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Abstract: This study investigates the use of a unmanned aerial system (UAS) for 

instrument landing system (ILS) signal inspection. A model of expected equivalent 

isotropic receiver power was built. A 10-meter radio tower was constructed to be used as 

the test ILS source. Then, empirical channel power measurements were made with 

antennas and a spectrum analyzer mounted on the prototype vehicle in a simulated ILS 

environment. Channel power measurements were made by the prototype UAS at various 

altitudes 19.4 km (12.1 miles) from the base station. Comparisons are made between 

model and empirical data. The model reasonably predicted signal level and lobing 

patterns for two of the three ILS component signals. A method of channel power 

correction based on aircraft orientation was attempted but was ineffective due to UAS 

pitch data suspected to be inaccurate. This study finds that signal level inspection of ILS 

can be done by UAS with a reasonable level of repeatability and that measurement 

accuracies of ±1.0 dB and ±1.5 dB were achievable for localizer and glideslope 

respectively. Larger changes in signal levels can be observed on a day-to-day basis. This 

is likely due to changing atmospheric conditions and tear-down and reassembly of the 

base station. 
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  CHAPTER I 

 

INTRODUCTION 

 

An Instrument Landing System (ILS) is a radio air navigation system broadcast from an airport 

utilized by airplanes approaching a runway. This set of radio signals provides information that 

describes the position of the aircraft relative to the target runway along the aircraft’s path of 

approach. ILS does not directly track the position of the aircraft and relay this information to the 

aircraft. Instead, the antenna arrays project a target approach path for the aircraft to track. 

Distance from the runway is found by the aircraft pinging the ILS and determining distance based 

on return delay. The information is displayed on instrument gauges familiar to pilots. This system 

acts as a supplementary instrument that guarantees smoother, more accurate landings as well as a 

crutch for fixed-wing aircraft landing in low visibility weather conditions. The three principal 

signals composing ILS, localizer (LOC), glideslope (GS), and distance measurement equipment 

(DME), are described below. 

Localizer is the signal that the aircraft follows for horizontal positioning information and 

indicates whether the aircraft is on track to land right or left of the runway’s center line. The 

aircraft works out the horizontal position relative to runway center by measuring the depth of 

modulation of the received localizer signal. Receiving a prominent modulation of 90 Hz indicates 

the aircraft is left of center, while a prominent modulation of 150 Hz indicates the 
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aircraft is right of center. There are forty available localizer channels available for use between 

108.0-117.975 MHz [1]. 

Glideslope functions similarly to localizer, referencing vertical position relative to a target sloped 

plane indicating the slope the aircraft is meant to follow during approach. Receiving a prominent 

modulation of 90 Hz indicates the aircraft is above the target path, while a prominent modulation 

of 150 Hz indicates the aircraft is below the target path. The intersection of the vertically oriented 

localizer target plane and the sloped glideslope plane form a target path for the aircraft to follow. 

Glideslope channel allocation is 328.6-335.4 MHz [1]. 

Distance measuring equipment (DME), as the name implies, allows the pilot to determine the 

distance from aircraft to runway. The DME measurement represents the distance along the 

slopped path to the edge of the runway and should not be assumed to be the ground distance from 

runway. As mentioned previously, this aircraft tool works by pinging the ILS and deriving the 

distance from the echoed signal’s delay. DME allocation is 1025-1150 MHz [1]. 

These valuable systems are inspected by the Federal Aviation Administration (FAA) of the 

United States for accuracy and range. The signals are assessed by air navigation analyzers on 

board manned aircrafts flying patterns in range of the runways. The cost of owning and 

maintaining a fleet of inspection aircraft, as well as employing pilots and data-interpreting 

engineers, is large. This creates a large monetary incentive for the development of a smaller 

unmanned inspection aircraft operable by a trained technician. The implementation of unmanned 

ISL inspection systems could also save time, allow for more frequent inspection of ILS, and 

increase the accuracy of measurements. The current manned system is suspected to contain large 

errors in measurements due to aircraft inference. To help progress this idea the FAA started a 

joint prototype development project in 2017 with the Unmanned Systems Research Institute 

(USRI) of Oklahoma State University (OSU) with support of OSU’s Robust Electromagnetic 
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Field Testing and Simulation (REFTAS) group. These groups set out to prove a UAS protype by 

measuring strictly signal power levels received from a simulated ILS. This thesis stems from field 

data collected during this project. 

This thesis describes the unmanned aerial system (UAS) developed, the field-testing process of 

the UAS, model of expected electromagnetic field power for the test location, electromagnetic 

field power profiles collected in-field, comparisons of model and empirical data, and potential 

measurement correction methods. 

Chapter 2 describes the unmanned aircraft developed, base station for simulating the ILS sources, 

and the field test location. Chapter 3 contains a model meant to predict electromagnetic power 

received by the unmanned aircraft. The purpose of this model is to help determine necessary 

simulated ILS transmission powers for test purposes without speculation and to have a metric to 

which compare empirical data. Chapter 4 presents electromagnetic power data from field test 

measurements and comparisons are made to model data. Chapter 5 features a method of 

correcting measurement profiles based on aircraft orientation at the time of discrete power 

measurement. Chapter 6 will contain the conclusion. 
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CHAPTER II 

 

VEHICLE, BASE STATION, AND LOCATION 

 

To develop a UAS capable of measuring ILS signal strength, it is important to test the device in a 

real-world setting. Target specifications for such a device would include the capabilities to 

capture an ILS signal at as high an altitude as 1600 ft (488 m) above ground level (AGL), miles 

from the transmission source. This testing would ideally be done near an airport, but because of 

potential interference with everyday airport operations it was necessary that a simulated 

environment be created. The test setup for in-field measurements consists of the UAS itself, as 

well as a simulated ILS source and reasonably flat location to contain the experiment.  
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2.1 – EQUIPMENT LIST 

Vehicle: 

• Rhodes & Schwarz FSH8 Spectrum Analyzer 

• Rhodes & Schwarz EVS-Z3 ILS/VOR Dipole Antenna Set 

• Custom 1155 GHz Monopole Antenna with Ground-Plane 

• BFD Systems GD-40X UAS 

      Base Station: 

• BlueSky Mast AL1 

• GBAS VHF Dipole TX FA60.20A-014 

• Kathrein Model SCA-CA5-120/HCM (VOR/LOC Yagi-Uda) 

• RFI Wireless RDA6-99 (GS TX Antenna) 

• (1) Log-Periodic Antenna (DME)  

• (3) Pasternak RF Cables (N type-M/M type-N) (various lengths) 

• [Generators/Amps] 

o Localizer: R&S SMBV100A Signal Generator, EIN Model 411LA VHF 

RF Amplifier 

o Glideslope: R&S SMA100A Signal Generator, Crescend PM1-525-10 

RF Amplifier 

o DME: R&S SMA100B Signal Generator (High-Power Option) 
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2.2 – VEHICLE 

A multirotor aircraft is advantageous for radio signal inspection. It allows the measuring 

equipment to be hovered in three-dimensional space with a desired heading. Because of the 

weight of the antenna and signal analyzing equipment, a large multirotor is required. The 

selection and assembly of remote multirotor components was accomplished by the USRI of OSU.  

A semi-custom GD-40X UAS was ordered from BFD Systems. The GD-40X is a multirotor with 

4 pairs of motors capable of carrying larger payloads than most consumer multirotors (50 lbs.). 

The UAS is approximately 71 cm tall and 86 cm wide with 70 cm props. The USRI designed and 

manufactured a carbon plate assembly that held the measuring equipment to the UAS. Using a 

DJI brand flight controller, the team was able to program complex flight paths comprised of 

discrete positions capable of sending trigger signals to the measurement instrument. This enabled 

the flight paths described in chapter 4. 

 
Figure 2.2.1 - GD-40X UAS with mounted measurement equipment 

The instrument used in these experiments to determine radio signal strength is the Rhode & 

Schwarz (R&S) FSH8 spectrum analyzer. A FSH8 was loaned by the FAA to OSU for this 

project. This spectrum analyzer is advantageous because of its light weight. The FSH8 is a 

handheld model that weighs less than 6.6 lbs. [2]. 
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Custom setting states for the FSH8 were created based on ILS signals tested. The states were 

made to measure channel power over an appropriate bandwidth of integration and centered on the 

broadcasted frequency. The channel bandwidths were made wide enough for each state to capture 

all signal power, but not too large to avoid capturing noise. True localizer and glideslope signals 

were broadcast, while DME was broadcast as a “dummy” or simulated continuous waveform 

source from the base station. The DME center frequency was chosen based on the band allocation 

mentioned in chapter 1.  

The FSH8 also has a trigger port that was utilized to trigger spectrum analyzer sweeps. Upon 

sweeps, the FSH8 captures the channel power measurement and saves the data to external 

memory. The measurements are retrieved after each flight. The trigger signal comes from the 

flight controller on the UAS. The triggers occur at the defined flight positions in the flight path. 

This allowed for the creation of an automated flight and measurement triggering system. 

The antennas used to receive the ILS signals on the UAS were the R&S EVS-Z3 ILS/VOR 

Dipole Set and a custom built 1155 MHz monopole with a circular, half-wavelength diameter 

ground-plane. The antennas mount to the underside of the UAS on the carbon fiber payload 

structure and are connected to the FSH8 by a short RF cable. 

The EVS-Z3 Dipole Set contains two separate half-wave dipoles used for the horizontally-

polarized glideslope and localizer. Naturally, the shorter dipole is for glideslope and the longer 

for localizer. 

A custom monopole was built to receive the vertically-polarized DME signal. The finite-radius 

ground plane causes the antenna to have a direction of maximum gain at a non-perpendicular 

angle to the element. This can be advantageous over a standard monopole if the incident wave is 

at a slight grazing angle relative to the plane of maximum gain for a standard dipole. As will later 

be shown, this is the case for this experiment.  
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The monopole ground plane was cut from 0.09” sheet aluminum by a CNC cutter. The monopole 

element was cut from a longer whip antenna. It was cut slightly longer than a quarter wavelength 

(7 cm). The element was driven into a female BNC connector that was attached to the ground 

plane. The antenna was then tuned in an anechoic chamber with a vector network analyzer 

(VNA). Using S-parameter S11 the frequency of least power return can be found. Because the 

element was cut longer than necessary, the antenna was tuned by incrementally trimming the 

element to bring the frequency of least return up to 1155 MHz.  

 
Figure 2.2.2 - Monopole antenna with ground plane on UAS 

 
Figure 2.2.3 - Localizer dipole antenna on UAS 
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Figure 2.2.4 - Glideslope dipole antenna on UAS 
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2.3 – BASE STATION 

The base station is responsible for generating, amplifying, and transmitting the simulated ILS 

signals for the experiment. It consists of a 10-meter BlueSky mast, signal generators, amplifiers, 

and antennas for each signal. Localizer is transmitted by a 5-element Yagi-Uda array 5.5 meters 

up the mast, glideslope by a 6-element Yagi-Uda array at 8.6 meters, and DME by a log-periodic 

at 9.85 meters. The lowest antenna on the mast is an unused DME receiver. Antenna gain and 

generator/amp levels will be discussed section 3.2. 

 

 
Figure 2.3.1 - Base station 
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2.4 – LOCATION 

The Mike Monroney Aeronautical Center (MMAC) was chosen as the location for the base 

station. The FAA team working on this project were located nearby and had access to the facility. 

Additionally, MMAC’s location was convenient because it lays on the outskirts of Oklahoma 

City, where it has a relatively clear propagation path to the surrounding rural area. Propagating 

into a rural area allows for more liberties when flying a UAS given the surplus of open space, 

lack of tall buildings, and generally lower airspace traffic and classifications. MMAC is on the 

southwest side of Oklahoma City. 

