ model with fa = 1013 GeV as shown in Fig. 4.7c),

then the DM forbidden region has expanded to exclude all viable natural SUSY

parameter space except for a tiny slice with m3/2 ∼ 15 − 20 TeV and TR < 106

GeV where ADL might still function.

4.4 Constraints in the TR vs. fa plane for fixed

m3/2

In this section, we examine the DM constraints on baryogenesis in the TR vs.

fa plane for fixed natural m3/2 values to gain further insights on axion decay
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constant dependence of the constraints for TR between 104− 1012 GeV. On these

planes, in the yellow region labelled TR > fa we expect PQ symmetry to be

restored during reheating which leads to generation of separate domains with

different θ values and the appearance of domain walls and associated problems.

In this case, axion oscillations including the anharmonic effect must be averaged

over separate domains. [117,118] As before, we do not consider this region.
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4.4.1 SUSY DFSZ model
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Figure 4.8: Plot of allowed regions in TR vs. fa plane in the SUSY DFSZ axion
model for m3/2 = 5 TeV and with a) ξs = 0 and b) ξs = 1. We take ms = mã =
m3/2 in all plots.
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In Fig. 4.8, we plot allowed and forbidden regions for baryogenesis in SUSY

DFSZ model in the TR vs. fa plane for m3/2 = 5 TeV. In frame a), with ξs = 0,

the gray-shaded region still corresponds to WIMP overproduction and sets an

upper limit of fa . 1012 GeV. The red-shaded region corresponds to violation

of BBN constraints from late decaying gravitinos and bounds TR from above:

TR . 2 × 108 GeV which excludes the possibility of THL. Still, large regions of

natural SUSY parameter space are consistent with NTHL, OSL and with ADL.

The BBN bound kicks in again at fa ∼ 6 × 1014 due to long-lived saxions. For

the case of ξs = 1 shown in Fig. 4.8b), then s → aa is turned on. This leads to

the brown dark radiation excluded region at very large fa values and large TR.

In addition, we note for this case that the red-shaded BBN forbidden region has

actually expanded compared to frame a). This is because for ξs = 0, the BCM-

produced saxions inject considerable entropy into the cosmic soup at large fa

thus diluting the gravitino abundance. For ξs = 1, then the saxion decays more

quickly leading to less entropy dilution of gravitinos and thus more restrictive

BBN bounds. Thus, the BBN constraints are actually more severe for ξs = 1.

In addition, for frame b), we see WIMP overproduction bounds are less severe

with fa . 1013 GeV being required for the allowed regions. These are due to a

reduced s→ SUSY branching fractions for the ξs = 1 case.
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Figure 4.9: Plot of allowed regions in TR vs. fa plane in the SUSY DFSZ axion
model for m3/2 = 10 TeV and with a) ξs = 0 and b) ξs = 1.
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In Fig. 4.9, we show allowed and excluded regions in the TR vs. fa plane for

m3/2 = 10 TeV. In the case of ξs = 0 shown in frame a), the larger gravitino

mass causes the gravitinos to decay more quickly so that BBN constraints are

diminished: in this case, the THL scenario with TR > 1.5 × 109 GeV is allowed

in contrast to the previous case with m3/2 = 5 TeV. In addition, broad swaths

of parameter space are allowed for the NTHL, OSL and ADL scenarios with

fa . 5×1012 GeV. For larger fa values, then axino and saxion production followed

by late decays leads to too much WIMP dark matter. For the case with ξs = 1

shown in frame b), we see again the BBN constraints are somewhat enhanced

due to diminished entropy dilution of gravitinos at large fa. In addition, a dark

radiation forbidden region has appeared. Most importantly, the DM-allowed

region occurs for fa . 1014 GeV so that large swaths of parameter space are open

for baryogenesis. This is because, since we take mã = ms = m3/2, then the axinos

and saxions are also shorter-lived and tend to decay earlier - frequently before

WIMP freeze-out - so DM overproduction is more easily avoided.

For even larger values of m3/2 up to m3/2 ∼ 25 TeV, we would expect to see a

very similar BBN constraint since BBN bounds are not sensitive to any changes

in m3/2 for 7 TeV . m3/2 . 25 TeV (see Fig. 4.6). As m3/2 increases and reaches

beyond m3/2 ∼ 65 TeV, then gravitino decays much sooner and does not violate

BBN constraints at all. However DM production highly depends on fa and the

DM exclusion picture would look different up to a maximum fa after which the

whole parameter space is excluded by too much DM.
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4.4.2 SUSY KSVZ model
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Figure 4.10: Plot of allowed regions in TR vs. fa plane in the SUSY KSVZ axion
model for m3/2 = 5 TeV and with a) ξs = 0 and b) ξs = 1.
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In this subsection, we show corresponding results in the TR vs. fa plane for SUSY

