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efficiency in flight is its airfoil geometry. Therefore, close examination of the flow 

around an airfoil and an accurate determination of its effectiveness is crucial to the 

development process for every aircraft. Low Reynolds number flows pose an added layer 

of difficulty as airfoils in this regime tend to exhibit complex phenomena, such as 
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CHAPTER I 
 

 

INTRODUCTION 

 

Brief History of Airfoil Development and Testing 

At the heart of any aircraft design there resides a seemingly simple yet complex shape 

which defines many of the performance characteristics an aircraft exhibits. The airfoil has such a 

powerful impact on an aircraft’s abilities that its selection should always be given heavy 

consideration and this was realized before the first aircraft ever took to the skies. The earliest 

work on the development of airfoil sections began in the late 1800’s. An experimenter by the 

name of H. F. Phillips patented a series of curved wings for airplanes in 1884 by copying the 

convex upper surface and concave lower surface of bird wings [4]. This, along with similar 

efforts conducted by Otto Lilienthal led to the work of the Wright brothers implementing these 

types of airfoils in their infamous Wright Flyer. It is interesting to note that these early tests of 

airfoil sections were done at extremely low Reynolds numbers due to the nature of early flying 

machines. Before this moment in time however, Phillips took his patented airfoil designs and then 

subsequently tested them in one of the first wind tunnels which utilized a self-designed steam 

injector in the flow generator.  

This process foreshadowed a precedent that has lasted through the current modern age of 

development and testing of airfoils. Nearly every successful airfoil up to this day and age has at 

one time or another passed through the aerodynamic gauntlet known as the wind tunnel. Other
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methods, primarily numerical and computational ones, have been contrived to try and test the 

performance characteristics of airfoil sections, but the wind tunnel still remains as the principal 

tool in the airfoil design process. There is a reason this method has become so engrained in the 

development and testing of airfoils and it comes down to one central idea: there is no better way 

to obtain real-world performance characteristics than by introducing it to the real-world. Direct 

measurement of lift and drag are relatively easy to obtain without many assumptions being made. 

However, the wind tunnel, despite its ability to closely mimic the environment an aircraft will 

reside in, has a few debilitating drawbacks. To begin with, these testing apparatuses take up large 

amounts of space and are essentially immovable once installed so a dedicated area is usually 

required. Moreover, the cost of not only construction but operation of a wind tunnel can be 

limiting for anyone other than large organizations and institutions serious about airfoil design. 

The last major drawback of this method relates to the likelihood of errors arising in either the 

tunnel itself or the test section. The foremost allure of the wind tunnel is its ability to mimic real-

world conditions, but this requires careful massaging of the air to obtain smooth, laminar 

upstream flow which can be challenging and if unobtainable, testing becomes invalid. 

Furthermore, the test section must be carefully constructed as to avoid any variations in shape 

when compared to the actual airfoil coordinates. Even minor differences contribute considerably 

to the airfoil’s performance characteristics. Figure 1 gives an example of the dramatic 

performance characteristics achieved when careful shaping of an airfoil is employed. 

Additional options exist to test airfoils including tunnels utilizing other types of fluid 

such as water or oil to allow for easier measurement collection in some cases. There is also the 

rudimentary method of trial and error which has its obvious advantages and disadvantages. Other 

options include numerical models which implement various equations and complex mathematical 

techniques for obtaining performance characteristics. The last major alternative method for airfoil 

analysis includes the use of computational fluid dynamics software ranging in complexity from 

XFOIL/XFLR5, to SOLIDWORKS and ANSYS. The benefits of this method will be discussed in 



3 
 

a later section. Despite all of these alternative options existing, past research tells us that the 

primary method for validating an airfoil’s performance still remains the highly regarded wind 

tunnel. However, while the wind tunnel appears to be a near constant in the aerodynamic 

community, there is one key influence on the airfoil which is currently undergoing a shift in its 

historical trend. 

 

Figure 1 – The NACA 64-421 airfoil compared with a circular wire having the same drag, taken 

from Jones [5]. 

 

Reynolds Number Trends 

 In the early age of aviation, an aircraft’s typical mission is not much different than the 

typical missions of an aircraft today. It can essentially be reduced down to the simple action of 

transporting a payload, which may represent people, goods, weapons, sensors, etc., from one 

location to another as efficiently as possible. While the general mission itself has not changed 

since the introduction of the airplane, the method in which it accomplishes the mission has 

transformed drastically through the years.  

Early on, piston driven aircraft dominated the skies and one of the apparent goals of each 

successive design was to fly faster than its predecessor thus reducing the time spent flying 

between locations, improving efficiency. Simultaneously, most aircraft were becoming larger in 

size and this combined with the increase in speed allowed greater payload capacities, thus once 
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again improving efficiency. Therefore, for a while, the majority of aircraft innovation centered on 

increasing size and speed. Although the speed at which an aircraft will fly is an important factor 

in the development of airfoils, a much more useful and insightful parameter for those who work 

in the field of airfoil design is the Reynolds number. This dimensionless number is a function of 

not only an aircraft’s velocity, but also its scale and the environment in which it flies. More 

specifically, the Reynolds number is proportional to the product of the airspeed and a 

characteristic length divided by the kinematic viscosity of the fluid. From this, it is easily 

concluded that as aircraft designs increase in scale and fly faster, the corresponding Reynolds 

number also increases. 

 

Figure 2 - Top manned, air-breathing aircraft speeds and their dates of record [6]. 

Consequently, it is safe to say that throughout history this number has steadily risen over 

the years as more technological advancements are being made. Eventually jet engines were 

introduced in the mid 1900’s increasing the rate at which speed records were being broken and 

airframe sizes continued to grow accordingly, compounding the increase in Reynolds number 

values. Figure 2 shows the trend in airplane speeds throughout history from the days of the 

Wright Flyer to current times. One thing to note with this figure is that it only includes the speed 

records of manned aircraft flights. In the modern age of aviation, unmanned aircraft are becoming 
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more and more prominent for various reasons. The Federal Aviation Administration (FAA) 

releases a yearly aerospace forecast which now includes predictions for unmanned aerial systems 

(UAS) and small unmanned aerial systems (sUAS) numbers for the US. Their latest forecast 

released in 2018 shows the rapid increase in UAS and sUAS units throughout the country. 

Figures 3 and 4 represent the expected number of units in the model fleet and non-model 

(commercial) fleet respectively. 

 

Figure 3 - Total US model fleet predictions through 2022 [7]. 

 

Figure 4 - Total US non-model fleet predictions through 2022 [7]. 

 With this substantial increase in unmanned aircraft comes new technologies and designs 

to support their missions including a large amount of attention placed on airfoils. There are a 
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range of typical design problems aerodynamicists are faced with including but not limited to high 

lift, thick, laminar, transonic, low moment, and multiple design point airfoils. One of the more 

recent and emerging issues relates to low Reynolds number airfoil design which is where a large 

portion of fixed-wing unmanned aircraft reside. Granted, a great portion of these forecasted UAS 

and sUAS numbers are likely going to be rotor-wing vehicles; however, it is still relatively safe to 

assume fixed wing vehicles are also increasing, therefore airfoil research and innovation will be 

important. Furthermore, these figures only represent model and non-model (commercial) fleet 

numbers. Many larger UAS, weighing more than 55 pounds, are operated within organizations 

and agencies which have their own procedures for authorization and thus the FAA states that they 

do not have the equivalent level of understanding of the fleet numbers and trends in the growth of 

these types of UAS [7]. This means an entirely different group of unmanned aircraft exists with 

quantities that are more difficult to predict and track their growth trends. However, with the 

recent announcements and introductions made by these organizations and agencies like the 

military, local and state governments, Customs and Border Patrol (CBP), etc., it can easily be 

concluded that fixed wing unmanned aircraft which require tailor-made airfoils are on the rise.  

 The reason behind this rapid growth of unmanned aircraft is arguably primarily because 

of the safety they offer. Instead of a manned aircraft entering a hostile situation, one can simply 

send an unmanned aircraft as its replacement without risking the life of a pilot. However, the 

second reason is without a doubt their unequivocal versatility in virtually every mission and 

environment any manned aircraft flight envelope would include. For example, high altitude flight 

which was previously cutting-edge and pushing the limits of the human body has now been all 

but mastered through the utilizations of unmanned aircraft. By definition, their versatility allows 

them to operate in a wide range of applications which in turn means that they exhibit a wide range 

of speeds, scales, and altitudes. Building off of this idea, it can be seen that unmanned aircraft 

operate across a wide range of Reynolds numbers as well. By contrast, as previously noted, up to 

this point aircraft have predominantly been increasing in size and speed. However, now with the 



7 
 

sudden and rapid introduction of unmanned aircraft, there are specialized fields and applications 

that actually require them to operate in a capacity which reduces either their speed or size, fly 

higher, or any combination thereof. This means that Reynolds numbers in these situations will 

actually decrease. Lissaman notes in his 1983 paper back when unmanned aircraft were first 

being heavily presented that this introduces for the first time an aerospace technological 

requirement for low-Reynolds-number airfoils [8]. Figure 5 shows a spectrum of typical 

Reynolds numbers for various flyers from insects to airships and highlights the fact that most 

aircraft operating in lower Reynolds numbers fall into the “model airplane” category and can vary 

across a wide range of values from roughly 103 to 106. 

 

Figure 5 - Flight Reynolds number spectrum [8]. 

 

Motivation 

Most of these simple aircraft utilize airfoils designed from trial and error methods where 

optimization is extremely limited or completely nonexistent. Although there are instances where 

advanced numerical flow solvers coupled with optimization techniques have produced high 

performance airfoils [2], this is a rarity when it comes to typical low Reynolds numbers such as 

those at or around 105. There is a general lack of standard design methods for these when 
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compared to airfoils of higher Reynolds number lineages. When it comes to lower Reynolds 

numbers in this regime, an added layer of difficulty arises. Accurate and efficient modeling 

becomes laborious due to its flow characteristics being vastly different from that of higher 

Reynolds numbers. Airfoils cannot simply be scaled from larger to smaller ones. They must be 

purposefully and individually researched just like their larger counterparts. So the obvious action 

would be to use the wind tunnel to assist in the development of these new airfoils. However, as 

was mentioned previously, the costs of this method can quickly stifle any research efforts 

especially as the number of iterations propagate. One may argue that to avoid this pitfall, 

numerical methods can be employed; however, this process can be non-intuitive and difficult to 

execute, not to mention the fact that in some instances the amount of assumptions required to be 

made in order to obtain a solution can be so great that the solution itself is no longer valid. 

Therefore, computational methods may prove to be able to lend a hand in rapid airfoil design 

processes where time and resources are limited. 

 

Objective 

The present work aims to assess the accuracy and practicality of computational fluid 

dynamics software for the use in airfoil design through the comparison of empirical and measured 

performance characteristics data. Current software provides the user with an immense amount of 

power when used correctly that, if validated, could offer an alternative or supplemental approach 

to wind tunnel testing and complicated numerical methods. The first step in validating this 

approach involves investigation of pertinent literature material existing on the topic of issues and 

phenomena related to airfoils in low Reynolds number flow regimes. A collection of empirical 

data will need to be gathered on a selected number of airfoils ranging in various shapes to ensure 

the software is versatile enough to handle the diversity. The literature investigation should reveal 

common airfoils analyzed in typical low Reynolds number aerodynamic studies which will be 

used to establish a test matrix for this study as well. To run the study, a particular software known 
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as SOLIDWORKS with a flow simulation add-on has been selected for reasons which will be 

discussed in a later section. From here, the test will be conducted and measured data will be 

compared to the empirical data gathered from various past studies. Afterwards, the results will be 

presented and their validity evaluated. In the event that the software is proven valid, suggestions 

will proceed discussing any discovered simulation options or tactics producing desirable 

solutions. 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

Low Reynolds Number Airfoil Flow Phenomena 

 As was briefly mentioned previously with the help of figure 5, low Reynolds number 

airfoils have an operational range which encompasses a wide portion of the spectrum with its core 

hovering around 105 for most typical unmanned aircraft applications. However, unlike their 

traditional higher Reynolds number counterparts, this lower range introduces more complex flow 

phenomena making analysis of an airfoil’s performance more challenging. A NASA contractor 

report [9] conducted a survey of low Reynolds number airfoil characteristics and, in one of its 

sections, breaks the spectrum of Reynolds numbers into twelve bands with brief descriptions on 

their significance. The slice ranging from 70,000 to 200,000, which corresponds with the “core” 

of the spectrum mentioned a moment ago, describes a phenomena known as a laminar separation 

bubble (LSB) as being a significant potential performance robber in this region of flight. Adjacent 

Reynolds number bands also exhibit this performance robber which most researchers argue is the 

leading culprit to the degradation in performance relative to airfoils at higher Reynolds numbers 

[3]. Therefore, it is logical to explore this and other flow phenomena which cause substantial 

impacts to the performance characteristics of airfoils in low Reynolds number regimes.  