A clear, flat field is the preferred location for operating unmanned multirotors for measurement 

purposes. The large amount of space makes launches and landings safer and easier. Tuttle High 

School (THS) in Tuttle, Oklahoma allowed us to set up UAS operations in the field north-east of 

their building. This location is directly south-west from the base station at MMAC and the land 

between locations is generally barren and relatively flat. 

The MMAC base station is located at coordinates 35°23'11.64"N, 97°37’36.89”W at an altitude 

of 1280 ft (390 m) mean sea level (MSL). The UAS ground reference point was at coordinates 

35°17'44.47"N, 97°48'32.81"W at an altitude of 1300 ft (396 m) MSL. The ILS signals are 

transmitted from MMAC and propagate south-west, away from Oklahoma City and towards 

Tuttle, to be received by the UAS. 

Figures 2.4.1 and 2.4.2 bellow depict the path of propagation from MMAC to THS. Figure 2.4.1 

is sourced from Google Maps Pro. It has satellite image of the region as well as elevation under 

the path. The elevation-under-path data from this figure can be used to verify similar data derived 

from United States Geological Survey (USGS) digital terrain elevation data (DTED) in the 

following chapter. Figure 2.4.2 was generated in MATLAB using USGS DTED for the region. 



12 
 

 
Figure 2.4.1 - Propagation path and elevation data from Google Earth Pro 

 
Figure 2.4.2 - Propagation path mapped on USGS DTED with zoom [Units: meters above sea level] 
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CHAPTER III 

 

THEORETICAL MODEL OF EQUIVALENT ISOTROPIC RECIEVER POWER 

 

To form a prediction of power the UAS will receive from the base station several geometric 

properties must be known and appropriate mechanisms of propagation must be applied. Useful 

geometries include transmitter and receiver heights as well as propagation distance and elevation 

under the propagation path. The mechanisms of propagation that govern this system are path loss, 

reflection, and refraction. In the sections following, all components will be combined to form a 

cohesive model of equivalent isotropic receiver power (EIRxP) based on UAS altitude above 

ground level (AGL). 

3.1 – GEOMETRY 

The refractive index of the atmosphere is not homogenous. The refractive index changes with 

altitude forming a refractive gradient. For low altitudes the refractivity can be approximated as 

linearly increasing. This approximately linear refractivity gradient causes radio waves to 

propagate in arcs instead of straight lines. The curvature of the propagated ray can be 

geometrically transformed into an effective earth curvature or radius. This model of changing the 

Earth’s radius so that propagation rays can be represented as straight lines in a standard Earth 

atmosphere is the 4/3 Earth radius or straight-ray model [3]. 
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Figure 3.1.1 - Propagation paths for DME and elevation under rays 

Figure 2.1.1 depicts the line-of-sight ray, ground reflection ray, elevation under rays, 10-meter 

tree clearance, and half Fresnel clearance. The half Fresnel clearance is incorporated to avoid 

diffraction effects from the ground. The ray lines are mapped over a 4/3 radius earth model, 

which is a model used to incorporate the refractivity gradient of a standard atmosphere into an 

effective earth radius. This allow for the rays to be depicted as straight lines by exaggerating the 

ground curvature. On the left side of the figure is the base station and on the right is the UAS at 

1500 ft (457 m) AGL. The transmit antennas are at different heights from each signal. For this 

EIRP model we will focus on receiver heights between 500 and 1600 ft (152 and 488m) AGL, 

this encompasses the vertical region the UAS inspects during the experiment. The surface 

distance between the UAS ground reference point and base station coordinates is 12.07 miles 

(19.43 km). We start the calculations for this model with basic parameters for each signal. 

Signal Name Freq. Used, f Wavelength, λ Transmitter Height, hTX 

Localizer 108.0 MHz 2.776 m 5.5 m 

Glideslope 334.7 MHz 0.8957 m 8.6 m 

DME 1155 MHz 0.2596 m 9.85 m 
Table 3.1.1 - Basic transmission parameters 
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With [4] 

𝜆 =  
𝑐

𝑓
   , (3.1.1) 

𝑐 = 2.998 × 108 m
s⁄  .  

 

Receiver height for all signals are 

500 ft ≤  ℎ𝑅𝑋  ≤ 1600 ft  𝑜𝑟  152 m ≤  ℎ𝑅𝑋  ≤ 488 m. 

Surface distance between the UAS ground reference point and base station coordinates is 

𝑑 = 19.43 km. 

The curvature of the surface in this 4/3 Earth radius model can be described as [5] 

curve(𝜌) =  
(

𝑑
2)

2

−  (
𝑑
2 − 𝜌)

2

2𝑎
  , 

(3.1.2) 

where ‘ρ’ is the distance along the curve and ‘a’ is the effective Earth radius. 

𝑎 =  
4

3
 𝑟𝐸 =  

4

3
∗ 6.366 × 106𝑚 = 8.488 × 106𝑚. 

From this the curve at ρ = 0 and ρ = d is 0 m. The maximum curve height, or bulge, occurs at ρ = 

d/2 with a maximum curve height of 5.6 m.  

3.2 – TRANSMITTER POWER 

The following table shows the power output of the signal generator, the RF amplifier gain, and 

total transmitted power for each ILS signal. These are the levels used for all prototype field 

testing. The table also includes cable losses and power delivered to the antenna, PTX. Cable losses 

are measured figures. 



16 
 

 

Signal Generator Output, Pout Amplifier Gain, GA Total, PO Cable Loss PTX 
Localizer -23.0 dBm 40.4 dB 17.4 dBm 1.4 dB 16.0 dBm 

Glideslope -26.0 dBm 43.0 dB 17.0 dBm 1.9 dB 15.1 dBm 

DME 37.0 dBm 0.0 dB 37.0 dBm 3.8 dB 33.2 dBm 
Table 3.2.1 - Transmitter power 

3.3 – PATH LOSS 

Path loss is the loss in signal power associated with the field power density decreasing over 

distance. Path loss can be calculated from [6] 

PLdB = 20log10 (
𝜆

4𝜋𝑑
) . (3.3.1) 

The path loss calculated for each signal is in the table below. 

Signal Path Loss, PLdB 

Localizer 98.9 dB 

Glideslope 108.7 dB 

DME 119.5 dB 
Table 3.3.1 - Path loss 

3.4 – GROUND REFLECTION COEFFECIENT 

The magnitude of the ground-reflected field that reaches the receiver is dependent on the 

reflection coefficient between air and ground. Ground reflection coefficients are [7] 

Γ(𝛼) =  
sin(𝛼) −  χ

sin(𝛼) + χ
  (3.4.1) 

Where ‘α’ is the grazing angle between the incident ray and ground and ‘X’ is a polarization-

based term. X for each polarization is [7] 

𝜒𝑣 =  
√𝜖𝑔 − 𝑐𝑜𝑠2(𝛼)

𝜖𝑔
 , 

(3.4.2) 

𝜒ℎ =  √𝜖𝑔 − 𝑐𝑜𝑠2(𝛼) . (3.4.3) 
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The relative complex ground permittivity ϵg was based on empirical ground dielectric constant 

and ground conductivity data was taken from a location in Oklahoma [8]. This data is more 

applicable to this specific scenario than empirical data taken from other regions or theoretically 

derived data. The complex ground relative permittivity is as follows [7] 

𝜖𝑔 =  𝜖𝑟 − 𝑗
𝜎𝑔

𝜖02𝜋𝑓
 , (3.4.4) 

𝜖𝑟 = 10    ,    𝜎𝑔 = 0.1 S
m⁄  .  

The table below contains relative ground permittivity data for each ILS signal. 

Signal Relative Ground Permittivity, ϵg 

Localizer 10 – j16.6 

Glideslope 10 – j5.4 

DME 10 – j1.6 

Table 3.4.1 - Ground permittivity 

Evaluating equation 3.4.1 over 0° ≤ α ≤ 90° yields the following figures for ground reflection 

coefficients for vertical and horizontal polarizations. 

 
Figure 3.4.1 – Ground reflection coefficient for horizontal polarization 

 



18 
 

 
Figure 3.4.2 - Ground reflection coefficient for vertical polarization 

 

3.5 – REFLECTION PATTERN 

A reflection pattern (RP) describes the interference between the line-of-sight ray and the ground 

reflection ray. When working in a two-ray model, meaning only line-of-sight and primary ground 

reflection ray are considered, the maximum field strength gain is 2. The maximum power gain 

would then be 22 or 4, based on the square relationship between field and power. This means the 

maximum value of the reflection pattern, in decibels, is 6 dB. The minimum value would be - ∞ 

dB indicating completely destructive interference. To find the reflection pattern of the base 

station, the ground reflection can be modeled as having a source that is an image of the base 

station. The radiation pattern from this two-source system can then be derived from equations for 

the array factor (AF) of a two-element linear array. The figure below depicts the projection of the 

ground reflection as an image. Scattering and reflected-wave spreading due to Earth curvature 

will be discussed in the next section. 
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Figure 3.5.1 - Ground reflection projection 

The array factor of a linear array is [9] 

𝐴𝐹 =  ∑ 𝑎𝑛𝑒𝑗(𝑛−1)Ψ

𝑁

𝑛=1

, (3.5.1a) 

Ψ = 𝑘𝑑𝑐𝑜𝑠(γ) +  𝛽, (3.5.1b) 

where an is the weight of the nth element, N is the total number of elements, k is the wave number, 

d is the distance between elements, γ is the angle relative to the array axis, and β is the phase 

progression between elements. 

Because the second element is an image, there is zero feed phase progression. The phase 

difference between the two signals at the receiver is derived from the difference in lengths of 

propagation paths, which is described by Ψ – β, and dielectric properties of the ground. 

𝛽 = 0 

In this theoretical model for EIRxP, the angle used (α) is in reference to the ground. At the launch 

point this is a 90° difference compared to the angle used in this AF equation (γ). A relationship 

between the two variables can be defined on the region 0° ≤ α ≤ 90°. 

𝛼 =  𝛾 + 90°, 



20 
 

𝛾 =  𝛼 − 90°, 

cos(𝛾) = cos(𝛼 − 90°) = sin(𝛼). 

It is convenient to work the variables k and d as a single phase term [4] 

𝑘 =  
2𝜋

𝜆
, (3.5.2) 

𝑑 = 2 ∗ ℎ𝑇𝑋 ,  

𝑘𝑑 =  
4𝜋ℎ𝑇𝑋

𝜆
 . (3.5.3) 

Below is a table containing kd for each ILS signal. 

Signal Name Transmitter Height, hTX Wavelength, λ kd 

Localizer 5.5 m 2.776 m 24.90 

Glideslope 8.6 m 0.8957 m 120.7 

DME 9.85 m 0.2596 m 476.8 
Table 3.5.1 - "kd" terms 

The element weights in the array factor equation correspond to the fraction of the ray’s power that 

reaches the receiver (ignoring path loss). The weight for the first element, the transmitter, is 1, 

meaning the line-of-sight ray encounters no obstacles on the path to the receiver. The weight for 

the second element represents the magnitude of the field reflected from the ground and the 

polarization of the reflected field relative to the line-of-sight ray. The reflected ray of a 

horizontally polarized field leaves the ground with the same polarization as the line-of-sight ray. 

For a vertically polarized field, the exiting polarization is inverted relative to the line-of-sight ray. 

This would be equivalent to a 180° phase shift. 

For horizontally polarized localizer and glideslope 

𝑎1 = 1  and  𝑎2 =  Γ(𝛼). 