KSVZ. In Fig. 4.10, we show the plane for m3/2 = 5 TeV and a) ξs = 0. Here, we

see that THL is ruled out due to the severe BBN bounds arising from gravitino

production and decay which restrict TR . 2× 108 GeV while the DM restriction

rules out fa & 1012 GeV. The NTHL, OSL and ADL are still viable baryogenesis

mechanisms over a wide range of TR and fa values. In frame 4.10b) for ξs = 1,

the DM forbidden region is similar with a fa < 1012 GeV restriction. However,

the BBN restricted region has increased because there is less entropy dilution

from saxion decay of the gravitinos abundance. The expanded BBN region lies

in the already DM and dark radiation excluded region so provides no additional

constraint. Since saxions decay earlier for ξs = 1 compared to ξs = 0, then they

inject neutralinos at a higher decay temperature TDs ; as a consequence, a small

DM-allowed region appears at high fa ∼ 1013 − 1014 GeV and TR ∼ 105 GeV

which is barely consistent with ADL.
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Figure 4.11: Plot of allowed regions in TR vs. fa plane in the SUSY KSVZ axion
model for m3/2 = 10 TeV and with a) ξs = 0 and b) ξs = 1.
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In Fig. 4.11a), we show the same TR vs. fa plane with ξs = 0, but this time

for a higher value of m3/2 = ms = mã = 10 TeV. The higher value of m3/2 means

gravitinos decay more quickly and at higher temperature so that the BBN bound

on TR is given by TR & 4×109 so that THL is again viable. Also, the DM-allowed

region has moved to a higher fa bound of fa . 2 × 1012 GeV. In this frame, all

four baryogenesis mechanisms are possible. In Fig. 4.11b), we show the same

plane for ξs = 1. Here a prominent dark radiation excluded region appears at

large fa & 1013 − 1014 GeV, although this region is already excluded by WIMP

overproduction and by BBN. The larger saxion width arising from the additional

s → aa decay mode means the saxion decay at higher temperatures leading to

some possible allowed regions appearing at fa ∼ 1014 GeV and TR ∼ 105 GeV

which admits ADL. Otherwise, large regions of viable parameter space exists

for fa . 2 × 1012 GeV and for TR . 4 × 109 GeV where all four leptogenesis

mechanisms are possible.
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Chapter 5

Affleck-Dine (AD) Baryogenesis

In the Affleck-Dine (AD) model, some scalar fields do not enter the superpoten-

tial, but lift flat direction of the potential. They receive soft masses in the SUSY

breaking vacuum. As long as H � m, the contribution to the soft mass squared

of the flat direction is negative, the flat direction φ is excited. After the inflation,

when H � m, φ begins to oscillate about the minimum of the potential [119]:

φ̈+ 3Hφ̇+ V ′(φ) = 0. (5.1)

If the scalar fields carries baryon and lepton number, then it can produce baryon

asymmetry at low energy and temperature level which is required by inflation,

and could produce matter and dark matter simultaneously.
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5.1 AD baryogenesis with R-parity

In SUSY, squarks and sleptons can carry baryon and lepton number. Lets start

with a Lagrangian of a single complex scalar field which carries a U(1) charge:

L = |∂µφ|2 −m2|φ|2, (5.2)

and the current density

jµB = i(φ∗∂µφ− φ∂µφ∗). (5.3)

Now add some quartic coupling as interaction terms to the Lagrangian, which

breaks the U(1) symmetry at higher order:

LI = λ|φ|4 + εφ3φ∗ + δφ4 + c.c.. (5.4)

This violate CP and baryon number. Suppose at the very early time of the

universe, H � m and the field vacuum expectation value (VEV) 〈φ0〉 � 0, these

terms are irrelevant.

We want to know the dynamics of the field. The full Lagrangian is

L = |∂µφ|2 −m2|φ|2 − λ|φ|4 − εφ3φ∗ − δφ4 − c.c.. (5.5)

The equation of motion of the field is

∂2φ

∂t2
+ 3H

∂φ

∂t
+m2φ+ λφ2φ∗ + εφ3 + 3ε∗φφ∗2 + 4δ∗φ∗3 = 0. (5.6)

At the very early time, H � m and B = 0. Eq. (5.6) is an equation of motion of
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an overdamped harmonic oscillator. H is the damping term. φ cannot oscillate

due to large H. After the inflation, H is getting smaller. When H ≤ m, φ became

an underdamped oscillator, 〈φ〉 continues to track the instantaneous minimum of

the scalar potential, begins to oscillate.

The scalar potential has flat directions with vanishing quartic terms, at the

renormalizable level. In cosmology, it requires the scalar fields in the flat direc-

tions have large VEV after inflation. Baryon number violating quartic terms are

non-renormalizable interactions along flat directions. The effect of quartic terms

are amplified by large field VEV. Then the scalars decay into ordinary particles

with baryon number conserved.

Begin from a U(1) group and two fields with opposite charge φ+ and φ−,

and take the superpotential W to vanish. Then the scalar potential is D-term

dominated: [120]

V =
1

2
D2, where D = g(φ+∗φ+ − φ−∗φ−). (5.7)

The D field and the potential V will vanish if φ+ = φ− = v. The expectation

value of the Higgs field and the slepton field are

Hu =

 0

v

 , L1 =

 v

0

 . (5.8)

The F term vanishes in this direction. The D term is

DY = g
′2(|Hu|2 − |L1|2) = 0, (5.9)

where Y is hypercharge.
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Before we calculate the D term for SU(2) to see if it vanishes, we define a

matrix gauge field which could work for any SU(N).