The laminar separation bubble is one of the primary indicators of low Reynolds number 

airfoils. Their formation results from the inability of the incoming laminar flow to stay attached to 
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the upper surface of the airfoil. Rather than transitioning directly from laminar to turbulent, the 

flow first separates, then transitions before reattaching later downstream. Thus, the iconic laminar 

separation bubble is created. Figure 6 describes the structure of the flow before, during, and after 

the LSB.  

 

Figure 6 - Structure of a laminar separation bubble and the surrounding flow [8]. 

 This flow phenomena can be large enough to see with the relatively unaided eye, 

highlighting the considerable amount of influence it imparts on the airfoil. Like most variables in 

this topic, the Reynolds number has been shown to also affect the length of laminar separation 

bubbles. Longer bubbles generally extend over 20-30% of the airfoil at a Reynolds number of 

around 105 [8]. Figure 7 was obtained from an experimental wind tunnel study on the E387 airfoil 

conducted at a Reynolds number of 300,000 and an angle of attack of 5 degrees. It depicts the 

relative size of a laminar separation bubble compared to the airfoil. In this particular real-world 

case, the bubble extends across roughly 20% of the upper surface. Also observed in figure 7 is the 

oil flow visualization across the airfoil which clearly demarcates the different regions and flow 
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features. Separation occurs near 0.40c and the laminar separation bubble lasts until reattachment 

at roughly 0.58c. After this point, the boundary layer flow is turbulent and tends to clear away 

more oil on the surface of the airfoil. This is visualized by the darker region post-reattachment as 

compared to the lighter-colored laminar region before separation which produces 

characteristically smooth oil streaks.  

 

Figure 7 - Flow visualization on the E387’s upper surface at Re = 300k and α = 5° [3]. 

 In the event that a laminar separation bubble does occur, an associated pressure drag is 

also present which can be relatively high for these airfoils where lift is a precious commodity due 

to the low Reynolds numbers wherein which they operate. An approximate solution to the drag 

contribution resulting from a bubble is presented by Drela [10] which ultimately concludes that 

the drag increment due to a laminar separation bubble is proportional to the product of the 

average mass defect 𝝆�̅�𝒆𝜹
∗ and drop in the edge velocity ∆𝒖𝒆. Using this information, a sense of 

the kind of effect LSBs can impart on the drag performance of an airfoil is able to be developed. 

When the drag increment is plotted in relation to the transition location, as is done in figure 8, a 
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clear picture emerges. General trends reveal there is an optimum where the bubble drag increment 

can be minimized. In case 1, for example, transition occurs before a laminar separation bubble 

emerges. Prior to transition, the flow is laminar and therefore drag increases slowly. However, 

after transition the flow is turbulent, producing a higher increase in drag.  

 

Figure 8 - Effect of transition location on drag increment [3]. 

Comparing this case to case 3 where transition occurs much later along the chord reveals 

a much different flow phenomena. In this instance, the location of transition is so far down the 

chord that a large bubble manifests causing a dramatic spike in drag. Despite a longer laminar 

region before transition, which initially produces a much more favorable drag performance, the 

resulting laminar separation bubble is large enough to nearly outweigh any of these previous 

benefits in the end. In a moderate approach represented by case 2, transition occurs after case 1 

but before case 3, and in doing so exhibits a small bubble which produces only a minor spike in 

drag. In the end, for this scenario, case 2 yields the least bubble drag increment and represents an 

ideal solution while cases 1 and 3 represent the two limiting cases. Translating this information 

into a generalized concept leads to the awareness that there is an optimum where the bubble drag 

increment can be minimized [3]. A trade-off occurs, where an ideal case would prevent any 

bubble from forming at all. However, due to the low Reynolds number flow regime, the location 
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of transition is often so far forward that the subsequent turbulence ruins any potential decrease in 

drag. A delicate dance ensues with the positioning of the bubble to obtain an optimized solution 

that not only minimizes drag, but also maximizes lift. Lissaman [8] presents figure 9 which 

demonstrates the importance of considering the airfoil polar as well as its maxima and minima in 

lift and drag. Therefore, now knowing how much not only the drag performance but also the lift 

performance is affected by a laminar separation bubble, controlling the size and location of the 

bubble is imperative to the success or failure of an airfoil design in this regime. 

 

Figure 9 - Effect of a laminar separation bubble on lift-drag polar [8]. 

 

Airfoil Geometry 

 The primary method for controlling the position and scale of a laminar separation bubble 

is through its shape. At the beginning of this paper, figure 1 illustrated the impact shaping has on 

an airfoil’s performance characteristics. The same holds true for any airfoil in any flight regime, 

including low Reynolds number flows. In particular, the geometry of the pressure recovery region 
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is one of the most important design points of an airfoil. This is especially true in low Reynolds 

number airfoils because this region usually coincides with a laminar separation bubble. Therefore, 

careful and precise design of the pressure recovery region allows desired manipulation of the 

bubble. Figure 10 displays three typical geometries seen in low Reynolds number airfoils. 

 

Figure 10 - Flat, convex, and concave pressure recovery regions. 

 The first is a well-known low Reynolds number airfoil that exhibits a relatively flat 

pressure recovery region. The E387 has been the workhorse when it comes to analysis at low 

Reynolds numbers which is why it is often used for verification and validation of test setups [11]. 

However, a far more interesting discussion on the topic of various pressure recovery geometries 

comes from the following two airfoils. The FX 63-137 and M06-13-128 represent more dramatic 

pressure recovery geometries. The first of the two is also a very popular airfoil and is best 

characterized by its highly convex pressure recovery region while the latter of the two exhibits a 

region that is highly concave. There are various motives to electing between each of these 

geometries but the greatest is arguably the impact they have on the aerodynamic performance of 

the airfoil. For instance, convex recoveries tend to be associated with relatively high (negative) 

pitching moment while Stratford-like concave recoveries produce low pitching moments. 

Additionally, the trailing-edge stall becomes more abrupt as the recovery becomes less convex 

and more concave [2]. Therefore, with the FX 63-137 it is customary to see high pitching 
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moments with slow trailing-edge stall characteristics while the classic Liebeck-type M06-13-128 

displays the opposite. However, these characteristics are usually ancillary to the maximum lift 

coefficient. The FX 63-137 is a good example of increasing the 𝐶𝑙,𝑚𝑎𝑥 primarily through added 

pitching moment. In contrast, airfoils such as the M06-13-128 are good examples of increasing 

the 𝐶𝑙,𝑚𝑎𝑥 mainly through the use of a Stratford pressure distribution where the boundary layer is 

on the verge of separation across the entire region. Figure 11 provides a nice picture of several 

trend lines that, together with the pitching moment and recovery geometry information, can be 

utilized to deduce a strategy for high-lift low Reynolds number airfoil design. It includes a broad 

selection of various airfoils typically used in low Reynolds number applications. 

 

Figure 11 - Low Reynolds number airfoil characteristics as pitching moment and recovery 

geometries vary [2]. 
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Forced Flow Control 

 The method of carefully shaping an airfoils geometry to obtain a desired transition 

location may be thought of as a relatively passive approach. Other methods incorporate a more 

direct approach to produce the level of turbulence needed to force transition in the flow. Lissaman 

[8] describes these transition-promoting devices as turbulators which range from simple 

mechanical roughness elements in the form of serrations, strips, bumps, or ridges near the leading 

edge of the airfoil, to complex transpiration methods using air jets emitted from surface orifices 

of fractional-percentage chord length, to even more exotic procedures like firing sound waves of 

frequencies calculated to cause transition at the wing surface, or mechanically vibrating the wing 

itself. Turbulators in theory offer an apparent cure-all approach to transitioning the flow at will. 

However, the design of these elements are usually subtle for one reason. Whatever transition-

inducing mechanism is selected must be of significant magnitude to induce transition to turbulent 

flow suppressing laminar separation while simultaneously ensuring the boundary layer does not 

grow to overwhelming proportions that in turn cause an increase in drag, nullifying any potential 

benefit initially sought. Therefore, these devices must be proven to show an increase in 

performance before they earn their place in any design. Lissaman [8] notes that the effect on the 

(𝐶𝐿/𝐶𝐷)𝑚𝑎𝑥 performance parameter is subject to the Reynolds number. With fixed strips of 

particular size and placement, at a Reynolds number of about 40,000, an increase of about 20% in 

this parameter is observed. When the Reynolds number is raised to 60,000, the increase is 

reduced to only 10%, and at a Reynolds number of 100,000, no distinct improvement is seen and 

some airfoils tested actually experienced a reduction in this parameter.  

 

Utilization of Software in Analysis Efforts 

 Due to the aforementioned complexity involved with analysis of low Reynolds number 

airfoils, software techniques have found their way into the design process. Computational fluid 

dynamics (CFD) software offer an element of preciseness that experimental wind tunnels strive to 
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meet. This is not to say computer simulations are exempt of other limitations; however, 

experimental studies are often conducted under the assumption that the flow is steady, and only 

time-averaged flow features are measured with the help of rudimentary visualization techniques. 

Granted, this method has been proven satisfactory for most applications for some time now, but it 

has been discovered that inconsistencies exist in data acquired by various experimental studies. 

For example, Nagamatsu and Cuche [12] revealed that the lift coefficient was not dependent to 

variations in the Reynolds number while several other studies clearly state the opposite. 

Ekaterinaris, Chandrasekhara, and Platzer [13] as well as Pohlen and Mueller [14] uphold the 

notion that the lift coefficient experiences a strong dependence on the Reynolds number. 

Therefore, a more consistently accurate and precise approach is naturally desired. Drela [18] 

notes that effective airfoil design procedures require a fast and robust analysis method for on-

design and off-design performance evaluation. He goes on to describe for low Reynolds number 

airfoils, such as those below 500,000, the demands on the analysis method becomes especially 

severe. Not only must the complex physics of laminar separation bubbles be captured, but the 

solution algorithm must be able to handle the very strong and nonlinear coupling between the 

viscous, transition, and inviscid formulations at a separation bubble [18]. With the ramp-up in 

testing of more arduously obtainable flows such as those in low Reynolds number regimes and 

the costs, both experimental and financial, sometimes associated with wind tunnels, software 

presents an alternative, and at the very least supplemental, method. Several options exist when it 

comes to computational fluid dynamics software and the list is constantly in flux due to never-

ending technological advancements. Research in the recent past has utilized software such as 

XFOIL [16, 18] which is an interactive, command line driven, program for the design and 

analysis of subsonic isolated airfoils [19]. Other researchers have made use of various two-

dimensional viscous-inviscid design and analysis codes like ISES [17, 21] or other similar codes 

[15]. While these programs and codes offer instrumental aid in the development and analysis 

process of low Reynolds number airfoils, there are currently more powerful, versatile, and user-
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friendly software packages available which introduce new and unparalleled design methods. 

Programs typically used include ANSYS Fluent [22], Star-CCM+ [23], SOLIDWORKS [24], 

Autodesk [25], and many more. The fundamental basis of nearly every current CFD package 

revolves around the Navier-Stokes equations paired with strategic meshing techniques. However, 

these highly intelligent computational fluid dynamics tools are a double-edged sword. As the 

saying goes, with great power comes great responsibility. In the proper hands they provide a 

wealth of insight and information; however, the user-friendly nature of these programs make way 

for botched experiments and misinterpretation of results at the hands of irresponsible operators. 

For this reason, computational fluid dynamics software demands respect and in turn will offer a 

powerful alternative to traditional low Reynolds number airfoil design techniques. 
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CHAPTER III 
 

 

METHODOLOGY 

 

Software Selection 

 As was mentioned previously, each software package offers advantages and 

disadvantages across the board. However, the goal of this study is to assess the abilities of one in 

particular. The platform chosen for this study was SOLIDWORKS Flow Simulation primarily 

due to its ease of operation and increasingly prevalent use. Speaking towards the latter, this 

software is already well known for its 3D modeling capabilities and capitalized by organizations 

in both commercial and government sectors. Therefore, industry workers are likely to be familiar 

with the user interface of SOLIDWORKS. However, the creators of this software, Dassault 

Systems, strive to minimize learning curves in order to maximize output performance which 

means even new users are able to adapt quickly. Moreover, little to no information was found 

regarding low Reynolds number airfoil studies employing SOLIDWORKS. In the few studies 

which did, researchers used it solely for 3D modeling purposes [26]. As a result, this study will 

fill a gap in the field pertaining to computational fluid dynamic analysis of low Reynolds number 

airfoils. 

Flow Simulation is a convenient add-on to the basic SOLIDWORKS platform which, at 

its core, enables the operator to quickly and easily simulate various fluid flows around specified 

airfoil designs to calculate its performance and capabilities. This essentially creates a virtual wind 
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tunnel which operates quicker and at a fraction of the financial cost of its physical counterpart. 

Further glaring advantages include perfect airfoil modeling sourced directly from its coordinates 

as well as negation of wall effects. Options within the SOLIDWORKS Flow Simulation package 

allow the user to tweak input parameters in order to acquire specific fluid flows and simulation 

settings which yield powerful effects on the results. Once the user has provided the software with 

a 3D model of the desired airfoil from its coordinates, these parameters are applied before testing 

begins. The process can be broken into three distinct sections: initial conditions, calculation 

controls, and goal selections. Each section represents a beginning, middle, and end, respectively, 

to the simulation process. 