For vertically polarized DME 

𝑎1 = 1  and  𝑎2 =  −Γ(𝛼). 
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Combining all this information to find the array factors yields 

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑃𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛:  𝐴𝐹(𝛼) = 1 +  Γ(𝛼)𝑒
𝑗4𝜋

𝜆
ℎ𝑇𝑋 sin(𝛼)

, (3.5.4a) 

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑃𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛:  𝐴𝐹(𝛼) = 1 −  Γ(𝛼)𝑒
𝑗4𝜋

𝜆
ℎ𝑇𝑋 sin(𝛼)

. (3.5.4b) 

Array factors describe the field strength magnitude based on transmission angle. The reflection 

pattern (RP) describes the power density based on transmission angle. The relationship between 

the two is 

𝑅𝑃(𝛼) = |𝐴𝐹(𝛼)|2, (3.5.5) 

and in dB 

𝑅𝑃(𝛼)𝑑𝐵 = 20log10(|𝐴𝐹(𝛼)|). (3.5.6) 

Below are the polar plots for reflection patterns of each base station signal found using the last 

equation. 

 

Figure 3.5.2 - Localizer reflection pattern 
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Figure 3.5.3 - Glideslope reflection pattern 

 

 

Figure 3.5.4 - DME reflection pattern 
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3.6 – ROUGHNESS AND REFLECTION SPREAD 

Unless the reflection interface is perfectly flat, not all power within the reflected ray is directed at 

the receiver. A portion of the reflected power is scattered proportional to the degree of surface 

roughness. However, the portion of scattered power can be considered negligible if the reflection 

meets Rayleigh criterion. If this criterion is met, it can be approximated that total reflected power 

is directed at the receiver. Rayleigh criterion is described by [10] 

𝜎𝑠 <
𝜆

8 sin(𝛼)
 . (3.6.1) 

The rms elevation, σs, is evaluated over a region under the propagation path containing all 

primary ground reflections. The point of reflection closest to the base station is 493 meters out 

and the furthest reflection is 1,550 meters out. The rms elevation was evaluated over the region 

398 m < ρ < 1,697 m. This evaluation was performed by the math engine used to build this 

theoretical model, giving 

𝜎𝑠 = 1.58 m. 

To ensure the criterion is met for all values of α for all receiver heights, only the worst-case 

scenario of equation 3.6.1 needs to be evaluated. This would be at the highest receiver height, 

1600 ft (488 m), for which α would be 0.0262 radians (1.5°). The derivation of this angle will be 

shown in the next section and accounts for refraction. 

Checking each signal against the Rayleigh criterion produces the following results. 

Signal Rayleigh Criterion Met 

Localizer True 

Glideslope True 

DME False 

Table 3.6.1 - Rayleigh Criterion 

Because DME does not meet Rayleigh criterion, it cannot be approximated that the total reflected 

power is directed at the receiver. A roughness factor (RF) can be used to quantify this effect. 
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Roughness factor represents the portion of the reflected wave that is directed towards the 

receiver, with the remainder scattered. Roughness factor is described by [10] 

𝑅𝐹(𝛼) = 𝑒𝑥𝑝 [−
1

2
(

4𝜋𝜎𝑠 sin(𝛼)

𝜆
)

2

]. (3.6.2) 

 

 

Figure 3.6.1 - DME roughness factor 

Roughness factor applies to field strength and therefore should be inserted into the model as a 

multiplier of the reflected field’s strength. It can be incorporated into a2 of equation 3.5.1a for 

array factor. 

The array factor weights for vertically polarized DME are 

𝑎1 = 1  and  𝑎2 =  −Γ(𝛼)𝑅𝐹(𝛼), 

so, the array factor for DME is 

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑃𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛:  𝐴𝐹(𝛼) = 1 −  Γ(𝛼)𝑅𝐹(𝛼)𝑒
𝑗4𝜋

𝜆
ℎ𝑇𝑋 sin(𝛼)

. (3.6.3) 
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Waves reflecting off a convex surface, like the Earth’s curvature, spread out and lose power 

density. This loss in field strength of the reflected wave can be determined by divergence factor 

(DF) [11] 

𝐷𝐹 =  [1 +  
2 ∗ 𝑑1 ∗ 𝑑2

𝑎 ∗ 𝑑 ∗ tan (𝛼)
]

−1
2⁄

, (3.6.4) 

where d1 and d2 are the ground distances from the transmitter to the reflection point and from the 

reflection point to the receiver respectively. Calculated divergence factors for all receiver heights 

range from -0.16 to -0.02 dB. For most heights the associated losses are less than 0.1 dB, which is 

the level of precision of the measurement equipment. Because of this, the spread caused by 

reflection from a curved surface is negligible. 

3.7 – WORKING INTO CARTESIAN COORDINATES 

Thus far in chapter 3, refraction has remained mostly unincorporated in the model for EIRxP. For 

the polar reflection patterns to be transformed into cartesian coordinates, refraction should be 

incorporated. For a standard earth atmosphere, a ray propagated at α = 0° will pass below a 

receiver if the receiver has the same altitude as the transmitter. To hit a receiver at the same 

altitude as the transmitter, the ray must have a non-zero initial launch angle. The ray propagates 

with an initial launch angle and curves down while propagating to the receiver, forming an arc. 

The initial launch angle needed to reach a receiver with the same altitude of the transmitter can be 

found by [5] 

𝛼0 =  √ℎ𝑚2𝐴′ radians, (3.7.1) 

where hm is the maximum bulge given by [5] 

ℎ𝑚 =  
(

𝑑
2)

2

2𝑎
 , 

(3.7.2) 
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A’ is a function of standard atmosphere refractivity gradient and Earth’s radius given by [5] 

𝐴′ = 𝐴 −  
1

6366 km
 , (3.7.3) 

and A is the refractivity gradient of a standard atmosphere given by [5] 

𝐴 = 0.039 × 10−6. 

The launch angle of the ray to the UAS based on receiver height can be approximated as 

𝛼(ℎ𝑅𝑋) = tan−1 (
ℎ𝑅𝑋

𝑑
) + 𝛼0. (3.7.4) 

To perform a change of variables on the reflection patterns found in the previous section, the 

launch angles α(hRX) can be substituted in for α. This yields reflection pattern as a function of 

UAS altitude. 

For localizer and glideslope, 

𝑅𝑃(ℎ𝑅𝑋)𝑑𝐵 = 20log10 [1 + Γ(𝛼(ℎ𝑅𝑋))exp [
𝑗4𝜋

𝜆
ℎ𝑇𝑋 sin(𝛼(ℎ𝑅𝑋))]]. (3.7.5) 

For DME, 

𝑅𝑃(ℎ𝑅𝑋)𝑑𝐵 = 

20log10 [1 − Γ(𝛼(ℎ𝑅𝑋))RF(𝛼(ℎ𝑅𝑋))exp [
𝑗4𝜋

𝜆
ℎ𝑇𝑋 sin(𝛼(ℎ𝑅𝑋)) −

1

2
(

4𝜋𝜎𝑠 sin(𝛼)

𝜆
)

2

]]. 

 

(3.7.6) 
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Figure 3.7.1 - Localizer reflection pattern vs altitude 

 
Figure 3.7.2 - Glideslope reflection pattern vs altitude 
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Figure 3.7.3 - DME reflection pattern vs altitude 

The EIRxP can be found by using Frii’s transmission equation with the derived reflection pattern 

incorporated: 

𝐸𝐼𝑅𝑥𝑃(ℎ𝑅𝑋) =  𝑃𝑇𝑋 + 𝐺𝑇𝑋 − 𝑃𝐿𝑑𝐵 + 𝑅𝑃(ℎ𝑅𝑋)𝑑𝐵. (3.7.7) 

 

 
Figure 3.7.4 - Localizer EIRxP model 
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Figure 3.7.5 - Glideslope EIRxP model 

 
Figure 3.7.6 - DME EIRxP model 
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CHAPTER IV 

 

EMPERICAL WORK 

 

REFTAS, USRI, and the FAA teams worked together to acquire three sets of data during the year 

2018. The first set was taken on June 6th and 14th, the second data set was taken on October 

26th, and the last was taken on December 21st. A set consists of inspecting each of the ILS 

signals. For each signal three tests were performed. The three tests are vertical, isotropic, and 

horizontal sensitivity. The three tests for each of the three ILS signals makes nine total tests per 

data set. The tests are defined below. 

Vertical Sensitivity - Channel power measurements are made at 100 ft (30.5 m) intervals between 

500 ft (152 m) and 1400 ft (427 m) and at 10 ft (0.3 m) intervals between 1400 ft and 1600 ft 

(427 and 488 m) AGL. Measurements are made with the UAS’s yaw oriented so that the receiver 

antenna’s maximum directivity faces the transmitting base station. This test contains 30 

measurements. The vertical sensitivity test is used to determine the effect of altitude on ILS 

signals. 

Isotropic Sensitivity - Channel power measurements are made every 5 degrees through one full 

rotation. This measurement is taken at the airborne reference point at 1500 ft (457 m) AGL. The 

UAS starts the rotation facing north (0°) and progresses clockwise approaching an eastern 

heading first (90°). This test contains 72 measurements. The base station is located at 55° UAS 

heading, 10.5 nautical miles away. 



31 
 

Horizontal Sensitivity - Channel power measurements are made in a cross pattern at the reference 

altitude 1500 ft (457 m) AGL. One arm of the cross pattern moves the UAS axially in relation to 

the base station and the other arm follows angular movement. Measurements are indexed in order 

of measurement taken. Figures depicting the movement are in the next sections. 

4.1 – DETERMINATION OF UAS RECEIVE ANTENNA GAINS 

To find EIRxP, receiver gain (over isotropic) must be subtracted from the field measurements 

made in Tuttle. Receiver antenna gains were determined through tests conducted at the OSU 

Richmond Hill Research Complex. By measuring channel power of a radiated signal with 

frequency corresponding to that of the navigational aids, with the UAS-RX assembly and then 

with a reference antenna with known gain, receiver antenna gain can be found. This approach 

allows us to consider UAS structural EM effects. The third line on these tables describe the 

reference antenna’s gains, which were determined experimentally. See figure 5.1 for an image of 

the UAS mounted in the anechoic chamber. 

The DME monopole was damaged and subsequently rebuilt between the June and October 

flights. The gain calculated below is for post-rebuild. The gain before rebuilding was 1.4 dBi. The 

two different DME receive antenna gains were used accordingly throughout all calculations 

within this thesis. 

𝐺𝑅𝑋 =   𝑃𝑅𝑋 − 𝑃𝑟𝑒𝑓 + 𝐺𝑟𝑒𝑓   (4.1.1) 
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DME Antenna Gain 

Monopole Ch. Pow  -43.9 dBm 

SAS-510-2 Ch. Pow - -37.2 dBm 

SAS-510-2 Gain + 7.0 dBi 

Monopole Gain  0.3 dBi 
Table 4.1.1 - DME antenna gain 

Glideslope Antenna Gain 

GS Dipole Ch. Pow  -30.5 dBm 

SAS-510-2 Ch. Pow - -24.55 dBm 

SAS-510-2 Gain + 6.5 dBi 

GS Dipole Gain  0.55 dBi 
Table 4.1.2 - Glideslope antenna gain 

 

 

 

 

 

  

Localizer Antenna Gain 

LOC Dipole Ch. Pow  -25.1 dBm 

SAS-517 Ch. Pow - -20.9 dBm 

SAS-517 Gain + 3.2 dBi 

LOC Dipole Gain  -1.0 dBi 

Table 4.1.3 - Localizer antenna gain 
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4.2 – JUNE DATA 

In figure 4.2.2, localizer vertical sensitivity measurements show a rise in power over elevation. 

The measurements taken between 1400 and 1600 ft (427 and 488 m) show small incremental 

changes, except for the 0.4 dBm jump from 1540 to 1550 ft (469 to 472 m). A characteristic 

dipole pattern can be seen in localizer isotropic sensitivity (figure 4.2.3). In all isotropic 

sensitivity measurements using a dipole receiver, the antenna is mounted at a 90° on the aircraft. 