Di
j = Da(ta)ij, (5.10)

so in this example,

Di
j = φ∗iφj −

1

N
|φ|2δij

=

 |v|2 0

0 |v|2

− 1

2
|v|2

 2 0

0 2

 = 0.
(5.11)

This field carries a lepton number, which can be converted to baryon number

through the sphaleron processes. [121]

Higher order terms can lift the flat potential. For example,

W =
1

M
(HuL1)2 (5.12)

leads to

Vlift =
Φ̂6

M2
, (5.13)

where the superfield Φ̂ has a flat direction that is parameterized by the VEV.

Another example is e1L2L3 direction:

e1 =
1√
3

Φ̂, L2 =
1√
3

 Φ̂

0

 , L3 =
1√
3

 0

Φ̂

 . (5.14)

Other scalars which are coupled to the AD field become massive if Φ̂ acquires a

large VEV. Flat directions Φ̂ are lifted by SUSY breaking and non-renormalizable
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(NR) operators:

WNR =
Φ̂n

Mn−3
, n = 4, . . . , 9. (5.15)

V (Φ̂) = (m2
Φ̂
− cH2)|Φ̂|2 +

|Φ̂|2n−2

M2n−6
+

(
A
m3/2Φ̂n

nMn−3
+ h.c.

)
, (5.16)

where (m2
Φ̂
− cH2)|Φ̂|2 + |Φ̂|2n−2

M2n−6 are U(1) preserving terms, in which, m2
Φ̂

is soft

mass or SUSY breaking mass, cH2 is due to inflation, |Φ̂|
2n−2

M2n−6 is non-renormalizable

(NR) operator, and A
m3/2Φ̂n

nMn−3 + h.c. are U(1) breaking terms, in which, A
m3/2Φ̂n

nMn−3

is NR operator, and A is of order of the gravitino mass m3/2.

After inflation, the flat direction VEV slides down to

< Φ̂(t) >∼ (H(t)Mn−3)1/(n−2). (5.17)

When H ' mΦ̂, the flat direction starts to oscillate with the initial amplitude:

Φ̂0 ∼ (mΦ̂M
n−3)1/(n−2). (5.18)

The AD field has a baryon number q:

nB = qnΦ̂ = −iq( ˙̂
Φ∗Φ̂− Φ̂∗

˙̂
Φ). (5.19)

Using Eq. (5.1) equation of motion of Φ̂, the evolution of the baryon number is

given by

ṅB + 3HnB = −2q Im

[
∂V

∂Φ̂
Φ̂

]
. (5.20)

Only A-term contributes to the RHS.

ṅB(t) ∼ 2q

mΦ̂

|Φ̂|n

Mn−3
Am3/2δm, (5.21)
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where δm ≡ sin[arg(am) + nθ]. So the baryon asymmetry is

nB
s
∼
m3/2TR
mΦ̂M

2
P

(mΦ̂M
n−3)

2
n−2

δm . (5.22)

The reheating temperature can be relatively low. For example,

n = 4 :
nB
s
∼ 10−10

(
m3/2

mΦ̂

)(
M

MP

)(
TR

108GeV

)
, (5.23)

n = 6 :
nB
s
∼ 10−10

(
m3/2

mΦ̂

)( mΦ̂

TeV

)−1/2
(
M

MP

)3/2(
TR

10GeV

)
, (5.24)

There are many other flat directions. An example that have both baryon and

lepton number excited is [122]

First generation : Q1
1 = b, ū2 = a, L2 = b (5.25a)

Second generation : d̄1 =
√
|b|2 + |a|2 (5.25b)

Third generation : d̄3 = a (5.25c)

where a, b are the expectation values. We can check that D terms vanishes under

SU(3), SU(2) and U(1), and F terms also vanishes by simple algebra. So this is

a flat direction. Higher order operators lift the flat direction. The leading term

here is

W =
1

M3
[Q1d̄2L1][ū1d̄2d̄3], (5.26)

where the upper index is flavor. The potential is lifted by

Vlift =
Φ̂10

M6
. (5.27)
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The scalar field condensate forms along the flat direction of the scalar poten-

tial. The baryon asymmetry can arise via NR soft SUSY breaking terms. The

condensate can be homogeneous or inhomogeneous of charge Q. The homoge-

neous AD condensate is unstable to the spatial perturbation, because the flat

direction potential often comes from a φ2 potential. [123] When the potential is

flatter than φ2, there will be a negative pressure. There are more effects, which

depend on some parameters, can make the condensate disappear more rapidly.

Although we are more interested in AD baryogenesis, these effects can occur for

any coherent oscillating scalar field along the flat direction with gauge interac-

tions. This baryogenesis happen long after inflation, so the reheating temperature

is not an important constraint.