 Initial conditions of the flow include obvious and necessary manipulations such as fluid 

type, pressure, angle of attack, and velocity, which in turn varies the Reynolds number. Figure 12 

represents example initial and ambient condition parameters for a Reynolds number case of 

200,000 at sea level. Additional basic options include analysis type, whether internal or external, 

and flow type consisting of laminar, turbulent, or both. The software also allows the user to 

specify wall conditions, which is unfortunate nomenclature as this does not refer to 

aforementioned wall effects. Rather, wall conditions correspond to surfaces on the model itself, 

providing the ability to apply a thermal condition or roughness parameter. This is unrelated to 

wall effects and would also be nonsensical since the simulation operates in a “wall-less” 

environment. Turbulence parameters for the incoming flow can be manipulated as well through 

either intensity and length or energy and dissipation values. Further initial conditions include 

defining the three dimensional space in which the simulation is performed. This is accomplished 

through what is called a computational domain. There are two types to choose from, a 2D 

simulation or a 3D simulation, and from here the boundary conditions and size of the testing 

environment are specified. Finally a mesh must be constructed in order to provide the software 

with discrete cells to perform calculations utilizing the Farve-averaged Navier-Stokes equation. 

Two separate meshes may be applied to the model. The first, a global mesh, is employed 
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throughout the entire computational domain and allows the user to define a level of initial mesh 

as well as a ratio factor. The level of initial mesh is usually the first parameter set in the meshing 

process and consists of selecting a value on a scale from 1 to 7 which represents relative starting 

sizes of cells, with 1 being largest and 7 being smallest. A ratio factor is also used to prioritize 

mesh density around the model rather than uniformly throughout the computational domain. At 

higher ratio factors, the mesh is denser around the model and sparser near the outer boundaries. 

The second, a local mesh, is only employed as the name suggests on a local region of the 

computational domain. This is more advanced than the global mesh and is primarily used in key 

areas of highly complex model geometry or fluid flows.  

 

Figure 12 - Initial and ambient condition parameters for a sea-level 200,000 Reynolds number 

test case. 

 Calculation controls take initial conditions and begin to outline a strategy as to how the 

simulation will be conducted. This is accomplished through refinement and finishing criteria. 

Under refinement, a global domain parameter ranges from level 0 (disabled) to level 7. Each level 

corresponds to the number of refinements the simulation will conduct on the mesh. A refinement 

simply means each cell is segmented into smaller successor cells. In this process, each cell is 
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usually divided into 4 equal parts which are each subject to later refinements in the mesh. 

Therefore, with a global domain parameter of level 3 for example, each cell can ultimately be 

broken into a total of 64 smaller cells. Table 1 reveals, beginning with just one cell, the final 

number of cells that would exist from consecutive refinements depending on the level selected. 

This revelation highlights the immense potential computational power present in this software to 

analyze highly intricate flows.  

Level 0 1 2 3 4 5 6 7 

Number of Cells 1 4 16 64 256 1024 4096 16384 

 

Table 1 - Resulting number of cells after various refinement levels acting on one initial cell. 

Note, however, that the software only refines a cell when the fluid flow is complex 

enough to require it. This reduces computation time and increases simulation efficiency without 

compromising integrity of the results. Figure 13 shows an E387 airfoil section with a global 

domain parameter of level 5. Within the figure it is clear that there are 5 distinct refinements 

occurring as necessary as the flow progresses towards the airfoil’s leading edge. The large cells at 

the left of the figure represent the initial global mesh before any refinements have been made 

whereas the dense mesh cluster adjacent to the surface of the airfoil depicts the mesh refined 5 

separate times. Note the selective nature of this refinement process as mentioned previously 

which is biased towards complicated flows. This is important because the user also defines an 

approximate maximum number of cells available to the simulation. If refinements are made in 

unnecessary regions, the total number of cells grows to unmanageable amounts. The simulation 

time would consequently increase exponentially. A refinement strategy is also selected that 

determines criteria for when these refinements take place and how often they do so. Options 

range from periodic occurrences relative to either the number of iterations or passes a fluid 

particle makes, to a goal convergence based method, as well as a manual mode. Finishing criteria 

intuitively includes parameters which determine when the simulation is completed. There are five 

different available criteria to stop including goals convergence, iterations, travels, calculation 
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time, and refinements. A combination of any may be specified and employed to ensure proper 

results are obtained. 

 

Figure 13 - Mesh refinement with a level 5 global domain parameter on an E387 leading edge. 

 The last section of the simulation process involves setting the goals that will be tracked. 

An extensive list includes parameters such as pressure, velocity, torque, and much more. Only the 

selected parameters will be assigned as goals. After completion of the simulation, these values are 

available to the user whereas unselected parameters cannot be directly obtained through the 

software. Indirect methods must be employed with existing goals or the simulation must be rerun 

with the proper goals selected. During the simulation, these goals can be plotted in real-time to 

provide the user with a sense of convergence. This is an important indicator which demonstrates 

the status of the simulation, whether it is near completion or not. Throughout the process, goal 

values are tracked in these plots and while they may begin sporadic, ultimately they should 

converge to a single value. The recent history of values should exhibit a near-zero standard 

deviation. Figure 14 displays a typical goal plot with converging values of forces in the y-

direction corresponding to coefficient of lift. This is the critical objective every simulation is 

trying to achieve. However, there are pitfalls which must be recognized in order to avoid false 
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results. Meshing and refinement parameters will make or break a simulation’s validity. A goal 

will often converge well before the projected execution time is reached only to diverge once a 

refinement happens and figure 14 actually displays this. This is due to complexities in the flow 

being too small to practically consider in calculations when the cell is large. Once a refinement is 

made, the cell splits and suddenly the insignificant flow phenomena is now significant in its new 

smaller cell and thus impacts goal convergence. Therefore, it is imperative that refinements in the 

mesh are made as many times as possible to capture all of the intricate details in the fluid flow. 

Theoretically an infinite number of cells would fully capture every complexity, but practically 

this is impossible. As the number of cells grow, the required calculation time grows at a faster 

rate. As a result, a trade-off occurs where an adequate number of cells must be used in order to 

find a suitable approximation of the final answer. Some simulations require a more precise 

solution requiring more cells and a longer processing time while others have greater tolerances 

and finish more rapidly with fewer cells. Typically a safe way to approach this issue is by waiting 

for convergence and then refining the mesh once more either manually or automatically to ensure 

the values remain converged.  

 

Figure 14 - Convergence of y-direction force goal for a M06-13-128 simulation. 

 

Airfoil Selection and Empirical Data Collection 

 Low Reynolds number airfoils lack empirical data when quantitatively compared to their 

higher Reynolds number counterparts. However, the complex mechanisms of separation, 
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transition, and turbulence have been the focus of many investigations over the past century. The 

phenomena of separation bubbles was first studied by Jones [28] in 1933 and Schmitz [27] 

performed numerous experiments on model airplanes operating in the low Reynolds number 

regime. Then in the early 1980s, this particular area of study experienced a surge thanks to the 

rise of unmanned aircraft and other similar applications. A deluge of studies were conducted in 

wind tunnels, gathering data on airfoils specifically designed for low Reynolds number regimes. 

As a result, despite this relative scarcity of empirical data when compared to more traditional 

Reynolds number airfoils, there exists a sufficient amount of resources which provide data useful 

to this study. Common airfoils have been used across various studies in order to cross-reference 

data and provide a system of checks and balances ensuring that which is being presented is 

supported in the aerospace community. Therefore, through the rigorous review of literature 

exploring many low Reynolds number airfoils tested in various experiments, a careful selection of 

the frequently used airfoils was made for this study as well. The primary airfoil which stands out 

for repeated testing is the Eppler E387 as pictured in figure 15. This airfoil has several sources of 

wind tunnel data to compare with and exhibits relatively standard geometry which should be a 

great candidate for testing in the SOLIDWORKS Flow Simulation software. From here, it would 

be remiss to select other airfoils with similar geometry as this would not strain the capabilities of 

the software. Rather, more atypical airfoils will be nominated to ensure the software can handle a 

wide assortment of geometries. With this new selection criteria, the primary airfoil which stands 

out for repeated testing and more abnormal geometry is the Wortmann FX 63-137 as pictured in 

figure 16. This airfoil also comes with a considerable amount of wind tunnel data and is unique in 

that it exhibits a dramatic convex pressure recovery region compared to the relatively docile 

pressure recovery region of the E387. The third and final airfoil will then naturally exhibit a 

geometry on the opposite end of the spectrum. The Miley M06-13-128 demonstrates an airfoil 

with a reasonably intense concave pressure recovery region and is pictured in figure 17. It too 

comes with sufficient empirical data and will test the software’s limits alongside the FX 63-137.  
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Figure 15 - SOLIDWORKS generated model of the E387 airfoil. 

 

Figure 16 - SOLIDWORKS generated model of the FX 63-137 airfoil. 

 

Figure 17 – SOLIDWORKS generated model of the M06-13-128 airfoil. 

 All three of these airfoil sections were chosen specifically for their accompanying 

empirical data and common use in the low Reynolds number aerospace community. Therefore, 

because of their familiarity, it is imperative that each airfoil is tested with rigorous validation 

methods to ensure a fair comparison is made between SOLIDWORKS Flow Simulation results 

and the data gathered from past wind tunnel studies. The first step in accomplishing this task is to 

guarantee accurate model generation within the software. Fortunately, there is a method which 

produces an exact match of each section using their airfoil coordinates. These coordinates can be 

found in table 6 of the appendix. The software allows the user to create a spline curve through 

specified XYZ points, which in this case are the coordinates. The X and Y coordinates would 

remain unaltered and zeros would be entered in the Z column. At this point, simple 3D modeling 

techniques are employed to set the airfoil at a zero angle of attack. This allows the simulation to 

adjust the incoming flow to a desired angle of attack without moving the physical model itself. 
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Depth is then applied to the airfoil, essentially creating a wing. The specific depth is arbitrary 

since the simulation requires a 3D model to examine and will only grab a partial section of this 

wing. This is akin to a wind tunnel experiment where the airfoil is stretched from wall to wall, 

only in this case there are no wall effects to account for. In fact, this entire process is 

fundamentally just another wind tunnel set up, except virtual and without a lot of limitations such 

as airfoil geometry precision. Using this method an exact airfoil replica is created without any 

imperfections or defects that might occur in traditional experiments which use physical models. 

For instance, these physical models have a practical threshold on surface roughness. It is 

impossible to obtain a completely smooth surface in real-world applications, but software has the 

ability to do this with ease. This along with other benefits will lead to a reduction in experimental 

variations and allow for more cross analysis between studies. With more cross analysis, the time 

from concept to reality is shortened thus improving overall advancements in the aerospace field.  

 Collecting appropriate empirical data is therefore the logical next step in this 

investigation and validation process. As stated previously, there are numerous sources available 

for each airfoil, but its breadth must be narrowed to a practical amount for the purposes of this 

study. Since this study is primarily based on comparing simulation data with empirical data, 

selected sources must be representative of common experimental parameters utilizing the above 

airfoils. These parameters include proper Reynolds numbers and angles of attack. With this in 

mind, trends appear in the data suggesting typical ranges of Reynolds numbers spanning from 

roughly 50,000 to 500,000 and traditional values for angles of attack from -5 degrees to around 

10 degrees. One source in particular stands out as it contains all three airfoils measured in the 

same wind tunnel experiment. The University of Illinois at Urbana-Champaign (UIUC) Low-

Speed Airfoil Test program [31] conducted an analysis of over 30 airfoils at low Reynolds 

numbers providing an extensive summary of performance data. The E387 was tested at Reynolds 

numbers of 61,500, 101,800, 152,700, 203,800, and 305,200. The FX 63-137 was tested across a 

smaller range of Reynolds numbers comprised of 102,100, 204,000, 254,900, and 306,300. With 
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an even smaller range, the M06-13-128 was tested at Reynolds numbers of 203,800, 203,900, 

305,200, and 306,200. Mueller [30] also conducted tests of all three airfoils at various Reynolds 

numbers and provides another set of comparable data. Lastly, since the E387 airfoil is widely 

used in the low Reynolds number aerospace community, data from three other wind tunnel 

facilities will be cross-examined, including NASA Langley Research Center’s Low-Turbulence 

Pressure Tunnel [32], Stuttgart [36], and Delft [37]. One thing to note in each of these data sets is 

the parameter imprecision which is clearly visible in the Reynolds number values from the UIUC 

tests. For example, a test was conducted at a value of 61,500 rather than 60,000. This is likely due 

to the difficulty in dialing in exact wind tunnel velocities, and minor differences are expected to a 

certain extent. Every other test identified for the purposes of this study varied from its target as 

well, with the largest Reynolds number deviation of about 6,000. This deviation is slight, only 

equating to a difference in flow velocity of about 1 fps. Despite this, it is still important to 

highlight as it shows the inherent complications with wind tunnel methods and will no doubt have 

an impact on forthcoming results comparison. 