This displaces the heading that the boresight of the antenna would be pointed towards the base 

station from 55° to -35° or 355°. The arrow on the figure represents the region in the pattern that 

faces the base station. Localizer horizontal sensitivity has a 0.2 dB spread (figure 4.2.4). After 

June the reference point was moved slightly to not be over the high school. Compare figures 4.2.1 

and 4.3.1. 

Figure 4.2.5 shows the glideslope vertical sensitivity measurements. They increase to a maximum 

channel power at around 1400 ft (427 m) after which the channel power curves off forming an 

arcing pattern. The arc is mostly smooth but contains a 0.7 dBm decrease from 1500 to 1540 ft 

(457 to 469 m). Glideslope isotropic sensitivity also bears its dipole pattern. The gap from 355° to 

0° when the aircraft returns to its initial heading is 2.3 dBm. Glideslope horizontal sensitivity has 

a spread of 1.6 dBm. It seems to have 3 distinct sections that the data groups into. The speculation 

was that the sections correlated to the arm section of the cross pattern that the UAS flies. This is 

the reason for changing the order that the measurement points are taken in. Compare figures 4.2.1 

and 4.3.1. 

DME vertical sensitivity has a local maximum at 750 ft (229 m) and a diminished region at 1100 

ft (335 m). This is due to the interference between line-of-sight and reflected rays as seen in the 

previously covered EIRxP model. Between 1400 ft and 1600 ft (427 and 488 m) the channel 

power rises steadily. DME isotropic sensitivity measurements are consistent between 45° and 

70°. Within these headings channel power measurements change no more than 0.1 dBm from the 
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base station heading of 55°. The fluctuations that occur outside of these headings are likely due to 

interference from the UAS structure. DME horizontal sensitivity measurements have a spread of 

2.1 dBm. This horizontal sensitivity pattern seems more sporadic than the previous two. 

 
Figure 4.2.1 - June horizontal sensitivity flight pattern 
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Figure 4.2.2 - June localizer vertical sensitivity 

 
Figure 4.2.3 - June localizer isotropic sensitivity (arrow indicates antenna boresight) 

 
Figure 4.2.4 - June localizer horizontal sensitivity 
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Figure 4.2.5 - June glideslope vertical sensitivity 

 
Figure 4.2.6 - June glideslope isotropic sensitivity (arrow indicates antenna boresight) 

 
Figure 4.2.7 - June glideslope horizontal sensitivity 
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Figure 4.2.8 - June DME vertical sensitivity 

 
Figure 4.2.9 - June DME isotropic sensitivity (arrow indicates antenna boresight) 

 
Figure 4.2.10 - June DME horizontal sensitivity 
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4.3 – OCTOBER DATA 

Localizer vertical sensitivity measurements rise as we would expect based on June data up to 

1400 ft (427 m). The jump at 1400 ft is 1.2 dBm and the jump at 1560 ft (475 m) is 0.4 dBm. The 

localizer isotropic sensitivity shows a dipole as it did in June but with a smaller bump in 

measured power when returning to initial heading. Localizer horizontal sensitivity spread is 0.4 

dBm. The measurement for 1420 ft (443 m) is missing. This is either due to the UAS controller 

failing to send the trigger signal or the spectrum analyzer failing to detect the trigger signal. 

Glideslope vertical sensitivity has a maximum at 1460 ft (445 m). Between 1500 and 1600 ft (457 

and 488 m) the channel power decreases less dramatically than previously. Instead of a jump in 

channel power this flight captured a more stable decrease above 1500 ft (457 m). A dipole pattern 

is visible in the glide-slope isotropic sensitivity. The jump from 355° and 0° is 2.3 dBm. 

Continuity from 355° and 0° is better than in the June flight. Glideslope horizontal sensitivity has 

a spread of 1.1 dBm. Variance is higher in the angular direction (“side-to-side”) than in the radial 

direction (distance from transmitter). 

DME vertical sensitivity is like that of June. For this flight the area beyond the second 

constructive lobe is showing above 1500 ft (457 m). DME isotropic sensitivity has a similar 

pattern to that of June. DME horizontal sensitivity measurements have a channel power spread of 

1.8 dB, compared to 2.1 dBm previously. As with glide-slope, variance is higher in the angular 

direction (“side-to-side”) than in the radial direction (distance from transmitter). The large 

spreads in glideslope and DME horizontal sensitivity could be caused by the UAS not fully 

stabilizing while taking the individual measurements. The time the UAS stabilized at each 

position was at this point changed from 1 to 3 seconds. 
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Figure 4.3.1 - October and December horizontal sensitivity flight pattern 
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Figure 4.3.2 - October localizer vertical sensitivity 

 
Figure 4.3.3 - October localizer isotropic sensitivity (arrow indicates antenna boresight) 

 
Figure 4.3.4 - October localizer horizontal sensitivity 
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Figure 4.3.5 - October glideslope vertical sensitivity 

 
Figure 4.3.6 - October glideslope isotropic sensitivity (arrow indicates antenna boresight) 

 
Figure 4.3.7 - October glideslope horizontal sensitivity 
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Figure 4.3.8 - October DME vertical horizontal sensitivity 

 

Figure 4.3.9 - October DME isotropic sensitivity (arrow indicates antenna boresight) 

 
Figure 4.3.10 - October DME horizontal sensitivity 
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4.4 – DECEMBER DATA 

Before the December campaign the stabilization of the UAS was increased from 1 to 3 seconds. 

The results of the tests taken in December closely resemble those of October. Localizer vertical 

sensitivity has a gap at 1400 ft (427 m) like October’s data. This gap is 1.0 dB. Localizer 

horizontal sensitivity has a spread of 0.2 dBm like in June, back down from 0.4 dB in October.  

Glideslope vertical sensitivity has a maximum at 1530 ft (466 m). As in October the back side of 

the lobe is visible at high altitude. Because of the increase in stabilization time, glideslope 

horizontal sensitivity spread is down to 0.5 dBm. Previously this spread was 1.1 and 1.6 dBm. 

DME vertical sensitivity has a local maximum at 800 ft (244 m) and a diminished region at 1300 

ft (396 m). The measurements above 1400 ft (427 m) are not as smooth as they have previously 

been. DME horizontal sensitivity measurements have a spread of 2.0 dBm. This is like June and 

October figures. The lengthened stabilization period did not seem to help at DME frequencies.  
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Figure 4.4.1 - December localizer vertical sensitivity 

 
Figure 4.4.2 - December localizer isotropic sensitivity (arrow indicates antenna boresight) 

 
Figure 4.4.3 - December localizer horizontal sensitivity 
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Figure 4.4.4 – December glideslope vertical sensitivity 

 
Figure 4.4.5 - December glideslope isotropic sensitivity (arrow indicates antenna boresight) 

 
Figure 4.4.6 - December glideslope horizontal sensitivity 
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Figure 4.4.7 - December DME vertical sensitivity 

 
Figure 4.4.8 - December DME isotropic sensitivity (arrow indicates antenna boresight) 

 
Figure 4.4.9 - December DME horizontal sensitivity 
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4.5 – COMBINED TEST DATA 

Plotting the test data together clearly shows the change in measurements between test dates. June 

localizer data seemed to be higher all around while October and December localizer data were 

very similar. The month-to-month differences in channel power is likely attributed to changing 

atmospheric conditions or small changes in transmitter orientation at the base station upon 

reassembly. Most differences are less than 3 dB apart, the exception being between June and 

October DME measurements. A commonly used parameter in antenna theory is half-power beam 

width, which could be considered the working region of an antenna. So, by that metric, these 

measurements are reasonably repeatable. 

 
Reference Point Measurements  

June October December 

Signal V H I V H I V H I 

Localizer -74.5 -74.1 -74.4 -77 -76.7 -77 -77.6 -77.2 -77.5 

Glideslope -76.2 -76.6 -76.8 -76.5 -76.5 -77.2 -76.1 -75 -76.3 

DME -81.6 -81.7 -81.1 -75.6 -76.2 -76.3 -79.1 -78.2 -78.5 

Table 4.5.1 - Reference point measurements [V: vertical sensitivity, H:horizontal sensitivity,I: isotropic sensitivity] 

For all three months the measured localizer channel power rises with altitude. This happens 

because of the lobing of the reflection pattern. The UAS never reaches the peak of the first lobe. 

Localizer has such tall lobes because of the large wavelength it has relative to transmitter height.  

June data contained the highest power for glideslope vertical sensitivity, but June data was not the 

highest for isotropic and horizontal sensitivity. Here the UAS reaches the first lobe and partially 

passed above it. The UAS manages to reach past the first lobe because the glideslope lobing 

pattern is more compact than localizer. The wavelength-to-transmitter-height ratio is higher here 

than in localizer. 

The measured channel power changed a couple dB between June, October, and December for 

DME. In each DME test June had the lowest measurements, October had the highest 

measurements, and December floats in between. This trend is true for almost all DME data 

points. The exception is in DME isotropic sensitivity. December data gets as high as October data 
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in some regions. The UAS reaches through the first lobe, through the null, and into the second 

lobe. The ratio of wavelength to transmitter height is higher here than in localizer and glideslope. 

This allows the UAS to move through more lobes because they are relatively short. 

 
Figure 4.5.1 - Combined localizer vertical sensitivity 

 
Figure 4.5.2 - Combined localizer isotropic sensitivity (arrow indicates antenna boresight) 
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Figure 4.5.3 - Combined localizer horizontal sensitivity 

 
Figure 4.5.4 - Combined glideslope vertical sensitivity 
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Figure 4.5.5 - Combined glideslope isotropic sensitivity (arrow indicates antenna boresight) 

 
Figure 4.5.6 - Combined glideslope horizontal sensitivity 
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Figure 4.5.7 - Combined DME vertical sensitivity 

 
Figure 4.5.8 - Combined DME isotropic sensitivity (arrow indicates antenna boresight) 



52 
 

 
Figure 4.5.9 - Combined DME horizontal sensitvity 

 

 

 

4.6 – COMPARISON TO MODEL 

The localizer model increases with altitude without reaching the peak of the first lobe, just as the 

empirical data. The is a difference between the model and empirical data of approximately 10-15 

dB. This is likely due to losses incurred by not sufficiently exiting the half-wave ground Fresnel 

zone. Even without direct ground obstruction, there can exist significant transmission losses due 

to diffraction effects [11]. Figure 4.6.2 shows the extent to which the localizer line-of-sight ray is 

within the half-wave ground Fresnel zone at 1500 ft (457 m). The line-of-sight path passes 

through more of the half-wave ground Fresnel zone at lower altitudes. 
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Figure 4.6.1 - Localizer theoretical model vs empirical data 

 

Figure 4.6.2 - Localizer propagation path 

The glideslope model fits well between the empirical data. The model does not pass over the first 

lobe as the empirical data does, but it comes close. The model level closely matches the October 

and December data, with the June data hovering 2 dB over for most altitudes.  
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Figure 4.6.3 - Glideslope theoretical model vs empirical data 

The DME model is saddled between the empirical data. October empirical data is higher than the 

model, June empirical data is lower, and December empirical data is the closest, level-wise, to the 

model. The variance in empirical data is likely due to the sensitivity of the relatively small-

wavelength DME to changes in transmitter height, placement, and orientation as well as 

atmospheric conditions. The model accurately predicts the first lobe for all empirical data at 

approximately 750 ft (229m). The model’s first null altitude nearly matches June and October 

data at approximately 1150 ft (350 m). December’s data has its null at approximately 1300 ft (396 

m). 