5.1.1 Q-Ball

Since we assumed that the homogeneous AD condensate oscillates for a long time

until it decays, the stability of oscillations under small perturbations, which are

caused by the quantum fluctuations, becomes important. Under some circum-

stances, the AD condensate will be unstable and non-linear, forming condensate

fragmentations.

If the potential of the AD field φ is flatter than the quadratic term, the AD

condensate fragmentations could reach the lowest energy state and turn into

non-topological solitons with a fixed charge Q, which may be stable or decay into

fermions, called the Q-ball. Q-ball can form when a complex scalar field carries

conserved charges, i.e., lepton or baryon numbers, with global U(1) symmetry.

In the MSSM, the squarks and sleptons which carry conserved baryon and lepton

numbers can form Q-ball. [120] The stability of Q-balls depends on their energy
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to charge ratio. The Q-ball with the lowest energy to charge ratio is most stable.

[124]

Let’s consider a scalar potential V (φ), which has a global minimum V (0) = 0,

where it has an unbroken global U(1) symmetry at the minimum: φ→ eiθφ. So

L =
1

2
∂µφ

∗∂µφ− V (φ). (5.28)

The charge Q is a constant

Q =

∫ (
∂L
∂φ̇

(iφ) +
∂L
∂φ̇∗

(−iφ∗)
)

d3x (5.29a)

=
1

2i

∫
(φ∗φ̇− φ̇∗φ)d3x. (5.29b)

The solution which minimizes the energy with Q = constant gives

E =

∫ (
1

2
|φ̇|2 +

1

2
|∇φ|2 + V (φ)

)
d3x. (5.30)

We got

Eω = E + ω

[
Q− 1

2i

∫ (
φ∗φ̇− φ̇∗φ

)
d3x

]
(5.31a)

=

∫ [
1

2
|φ̇|2 + i

ω

2
(φ∗φ̇− φ̇∗φ) +

1

2
|∇φ|2 + V (φ)

]
d3x+ ωQ (5.31b)

=

∫ [
1

2
| ˙φ− iωφ|2 +

1

2
|∇φ|2 + V (φ)− 1

2
ω2|φ|2

]
d3x+ ωQ, (5.31c)

where ω is a Lagrange multiplier. Use

φ(x, t) = eiωtφ(x). (5.32)
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We minimize Eω

Eω =

∫ [
1

2
|∇φ|2 + Vω(φ)

]
d3x+ ωQ, (5.33)

∆φ(x)− ∂

∂φ
Vω(φ(x)) = 0, (5.34)

ω2
0 = min

(
2V (φ0)

φ2

)
. (5.35)

The minimum is

V (φ)

φ2
= min., for φ = φ0 > 0. (5.36)

If a minimum exists, then a Q-ball solution exists.

For a finite φ0, if Q is large, then we can use a thin wall approximation for

the Q-ball: [125]

φ(x, t) = eiωtφ̄(x) (5.37)

where

φ̄(x) = θ(R− x)φ0 (5.38)

where θ(R− x) is step function. The mass of Q-ball is

M(Q) = ω0Q. (5.39)

If the potential V (φ) = µ4 for large φ, then the minimum will be at infinity, then

M(Q) = µQ3/4. (5.40)

If V (φ) increase slower than φ2, then the minimum can not be achieved at any

finite φ0,

M(Q) ∼ µQ(3−p/2)/(4−p). (5.41)
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So the energy per unit charge decrease as the charge and VEV increase.

The Q-ball can not decay into scalars, but can decay into fermions. If the

Q-ball doesn’t have baryon number, then it is unstable and can decay into light

neutrinos. [126] For a Q-ball that carries baryon number, it can be unstable or

stable. If the baryon number is not very large, then the Q-ball can be unstable,

and emit baryons and also neutralinos when out of equilibrium. [127–130] For

unstable Q-ball, the decay rate is suppressed by the surface to volume ratio since

the fermions fill up the Q-ball very fast. [126] If the baryon number is large

enough, and the mass is relatively small, then the Q-ball doesn’t have enough

energy to decay into fermions. The mass per unit baryon number is

M(QB)

QB

∼MSQ
−1/4, (5.42)

where QB is baryon number, M(QB) is the mass of the Q-ball, MS is SUSY

breaking scale. If M(QB)/QB is less than proton mass, then the Q-ball is totally

stable, and could survive until present day. [131]

The coherent scalar fields oscillation produce baryon asymmetry. Stable Q-

balls can be a candidate of dark matter, and unstable Q-balls can decay and

emit neutralinos when out of equilibrium, and thus contribute to the WIMP

dark matter relic density. Q-balls can produce both ordinary and dark matter,

so this could be the reason that their amounts are fairly close. [129,130,132,133]
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Figure 5.1: AD condensate and Q-ball decay

5.2 AD baryogenesis without R-parity in SUSY

DFSZ

Let us introduce PQ symmetry U(1)PQ and PQ fields S0, S1, S2 with PQ charge

0, 1, −1, respectively, but do not carry baryon number. Hu, Hd, ūi, d̄i have PQ

charge −1, Qi has 2, ēi has 3, and Li has −2. [134] In SUSY DFSZ, the PQ

symmetry can replace the role of R-parity. Here, we assume the R-parity is not

conserved. However, the R-parity violating interaction is small for phenomeno-

logical reasons. The size of baryon asymmetry and R-parity violation is controlled

by the dynamics of PQ fields and the couplings between the PQ fields and the

baryon/lepton number violating terms. [135,136] The superpotential is [134]