 

Simulation Testing Process 

 At this point, a test matrix can be developed to ensure a proper comparison of empirical 

data is made with simulation data gathered in this study. There are three primary test variables 

which will be used to assess the Flow Simulation software including the aforementioned airfoil 

sections, as well as Reynolds number and angle of attack. Due to the selection of airfoils and their 

available wind tunnel data, constraints are placed on the last two variables. Angle of attack is 

hardly affected, with typical values ranging from -3 degrees to 10 degrees. On the other hand, 

Reynolds numbers have been strategically selected to represent the “core” of the low Reynolds 

number spectrum. Three different values, 200,000, 100,000, and 60,000, were chosen. One 

arising issue is the absence of wind tunnel data for Reynolds numbers of 100,000 and 60,000 

owing to the lack of research in this area of study. Alternatives were explored but it was 
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ultimately determined that this selection remained the best course of action for validating 

SOLIDWORKS. There are still six sets of wind tunnel data to compare with, and these 

geometries and Reynolds numbers represent a comprehensive test bed. Therefore, the E387 will 

serve as the airfoil to compare across Reynolds numbers and 200,000 will serve as the Reynolds 

number to compare across airfoils. This test matrix is represented in table 2.  

 

Table 2 - Test matrix. 

 These parameters will be used alongside simulation options to investigate the software 

package capabilities. An initial set of options will be determined and serve as a starting point in 

this process of honing results. This preliminary set should be logical in the sense that every option 

is chosen in a way which theoretically yields an accurate solution. For example there is an option 

which allows the user to choose between internal and external flow, and in this application the 

obvious decision should be the latter. In turn, this becomes the first option selected in the initial 

set. Following this, time dependency is neglected, air is designated as the default fluid, and the 

flow type set as laminar and turbulent. The physical characteristics of the laminar separation 

bubble determine this setting. As mentioned previously, the flow begins in a laminar regime, then 

detaches and ultimately transitions to turbulent further down the airfoil. Therefore, the flow type 

should not need to be altered to a laminar only or turbulent only category. Next, the surface of the 

airfoil is assumed to be adiabatic and completely smooth with a roughness of 0 μin. Sea level 

conditions are set based on pressure and temperature values which can be seen previously in 

Angles of 

Attack

Reynolds 

Numbers
200,000 100,000 60,000

E387 E387 E387

FX 63-137 FX 63-137 -

M06-13-128 - -

Airfoil 

Sections

-3°, 0°, 3°, 5°, 7°, 10°
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figure 12. Finally, turbulence parameters including both intensity and length will initially remain 

at default values.  

This concludes general settings and a computational domain will now be defined. First, a 

2D simulation is chosen. This creates a condition of symmetry at the virtual walls and removes 

any wall effects such as buoyancy, solid blockage, wake blockage, or streamline curvature [31]. 

Then the size of the domain is defined based on the origin represented by the leading edge of the 

airfoil. The forward boundary is set one chord length away from the leading edge, then three 

chord lengths aft, followed by one above, one below, and finally a span of one half. Figure 18 

presents this initial computational domain around the E387 airfoil. The shaded volume represents 

the space which will simulate fluid flow and undergo various meshing and re-meshing processes. 

Notice the airfoil arbitrarily extends through each side of the domain. 

 

Figure 18 - Initial computational domain size. 
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Figure 19 - Three-view of the initial basic mesh. 

The global mesh is then set to an automatic type which limits the amount of user input 

required. The level of initial mesh is set to a value of 4 with a ratio factor of 2. This is a relatively 

unaggressive approach, but the aim is to defer proper scaling to the refinement process. By 

starting with a sparser mesh, computation time is minimized because the re-meshing procedure 

will identify where the flow is complex, calling for a tighter mesh, and ignore areas of the 

computational domain where the flow is elementary. Figure 19 displays a three-view of this 

initial basic mesh with these properties. It can also be seen that the front and top view differ from 

the side view in that each only has a mesh grid with one column and one row respectively. This is 

a result of the 2D symmetry condition imposed on the computational domain earlier. The current 

study assumes spanwise variations in the flow will be negligible, thus eliminating the need for 

spanwise meshing. The figure also illustrates the effects of the ratio factor. As was mentioned 

briefly before, the mesh is denser around the airfoil when compared to the outer edges of the 

computational domain. A higher ratio factor leads to a higher gradient in mesh density.  
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Calculation control options are then selected which determine simulation parameters such 

as its finishing and refinement settings. The criterion used to regulate when the simulation 

terminates will be convergence of goals and total number of travels. Additionally, the “all 

satisfied” parameter will be chosen to ensure every criteria is met, not just one. This will limit the 

possibility of false convergence and increase the simulation’s chances of obtaining optimal 

solutions. All goals will be under assessment and the total number of travels is set to a value of 5. 

The refinement level will be set to level 3 and the approximate cell count limited to 1,000,000. 

Currently this number, like any other setting, is just an initial starting point and may appear 

relatively low because as the flow becomes more complex, the required number of cells rises due 

to the amount of re-meshing that will occur. If this parameter is set too low, the cell limit will be 

reached before sufficient re-meshing takes place and errant simulation results are susceptible. A 

key influencer on the need for a large amount of cells is the laminar separation bubble. It is 

anticipated that this initial maximum cell count of 1,000,000 will be sufficient for cases where 

large LSBs are not present. Conversely, when larger LSBs do develop the cell count may need to 

rise significantly in order to capture the full dynamics. The next refinement option chosen will be 

to utilize a periodic strategy based on number of travels with an automatic relaxation interval. The 

simulation will begin calculations after 2 travels with a period of 1. A travel is essentially the 

number of iterations required for the propagation of a disturbance over the whole computational 

domain and a period specifies how often refinements are conducted. In this case, 1 period states a 

refinement is made after the conclusion of every travel, and 2 travels indicate that the flow will 

continuously pass over the airfoil in the length of time it takes to reach twice the previously 

indicated amount of iterations. By doing this, the objective is to have the flow fully established 

before calculations begin. Results may be impaired if the flow is still evolving and has yet to 

develop foreseen or unforeseen quasi-steady-state phenomena. Lastly, goals will be set to track 

forces in the x-direction and y-direction. The ultimate goal, though, is to acquire lift and drag 

coefficients which requires these goals to undergo a bit of manipulation. To begin with, these x-
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direction and y-direction forces need to be corrected for angle of attack in order to obtain lift and 

drag forces. This is accomplished simply with the following two equations.  

𝐿𝑖𝑓𝑡 = 𝐹𝑦 𝑐𝑜𝑠 𝛼 − 𝐹𝑥 𝑠𝑖𝑛 𝛼 

𝐷𝑟𝑎𝑔 = 𝐹𝑥 cos 𝛼 + 𝐹𝑦 sin𝛼 

 Without this correction, the lift and drag forces would not be perpendicular and parallel 

respectively to the chord line on the airfoil. From here, coefficients can now be easily calculated 

using the traditional equations as follows. 

𝐶𝑙 =
𝐿𝑖𝑓𝑡

1
2 𝜌𝑉

2𝑐𝑏
 

𝐶𝑑 =
𝐷𝑟𝑎𝑔

1
2𝜌𝑉

2𝑐𝑏
 

These lift and drag coefficients will become the primary quantitative tool in evaluating 

the SOLIDWORKS Flow Simulation software package. A lift curve and drag polar will be 

created for each airfoil at each Reynolds number. This results in a total of six lift curve plots and 

six drag polar plots to compare against empirical data. In addition to this quantitative data, 

observed physical phenomena from streamline sectionals as well as other various surface and cut 

plots will serve as sources of qualitative validations.  

 These quantitative parameters and qualitative observations will guide the progression of 

fine-tuning the simulation to obtain optimal solutions. The E387 airfoil will act as the primary test 

subject with the remaining two airfoils providing a supporting role in this honing process. More 

specifically, the E387 will be tested at one Reynolds number, preferably 200,000, and the 

simulation options will be tweaked until proper results are gathered. Only after this will the other 

Reynolds numbers and ultimately the other airfoils be tested. Therefore, the progression of tests 

will follow the sequence in table 3. Note that a test case spans all angles of attack mentioned 

previously in table 2, while a simulation is conducted at only one angle of attack. After each 

simulation, the obtained data will be plotted against empirical data and the flow characteristics 
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qualitatively assessed to determine the best course of action moving forward, either tweaking 

simulation options or leaving them unaltered for the next simulation. Once all simulations and 

test cases are complete, the results will be analyzed and discussed.  

 

Table 3 - Simulation testing sequence. 
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CHAPTER IV 
 

 

FINDINGS 

 

Simulation Parameter Discoveries  

 Initial testing revealed deficiencies in the chosen simulation options leading to varied 

results inconsistent with, but still relatively similar to, empirical data. This was anticipated and 

therefore changes were made in attempt to converge on the values observed in the wind tunnel 

experiments. Nearly every option was altered at some point or another with the exception of an 

external flow type, air as the operating fluid, and an adiabatic wall condition. Of the remaining 

altered parameters, some displayed greater effects on the results than others. Key influencers on 

the improvement of solution accuracy comprise the computational domain, meshing, criterion to 

stop, and refinement options. The leading influencer of the three was discovered to be the 

computational domain size. The initial region was represented in figure 18, however more 

accurate results were obtained with a considerably larger domain. It was found that, because the 

simulation was conducted in a 2D environment, the span of the region could be reduced to an 

incredibly thin dimension which helps reduce overall computation time. Conversely, every other 

dimension was required to increase. The forward section began with 1 chord length and 

ultimately finished at 3 chord lengths – a 200% increase. The aft section experienced a 67% 

increase, starting at 3 chord lengths and ending at 5, while the upper section increased 300% from 

1 to 4 and the lower section increased 200% from 1 to 3 chord lengths. Figure 20 displays this 
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final computational domain sizing. The above changes actually reduce the overall volume of the 

computational domain by 99%. However, isolating a 2D cross-sectional cut reveals the region 

increases its area by 600% which better reflects the difference between initial and final 

computational domain sizes. The drastic dissimilarity in beginning and ending volumes is due to 

the spanwise dimension which should have no impact on the accuracy of the solution. In fact, this 

final iteration is far more efficient, maximizing fluid flow area to ensure all phenomena are fully 

captured while at the same time reducing overall domain volume to reduce simulation times. The 

effects of this resizing is visible in figures 21 and 22. Additionally, table 4 provides 

corresponding values of the computational domain size. Seen in the figures, the coefficient of lift 

definitively improves as the region expands while the drag coefficient experiences a more subtle 

improvement. In the SWFS (SOLIDWORKS Flow Simulation) series, the first four data points 

(simulation numbers 27 through 30) represent decreasing spanwise dimensions while others are 

locked in place. The coefficients are relatively constant during these simulations, supporting the 

aforementioned notion that spanwise dimensional variations in a 2D computational domain have 

negligible impact on solution accuracy. On the other hand, the last five data points (simulation 

numbers 33 through 37) represent increasing forward, aft, upper, and lower dimensions which 

positively alter the results for both lift and drag coefficients. 

 

Figure 20 - Final computational domain size. 
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Figure 21 - Lift coefficient trend as computational domain changes for E387 airfoil at Re = 200k 

and α = 0°. 

 

Figure 22 - Drag coefficient trend as computational domain changes for E387 airfoil at Re = 

200k and α = 0°. 

It is important to note that other options were altered during these simulations including 

the global mesh, criterion to stop, and refinement settings. Despite this, confidence is instilled in 

the computational domain sizing as being the primary influencer in these simulations because no 

trends appear in any of these ancillary parameters. For instance, the global mesh was only altered 

once, before the second simulation began. Moreover, the criterion to stop and refinement 
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parameters underwent increasing values before decreasing in the end. The only clear trend able to 

be obtained from this data is improved solution accuracy due to increasing the computational 

domain cross-sectional area.  

Simulation 

Number 
Forward Aft Span Upper Lower 

27 0.50 2.50 0.10000 0.75 0.75 

28 0.50 2.50 0.05000 0.75 0.75 

29 0.50 2.50 0.02500 0.75 0.75 

30 0.50 2.50 0.01250 0.75 0.75 

33 1.00 3.00 0.00625 1.00 1.00 

34 1.25 3.25 0.00100 1.25 1.25 

35 2.00 4.00 0.00100 2.00 2.00 

36 3.00 5.00 0.00010 3.00 3.00 

37 3.00 5.00 0.00010 4.00 3.00 

 

Table 4 – Progression of computational domain sizing (in chord lengths) corresponding to 

figures 21 and 22. 

 Nonetheless, criterion to stop and refinement options will still affect the results of the 

simulation, however it is more difficult to assess the influence that each individual parameter has 

on the solution because they are so heavily linked to one another. Defining the level of refinement 

as well as the number of travels before calculations start and refinement period will guide the 

criterion to stop the simulation such as the number of travels and refinements. Furthermore, the 

level of refinement will also impact the number of cells required for the simulation to obtain 

proper results. There is an interwoven relationship between each of these parameters which 

muddles information about causality. Even still though, it remains clear that as a unit, these 

settings do in fact impart a major influence on the accuracy of the solution. They do this primarily 

through mesh manipulation. Sure, there is a portion that is responsible for ensuring the flow is 

fully established before calculations begin, but the remaining settings all affect the mesh in some 

form or fashion. Simulations 15-20 tested these parameters and the results are graphed in figures 

23 and 24 tracking the lift coefficients and drag coefficients respectively.  