 
Figure 4.6.4 - DME theoretical model vs empirical data 

 

  



55 
 

CHAPTER V 

 

CHANNEL POWER CORRECTION BASED ON UAS ORIENTATION 

 

In an ideal scenario the UAS is perfectly stable and orienting the antenna into the correct heading. 

In a realistic scenario this is nearly impossible. A potentially useful feature to this system would 

be a correction to the measured channel power dependent upon UAS orientation at the time of 

capture. Because the receiver antenna is not isotropic and because the carbon fiber UAS frame 

can interfere with incident waves, measured channel power will vary with vehicle pitch, roll, and 

yaw. 

The method for correcting this error is as follows. 

1. Place the UAS with antenna in an anechoic chamber. 

2. Take channel power measurements over different pitch-yaw positions with constant 

transmitter power. 

3. Create a gradient with the data. 

4. Inversely apply the data gradient to field data for correction. 
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Figure 5.1 - UAS in anechoic chamber 

The table below contains raw channel power measurements from the anechoic chamber. The 

measurements were taken at 5° increments. This data was then normalized to boresight. The 

normalized data is in reference to the measurement taken at 0° pitch and 0° yaw. This was then 

interpolated to produce a finer gradient (figure 5.2). In general, it is visible that when pitching up 

the antenna acquires a gain and acquires losses when pitching down. This is due to the landing 

gear moving into the field of view of the antenna while pitching down. The variations in yaw are 

likely due to the glideslope dipole receiver being improperly balanced and being mounted 

asymmetrically on the vehicle. 

 

  UAS Pitch-Yaw Glideslope Raw Chamber Data 

  Yaw 

  -15° -10° -5° 0° 5° 10° 15° 

P
it

ch
 

15° -74.9 -74.6 -74.5 -74.5 -74.7 -75.1 -75.7 

10° -74.6 -74.7 -74.9 -75.2 -75.8 -76.5 -77.6 

5° -74.6 -74.7 -74.9 -75.3 -75.9 -76.6 -77.5 

0° -75.6 -75.9 -76.4 -77 -77.7 -78.5 -79.2 

-5° -75.8 -75.9 -76.2 -76.7 -77.4 -78.2 -79 

-10° -76.1 -76.1 -76.4 -77 -77.7 -78.5 -79.5 

-15° -77 -77.1 -77.5 -78.1 -78.9 -79.9 -80.9 

Table 5.1 - UAS pitch-yaw glideslope raw chamber data 
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Figure 5.2 - Interpolated normalized glideslope pitch-yaw correction factor (dB) 

GPS information can be retrieved from the trigger logs of the UAS controller. These logs are 

captured every time a trigger signal is sent to the spectrum analyzer. This log contains time, 

altitude, pitch, roll, yaw, and much more data for the vehicle’s condition. From this log pitch and 

yaw data can be assigned to each channel power measurement. The correction factor can be 

looked up in figure 5.2 based on each measurement’s pitch and yaw. Applying this correction to 

glideslope horizontal sensitivity data yields figure 5.3. The goal of applying an orientation-based 

correction to a horizontal sensitivity test would be lowering variance in the measurements. As 

visible in the previously mentioned figure, variance increased dramatically. This error is not 

necessarily based on errors in this method or errors in the derived correction factor (figure 5.2). 

Figure 5.4 shows the pitch data taken during the glideslope horizontal sensitivity test. Remember 

from section 4.3 that measurements are taken while the UAS hovers in a stationary position. The 

relative stability in all horizontal sensitivity measurements seem to indicate that the UAS is 
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relatively stable while taking measurements. The hypothesis then is that the pitch data itself is the 

issue. The UAS would not likely be holding in position with such dramatic pitch values. One 

thought is that there exists a delay in the triggering system that causes the GPS data to be logged 

either several seconds before or after the measurement is made. Ideally this correction model 

would be applied to more data sets for testing, but all the applicable trigger logs also contain 

extreme pitch information. 

 
Figure 5.3 - Attempted correction 

 
Figure 5.4 - Pitch of flight under correction 
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CHAPTER VI 

 

CONCLUSION 

 

Based on the empirical data showcased in chapter 4 it seems that this vehicle is capable of 

inspecting ILS signals with some degree of repeatability. The vertical sensitivities measured 

indicates the signal power rises and falls over altitude as would be expected. The isotropic 

sensitivities show the behavior of the receiver antenna as well as the interference from the vehicle 

chassis. Dipole patterns were witnessed when using dipole receiver and an isotropic pattern was 

seen in the monopole. Interference from the UAS structure appeared in the DME monopole 

isotropic sensitivity measurements. Horizontal sensitivity lends some insight into how stable 

these measurements can be. All the measurements occur at the same altitude and horizontal 

movement of the UAS should change received channel power very little at this distance from the 

transmitter. That means any deviation in horizontal sensitivity would be attributed to the vehicle. 

For localizer this deviation is ±0.1 dB, well within a reasonable tolerance. This deviation was 

higher in glideslope and DME, leaving room for improvement. After changes were made to the 

UAS stabilization time, glideslope horizontal sensitivity deviation dropped to ±0.3 dB, ±1 dB for 

DME. The target performance mentioned by the FAA was ±1.5 dB. This means that although 

glideslope and DME measurement stability was not as good as localizer, all three ILS were 

measurable within target specifications. 
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The theoretical model for EIRxP over altitude generated in chapter 3 can be judged by plotting 

aside empirical data for chapter 4. These figures are listed in section 4.6. In general, the created 

model worked well. The localizer model came 10-5 dB below empirical data. As discussed in 

section 4.6, the diffraction effects incurred from localizer passing through the half-wave ground 

Fresnel zone are suspect. The glideslope model’s arc matches that of the empirical data. It closely 

follows the data from October and December but sits below the data from June. June glideslope 

data may be 2 dB higher than in October, December, and model data because of changing 

atmospheric conditions. Changes in atmosphere moisture content, temperature, and pressure 

effect atmospheric attenuation as well as refractivity. The DME model floats within all empirical 

data and possesses the characteristic lobes and regions of destructive interference. The large 

differences in DME data sets could be from aforementioned atmosphere parameters as well as 

changes in transmitter orientation. 

6.1 – FUTURE WORK 

The “month-to-month” repeatability for channel power measurements can be observed in the 

figures within section 4.5. The differences in data from June to October is generally larger than 

from October to December. The drift in channel power measurements across the dates could stem 

from three possible places in the system. 

• Change in transmitted power due to alteration in base station location, changed 

transmitter antenna heading, reassembly of base station, etc.… 

• Changes in atmospheric conditions such as atmospheric attenuation or refractivity. 

• Changes in losses on the receiver side due to antenna orientations. 

More UAS ground testing should be performed to determine if this month-to-month change in 

received power is caused by it. UAS heading should also be verified. If the UAS is referencing 

slightly different headings each flight, that could cause the deviation in month-to-month signal 

strength found. 
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The theoretical model for EIRxP could be improved as well. Geometric approximations made 

within the model could be worked out fully. Ground elevation data could be sourced differently. 

The current data is sourced from the USGS and has a resolution of 1 m and data is taken on the 

surface every ~25-30 meter. This large area between data points could be negatively impacting 

the current system of calculating ground reflection points. 

The extreme pitch data described in chapter 5 should be investigated. If a delay in the triggering 

signal is found it should be fixed. The triggering system could be tested at low altitudes by 

releasing a flag or flashing a light upon trigger. The flag should release, or the light should flash 

during stabilization. 
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APPENDICES 

APPENDIX A: JUNE FLIGHT CHARACTERISTICS 
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APPENDIX B: OCTOBER FLIGHT CHARACTERISTICS 

 

 

APPENDIX C: DECEMBER FLIGHT CHARACTERISTICS 
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APPENDIX D: LOCALIZER MODEL MATLAB CODE 

% --- Loading/Saving USGS Elevation Data --- 
%[TuttleElevationData lat lon]=mapreader2('tuttle.dt2'); 
%save('TuttleElevationData.mat','TuttleElevationData') 
%save('lat.mat','lat') 
load('TuttleElevationData.mat','TuttleElevationData') 
load('lat.mat','lat') 
lon = -98:1/3600:-97; 

 
% --- Basic Transmission Parameters --- 
f = 108e6; 
fMHz = f*1e-6; 
c = 2.998e8; 
llambda = c/f; 
distance = 19430; 
%Ground Fresnel Zone 
GFZ = 2; 

  
% --- Grazing Angles --- 
alpha = 0:0.00001:pi/2; 
alphaDeg = alpha*180/pi; 

  
% --- Standard Earth Radius --- 
r0 = 6.366e6; 
% --- Standard Refractivity --- 
A = 3.9e-8; 
% --- Effective Earth Radius --- 
K = 4/3; 
a = K * r0; 

  
% --- Relative Permittivity of Ground --- 
sigma = 0.1; 
epsilon0 = 8.854187817e-12; 
epsilong = 10 - (i*sigma)/(epsilon0*2*pi*f); 

  
% --- Initial Launch Angle of Atmosphere with Standard Refractivity --- 
h_m = ((distance/2)^2)/(2*a); 
A_prime = A - (1 / r0); 
alpha_0 = sqrt(abs(h_m * 2 * A_prime)); 

  
% --- Geometry --- 
TXheight = 5.5; 
RXheightFT = 500:10:1600; 
RXheight = RXheightFT./3.28084; 
alpha2 = atan(RXheight./distance) + alpha_0; 
TXheightFT = 3.28084* TXheight; 
RXheightFTRayModel = [500 1500 1600];  
RXheightRayModel = RXheightFTRayModel./3.28084; 

  
% --- Plotting Elevation Heat Map --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
imagesc(lon,lat,TuttleElevationData); 
set(gca,'ydir','normal') 
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axis equal 
grid on 
hold 
plot([-97.809114 -97.626944], [35.295686 35.386667],'--ok') 
xlabel('Longitude (decimal degrees)') 
ylabel('Latitude (decimal degrees)') 
title('Digital Terrain Elevation Data for MMAC -> THS Propagation 

Path') 

  
towersXindex = [round((1 - 0.626944)*3600) round((1 - 0.809114)*3600)]; 
towersYindex = [round(0.386667*3600) round(0.295686*3600)]; 

  
% --- Link Calculations and Plotting --- 
rLLink = zeros(1,length(towersXindex)-1); 
linkPhi = zeros(1,length(towersXindex)-1); 
linkDistance = zeros(1,length(towersXindex)-1); 
dXLink = towersXindex(2)-towersXindex(1); 
dYLink = towersYindex(2)-towersYindex(1); 
dLLink = sqrt(dXLink^2 + dYLink^2); 
rLLink(1) = round(dLLink); 
linkPhi(1) = atan(dYLink / dXLink); 
for n = 0:rLLink(1) 
    elevLink(n+1) = TuttleElevationData((1 + towersYindex(1) + 

round(dYLink*n/rLLink(1))), 1 + towersXindex(1) + 

round(dXLink*n/rLLink(1))); 
    rhoLink(n+1) = sqrt((25.3*dXLink*n/rLLink(1))^2 + 

(30.8*dYLink*n/rLLink(1))^2); 
end 
linkDistance(1) = rhoLink(end); 

  

% --- LOS Paths --- 
rhoTX = rhoLink(1); 
rhoRX = rhoLink(end); 
elevTX = elevLink(1)+ TXheight; 
elevRX = elevLink(end)+ RXheightRayModel; 

  
% --- Clearances --- 
halfLinkDistance = linkDistance(1)/2; 
curve = ((halfLinkDistance^2) - (abs(halfLinkDistance - rhoLink).^2)) / 

(2*a); 
elevLink = elevLink + curve; 
trees2 = elevLink + 1; 
Fresnel2 = trees2 + sqrt(0.5*llambda*(linkDistance(1)-

rhoLink).*rhoLink/linkDistance(1)); 