W = WMSSM +W/Rp
+WPQ (5.43)

where

WMSSM = yuijūiQjHu − ydij d̄iQjHd − yeij ēiLjHd +
y0S

2
1

MP

HuHd, (5.44)
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W/Rp
=
yiS

3
1

M2
P

LiHu +
γijkS1

MP

LiLj ēk +
γ′ijkS1

MP

LiQj d̄k +
γ′′ijkS

3
1

M3
P

ūid̄j d̄k, (5.45)

WPQ = κS0

(
S1S2 − f 2

)
. (5.46)

where i, j, k = 1, 2, 3. W/Rp
is the R-violating term. S1 = SeA/f , S2 = Se−A/f

where A is the axion superfield. WPQ is U(1)PQ symmetry breaking term. The

symmetry is spontaneously breaken at minimum 〈S〉 ' f . After PQ breaking,

the effective superpotential is

Weff =WYukawa + µ0e
2A/fHuHd + µie

3A/fLiHu

+ λijke
A/fLiLj ēk + λ′ijke

A/fLiQj d̄k + λ′′ijke
3A/f ūid̄j d̄k

(5.47)

where

µ0 =
y0f

2

MP

, µi =
yif

3

M2
P

λijk = γijk

(
f

MP

)
, λ′ijk = γ′ijk

(
f

MP

)
, λ′′ijk = γ′′ijk

(
f

MP

)3 (5.48)

where γ is of order unity. So the baryon number violating coupling constants

λ′′ijk are greatly suppressed, while lepton number is not. The R-parity violating

couplings are suppressed by the PQ charge assignment in the Froggatt-Nielsen

mechanism. [137]

We consider the D-type AD field ūd̄d̄ direction

ū =
1√
3
φ, d̄ =

1√
3
φ (5.49)

since µ term give large contribution to the scalar potential of flat direction LHu

while ūd̄d̄ direction is not affected. The potential of the AD field and PQ fields

are SUSY breaking model dependent. This model is realized in the SUSY DFSZ
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framework. The scalar potential for supergravity is [138]

V = VHubble + Vsoft + VF + VA (5.50)

where

V Hubble ' c0H
2 |S0|2 − c1H

2 |S1|2 + c2H
2 |S2|2 − c3H

2|φ|2, (5.51)

Vsoft = m2
0 |S0|2 +m2

1 |S1|2 +m2
2 |S2|2 +m2

φ|φ|2, (5.52)

VF = |κ|2
∣∣S1S2 − f 2

∣∣2 +

∣∣∣∣κS0S2 −
γS2

1φ
3

M3
P

∣∣∣∣2 + |κ|2 |S0S1|2 +
|γ|2 |S1|6 |φ|4

M6
P

, (5.53)

VA = −
(
aHH + amm3/2

) γS3
1φ

3

3M3
P

+
(
bHH + bmm3/2

)
κS0

(
S1S2 − f 2

)
+ h.c..

(5.54)

During the inflation, the AD and PQ fields φi = S0, S1, S2, φ are at the mini-

mum points with

mS0 ' mS2 '
〈
Ŝ1

〉
� |mS1| and |mφ| ' H (5.55)

where Ŝ means the amplitude of S. At the time after the inflation and H > mφ,

the inflaton oscillates and decays. S0 and S2 are heavier than S1 and φ as long

as
〈
Ŝ1

〉
< f , so S0 and S2 stay at the minimum. The EOMs of S1 and φ are

d2S1

dt2
+

2

t

dS1

dt
+
∂V

∂S†1
= 0, (5.56)

d2φ

dt2
+

2

t

dφ

dt
+
∂V

∂φ†
= 0. (5.57)

When H ' m3/2, φi fields start to oscillate around the minimum. Vφ does not
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depend on PQ fields. Baryon asymmetry is conserved after S1 ' f . The baryon

number density is

nB =
i

3

(
dφ∗

dt
φ− φ∗dφ

dt

)
=

2

3
|φ|2dθφ

dt
, (5.58)

and the EOM is

dnB
dt

+ 3HnB = Im

(
∂V

∂φ
φ

)
. (5.59)

The baryon number will be fixed at the beginning of the φ oscillation. So integrate

from the end of inflation tI to the beginning of the oscillation tosc

R(t)3nB(t) =

∫ tosc

tinf

dt′R (t′)
3

Im

(
γamm3/2S

3
1φ

3

3M3
P

)
, (5.60)

we get

nB (tosc) '
1

3
εâmm3/2δeff

(
m3/2M

3
P

γ̂

) 1
2

(5.61)

where

ε = Ŝ1 (tosc)
3 φ̂ (tosc)

3

(
m3/2M

3
P

γ̂

)− 3
2

. (5.62)