40 
 

 

Figure 23 - Lift coefficient trend as meshing parameters change for E387 airfoil at Re = 200k 

and α = 5°. 

 

Figure 24 - Drag coefficient trend as meshing parameters change for E387 airfoil at Re = 200k 

and α = 5°. 

 To be clear, these graphs were obtained by altering the global mesh, criterion to stop, and 

refinement options. However, trends were only observed specifically in the initial global mesh 

and level of refinement settings. Since these are directly responsible for creating the mesh 

structure in the flow field, it is logical to consider figures 23 and 24 as representing trends in lift 

and drag coefficients resulting from meshing parameters. One thing to notice in these figures is 
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the reverse order of the simulation numbers. As the simulations progressed from 15 to 20, the 

mesh was actually manipulated to become sparser. The initial global mesh decreased from a value 

of 7 to 1 and the level of refinement generally decreased from 7 to 0 with the exception of 

simulation number 15 which was conducted at a level of 4. With this information it is clear that 

the objective of each simulation should be to obtain the finest mesh possible to achieve the most 

accurate results. Still, an issue arises as a finer mesh inevitably leads to increased simulation 

times. Furthermore, while the finest mesh may produce the most accurate solutions, a slightly 

sparser mesh may achieve nearly identical results in far less time. Therefore, a relationship 

develops between simulation time and solution error. The exponential curve shown in figure 25 

provides a general example of how these two variables interact with one another. An optimization 

process ensues where the overarching goal is to obtain the most accurate solution in the least 

amount of time. It can be seen in the figure that at a certain point in the simulation process, the 

percent error is barely quantitatively distinguishable from past and future data points. A decision 

has to be made regarding how much percent error is acceptable. 

 

Figure 25 – General relationship between simulation time and solution error. 
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phenomena are also the culprit. At low Reynolds numbers and relatively high angles of attack, 

laminar separations create an environment where vortex shedding is extremely probable. Thus, 

harmonic motions may develop where true steady-state flows are impossible. These motions 

translate into the goal plots established earlier, and figure 26 provides an example of this 

occurring on the x-direction force during a simulation on the M06-13-128 airfoil at a Reynolds 

number of 200,000 and an angle of attack of 5 degrees. The rhythmic oscillations are clearly 

visible in the data and suggest ultimate convergence is unattainable. This alludes back to the 

previous notion that a threshold must be established for goal achievement which determines 

simulation termination. 

 

Figure 26 - Rhythmic oscillations in the x-direction force for the M06-13-128 airfoil at Re = 200k 

and α = 5°. 

This termination may be controlled automatically by parameters such as the predefined 

criterion to stop or manually. One pitfall to be aware of when establishing this threshold are false 

convergences mentioned in the previous chapter. While simulation time may increase, it is 

necessary to refine as much as possible until each refinement no longer affects goal convergence. 

Without this process, the validity of the results are unable to be determined.  

 

E387 Test Cases Results 

As such, there is a delicate balance between several key influences responsible for the 

success or failure of the simulation. This multivariable cross-correlating dynamic organism 
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requires careful attention of computational domain sizing, meshing, simulation time, physical 

phenomenon, false convergence, termination threshold, and solution accuracy. Only when all of 

these criteria are accounted for will proper results be gathered. Simulation numbers 1 through 37, 

as well as various others, comprised test case 1 which attempted to establish the way of handling 

all of these requirements consisting of both simulation settings and user scrutiny. The culmination 

of this testing produced a lift curve and drag polar which can be found in figures 27 and 28 

respectively. For test case 1, over 50 separate simulations were conducted and plotted against 

corresponding empirical data to assess the capabilities of the software. The series labeled “SWFS-

Initial Tests” represents every simulation conducted in this current test case whereas the series 

labeled “SWFS” consists of only the results obtained from the most recent iteration of simulation 

parameters. With this in mind, it is evident how much influence the settings impart on the 

outcome. In the lift curve alone, at an angle of attack of 5 degrees, the coefficient ranged from a 

value of 0.173 at its minimum to 0.847 at its maximum. This 0.674 spread which equates to a 

132% difference would normally be more than enough to discredit any test method, but 

fortunately this occurred due to fluctuations in the prescribed simulation settings rather than the 

simulation itself. Since the whole process is founded in part on its repeatability, the variation in 

results differ only negligibly. In a separate test case, identical simulations were found to have 

only a 0.7% difference in its lift coefficient and only a 0.1% difference in its drag coefficient. 

Therefore, it is imperative to note that the wide variations in simulation data come solely and 

distinctly from changes in settings. Also included in the figures is data obtained through XFOIL 

as a comparison of a preexisting computational method alongside the other two data sets.  
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Figure 27 - Lift curve for test case 1 (E387 at Re = 200,000). 

 

Figure 28 - Drag polar for test case 1 (E387 at Re = 200,000). 
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 With this established, attention can now be turned towards the data gathered resulting 

from the latest iteration of simulation parameters. The lift curve for test case 1 reveals that the 

obtained values from this study closely match the empirical data sourced from wind tunnel 

experiments. Unfortunately, precise quantitative comparison is hard to justify for a couple of 

reasons. To begin with, these wind tunnel experiments were not tested at a Reynolds number of 

exactly 200,000. For instance, the data sourced from the UIUC experiments [31] corresponding 

with test case 1 was conducted at a Reynolds number of 203,800. This will inevitably lead to 

variations in the results. Ultimately, as discussed in a previous chapter, this deviation is slight and 

equates to a shift in flow velocity of only roughly 1 fps, but the two data sets are close enough 

that this shift may have been all that was needed to produce the remaining error. Additionally, the 

airfoils in the wind tunnel experiments were not positioned at precise angles of attack either. The 

set corresponding with test case 1 consists of -4.65°, -3.35°, -1.97°, -0.37°, 1.27°, 2.67°, 4.23°, 

5.59°, 7.23°, 8.77°, and 10.16°. Moreover, various amounts of uncertainty should be present in 

every empirical data set including the data used to compare against in this study [31] which 

inevitably leads to more discrepancies. The same issues arise in test cases 2 through 6 as well. It 

is understandable that these discrepancies exist in the empirical wind tunnel experiments since the 

natural world is hard to control with extreme precision. In most cases, the data obtained from 

these real world studies either tend to be chalked up as a rounding error, undergo a numerical 

correction process of some sort, or be presented as is. In the end, these variations add uncertainty 

in the data sets which make it difficult to compare against with strict quantitative exactness. The 

benefit of using a computational fluid dynamics software such as SOLIDWORKS Flow 

Simulation as mentioned previously is the level of precision achievable. The thought arises then 

as to why these simulations were not conducted at the exact same Reynolds numbers and angles 

of attack observed in the wind tunnel data. However, despite the software’s ability to accomplish 

this, it would not have allowed a proper comparison between present test cases or potential future 
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studies to take place. For this reason, “clean” Reynolds numbers and angles of attack found 

previously in table 2 were chosen. Even still, the two data sets are still highly comparable. This is 

particularly evident for the lift coefficient at lower angles of attack. Only when the angle of attack 

reaches double digits does it begin to differ, supporting the notion that flow separation decreases 

simulation accuracy. This is not surprising since larger separations introduce complex flow 

phenomena such as laminar separation bubbles and other events like vortex shedding. One 

valuable attribute of SOLIDWORKS Flow Simulation software is its ability to provide cross 

sections of the airfoil which depict the surrounding streamlines. The section provided in figure 29 

represents a 0 degree angle of attack where coefficients correlate well, while figure 30 represents 

a 10 degree angle of attack where coefficients begin to differ.  

 

Figure 29 - Streamlines around E387 airfoil at Re = 200,000 and α = 0°. 

 

Figure 30 - Streamlines around E387 airfoil at Re = 200,000 and α = 10°. 

It can be seen in the 0 degree angle of attack scenario that there is only a minor LSB 

around the 0.7c location which is barely visible and thus doubtedly has much impact on the 
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results of the simulation. On the other hand, larger separations are prominent in the 10 degree 

angle of attack scenario which likely cause errors to propagate in the calculations. One thing to be 

aware of when visually analyzing these streamlines generated by SOLIDWORKS is that they are 

representations of an instantaneous flow field through time-averaged information, so appearances 

of phenomena may be skewed when comparing it to real world visualizations. Therefore, while 

qualitative features may not be identical to images procured wind tunnel experiments, usually 

depicting snapshots of instantaneous flow fields, they still hold value in identifying general sizes 

and locations of flow structures such as laminar separation bubbles. It was expected to see LSBs 

at higher angles of attack like 10 degrees and fortunately that is observed from the 0.2c location 

to the trailing edge. This surprisingly causes the lift coefficient to register higher than was 

recorded in the wind tunnel experiments, and it is a relatively significant difference of 0.16. The 

consequence of an LSB’s existence appears to not only affect the lift coefficient, but the drag 

coefficient as well. In fact, it seems that SOLIDWORKS is more apt to predict lift rather than 

drag because only two simulations, conducted at angles of attack of -3° and 0°, measured drag 

well. The next two angles of attack, 3° and 5°, did not perform as well as the first two, but they 

were still relatively close to the suggested value. Each was roughly 0.01 more than empirical data. 

For the remaining simulations in test case 1, the predicted drag value became worse until 

eventually they did not correlate with what was expected in the least. One piece of good news is 

that drag was over predicted in every single simulation rather than under predicted. This 

unintentionally adds an additional factor of safety into any design which uses this method. For 

instance, if drag is over predicted but then later in the process is determined to be smaller than 

originally thought, the design is now over equipped to handle a less severe flight condition, 

whereas if drag is under predicted, the opposite scenario would occur. The design would now be 

potentially under equipped to handle the present flight condition if the under prediction was large 

enough. So, while SOLIDWORKS did not accurately predict drag coefficients at high angles of 
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attack, the next best outcome occurred with over prediction of the values. Unfortunately the same 

cannot be said for lift coefficients at higher angles of attack where they deviate from empirical 

data. In most flight envelopes though, the angle of attack typically lingers at or around 0 degrees. 

Only unique and specially designed unmanned aerial vehicles will disregard this standard, but 

they are usually better equipped for larger flight envelopes regardless. Nonetheless, this is still a 

key piece of information to document moving forward.  

 At this point the established set of simulation settings and user scrutiny formulated using 

the E387 airfoil in test case 1 was then applied in the remaining cases. Like before, results for test 

cases 2 and 3 were gathered and plotted against corresponding empirical data to assess the 

software’s ability to test across a range of low Reynolds numbers. Figures 31 and 32 represent the 

lift curve and drag polar produced from test case 2, respectively. Likewise, figures 33 and 34 

represent the lift curve and drag polar produced from test case 3, respectively. The effects of a 

lower Reynolds number flow is immediately evident not only in the data obtained through the 

software, but in the data collected from the wind tunnel experiments as well, specifically 

regarding drag . In test case 3, the empirical data exhibits an unusual drop in drag around 9° angle 

of attack. There is a chance that this empirical data point was mistakenly recorded lower than it 

should have been, but it is also possible that this was the true value measured in the experiment 

which highlights the complexity accompanying low Reynolds number flow analysis methods. At 

first, drag calculations appear to improve with test case 2, but when the Reynolds number is 

lowered to 60,000 in test case 3, the values begin to diverge once again. This time though, drag is 

under-predicted albeit slightly and only at certain angles of attack. It remains evident that the 

software is best suited at lower angles of attack where separation is minimal. Similarly with lift 

coefficients, test case 2 matches the empirical data well while test case 3 experiences a slight 

increase in error between the two comparable data sets.  
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Figure 31 - Lift curve for test case 2 (E387 at Re = 100,000). 

 

Figure 32 - Drag polar for test case 2 (E387 at Re = 100,000). 
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Figure 33 - Lift curve for test case 3 (E387 at Re = 60,000). 

 

Figure 34 - Drag polar for test case 3 (E387 at Re = 60,000). 
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Therefore, lower Reynolds numbers appear to encourage separations in the flow which 

degrade the software’s ability to accurately predict an airfoil’s performance characteristics. As 

such, it should be expected to see a smaller laminar separation bubble at a Reynolds number of 

100,000 than at 60,000. Figures 35 and 36 display the fluid streamlines from these scenarios 

respectively.  

 

Figure 35 - Streamlines around E387 airfoil at Re = 100,000 and α = 0°. 

 

Figure 36 - Streamlines around E387 airfoil at Re = 60,000 and α = 0°. 