  
% --- Creation of a Higher Resolution elevLink & rhoLink via 

Interpolation 
InterScale = 100; 
for i = 1:length(elevLink)-1 
    for j = 1:InterScale 
        k = ((i-1)*100)+j; 
        rhoLinkHD(k) = rhoLink(i) + ((rhoLink(i+1)-

rhoLink(i))*j/InterScale); 
        elevLinkHD(k) =elevLink(i) + ((elevLink(i+1)-

elevLink(i))*j/InterScale); 
    end 
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end 
curveHD = ((halfLinkDistance^2) - (abs(halfLinkDistance - 

rhoLinkHD).^2)) / (2*a); 
elevLinkHD = elevLinkHD + curveHD; 

  
% --- Finding Reflections --- 
reflectionTolerence = 10; 
for m = 1:length(RXheight) 
    reflectionTolerence = 1; 
    for n = 2:(length(rhoLinkHD)-1) 
        alphaN = atan((TXheight + elevLink(1) - 

elevLinkHD(n))/rhoLinkHD(n)); 
        rayEndAlt = elevLinkHD(n) + (rhoLink(end)-

rhoLinkHD(n))*tan(alphaN); 
        if abs(RXheight(m) + elevLink(end) - rayEndAlt) < 

reflectionTolerence 
            rhoRefl(m) = rhoLinkHD(n); 
            elevRefl(m) = elevLinkHD(n); 
            indexRefl(m) = n; 
            reflectionTolerence = abs(RXheight(m) + elevLink(end) - 

rayEndAlt); 
        end 
    end   
end 

  
% --- RMS Elevation over Reflection Region --- 
sigma_front_s = std(elevLinkHD(1500:6400)); 
rayCrit = sigma_front_s * sin(max(alpha2)); 
rayCritMet = false; 
if(rayCrit < (llambda/8)) 
    rayCritMet = true; 
end 

 
% --- Gridlines --- 
grida = zeros(1,length(elevLink)) + curve + 400; 
gridb = zeros(1,length(elevLink)) + curve + 600; 
gridc = zeros(1,length(elevLink)) + curve + 800; 

  
% --- Reflection Ray Figures --- 
for n = 1:10:length(RXheight) 
    figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
    plot([rhoTX rhoRX],[elevTX (RXheight(n)+elevLink(end))],'k',[rhoTX 

rhoRefl(n) rhoRX],[elevTX elevRefl(n) (RXheight(n)+elevLink(end))],'--

k') 
    hold 
    plot(rhoLink,elevLink,'b',rhoLink,trees2,'--g',rhoLink,Fresnel2,'--

r') 
    plot(rhoLink,grida,':k',rhoLink,gridb,':k',rhoLink,gridc,':k') 
    title(['Propagation Path; f = ',num2str(fMHz),' MHz\newlineTX 

Height: ',num2str(TXheight),'m (',num2str(TXheight*3.28084),' ft), RX 

Height: ',num2str(RXheight(n)),'m (',num2str(RXheight(n)*3.28084),' ft) 

[AGL]']); 
    xlabel('Distance from TX (m) - rho~x') 
    ylabel('Elevation MSL (m) - z') 
    legend('Line-of-Sight Ray','Ground Reflection','Ground','Tree 

Allowance','108 MHz Half-Fresnel Clearance','location','southoutside') 
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end 

  
% --- Gamma --- 
Xh = sqrt(epsilong - (cos(alpha)).^2); 
Gamma = (sin(alpha) - Xh)./(sin(alpha) + Xh); 
GammaAbs = abs(Gamma); 
%------------------------- 
Xh2 = sqrt(epsilong - (cos(alpha2)).^2); 
Gamma2 = (sin(alpha2) - Xh2)./(sin(alpha2) + Xh2); 
GammaAbs2 = abs(Gamma2); 

  
% --- Gamma Figures --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(alphaDeg, real(Gamma),'--k', alphaDeg, imag(Gamma),':k', alphaDeg, 

GammaAbs,'k') 
title('Ground Reflection Coefficient for Horizontal Polarization, 

\newline\Gamma(\alpha), \epsilon_g = 10, \sigma_g = 0.1') 
ylabel('\Gamma') 
xlabel('Grazing Angle \alpha (degrees)') 
legend('\Gamma real','\Gamma 

imaginary','|\Gamma|','location','southoutside') 
grid on 

  
% --- Roughness Factor --- 
RF = exp(-0.5*((4*pi*sigma_front_s*sin(alpha)/llambda).^2)); 
RF2 = exp(-0.5*((4*pi*sigma_front_s.*sin(alpha2)/llambda).^2)); 

  
% --- Roughness Factor Plot --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(alphaDeg,RF,'k') 
title(['Roughness Factor: \sigma_s = ',num2str(sigma_front_s),', f = 

',num2str(f * 1e-6),' MHz']) 
grid on 
xlabel('Grazing Angle \alpha (degrees)') 
ylabel('Roughness Factor') 

  
% --- Fine Roughness Factor Plot --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(alphaDeg(1:16000),RF(1:16000),'k') 
title(['Roughness Factor: \sigma_s = ',num2str(sigma_front_s),', f = 

',num2str(f * 1e-6),' MHz']) 
grid on 
xlabel('Grazing Angle \alpha (degrees)') 
ylabel('Roughness Factor') 

  
% --- Divergence Factor --- 
DF = 1./sqrt(1 + (2.*rhoRefl.*(rhoLink(end) - 

rhoRefl))./(a.*rhoLink(end).*tan(alpha2))); 
DFdB = 20.*log10(DF); 
max(DFdB) 
min(DFdB) 

  
% --- Polar Array Factor --- 
AF = abs(1 + Gamma.*cos(4*pi*TXheight*sin(alpha)/llambda)); 
AF = 20*log10(AF); 
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%----------------------- 
AFclip = AF; 
AFclip(AFclip < -40) = -40; 

  
% --- Polar Array Factor Figure --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
polarplot(alpha,AFclip,'k') 
title('Localizer Reflection Pattern (dB)') 
rlim([-40 10]) 
thetalim([0 90]) 
grid minor 

  
% --- Rectangular Array Factor (With Roughness Factor) --- 
AF2 = abs(1 + Gamma2.*cos(4*pi*TXheight*sin(alpha2)/llambda)); 
AF2 = 20*log10(AF2); 

  
% --- Rectangular Array Factor Plot --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(RXheightFT,AF2,'k') 
title('Localizer Reflection Pattern vs Altitude') 
ylabel('Gain (dB)') 
xlabel('Altitude (ft)') 
grid on 

  
% --- Transmit power (dBm), transmitter gain (dBi), & path loss (dB) --

- 
TXpower = 17.4 - 1.4; 
TXAntGain = 11.0; 
PL = 20*log10(llambda/(4*pi*distance)); 

  
% --- Equivalent Isotropic Reciever Power --- 
EIRxP = AF2 + TXpower + TXAntGain + PL; 

  
% --- EIRxP Figure --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(RXheightFT,EIRxP,'k') 
title('Localizer EIRxP vs Altitude') 
ylabel('EIRxP (dBm)') 
xlabel('Altitude (ft)') 
grid on 
 

  



71 
 

APPENDIX E: GLIDESLOPE MODEL MATLAB CODE 

% --- Loading/Saving USGS Elevation Data --- 
%[TuttleElevationData lat lon]=mapreader2('tuttle.dt2'); 
%save('TuttleElevationData.mat','TuttleElevationData') 
%save('lat.mat','lat') 
load('TuttleElevationData.mat','TuttleElevationData') 
load('lat.mat','lat') 
lon = -98:1/3600:-97; 

  
% --- Import Imperical Data --- 
VertIso = csvread('Dec_FSH_VertIso.csv'); 

  
% --- Knowns --- 
f = 334.7e6; 
fMHz = f*1e-6; 
c = 2.998e8; 
llambda = c/f; 
distance = 19430; 

 
% --- Grazing Angles --- 
alpha = 0:0.00001:pi/2; 
alphaDeg = alpha*180/pi; 

  
% --- Standard Earth Radius --- 
r0 = 6.366e6; 
% --- Standard Refractivity --- 
A = 3.9e-8; 
% --- Effective Earth Radius --- 
K = 4/3; 
a = K * r0; 

  
% --- Relative Permittivity of Ground --- 
sigma = 0.1; 
epsilon0 = 8.854187817e-12; 
epsilong = 10 - (i*sigma)/(epsilon0*2*pi*f); 

  
% --- Initial Launch Angle of Atmosphere with Standard Refractivity --- 
h_m = ((distance/2)^2)/(2*a); 
A_prime = A - (1 / r0); 
alpha_0 = sqrt(abs(h_m * 2 * A_prime)); 

  
% --- Geometry --- 
TXheight = 8.6; 
RXheightFT = 500:10:1600; 
RXheight = RXheightFT./3.28084; 
alpha2 = atan(RXheight./distance) + alpha_0; 
TXheightFT = 3.28084* TXheight; 
RXheightFTRayModel = [500 1500 1600];  
RXheightRayModel = RXheightFTRayModel./3.28084; 

  
% --- Plotting Elevation Heat Map --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
imagesc(lon,lat,TuttleElevationData); 
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set(gca,'ydir','normal') 
axis equal 
grid on 
hold 
plot([-97.809114 -97.626944], [35.295686 35.386667],'--ok') 
xlabel('Longitude (decimal degrees)') 
ylabel('Latitude (decimal degrees)') 
title('Digital Terrain Elevation Data for MMAC -> THS Propagation 

Path') 

  
towersXindex = [round((1 - 0.626944)*3600) round((1 - 0.809114)*3600)]; 
towersYindex = [round(0.386667*3600) round(0.295686*3600)]; 

  
% --- Link Calculations and Plotting --- 
rLLink = zeros(1,length(towersXindex)-1); 
linkPhi = zeros(1,length(towersXindex)-1); 
linkDistance = zeros(1,length(towersXindex)-1); 
dXLink = towersXindex(2)-towersXindex(1); 
dYLink = towersYindex(2)-towersYindex(1); 
dLLink = sqrt(dXLink^2 + dYLink^2); 
rLLink(1) = round(dLLink); 
linkPhi(1) = atan(dYLink / dXLink); 
for n = 0:rLLink(1) 
    elevLink(n+1) = TuttleElevationData((1 + towersYindex(1) + 

round(dYLink*n/rLLink(1))), 1 + towersXindex(1) + 

round(dXLink*n/rLLink(1))); 
    rhoLink(n+1) = sqrt((25.3*dXLink*n/rLLink(1))^2 + 

(30.8*dYLink*n/rLLink(1))^2); 
end 
linkDistance(1) = rhoLink(end); 

  
% --- LOS Paths --- 
rhoTX = rhoLink(1); 
rhoRX = rhoLink(end); 
elevTX = elevLink(1)+ TXheight; 
elevRX = elevLink(end)+ RXheightRayModel; 

  
% --- Clearances --- 
halfLinkDistance = linkDistance(1)/2; 
curve = ((halfLinkDistance^2) - (abs(halfLinkDistance - rhoLink).^2)) / 

(2*a); 
elevLink = elevLink + curve; 
trees2 = elevLink + 1; 
Fresnel2 = trees2 + sqrt(0.5*llambda*(linkDistance(1)-

rhoLink).*rhoLink/linkDistance(1)); 