The EOM of S1 and φ are now

d2S1

dt2
+

2

t

dS1

dt
+ 2m2

3/2Ŝ
2
1 φ̂

6S1 + 3m2
3/2Ŝ

4
1 φ̂

4S1 − amm2
3/2S

†2
1 φ
†3

+

(
m2

1 −
4c1

9t2

)
S1 −

(
m2

2 +
4c2

m3/2

)
f 4

m3/2M
3
P Ŝ

4
1

S1 = 0
(5.63)

d2φ

dt2
+

2

t

dφ

dt
+ 3m2

3/2Ŝ
4
1 φ̂

4φ+ 2m2
3/2Ŝ

6
1 φ̂

2φ− amm2
3/2S

†3
1 φ
†2 +

(
m2
φ −

4c3

9t2

)
φ = 0

(5.64)

where m1 = m2 = m3/2, κ = γ = 1. t starts from tosc = 2c
1/2
3 / (3mφ).

The ratio of the baryon number to entropy density nB/s after the reheating
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(t = tR) is

nB
s

=
1

s (tR)

(
R (tosc)

R (tR)

)3

nB (tosc)

=
εâmm3/2δeffTR

12M2
Pm

2
φ

(
mφM

3
P

γ̂

) 1
2

.

(5.65)
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Figure 5.2: Log plot of nB/s = 10−11 (blue), 10−10 (orange), 10−9 (green) with
ε = 3.1× 10−4 (solid), 2.4× 10−1 (dotted).
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In Fig. 5.2, we choose âm = δeff = γ̂ = 1 and mφ = m3/2. The blue lines are

nB/s = 10−11. The orange lines are nB/s = 10−10. The blue lines are nB/s =

10−9. The solid lines are ε = 3.1 × 10−4. The dotted lines are ε = 2.4 × 10−1.

We can see the preferred nB/s = 10−10 is at around TR = 105 ∼ 106 GeV for

m3/2 = 1 ∼ 20 TeV. This reheating temperature is relative low, which is good to

avoid the gravitino problem.

As we talked in the AD model with R-parity, the AD field can form Q-ball.

In the gravity mediated SUSY breaking, the late decay of unstable Q-balls could

overproduce LSP if R-parity is conserved. Without R-parity, the LSP decay

solves the problem.

AD baryogenesis without R-parity in SUSY DFSZ can generate right amount

of baryon asymmetry, while avoids gravitino problem, explains the smallness of

neutrino mass, keep the reheat temperature low for a wide range of gravitino

mass. We could also extend this method to other flat direction.
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Chapter 6

Conclusion

In this paper, we calculated the different baryogenesis scenarios within the SUSY

axion KSVZ and DFSZ models, and natural SUSY models and investigated con-

straints on four compelling baryogenesis via leptogenesis scenarios within the

framework of supersymmetric models with radiatively-driven naturalness (RNS).

These models are especially attractive since they contain solutions to the gauge

hierarchy problem (via SUSY), the strong CP problem (via the axion), the SUSY

µ problem (for the case of the SUSY DFSZ axion) and the Little Hierarchy prob-

lem (where µ ∼ 100−200 GeV is generated from multi-TeV values of m3/2). The

characteristic, unambiguous signature of such models is the presence of light hig-

gsinos Z̃1,2 and W̃±
1 with mass ∼ µ. In these models, the LSP is a higgsino-like

WIMP which is thermally underproduced. The remainder of the dark matter

abundance is filled by the axion. Indeed, over most of parameter space the axion

forms the bulk of dark matter. [139]

The RNS spectra can be tested at the LHC via gluino pair production followed

by cascade decays for mg̃ . 2.5 TeV (for 300-1000 fb−1 of integrated luminos-

ity). [140] The cascade decay signatures will include an opposite-sign/same-flavor
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(OSSF) dilepton mass edge bounded by mZ̃2
−mZ̃1

∼ 5 − 30 GeV. [140, 141] In

addition, a unique same-sign diboson signature arising from wino pair production

emerges. [140, 142] For naturalness measure ∆EW < 30, then mg̃ may range up

to 3-6 TeV so the gluino possibly could be beyond LHC reach. Monojet and

monojet-plus-OSSF dilepton signatures are also possible. [143, 144] The crucial

test of naturalness is light higgsino pair production at a linear e+e− collider such

as ILC operating with
√
s > 2m(higgsino). [145] Regarding dark matter detec-

tion, while higgsino-like WIMPs make up likely only a fraction of dark matter,

naturalness implies a large coupling of WIMPs to the Higgs boson so WIMP di-

rect detection seems guaranteed at ton-scale noble liquid detectors. [35,146,147]

The ADMX axion detection experiment may not be sensitive to axion mass and

coupling considered in this thesis due to suppression of aγγ coupling due to hig-

gsino contributions. [148]