Figure 36 clearly shows a larger LSB beginning around the 0.7c location and propagating 

to the trailing edge. Conversely, in figure 35, a subtle LSB appears around the 0.7c location but 

then diminishes before reaching the trailing edge. Moreover, these two cases should each have 

larger LSBs than test case 1. Comparing figures 29, 35, and 36 reveals that this is in fact the 

circumstance. Qualitatively, test cases 1 through 3 coincide with expected phenomena described 

by observations logged from wind tunnel experiments. As an example, figure 37 displays a smoke 

flow visualization of a laminar separation bubble on the E387 at a Reynolds number of 100,000 

and angle of attack of 2° [3]. Comparing this physical streamline representation with one 

generated by the simulation in figure 38 reveals that there is a high degree of similarity between 
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the two. The general size and location of the LSB compares well. This suggests that the 

simulation either has difficulty with performing accurate calculations within LSBs or there is 

something else at play which degrades correlation. 

 

Figure 37 - Flow visualization of a LSB on the E387 at Re = 100,000 and α = 2° [3]. 

 

Figure 38 - Streamlines around E387 airfoil at Re = 100,000 and α = 2°. 

 

FX 63-137 Test Cases Results 

 Various airfoil geometries have been, and will be, created to operate within certain 

specified flight envelopes, including low Reynolds number regimes, and each design requires an 

accurate method of analysis. The remaining test cases all aim to assess the software’s ability to 

predict performance characteristics by altering airfoil geometry. Particularly, test cases 4 and 5 

employ an airfoil with a convex pressure recovery region, the FX 63-137, and the results obtained 
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from these simulations were used to create lift curves and drag polars found in figures 39 through 

42. Similar outcomes transpire here as well. In case 4, the lift curves are nearly identical with the 

largest deviation occurring at a -3 degree angle of attack. Case 5 mimics this trend, but with a 

larger deviation at the same -3 degree angle of attack. This is surprising because in previous 

cases, lower Reynolds numbers produced larger separations leading to more varied data, but here 

a lower Reynolds number actually led to arguably more accurate results. This could potentially be 

the product of a poorly timed termination. Furthermore, while the software is meant to be highly 

repeatable, its goal is still to replicate a real-world environment which inherently leads to unique 

flow patterns occurring in each simulation. Therefore, the data in question could also be the 

product of an extremely unique flow pattern, but this is unlikely. Regardless of the reason, these 

two data points are still relatively close to their empirical data counterparts and are fortunately 

under predicted. Moving into higher angles of attack, it appears correlation between lift 

coefficients improve. Up to this point, higher incoming flow angles performed worse. The change 

in behavior is likely due to the geometry of the FX 63-137 airfoil. At higher angles of attack, the 

fluid passes over a smooth convex curve on the upper surface which gives the flow a chance to 

gradually change direction before severe separation occurs. In previous test cases, with the E387, 

the upper surface was not as gradual, and therefore separation occurred sooner. Regarding 

negative angles of attack, the lower surface of the FX 63-137 has a higher curvature leading to 

higher chances for separation to occur. It is expected that this causes the error to arise in both 

simulations operating at -3 degrees. Following this logic, larger laminar separation bubbles 

should develop on the lower surface of the airfoil with negative angles of attack. Furthermore, 

simulations run at 0 degrees should exhibit small LSBs on the lower surface contrary to the E387 

which develops none on the lower surface at similar conditions.  
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Figure 39 - Lift curve for test case 4 (FX 63-137 at Re = 100,000). 

 

Figure 40 - Drag polar for test case 4 (FX 63-137 at Re = 100,000). 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

-10 -5 0 5 10 15

L
if

t 
C

o
ef

fi
ci

en
t

Angle of Attack (degrees)

Lift Curve

Empirical Data

SWFS

XFOIL

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

L
if

t 
C

o
ef

fi
ci

en
t

Drag Coefficient

Drag Polar

Empirical Data

SWFS

XFOIL



55 
 

 

Figure 41 - Lift curve for test case 5 (FX 63-137 at Re = 200,000). 

 

Figure 42 - Drag polar for test case 5 (FX 63-137 at Re = 200,000). 
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Figure 43 - Streamlines around FX 63-137 airfoil at Re = 100,000 and α = 0°. 

 

Figure 44 - Streamlines around FX 63-137 airfoil at Re = 200,000 and α = 0°. 

 

Figure 45 - Streamlines around FX 63-137 airfoil at Re = 200,000 and α = -3°. 

Figures 43 through 45 display streamlines supporting these notions. The first figure 

represents test case 4 and exhibits larger LSBs when compared to test case 5 at a higher Reynolds 

number and matching angle of attack. This is consistent with trends observed with the E387, but 

now separations occur on both the upper and lower surfaces. Bubbles barely appeared in test case 

1 at 0° angle of attack and gradually grew bigger as the Reynolds number dropped. Regardless of 

their presence though, LSBs of this size do not appear to drastically impact the previously 
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established baseline performance of the software. Finally, figure 45 displays larger LSBs at a 

negative angle of attack which was anticipated due to its lower surface curvature.  

One other interesting aspect to note is the surprising accuracy of the drag polar for test 

case 4. The empirical data creates a unique shape which is tracked relatively well by the results of 

the simulation. Previously in test case 3, when wind tunnel drag data exhibited a drop in value, 

the simulation contrarily did not respond accordingly. However, in this instance each data set 

displays the same fluctuation in values, ultimately validating each other. In fact, the obtained 

simulation data only substantially deviates at angles of attack of 7° and 10° and is among the most 

matching sets of drag coefficient data. Unfortunately the same cannot be stated for the drag polar 

in test case 5. The obtained results are consistently higher than the empirical values every point is 

again over predicted which is the next optimal outcome.  

 

M06-13-128 Test Case Results 

 The last test case has been reserved to assess the ability of the software to accurately 

determine the performance characteristics of an airfoil with a concave pressure recovery region. 

Like before, the results obtained from these remaining simulations were plotted against empirical 

data on a lift curve and drag polar, found in the following figures 46 and 47 respectively. 

Immediately noticeable is the lack of wind tunnel data to compare against, particularly at higher 

angles of attack. Despite this void it looks as though each data set initially follows the same lift 

curve slope, but at around 3° angle of attack the slopes appear to diverge slightly. Without proper 

empirical data to compare with though it is difficult to ascertain the software’s accuracy beyond 

this point. What is more interesting, however, is the drag polar. Not only does the majority of the 

data contrast, but it is also under predicted. This is unlike any other test case beforehand where 

over prediction of drag almost always occurred. Moreover, significant deviations in values as 

much as roughly 0.05 was found. Again, the culprit here is likely the geometry of the airfoil. 

Unlike the FX 63-137 which has a gently sloping upper surface and even the E387 which has a 
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moderately sloping upper surface, the M06-13-128 airfoil exhibits an upper surface with high 

curvature. This is signature of a concave pressure recovery region. As observed before, high 

curvature promotes separation in the flow leading to larger inconsistencies in data, particularly 

with drag. This highlights the inherent difficulty with analyzing airfoils with previously discussed 

Stratford pressure recovery regions. The boundary layer is constantly on the verge of separation 

and maintaining these desired ideal conditions prove to be particularly difficult. Therefore, it is 

likely that comparatively larger separations will be observed in this last test case even at 

relatively low angles of attack. Streamlines obtained from these simulations are displayed in 

figures 48 through 50 representing streamlines at -3°, 0°, and 10° respectively. Surprisingly, 

negative angles of attack appear to not exhibit any upper surface laminar separation bubbles, 

possibly due to the direction bias of the incoming flow. However in this simulation, separations 

are present on the lower surface. While the lower surface of the airfoil is relatively flat, the 

incoming flow experiences a sharp turn right at the leading edge which creates the observed 

separation before reattaching. Figures 49 and 50, on the other hand, do show upper surface LSBs 

present. The simulation conducted at 0° develops larger bubbles than those seen in other 

geometries at similar conditions. Recall that this is most likely due to the contrasting curvatures 

of the upper surfaces. Therefore at higher angles of attack, the M06-13-128 test is expected to 

generate larger LSBs, as observed in figure 50. However, despite the separations seeming to be 

large, they do not match the scale of the separations observed in visualizations captured from 

wind tunnel studies. Figure 51 and 52 represent physical flow phenomena captured around the 

M06-13-128 at a Reynolds number of 150,000 and angles of attack of 0° and 7° respectively [29]. 

While the Reynolds number does not match (due to the lack of data in this flow regime) exactly, 

it is still comparable enough to highlight the fact that the separations observed in the empirical 

data are much larger than those seen in the simulations, shown in figure 49 and figure 53. 
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Figure 46 - Lift curve for test case 6 (M06-13-128 at Re = 200,000). 

 

Figure 47 - Drag polar for test case 6 (M06-13-128 at Re = 200,000). 
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Figure 48 - Streamlines around M06-13-128 airfoil at Re = 200,000 and α = -3°. 

 

Figure 49 - Streamlines around M06-13-128 airfoil at Re = 200,000 and α = 0°. 

 

Figure 50 - Streamlines around M06-13-128 airfoil at Re = 200,000 and α = 10°. 

 It is well documented and accepted that separations in the flow directly contribute to 

increased drag. Therefore, these flow visualizations are a clear indicator as to why the two data 

sets are so different. Before, in test cases 1-5, the streamlines correlated well and so the 

quantitative data correlated well also. In this case though, the streamlines differ which suggest the 

quantitative data will be off, and this in fact occurs as was discussed previously. 
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Figure 51 - Flow visualization around the M06-13-128 airfoil at Re = 150,000 and α = 0° [29]. 

 

Figure 52 - Flow visualization around the M06-13-128 airfoil at Re = 150,000 and α = 7° [29]. 

 

Figure 53 - Streamlines around M06-13-128 airfoil at Re = 200,000 and α = 7°. 

 Up to this point XFOIL data has been left out of the discussion, but reviewing it reveals 

several key insights. At first glance, XFOIL produces results with less variation between it and 

the empirical data when compared to the results obtained from SOLIDWORKS Flow Simulation, 

suggesting that it is the better analyst of the two. However in every case, XFOIL over predicts lift 

and under predicts drag. Arguably only test case 3 produces more ideal results, while test case 4 

produces far less than ideal results. Moreover, testing the M06-13-128 proved to be just as 
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difficult for XFOIL as it did for SOLIDWORKS. In fact, there were convergence issues on runs 

conducted at -2°, 4°, 5°, 7°, and 9° angle of attack, reducing the validity of its results. Overall, it is 

tempting to suggest XFOIL is a better predictor of lift and drag at low Reynolds numbers, and in 

some cases this is true, but the over prediction of lift and under prediction of drag indicates that 

SOLIDWORKS may be the better method despite its remaining drawbacks, which will try to be 

reduced in the following discussion. 

 

Additional Testing 

A clear trend throughout nearly every simulation conducted is the software’s struggle to 

determine drag coefficients which correlate well with empirical data. A couple of simulation 

parameters were left unexplored with the hopes that their default values were sufficient. 

However, with the amount of deviation found in drag, especially in test case 6, it is worth 

exploring these avenues to try and alleviate all, or at the very least some, of the error between 

data sets. The first parameter investigated was roughness. Intuitively, this option defines the 

surface roughness of the model which can range from a completely smooth surface to as rough as 

is desired. In fact, as was mentioned previously, some designs purposefully use flow tripping 

techniques like added roughness to improve performance characteristics. For airfoils alone, it is 

impossible to obtain a completely smooth model in real-world applications, so a reference surface 

roughness value was obtained before evaluation commenced. The low Reynolds number tests 

conducted on the E387 at the NASA Langley Low-Turbulence Pressure Tunnel was found to 

have utilized a model with a surface roughness specified at 64 μin [32]. Other experiments were 

found to hover around this value as well. Therefore, a range of tests encompassing this value was 

executed beginning at a surface roughness of 1 μin and increasing by a power of 10 each time 

until a value of 100,000 μin was reached. Trends in lift and drag coefficients resulting from these 

tests are displayed in figures 54 and 55 respectively. The solid vertical line in each figure 
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represents the 64 μin reference. At first glance, drag appears to converge on the goal, but this 

occurs at roughness values of at least 1000 μin which is well over the typical references. In fact, 

drag appears to diverge further as it approaches the 100 μin mark before eventually converging. 

Moreover, lift exhibits the same divergence as it nears the reference point before returning to its 

original value.  

 

Figure 54 - Lift coefficient as roughness changes for E387 at Re = 200k and α = 5°. 

 

Figure 55 - Drag coefficient as roughness changes for E387 at Re = 200k and α = 5°. 

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000

Roughness

Lift Coefficient

Empirical Goal

SWFS

Reference

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1 10 100 1000 10000 100000

Roughness

Drag Coefficient

Empirical Goal

SWFS

Reference



64 
 

In the end, it is hard to justify models having surface roughness values greater than 1000 

μin and subsequently refutes the notion of this parameter yielding proper improvement of drag 

coefficient data. Therefore, attention was then placed on the second parameter to be investigated. 

Most wind tunnels are rated as having a specific turbulence intensity found within its incoming 

flow. For reference, the University of Illinois at Urbana-Champaign wind tunnel has a turbulence 

intensity of less than 0.1% [31]. SOLIDWORKS Flow Simulation manages these conditions 

through its turbulence parameters. The default setting is set at 0.1%, already matching the 

reference point mentioned previously. However, a range of intensities will still be assessed. 