  
% --- Creation of a Higher Resolution elevLink & rhoLink via 

Interpolation 
InterScale = 100; 
for i = 1:length(elevLink)-1 
    for j = 1:InterScale 
        k = ((i-1)*100)+j; 
        rhoLinkHD(k) = rhoLink(i) + ((rhoLink(i+1)-

rhoLink(i))*j/InterScale); 
        elevLinkHD(k) =elevLink(i) + ((elevLink(i+1)-

elevLink(i))*j/InterScale); 
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    end 
end 
curveHD = ((halfLinkDistance^2) - (abs(halfLinkDistance - 

rhoLinkHD).^2)) / (2*a); 
elevLinkHD = elevLinkHD + curveHD; 

  
% --- Finding Reflections --- 
reflectionTolerence = 10; 
for m = 1:length(RXheight) 
    reflectionTolerence = 1; 
    for n = 2:(length(rhoLinkHD)-1) 
        alphaN = atan((TXheight + elevLink(1) - 

elevLinkHD(n))/rhoLinkHD(n)); 
        rayEndAlt = elevLinkHD(n) + (rhoLink(end)-

rhoLinkHD(n))*tan(alphaN); 
        if abs(RXheight(m) + elevLink(end) - rayEndAlt) < 

reflectionTolerence 
            rhoRefl(m) = rhoLinkHD(n); 
            elevRefl(m) = elevLinkHD(n); 
            indexRefl(m) = n; 
            reflectionTolerence = abs(RXheight(m) + elevLink(end) - 

rayEndAlt); 
        end 
    end   
end 

  
% --- RMS Elevation over Reflection Region --- 
sigma_front_s = std(elevLinkHD(1500:6400)); 
rayCrit = sigma_front_s * sin(max(alpha2)); 
rayCritMet = false; 
if(rayCrit < (llambda/8)) 
    rayCritMet = true; 
end 

 
% --- Gridlines --- 
grida = zeros(1,length(elevLink)) + curve + 400; 
gridb = zeros(1,length(elevLink)) + curve + 600; 
gridc = zeros(1,length(elevLink)) + curve + 800; 

  
% --- Reflection Ray Figures --- 
for n = 1:10:length(RXheight) 
    figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
    plot([rhoTX rhoRX],[elevTX (RXheight(n)+elevLink(end))],'k',[rhoTX 

rhoRefl(n) rhoRX],[elevTX elevRefl(n) (RXheight(n)+elevLink(end))],'--

k') 
    hold 
    plot(rhoLink,elevLink,'b',rhoLink,trees2,'--g',rhoLink,Fresnel2,'--

r') 
    plot(rhoLink,grida,':k',rhoLink,gridb,':k',rhoLink,gridc,':k') 
    title(['Propagation Path; f = ',num2str(fMHz),' MHz\newlineTX 

Height: ',num2str(TXheight),'m (',num2str(TXheight*3.28084),' ft), RX 

Height: ',num2str(RXheight(n)),'m (',num2str(RXheight(n)*3.28084),' ft) 

[AGL]']); 
    xlabel('Distance from TX (m) - rho~x') 
    ylabel('Elevation MSL (m) - z') 
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    legend('Line-of-Sight Ray','Ground Reflection','Ground','Tree 

Allowance','334.7 MHz Half-Fresnel 

Clearance','location','southoutside') 
end 

  
% --- Gamma --- 
Xh = sqrt(epsilong - (cos(alpha)).^2); 
Gamma = (sin(alpha) - Xh)./(sin(alpha) + Xh); 
GammaAbs = abs(Gamma); 
%------------------------- 
Xh2 = sqrt(epsilong - (cos(alpha2)).^2); 
Gamma2 = (sin(alpha2) - Xh2)./(sin(alpha2) + Xh2); 
GammaAbs2 = abs(Gamma2); 

  
% --- Gamma Figures --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(alphaDeg, real(Gamma),'--k', alphaDeg, imag(Gamma),':k', alphaDeg, 

GammaAbs,'k') 
title('Ground Reflection Coefficient for Horizontal Polarization, 

\newline\Gamma(\alpha), \epsilon_g = 10, \sigma_g = 0.1') 
ylabel('\Gamma') 
xlabel('Grazing Angle \alpha (degrees)') 
legend('\Gamma real','\Gamma 

imaginary','|\Gamma|','location','southoutside') 
grid on 

  
% --- Gamma Figure 2 --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(alphaDeg, GammaAbs, 'k') 
title('Ground Reflection Coefficient for Horizontal Polarization, 

\newline\epsilon_r = 10, \sigma_g = 0.1') 
ylabel('|\Gamma(\alpha)|') 
xlabel('Grazing Angle \alpha (degrees)') 
grid on 
ylim([0 1]) 

  
% --- Roughness Factor --- 
RF = exp(-0.5*((4*pi*sigma_front_s.*sin(alpha)/llambda).^2)); 
RF2 = exp(-0.5*((4*pi*sigma_front_s.*sin(alpha2)/llambda).^2)); 

  
% --- Roughness Factor Plot --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(alphaDeg,RF,'k') 
title(['Roughness Factor: \sigma_s = ',num2str(sigma_front_s),', f = 

',num2str(f * 1e-6),' MHz']) 
grid on 
xlabel('Grazing Angle \alpha (degrees)') 
ylabel('Roughness Factor') 

  
% --- Fine Roughness Factor Plot --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(alphaDeg(1:16000),RF(1:16000),'k') 
title(['Roughness Factor: \sigma_s = ',num2str(sigma_front_s),', f = 

',num2str(f * 1e-6),' MHz']) 
grid on 
xlabel('Grazing Angle \alpha (degrees)') 
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ylabel('Roughness Factor') 

  
% --- Polar Array Factor --- 
AF = abs(1 + Gamma.*cos(4*pi*TXheight*sin(alpha)/llambda)); 
AF = 20*log10(AF); 
%----------------------- 
AFclip = AF; 
AFclip(AFclip < -40) = -40; 

  
% --- Polar Array Factor Figure --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
polarplot(alpha,AFclip,'k') 
title('Glide-Slope Reflection Pattern (dB)') 
rlim([-40 10]) 
thetalim([0 90]) 
grid minor 

  
% --- Rectangular Array Factor (With Roughness Factor) --- 
AF2 = abs(1 + Gamma2.*cos(4*pi*TXheight*sin(alpha2)/llambda)); 
AF2 = 20*log10(AF2); 

  
% --- Rectangular Array Factor Plot --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(RXheightFT,AF2,'k') 
title('Glide-Slope Reflection Pattern vs Altitude') 
ylabel('Gain (dB)') 
xlabel('Altitude (ft)') 
grid on 

  
% --- Transmit power (dBm), transmitter gain (dBi), & path loss (dB) --

- 
TXpower = 17 - 1.9; 
TXAntGain = 11.1; 
PL = 20*log10(llambda/(4*pi*distance)); 

  
% --- Equivalent Isotropic Reciever Power --- 
EIRxP = AF2 + TXpower + TXAntGain + PL; 

  
% --- EIRxP Figure --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(RXheightFT,EIRxP,'k') 
title('Glide-Slope EIRxP vs Altitude') 
ylabel('EIRxP (dBm)') 
xlabel('Altitude (ft)') 
grid on 
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APPENDIX F: DME MODEL MATLAB CODE 

% --- Loading/Saving USGS Elevation Data --- 
%[TuttleElevationData lat lon]=mapreader2('tuttle.dt2'); 
%save('TuttleElevationData.mat','TuttleElevationData') 
%save('lat.mat','lat') 
load('TuttleElevationData.mat','TuttleElevationData') 
load('lat.mat','lat') 
lon = -98:1/3600:-97; 

  
% --- Import Imperical Data 
VertIso = csvread('Dec_FSH_VertIso.csv'); 

  
% --- Knowns 
f = 1155e6; 
fMHz = f*1e-6; 
c = 2.998e8; 
llambda = c/f; 
distance = 19430; 

 
% --- Grazing Angles --- 
alpha = 0:0.00001:pi/2; 
alphaDeg = alpha*180/pi; 

  
% --- Standard Earth Radius --- 
r0 = 6.366e6; 
% --- Standard Refractivity --- 
A = 3.9e-8; 
% --- Effective Earth Radius --- 
K = 4/3; 
a = K * r0; 

  
% --- Relative Permittivity of Ground --- 
sigma = 0.1; 
epsilon0 = 8.854187817e-12; 
epsilong = 10 - (i*sigma)/(epsilon0*2*pi*f); 

  
% --- Initial Launch Angle of Atmosphere with Standard Refractivity --- 
h_m = ((distance/2)^2)/(2*a); 
A_prime = A - (1 / r0); 
alpha_0 = sqrt(abs(h_m * 2 * A_prime)); 

  
% --- Geometry --- 
TXheight = 9.85; 
RXheightFT = 500:10:1600; 
RXheight = RXheightFT./3.28084; 
alpha2 = atan(RXheight./distance) + alpha_0; 
TXheightFT = 3.28084* TXheight; 
RXheightFTRayModel = [500 1500 1600];  
RXheightRayModel = RXheightFTRayModel./3.28084; 

  
% --- Plotting Elevation Heat Map --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
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imagesc(lon,lat,TuttleElevationData); 
set(gca,'ydir','normal') 
axis equal 
grid on 
hold 
plot([-97.809114 -97.626944], [35.295686 35.386667],'--ok') 
xlabel('Longitude (decimal degrees)') 
ylabel('Latitude (decimal degrees)') 
title('Digital Terrain Elevation Data for MMAC -> THS Propagation 

Path') 

  
towersXindex = [round((1 - 0.626944)*3600) round((1 - 0.809114)*3600)]; 
towersYindex = [round(0.386667*3600) round(0.295686*3600)]; 

  
% --- Link Calculations and Plotting --- 
rLLink = zeros(1,length(towersXindex)-1); 
linkPhi = zeros(1,length(towersXindex)-1); 
linkDistance = zeros(1,length(towersXindex)-1); 
dXLink = towersXindex(2)-towersXindex(1); 
dYLink = towersYindex(2)-towersYindex(1); 
dLLink = sqrt(dXLink^2 + dYLink^2); 
rLLink(1) = round(dLLink); 
linkPhi(1) = atan(dYLink / dXLink); 
for n = 0:rLLink(1) 
    elevLink(n+1) = TuttleElevationData((1 + towersYindex(1) + 

round(dYLink*n/rLLink(1))), 1 + towersXindex(1) + 

round(dXLink*n/rLLink(1))); 
    rhoLink(n+1) = sqrt((25.3*dXLink*n/rLLink(1))^2 + 

(30.8*dYLink*n/rLLink(1))^2); 
end 
linkDistance(1) = rhoLink(end); 

  
% --- LOS Paths --- 
rhoTX = rhoLink(1); 
rhoRX = rhoLink(end); 
elevTX = elevLink(1)+ TXheight; 
elevRX = elevLink(end)+ RXheightRayModel; 

  
% --- Clearances --- 
halfLinkDistance = linkDistance(1)/2; 
curve = ((halfLinkDistance^2) - (abs(halfLinkDistance - rhoLink).^2)) / 

(2*a); 
elevLink = elevLink + curve; 
trees2 = elevLink + 1; 
Fresnel2 = trees2 + sqrt(0.5*llambda*(linkDistance(1)-

rhoLink).*rhoLink/linkDistance(1)); 

  
% --- Creation of a Higher Resolution elevLink & rhoLink via 

Interpolation 
InterScale = 100; 
for i = 1:length(elevLink)-1 
    for j = 1:InterScale 
        k = ((i-1)*100)+j; 
        rhoLinkHD(k) = rhoLink(i) + ((rhoLink(i+1)-

rhoLink(i))*j/InterScale); 
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        elevLinkHD(k) = elevLink(i) + ((elevLink(i+1)-

elevLink(i))*j/InterScale); 
    end 
end 
curveHD = ((halfLinkDistance^2) - (abs(halfLinkDistance - 

rhoLinkHD).^2)) / (2*a); 
elevLinkHD = elevLinkHD + curveHD; 