In supersymmetric dark matter models, baryogenesis mechanisms are con-

fronted by the gravitino problem: gravitinos which are thermally produced in the

early universe can lead to overproduction of WIMPs or to violations of BBN con-

straints. In SUSY axion models, there are analogous problems arising from ther-

mal axino production and decay and from thermal and oscillation-produced sax-

ions. We calculated regions of the TR vs. m3/2 plane in the compelling RNS SUSY

model with DFSZ axions and ξs = 0 and 1. Our main result is that the region of

parameter space preferred by naturalness with fa ∼
√
µMP/λµ ∼ 1010−1012 GeV

supports all four leptogenesis mechanisms. The thermal leptogenesis is perhaps

less plausible since its allowed region is nestled typically between the constricted

region of 7 TeV < m3/2 <10 TeV (or 20 TeV if one considers the naturalness

in terms of the gravitino mass) and 1.5 × 109 GeV < TR < 4 × 109 GeV. The

other NTHL, OSL and ADL mechanisms can freely operate over a broad region
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of parameter space for fa . 1012 GeV and TR & 105 GeV. We also evaluated all

constraints in the TR vs. fa plane for fixed m3/2 = 5 and 10 TeV.

The broad allowed regions of parameter space basically favor the following:

1. Multi-TeV values of m3/2 to avoid BBN constraints and to hasten saxion

and axino decays. Since m3/2 sets the scale for superpartner masses at

LHC, these multi-TeV values of m3/2 are also supported by LHC sparticle

search constraints and the large value of mh ∼ 125 GeV at little cost to

naturalness.

2. A value of fa ∼ 1010 − 1012 GeV which suppresses WIMP over production

from axino/saxion production. Such values of fa lead to axion masses

somewhat above the standard search region of ADMX and should motivate

future axion search experiments to increase their search region to heavier

axion masses.

3. Values of TR ∼ 105 − 109 GeV.

For completeness, we have also evaluated the leptogenesis allowed regions in

the SUSY KSVZ model for which an alternative solution to the µ problem is

needed. The loop-suppressed axino and saxion decay rates typically lead to more

stringent constraints in this case although regions of parameter space can still be

found where the various leptogenesis mechanisms are still possible.

Also, we investigated the baryon asymmetry in the AD model with R-parity

conservation and AD model with R-parity violation in the SUSY DFSZ frame-

work. The AD models can generate baryon asymmetry almost independent of

reheat temperature, and also give candidates of dark matter. For AD model

without R-parity, the AD field couples to the PQ fields. The R-parity viola-

tion term could naturally produce the appropriate amount of baryon asymmetry,

117



and keep the reheat temperature TR low at a wide range of m3/2 to avoid the

gravitino problem. And also the R-parity violation can avoid the problem of

overproduction of LSPs from Q-ball decay.

The origin of matter anti-matter asymmetry is important for both particle

physics and cosmology. We expect these models to be tested in the high luminos-

ity LHC and cosmological observations. Especially, RNS models are expected to

be confirmed in the next 5-10 years via direct higgsino pair production at LHC.
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Appendices

Appendix A

The Einstein equations for the FRW universe

The Einstein equations for the Friedmann-Robertson-Walker(FRW) universe are

Rµν −
1

2
Rgµν = 8πGNTµν + Λgµν (A.1)

where GN is the Newtonian gravitational constant, Tµν is the energy-momentum

tensor and we are including a cosmological constant Λ. Rµν is the Ricci tensor,

and it has non-zero components

R00 = −3
R̈

R
, Rij = −

[
R̈

R
+ 2

Ṙ2

R2
+

2k

R2

]
gij (A.2)

and R is the corresponding curvature scalar

R ≡ gµνRµν = −6

[
R̈

R
+
Ṙ2

R2
+

k

R2

]
(A.3)
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For a perfect fluid with energy density ρ and pressure p, the non-vanishing com-

ponents are

T00 = ρ and Tij = −pδij (A.4)

The corresponding Einstein equations are, from the 00-component

(
Ṙ

R

)2

+
k

R2
=

8πGN

3
ρ+

Λ

3
(A.5)

usually referred to as the “Friedmann” equation, and, from the ij-components

2
R̈

R
+

(
Ṙ

R

)2

+
k

R2
= −8πGNp+ Λ (A.6)

so we have

R̈

R
= −4πGN

3
(ρ+ 3p) +

Λ

3
(A.7)

In the case Λ = 0, this equation implies that R̈ < 0 for all times. Then, the

present positive Ṙ implies that Ṙ was always positive and, therefore, that R was

always increasing. Consequently, ignoring the effects of quantum gravity, there

was a past time when R = 0 - the moment of the “big bang”.