Furthermore, the software also allows the user to define turbulence length. This value will be 

altered as well to see if it positively impacts drag coefficient data. Unfortunately, no reference for 

turbulence length was located. Figures 56 and 57 respectively display trends in lift and drag 

coefficient as turbulence intensity varies while figures 58 and 59 respectively display trends in lift 

and drag coefficient as turbulence length varies. Again, the solid vertical lines in the first two 

figures represent the 0.1% reference.  

Examining the data reveals no substantial improvements in lift or drag as either 

turbulence intensity or length is altered. It is worthwhile to note that while turbulence intensity 

was tested below the reference, values less than this are rarely achieved in most wind tunnels, 

even for those specifically designed for low Reynolds number flows. Nonetheless, no advantage 

was observed. Therefore, efforts to improve the correlation between simulated drag data and wind 

tunnel data for test case 6 by way of altering roughness and turbulence parameters were 

unsuccessful.  
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Figure 56 - Lift coefficient trend as turbulence intensity changes for M06-13-128 at Re = 200k 

and α = 0°. 

 

Figure 57 - Drag coefficient trend as turbulence intensity changes for M06-13-128 at Re = 200k 

and α = 0°. 
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Figure 58 - Lift coefficient trend as turbulence length changes for M06-13-128 at Re = 200k and 

α = 0°. 

 

Figure 59 - Drag coefficient trend as turbulence length changes for M06-13-128 at Re = 200k 

and α = 0°. 

Lastly, a short study was conducted on the NACA 2412 airfoil at a high Reynolds 

number in an attempt to glean any insight on the software’s performance in conditions which 

should be more favorable for calculations. Limited testing reveals through the lift curve and drag 

polar found in figure 60 and 61 that the same issues arise even when simulations are conducted at 

higher Reynolds numbers with more traditional airfoils.  
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Figure 60 - Lift curve for NACA 2412 at Re = 3,100,000. 

 

Figure 61 - Drag polar for NACA 2412 at Re = 3,100,000. 
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 Since laminar separation bubbles are not known to develop under the above conditions, 

the results are suggestive of something else being at play which degrades the software’s ability to 

accurately predict drag values. Conversely, XFOIL matches the empirical data much better with 

only a slight under prediction of drag. Without any separations in the flow, the next logical culprit 

causing the error between the empirical and simulation data is likely related to the boundary 

layer. Investigation of the NACA 2412 boundary layer provided in figure 62 shows an interesting 

phenomena taking place, particularly in the forward section of the airfoil where a laminar profile 

is expected. 

 

Figure 62 – NACA 2412 boundary layer profiles at Re = 3,100,000 and α = 5°. 

 

Figure 63 - Theoretical boundary layer profiles for laminar and turbulent flows. 
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 Rather than a smooth, parabolic curve shown in the theoretical laminar profile in figure 

63, the profile produced by SOLIDWORKS at the 0.15c location appears turbulent in the lower 

region of the boundary layer before shifting to a more laminar profile in the upper region. A quick 

analysis in XFOIL reveals a transition location of 0.1837c, which means that at 0.15c, there 

should not be any turbulent flow. This premature presence of turbulence at the boundary layer 

would cause an increase in drag through skin friction and explains why the software almost 

always over predicts these values when compared to XFOIL and empirical data. Only in extreme 

cases of separation, as shown in previous experimental flow visualizations for the M06-13-128, 

does the software under predict drag values. Turbulence at the boundary layer discourages 

separation which is likely why the simulated flows remain attached more so than flows in the 

wind tunnel experiments. 

It is also important to understand the methods behind the calculations being performed at 

the boundary layer for both XFOIL and SOLIDWORKS. The former utilizes a two-equation 

integral formulation based on dissipation closure was developed for both laminar and turbulent 

flows [47]. On the other hand, the latter utilizes the two-scales wall functions (2SWF) model in 

its flow simulation which consists of two approaches to coupling the boundary layer calculation 

with the main flow properties [39]. The approach is determined according to the mesh density 

around the boundary layer. If the number of cells across a boundary layer is 6 or greater, a “thick-

boundary-layer” approach is used whereas if the number of cells is less than 4, a “thin-boundary-

layer” approach is used. Intermediate circumstances utilize a compilation of the two approaches 

to ensure a smooth transition occurs. Within these two approaches, various calculation methods 

are used depending on if the flow is laminar or turbulent. By default, an appropriate boundary 

layer approach is selected automatically according to the computational mesh. In most cases, all 

of these approaches provide sufficient accuracy, even with a coarse mesh. However, in some 

cases when the appropriate boundary-layer approach is selected automatically and the 

computational mesh is rather fine, the solution accuracy may fall off. The reason for the accuracy 
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decrease is that the mesh is excessively fine to apply the thin-boundary-layer, but it is 

insufficiently fine to resolve boundary layers and apply the thick-boundary-layer. Further 

refinement of the computational mesh may lead to an improvement of solution accuracy 

gradually [39]. However, the wall functions approach has been shown to not be applicable when 

separations in the boundary layer occur, such as those experienced in this study at lower Reynolds 

numbers and higher angles of attack. Instead, it is recommended to directly resolve the viscous 

sublayer by integrating down to the surface of the model. Still, this does not explain the 

disparities seen in the NACA 2412 at higher angles of attack where no separations occur. A 

closer look at the wall functions approach utilized by the software reveals that accurate results 

require close monitoring of the non-dimensional wall distance y+. More specifically, y+ should 

fall within a particular range. This is accomplished through careful meshing by placing the first 

cell in the log-law region of the boundary layer which yields 30 < y+ < 300. If this is too low the 

model is invalid, whereas if this is too high, the wall is not properly resolved. This reiterates the 

importance of meshing, particularly at the boundary layer.  

A technical paper on enhanced turbulence modeling in SOLIDWORKS Flow Simulation 

conducted several classical validation studies, including one on flow over a flat plate [48]. 

Comparing its computational mesh with the one employed in this study provides information 

which highlights a major difference in cell sizes between the two. Figure 64 displays the 

boundary layer mesh for the NACA 2412 using parameters established earlier in this study, while 

figure 65 displays the boundary layer mesh used in the flat plate validation study. Looking at the 

scales of each of these figures reveals that the validation study employs a computational mesh 

which is roughly 1000 times smaller than the one employed for this study. Using this refined 

mesh, the validation study was able to compare its results to theoretical results with a high degree 

of accuracy. Therefore, it is extremely likely that the computational mesh surrounding the 

boundary layer utilized in this study is not sufficiently refined.  
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Figure 64 - Boundary layer computational mesh for the NACA 2412. 

 

Figure 65 - Boundary layer computational mesh for the flat plate [48]. 
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CHAPTER V 
 

 

CONCLUSION 

 

Key Deductions  

 Three separate geometries along with three different fluid environments were selected to 

assess the ability of SOLIDWORKS Flow Simulation to act as a reliable source of information on 

the performance characteristics of airfoils in low Reynolds number flows. Regardless of any 

immediately noticeable advantages, qualitative and quantitative comparisons between software 

simulations and wind tunnel experiments were required in order to investigate this as a valid 

method of analysis. As a result, this study culminated with over 100 individual simulations and 

greater than an estimated 1000 hours of calculation time on an Intel Core i7-3632QM CPU at 

2.20 GHz with 7.87 GB of usable RAM. Unfortunately calculation time only began being tracked 

starting with simulation number 30, but it averaged over 10 hours per simulation so this is a 

conservative estimation. Ultimately, it was determined that the software performs excellently as a 

supplemental tool, but further investigation is required before it can be safely recommended as a 

replacement of the wind tunnel. Presently, it is best suited at assessing relativistic performance. 

For instance, if two airfoils are tested at similar conditions, then the better design should be 

identifiable. Moreover, this software could be used as a preliminary evaluator before moving on 

to the wind tunnel, thus supplementing its efforts. In doing so, it would reduce tunnel run times 

and cost associated with performing these experiments. While there is hesitation to utilize this
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method solely on its own, the results obtained from this study proved to be very promising. 

Influential simulation parameters were identified and optimized to an extent in which 

obtained performance characteristics corresponded relatively well with empirical wind tunnel 

results. These settings included computational domain dimensions, meshing and refinement 

parameters, as well as termination criterion. Due to the complex nature of low Reynolds number 

flows, additional user scrutiny was deemed necessary in order to avoid endless simulations. Fine-

tuning these parameters led to observed qualitative phenomena correlating with what was 

anticipated from empirical studies. Streamlines gathered from this study showed small laminar 

separation bubbles appearing at higher Reynolds numbers and lower angles of attack while larger 

laminar separation bubbles appeared in lower Reynolds number flows and higher angles of attack. 

However, while qualitative data related well, quantitative data exhibited one glaring disparity. 

Throughout the simulations, drag was shown to be less accurately predicted than lift. This was 

surprising in some cases, as lift remained relatively comparable even when drag was drastically 

different than empirical data. The primary culprit of this drag deviation likely stemmed from 

separations in the flow. Trends in the data revealed that the size of these phenomena and 

differences between data sets exhibited a positive correlation. As the separations grew larger, so 

did the deviations. Furthermore, with the exception of the last test case, every major deviation in 

drag was over predicted. From figure 8 it was shown that bubble size and drag increment is 

directly linked in a positive correlation as well. In other words, larger bubbles produce more drag. 

Therefore, it is assumed that the wind tunnel studies experienced smaller LSBs in experiments 

corresponding to test cases 1 through 5. This relates back to a previous discussion supported by 

figure 9 which shows the influence a laminar separation bubble has on the drag polar. 

Observations match the effects seen in this figure, where empirical data represents an airfoil with 

a nonexistent or smaller LSB and simulation data represents an airfoil with a present or larger 

LSB.  
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Ultimately, the validity of the software relies in part on the validity of the empirical data. 

The true objective of this study has not been to eliminate error between data sets, but rather to 

assess a new systematic approach of analyzing airfoils in low Reynolds number flow regimes 

without having to question the legitimacy of the results. Therefore, the empirical data was only 

used as a general target. As mentioned previously, it too comes with its own level of uncertainty. 

Despite careful attention, uncertainty can still creep in through various sources such as 

fluctuations in flow angles, unsteady freestream velocities, differences in airfoil geometry, 

spanwise variations, force measurement instrumentation, and more. Therefore, with this in mind, 

it is understandable that the two data set do not precisely match.  

 

Suggestions and Future Work 

 Despite running over 100 individual simulations, more is still necessary to 

complete a full analysis of SOLIDWORKS Flow Simulation and address the issues developed in 

this study. An obvious improvement would be a computer with higher processing capabilities 

which would allow more calculations to take place in the same amount of time as before. 

Parameters such as the total number of travels and maximum available cells could increase 

without any perceivable difference in its execution process. This would greater assure that the 

flow was accurately meshed and fully established before termination.  

Furthermore, with the recent discussion regarding the difficulty present in accurately 

assessing the boundary layer flow, it would be advantageous to conduct more simulations with 

varying degrees of mesh refinement, particularly surrounding the airfoil where the boundary layer 

resides, until proper y+ values are achieved. This may have to be accomplished through the use of 

a local mesh, where the software is able to create an additional mesh structure which surrounds 

the airfoil and can be defined with equidistant refinement settings or other tailoring parameters to 

minimize excess meshing where it is not necessary. Even still, a computer with heightened 

processing capabilities may be necessary due to the large cell count found at the boundary layer 
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and the subsequent rise in the required number of maximum cells available for the simulation.  

Lastly, towards the end of the study it was found that the number of travels before 

calculations began could be increased considerably without significantly impacting overall 

simulation time. As such, the last six simulations saw this parameter shift accordingly, with 

calculations starting at travel number 20. While this change did not produce a sizeable difference 

in either the qualitative or quantitative results, it provided additional reassurance that the flow 

was fully established. Therefore, this modification can be seen in the final iteration of 

recommended simulation parameters found in table 5. Note that these values represent minimum 

recommendations for similar simulations conducted at comparable low Reynolds numbers. Also 

note that advanced meshing suggestions for the boundary layer are not present as they were 

unable to be fully explored in this present study. Therefore, while SOLIDWORKS Flow 

Simulation cannot be safely endorsed on its own at the present time, these parameters could very 

well be used as a launching point for future work in using computational design software as a 

primary evaluator of airfoil performance characteristics in low Reynolds number flow regimes. 