  
% --- Finding Reflections --- 
reflectionTolerence = 10; 
for m = 1:length(RXheight) 
    reflectionTolerence = 1; 
    for n = 2:(length(rhoLinkHD)-1) 
        alphaN = atan((TXheight + elevLink(1) - 

elevLinkHD(n))/rhoLinkHD(n)); 
        rayEndAlt = elevLinkHD(n) + (rhoLink(end)-

rhoLinkHD(n))*tan(alphaN); 
        if abs(RXheight(m) + elevLink(end) - rayEndAlt) < 

reflectionTolerence 
            rhoRefl(m) = rhoLinkHD(n); 
            elevRefl(m) = elevLinkHD(n); 
            indexRefl(m) = n; 
            reflectionTolerence = abs(RXheight(m) + elevLink(end) - 

rayEndAlt); 
        end 
    end   
end 

  
% --- RMS Elevation over Reflection Region --- 
sigma_front_s = std(elevLinkHD(1500:6400)); 
rayCrit = sigma_front_s * sin(max(alpha2)); 
rayCritMet = false; 
if(rayCrit < (llambda/8)) 
    rayCritMet = true; 
end 

  
% --- Gridlines --- 
grida = zeros(1,length(elevLink)) + curve + 400; 
gridb = zeros(1,length(elevLink)) + curve + 600; 
gridc = zeros(1,length(elevLink)) + curve + 800; 

  
% --- Reflection Ray Figures --- 
for n = 1:10:length(RXheight) 
    figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
    plot([rhoTX rhoRX],[elevTX (RXheight(n)+elevLink(end))],'k',[rhoTX 

rhoRefl(n) rhoRX],[elevTX elevRefl(n) (RXheight(n)+elevLink(end))],'--

k') 
    hold 
    plot(rhoLink,elevLink,'b',rhoLink,trees2,'--g',rhoLink,Fresnel2,'--

r') 
    plot(rhoLink,grida,':k',rhoLink,gridb,':k',rhoLink,gridc,':k') 
    title(['Propagation Path; f = ',num2str(fMHz),' MHz\newlineTX 

Height: ',num2str(TXheight),'m (',num2str(TXheight*3.28084),' ft), RX 

Height: ',num2str(RXheight(n)),'m (',num2str(RXheight(n)*3.28084),' ft) 

[AGL]']); 
    xlabel('Distance from TX (m) - rho~x') 
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    ylabel('Elevation MSL (m) - z') 
    legend('Line-of-Sight Ray','Ground Reflection','Ground','Tree 

Allowance','1155 MHz Half-Fresnel Clearance','location','southoutside') 
end 

  
% --- Gamma --- 
Xv = sqrt((epsilong - (cos(alpha)).^2))./epsilong; 
Gamma = (sin(alpha) - Xv)./(sin(alpha) + Xv); 
GammaAbs = abs(Gamma); 
%---------------------------------------- 
Xv2 = sqrt(epsilong - (cos(alpha2)).^2)./epsilong; 
Gamma2 = (sin(alpha2) - Xv2)./(sin(alpha2) + Xv2); 
GammaAbs2 = abs(Gamma2); 

  
% --- Roughness Factor --- 
RF = exp(-0.5*((4*pi*sigma_front_s*sin(alpha)/llambda).^2)); 
RF2 = exp(-0.5*((4*pi*sigma_front_s.*sin(alpha2)/llambda).^2)); 

  
% --- Gamma Figure --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(alphaDeg, real(Gamma),'--k', alphaDeg, imag(Gamma),':k', alphaDeg, 

GammaAbs,'k') 
title('Ground Reflection Coefficient for Vertical Polarization, 

\newline\Gamma(\alpha), \epsilon_g = 10, \sigma_g = 0.1') 
ylabel('\Gamma') 
xlabel('Grazing Angle \alpha (degrees)') 
legend('\Gamma real','\Gamma 

imaginary','|\Gamma|','location','southoutside') 
grid on 

  

% --- Gamma Figure 2 --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(alphaDeg, GammaAbs, 'k') 
title('Ground Reflection Coefficient for Vertical Polarization, 

\newline\epsilon_r = 10, \sigma_g = 0.1') 
ylabel('|\Gamma(\alpha)|') 
xlabel('Grazing Angle \alpha (degrees)') 
grid on 
ylim([0 1]) 

  
% --- Roughness Factor Plot --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(alphaDeg,RF,'k') 
title(['Roughness Factor: \sigma_s = ',num2str(sigma_front_s),', f = 

',num2str(f * 1e-6),' MHz']) 
grid on 
xlabel('Grazing Angle \alpha (degrees)') 
ylabel('Roughness Factor') 

  
% --- Fine Roughness Factor Plot --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(alphaDeg(1:16000),RF(1:16000),'k') 
title(['Roughness Factor: \sigma_s = ',num2str(sigma_front_s),', f = 

',num2str(f * 1e-6),' MHz']) 
grid on 
xlabel('Grazing Angle \alpha (degrees)') 
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ylabel('Roughness Factor') 

  
% --- Polar Array Factor --- 
AF = abs(1 - Gamma.*cos(4*pi*TXheight*sin(alpha)/llambda)); 
AF = 20*log10(AF); 
%----------------------- 
AFclip = AF; 
AFclip(AFclip < -40) = -40; 

  
% --- Polar Array Factor Plot --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
polarplot(alpha,AFclip,'k') 
title('DME Reflection Pattern (dB)') 
rlim([-40 10]) 
thetalim([0 90]) 
grid minor 

  
% --- Rectangular Array Factor (With Roughness Factor) --- 
AF2 = abs(1 - RF2.*Gamma2.*cos(4*pi*TXheight*sin(alpha2)/llambda)); 
AF2 = 20*log10(AF2); 

  
% --- Rectangular Array Factor --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(RXheightFT,AF2,'k') 
title('DME Reflection Pattern vs Altitude') 
ylabel('Gain (dB)') 
xlabel('Altitude (ft)') 
grid on 

  
% --- Transmit power (dBm), transmitter gain (dBi), & path loss (dB) --

- 
TXpower = 37 - 3.8; 
TXAntGain = 7.1; 
PL = 20*log10(llambda/(4*pi*distance)); 

  
% --- Equivalent Isotropic Reciever Power --- 
EIRxP = AF2 + TXpower + TXAntGain + PL; 

  
% --- EIRxP Figure --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(RXheightFT,EIRxP,'k') 
title('DME EIRxP vs Altitude') 
ylabel('EIRxP (dBm)') 
xlabel('Altitude (ft)') 
grid on 
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APPENDIX G: ORIENTATION BASED CORRECTION MATLAB CODE 

% --- Import Glide-Slope Pitch-Yaw Correction Factor --- 
GSPitchYawCF = csvread('UASChamberMeas_Feb19.csv'); 
PITCH = [15 10 5 0 -5 -10 -15]; 
YAW = [-15 -10 -5 0 5 10 15]; 

  
% --- Import Channel Power Data for Correction (Glideslope Horizontal) 

--- 
input = csvread('30cor1.csv'); 

  
% --- Subtract Glideslope Dipole Gain from Measurements --- 
input(1,:) = input(1,:) - 0.55; 

  
% --- Invert Pitch --- 
input(3,:) = -1 * input(3,:); 

  
% --- Normalization of GSPYCF --- 
GSPitchYawCF = GSPitchYawCF - GSPitchYawCF(4,4); 

  
% --- Mesh Plot --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
title('Normalized Glide-Slope Pitch-Yaw Correction Factor (dB)') 
mesh(YAW,PITCH,GSPitchYawCF) 
xlabel('yaw (degrees)') 
ylabel('pitch (degrees)') 

  
% --- Surface Plot --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
title('Normalized Glide-Slope Pitch-Yaw Correction Factor (dB)') 
surf(YAW,PITCH,GSPitchYawCF) 
xlabel('yaw (degrees)') 
ylabel('pitch (degrees)') 

  
% --- Interpolation --- 
INTERSCALE = 50; 
pitchHD = zeros(1,INTERSCALE*(length(PITCH)-1) +1); 
yawHD = zeros(1,INTERSCALE*(length(YAW)-1) +1); 
GSPitchYawCFHD = zeros(length(pitchHD)); 
pitchHD(end) = PITCH(end); 
yawHD(end) = YAW(end); 
for n = 1:(length(PITCH)-1) 
    for m = 1:INTERSCALE 
        pitchHD((INTERSCALE*(n-1)) + m) = PITCH(n) + (PITCH(n+1)-

PITCH(n))*((m-1)/INTERSCALE); 
        yawHD((INTERSCALE*(n-1)) + m) = YAW(n) + (YAW(n+1)-YAW(n))*((m-

1)/INTERSCALE); 
    end 
end 

  
for n = 1:length(YAW) 
    GSPitchYawCFHD(((n-1)*INTERSCALE)+1,length(GSPitchYawCFHD)) = 

GSPitchYawCF(n,length(GSPitchYawCF)); 
    for m = 0:(length(YAW)-2) 
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        for o = 0:(INTERSCALE-1) 
            GSPitchYawCFHD(((n-1)*INTERSCALE)+1,(m*INTERSCALE)+o+1) = 

GSPitchYawCF(n,m+1) + (GSPitchYawCF(n,m+2)-

GSPitchYawCF(n,m+1))*(o/INTERSCALE); 
        end 
    end  
end 

  
for n = 1:length(yawHD) 
    for m = 0:(length(YAW)-2) 
        for o = 1:(INTERSCALE-1) 
            GSPitchYawCFHD((m*INTERSCALE)+1+o,n) = 

GSPitchYawCFHD((m*INTERSCALE)+1,n) + 

(GSPitchYawCFHD(((m+1)*INTERSCALE)+1,n)-

GSPitchYawCFHD((m*INTERSCALE)+1,n))*(o/INTERSCALE); 
        end 
    end  
end 

  
% --- Mesh Plot --- 
figure 
title('Interpolated Normalized Glide-Slope Pitch-Yaw Correction Factor 

(dB)') 
mesh(yawHD,pitchHD,GSPitchYawCFHD) 
xlabel('yaw (degrees)') 
ylabel('pitch (degrees)') 

  
% --- Surface Plot --- 
figure 
title('Interpolated Normalized Glide-Slope Pitch-Yaw Correction Factor 

(dB)') 
surf(yawHD,pitchHD,GSPitchYawCFHD) 
xlabel('yaw (degrees)') 
ylabel('pitch (degrees)') 

  
% --- Corrections to Channel Power --- 
for n = 1:length(input) 
    yawIndex(n) = 

(round(input(2,n)*(INTERSCALE/5)))+((length(yawHD)+1)/2); 
    pitchIndex(n) = ((length(pitchHD)+1)/2)-

(round(input(3,n)*(INTERSCALE/5))); 
    corMeas(n) = input(1,n) - 

GSPitchYawCFHD(pitchIndex(n),yawIndex(n)); 
end 

  
% --- Plotting --- 
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(1:22,input(1,:),'-ok',1:22, corMeas(:),'--sk') 
title('Glide-Slope Horizontal Sensitivity Channel Power') 
legend('Pre-Correction','Post-Correction','location','southeast') 
ylabel('dBm') 
grid on 

  
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(1:22,input(2,:),'-ok') 
title('Yaw') 
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ylabel('Degrees') 
grid on 

  
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot(1:22,input(3,:),'-ok') 
title('Pitch') 
ylabel('Degrees') 
grid on 

  
figure('Renderer', 'painters', 'Position', [700 200 900 600]) 
plot([-1 7],[0 0],'k',[0 2],[1 0],'k',[2 6],[0 2],'k',[0 2],[-1 0],'--

k') 
ylim([-2 6]) 
xlim([-2 8]) 
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