Appendix B

The coupled Boltzmann equations

This part is mostly from Ref’s [49]. The coupled Boltzmann equations track the

number and energy densities of neutralinos Z̃1, gravitinos G̃, saxions s, axinos ã,

axions a and radiation as a function of time starting at the reheat temperature
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T = TR at the end of inflation until today. Coherent oscillating (CO) components

are included separately for axions and saxions. In KSVZ, the thermal production

of a, ã, s and decay processes of ã, s can be safely treated as taking place

at distinct time scales. The inverse decay contributions are suppressed. In the

DFSZ model, the decay widths of saxions, axions and axinos are larger. We can

estimate the scattering cross section by

σ(I+J→ã+··· )(s) ∼
1

16πs
|M|2 ∼ g2c2

H |Tij(Φ)a|2

2πs

M2
Φ

v2
PQ

(B.1)

where Φ is a PQ- and gauge-charged matter supermultiplet, g the corresponding

gauge coupling constant, Tij(Φ)a is the gauge-charge matrix of Φ and MΦ its

mass. For the DFSZ SUSY axion model, the heaviest PQ charged superfields are

the Higgs doublets, so g is the SU(2) gauge coupling, MΦ = µ, and |Tij(Φ)a|2 =

(N2 − 1) /2 = 3/2. We can obtain the rate for the scattering contribution of axino

(or saxion) production from the integration formula [149]

〈
σ(I+J→ã(s)+··· )v

〉
nInJ '

T 6

16π4

∫ ∞
M/T

dxK1(x)x4σ
(
x2T 2

)
(B.2)

where the K1 is the modified Bessel function, M is the threshold energy for the

process (either the higgsino or saxion/axino mass) and we have assumed T &M .

Integrating over the Bessel function, we find that the axino (or saxion) production

rate is proportional to [54]

〈σ(I + J → ã(s) + · · · )v〉 ∝
(
µ

fa

)2
M2

T 4
K2(M/T ) (B.3)

where we used nInJ ∝ T 6 from the above expression (unlike the KSVZ case),

production is maximal at T 'M/3� TR. Hence most of the thermal production
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of axinos and saxions takes place at T ∼ M , resulting in thermal yields which

are independent of TR.

We can not neglect the inverse decay processes in DFSZ. So the Boltzmann

equations for the number (ni) and energy (ρi) densities of a thermal species

i(= a, s or ã) reads:

dni
dt

+ 3Hni =
∑

j∈MSSM

(n̄in̄j − ninj) 〈σv〉ij − Γimi
ni
ρi

(
ni − n̄i

∑
i→a+b

Bab
nanb
n̄an̄b

)

+
∑
a

ΓaBima
na
ρa

(
na − n̄a

∑
a→i+b

Bib
Bi

ninb
n̄in̄b

)
(B.4)

dρi
dt

+ 3H (ρi + Pi) =
∑

j∈MSSM

(n̄in̄j − ninj) 〈σv〉ij
ρi
ni
− Γimi

(
ni − n̄i

∑
i→a+b

Bab
nanb
n̄an̄b

)

+
∑
a

ΓaBi
ma

2

(
na − n̄a

∑
a→i+b

Bib
Bi

ninb
n̄in̄b

)
(B.5)

where Bab ≡ BR(i → a + b), Bib ≡ BR(a → i + b), Bi ≡
∑

b Bib, n̄i is the

equilibrium density of particle species i and the Γi are the zero temperature

decay widths. The MSSM particles that interact with axion, saxion and axino

are denoted by subscript j. It is also convenient to use the above results to obtain

a simpler equation for ρi/ni:

d (ρi/ni)

dt
= −3H

Pi
ni

+
∑
a

Bi
Γama

ni

(
1

2
− na
ρa

ρi
ni

)(
na − n̄a

∑
a→i+b

Bib
Bi
Binb
n̄in̄b

)
(B.6)

where Pi is the pressure density (Pi ' 0 (or ρi/3) for non-relativistic (or relativis-

tic) particles). As discussed in Ref’s [48], we track separately the CO-produced

components of the axion and saxion fields since we assume the CO components
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do not have scattering contributions. Under this approximation, the equations

for the CO-produced fields (axions and saxions) read:

dnCO
i

dt
+ 3HnCO

i = −Γimi
nCO
i

ρCO
i

nCO
i and

d
(
ρCO
i /nCO

i

)
dt

= 0. (B.7)

The amplitude of the coherent oscillations is defined by the initial field values,

which for the case of PQ breaking before the end of inflation is a free parameter

for both the axion and saxion fields. We parametrize the initial field values by

θi = a0/fa and θs = s0/fa.

Finally, we must supplement the above set of simplified Boltzmann equations

with an equation for the entropy of the thermal bath:

dS

dt
=
R3

T

∑
i

BR(i,X)Γimi

(
ni − n̄i

∑
i→a+b

Bab
nanb
n̄an̄b

)
(B.8)

where R is the scale factor and BR(i,X) is the fraction of energy injected in the

thermal bath from i decays.

In order to solve the above equations, it is necessary to compute the values

of the decay widths and annihilation cross sections. The MSSM particles are

in thermal equilibrium in most cases, so we make a further approximation as

nj ' nj. The value of 〈σv〉 for thermal axino production is given in Ref’s [55,56],

while 〈σv〉 for neutralino annihilation is extracted from IsaReD [111]. For thermal

saxion and axion production, it is reasonable to expect annihilation/production

rates similar to axino’s, since supersymmetry assures the same dimensionless

couplings. Hence we apply the result for axino thermal production from Ref’s

[55, 56] to saxions and axions. For the gravitino thermal production we use the

result in Ref’s [150]. The necessary saxion and axino partial widths and branching
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fractions can be found in Ref’s [36], while the gravitino widths are computed in

Ref’s [107].
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