General Settings 

Analysis Type 
Fluids Wall Conditions 

Turbulence 

Parameters 

Project 

Fluid 
Flow Type Thermal Condition Roughness Intensity Length 

External 
Not time-

dependent 
Air 

Laminar & 

Turbulent 
Adiabatic 0 μin 0.1% 0.01 in 

Input Data 

Computational Domain Global Mesh 

Type Forward Aft Span Upper Lower Initial Ratio 

2D 3c 5c 0.0001c 4c 3c 3 2 

Calculation Control Options 

Criterion to Stop Refinement 

Travels Refinements Level Cells Strategy Start Period 

25 5 5 3,000,000 Periodic Travels 20 1 

 

Table 5 - Recommended SOLIDWORKS Flow Simulation parameters. 
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APPENDICES 
 

 

 

E387 

X Y 

1 0 

0.99677 0.00043 

0.98729 0.0018 

0.97198 0.00423 

0.95128 0.00763 

0.92554 0.01184 

0.8951 0.01679 

0.86035 0.02242 

0.82183 0.02866 

0.78007 0.0354 

0.73567 0.04249 

0.68922 0.04975 

0.64136 0.05696 

0.59272 0.0639 

0.54394 0.0702 

0.49549 0.07546 

0.44767 0.07936 

0.40077 0.08173 

0.35505 0.08247 

0.31078 0.08156 

0.26813 0.07908 

0.22742 0.07529 

0.18906 0.07037 

0.15345 0.06448 

0.12094 0.05775 

0.09185 0.05033 

0.06643 0.04238 

0.04493 0.03408 

0.02748 0.02562 

0.01423 0.01726 

0.00519 0.00931 

0.00044 0.00234 

0.00091 -0.0029 

0.00717 -0.0068 

0.0189 -0.0102 

0.03596 -0.0127 

0.05827 -0.0143 

0.08569 -0.015 

0.118 -0.015 

0.1549 -0.0144 

0.19599 -0.0133 

0.24083 -0.0118 

0.28892 -0.01 

0.33968 -0.008 

0.39252 -0.0061 

0.44679 -0.0041 

0.50182 -0.0023 

0.55694 -0.0007 

0.61147 0.00074 

0.66472 0.00186 

0.71602 0.00268 

0.76475 0.0032 

0.81027 0.00342 

0.85202 0.00337 

0.88944 0.00307 

0.92205 0.00258 

0.94942 0.00196 

0.97118 0.00132 

0.98705 0.00071 

0.99674 0.00021 

1 0 

 

FX 63-137 

X Y 

1 0 

0.99893 0.00082 

0.99572 0.00249 

0.99039 0.00501 

0.98296 0.00818 

0.97347 0.01189 

0.96194 0.01601 

0.94844 0.02043 

0.93301 0.02516 

0.91573 0.03018 

0.89668 0.03553 

0.87592 0.04114 

0.85355 0.04711 

0.82967 0.05323 

0.80438 0.05962 

0.77779 0.06605 

0.75 0.07273 

0.72114 0.07927 

0.69134 0.0859 

0.66072 0.09204 

0.62941 0.09804 
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0.59755 0.10331 

0.56526 0.10823 

0.5327 0.11221 

0.5 0.11578 

0.4673 0.11833 

0.43474 0.12042 

0.40245 0.12137 

0.37059 0.12191 

0.33928 0.12128 

0.30866 0.12024 

0.27886 0.11792 

0.25 0.11522 

0.22221 0.11122 

0.19562 0.10704 

0.17033 0.10165 

0.14645 0.09622 

0.12408 0.08961 

0.10332 0.08313 

0.08427 0.07555 

0.06699 0.06836 

0.05156 0.06005 

0.03806 0.05248 

0.02653 0.0448 

0.01704 0.03625 

0.00961 0.0274 

0.00428 0.0175 

0.00107 0.009 

0 0 

0.00107 -0.0023 

0.00428 -0.0057 

0.00961 -0.01 

0.01704 -0.0125 

0.02653 -0.0154 

0.03806 -0.017 

0.05156 -0.0189 

0.06699 -0.0199 

0.08427 -0.0212 

0.10332 -0.0218 

0.12408 -0.0226 

0.14645 -0.0226 

0.17033 -0.0228 

0.19562 -0.0222 

0.22221 -0.0216 

0.25 -0.0203 

0.27886 -0.019 

0.30866 -0.0169 

0.33928 -0.0146 

0.37059 -0.0117 

0.40245 -0.0085 

0.43474 -0.0049 

0.4673 -0.001 

0.5 0.00307 

0.5327 0.00716 

0.56526 0.01112 

0.59755 0.01475 

0.62941 0.01813 

0.66072 0.02098 

0.69134 0.02345 

0.72114 0.0253 

0.75 0.02668 

0.77779 0.02745 

0.80438 0.02768 

0.82967 0.02729 

0.85355 0.02631 

0.87592 0.02479 

0.89668 0.02284 

0.91573 0.02052 

0.93301 0.01794 

0.94844 0.01514 

0.96194 0.01219 

0.97347 0.00921 

0.98296 0.0063 

0.99039 0.00373 

0.99572 0.00169 

0.99893 0.0004 

1 0 

 

 

 

M06-13-128 

X Y 

1 0 

0.99896 0.00015 

0.99152 0.00088 

0.97756 0.00198 

0.95718 0.0037 

0.93068 0.00631 

0.89849 0.01002 

0.86112 0.01499 

0.81923 0.02139 

0.77354 0.0293 

0.72493 0.03878 

0.67434 0.0498 

0.62288 0.06225 

0.5718 0.07584 

0.52265 0.09002 

0.47756 0.10309 

0.4351 0.11094 

0.39263 0.11489 

0.35032 0.11617 

0.30873 0.11531 

0.26838 0.11256 

0.22975 0.10814 

0.19328 0.1022 

0.15942 0.09487 

0.12857 0.08605 

0.10057 0.07583 

0.07558 0.0646 

0.05382 0.05305 

0.03551 0.04122 

0.02083 0.0296 

0.00994 0.01862 

0.00296 0.00878 

0.00098 0.00452 

0.00005 0.00087 

0.0003 -0.0018 

0.00233 -0.0037 

0.01203 -0.0067 

0.02803 -0.009 
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0.04987 -0.0108 

0.07718 -0.012 

0.10959 -0.0129 

0.14667 -0.0133 

0.18796 -0.0135 

0.23296 -0.0134 

0.28111 -0.0131 

0.33185 -0.0126 

0.38456 -0.012 

0.43862 -0.0113 

0.49338 -0.0105 

0.5482 -0.0097 

0.60242 -0.0089 

0.65541 -0.0081 

0.70652 -0.0073 

0.75516 -0.0065 

0.80073 -0.0058 

0.84269 -0.0051 

0.88053 -0.0044 

0.91379 -0.0037 

0.94205 -0.003 

0.96496 -0.0023 

0.98232 -0.0015 

0.99393 -0.0007 

0.99942 -0.0001 

1 0 

Table 6 - Airfoil Coordinates [35]. 

Simulation 

Number 

Model Parameters 

Airfoil Chord (in) 
Velocity 

(in/s) 

Reynolds 

Number 

α 

(degrees) 

1 E387 12 377.352 200,000 0 

2 E387 12 377.352 200,000 0 

3 E387 12 377.352 200,000 0 

4 E387 12 377.352 200,000 5 

5 E387 12 377.352 200,000 10 

6 E387 12 377.352 200,000 10 

7 E387 12 377.352 200,000 10 

8 E387 12 377.352 200,000 3 

9 E387 12 377.352 200,000 3 

10 E387 12 377.352 200,000 0 

11 E387 12 377.352 200,000 -3 

12 E387 12 377.352 200,000 5 

13 E387 12 377.352 200,000 5 

14 E387 12 377.352 200,000 5 

15 E387 12 377.352 200,000 5 

16 E387 12 377.352 200,000 5 

17 E387 12 377.352 200,000 5 

18 E387 12 377.352 200,000 5 

19 E387 12 377.352 200,000 5 

20 E387 12 377.352 200,000 5 

21 E387 12 377.352 200,000 5 

22 E387 12 377.352 200,000 5 

23 E387 12 377.352 200,000 5 

24 E387 12 377.352 200,000 0 

25 E387 12 377.352 200,000 7 

26 E387 12 377.352 200,000 7 

27 E387 12 377.352 200,000 0 
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28 E387 12 377.352 200,000 0 

29 E387 12 377.352 200,000 0 

30 E387 12 377.352 200,000 0 

31 E387 12 377.352 200,000 -3 

32 E387 12 377.352 200,000 0 

33 E387 12 377.352 200,000 0 

34 E387 12 377.352 200,000 0 

35 E387 12 377.352 200,000 0 

36 E387 12 377.352 200,000 0 

37 E387 12 377.352 200,000 0 

38 E387 12 188.676 100,000 0 

39 E387 12 188.676 100,000 5 

40 E387 12 188.676 100,000 -3 

41 E387 12 188.676 100,000 10 

42 E387 12 188.676 100,000 3 

43 E387 12 188.676 100,000 3 

44 E387 12 188.676 100,000 5 

45 E387 12 113.2056 60,000 0 

46 E387 12 113.2056 60,000 -3 

47 E387 12 113.2056 60,000 3 

48 E387 12 113.2056 60,000 5 

49 E387 12 113.2056 60,000 10 

50 E387 12 113.2056 60,000 7 

51 FX 63-137 12 188.676 100,000 -3 

52 FX 63-137 12 188.676 100,000 0 

53 FX 63-137 12 188.676 100,000 3 

54 FX 63-137 12 188.676 100,000 5 

55 FX 63-137 12 188.676 100,000 10 

56 FX 63-137 12 377.352 200,000 10 

57 FX 63-137 12 377.352 200,000 5 

58 FX 63-137 12 377.352 200,000 3 

59 FX 63-137 12 377.352 200,000 0 

60 FX 63-137 12 377.352 200,000 -3 

61 M06-13-128 12 377.352 200,000 -3 

62 M06-13-128 12 377.352 200,000 0 

63 M06-13-128 12 377.352 200,000 3 

64 M06-13-128 12 377.352 200,000 5 

65 M06-13-128 12 377.352 200,000 10 

66 E387 12 377.352 200,000 0 

67 E387 12 188.676 100,000 0 

68 E387 12 113.2056 60,000 0 

69 E387 12 113.2056 60,000 5 

70 E387 12 188.676 100,000 5 
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71 E387 12 377.352 200,000 5 

72 FX 63-137 12 377.352 200,000 5 

73 FX 63-137 12 377.352 200,000 0 

74 M06-13-128 12 377.352 200,000 0 

75 M06-13-128 12 377.352 200,000 0 

76 M06-13-128 12 377.352 200,000 0 

77 M06-13-128 12 377.352 200,000 0 

78 M06-13-128 12 377.352 200,000 0 

79 M06-13-128 12 377.352 200,000 0 

80 M06-13-128 12 377.352 200,000 0 

81 E387 12 377.352 200,000 0 

82 E387 12 377.352 200,000 15 

83 E387 12 377.352 200,000 5 

84 E387 12 377.352 200,000 5 

85 E387 12 377.352 200,000 5 

86 E387 12 377.352 200,000 12 

87 E387 12 377.352 200,000 10 

88 E387 12 377.352 200,000 7 

89 E387 12 377.352 200,000 8 

90 E387 12 377.352 200,000 9 

91 E387 12 377.352 200,000 11 

92 E387 12 188.676 100,000 7 

93 M06-13-128 12 377.352 200,000 0 

94 M06-13-128 12 377.352 200,000 7 

95 FX 63-137 12 377.352 200,000 7 

96 FX 63-137 12 188.676 100,000 7 

97 FX 63-137 12 188.676 100,000 0 

98 M06-13-128 12 377.352 200,000 -3 

99 M06-13-128 12 377.352 200,000 10 

100 M06-13-128 12 377.352 200,000 0 

101 M06-13-128 12 377.352 200,000 -3 

102 E387 12 377.352 200,000 10 

103 FX 63-137 12 377.352 200,000 -3 

Table 7 - Model parameters raw data. 

S
im

u
la

ti
o

n
 

N
u

m
b

er
 General Settings 

Analysis Type 
Fluids Wall Condition Turbulence Parameters 

Project 

Fluid 
Flow Type 

Thermal 

Condition 

Roughness 

(uin) 
Intensity (%) Length (in) 

1 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

2 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

3 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 
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4 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

5 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

6 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

7 External 
NOT time 

dep. 
Air Turbulent Adiabatic 0 0.1% 0.011756639 

8 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

9 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

10 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

11 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

12 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

13 External 
Time 

dependent 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

14 External 
Time 

dependent 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

15 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

16 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

17 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

18 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

19 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

20 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

21 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 1 0.1% 0.011756639 

22 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 10 0.1% 0.011756639 

23 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 100 0.1% 0.011756639 

24 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

25 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

26 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

27 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

28 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

29 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

30 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

31 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

32 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

33 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 
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34 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

35 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

36 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

37 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

38 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

39 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

40 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

41 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

42 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

43 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

44 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

45 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

46 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

47 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

48 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

49 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

50 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

51 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

52 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

53 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

54 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

55 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

56 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

57 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

58 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

59 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

60 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

61 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

62 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

63 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 
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64 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

65 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

66 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

67 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

68 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

69 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

70 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

71 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

72 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

73 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

74 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

75 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 1% 0.011756639 

76 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 10% 0.011756639 

77 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 10% 0.1 

78 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 10% 0.001 

79 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 50% 0.011756639 

80 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 100% 0.011756639 

81 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 1000 0.1% 0.011756639 

82 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

83 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 1000 0.1% 0.011756639 

84 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 10000 0.1% 0.011756639 

85 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 100000 0.1% 0.011756639 

86 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

87 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

88 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

89 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

90 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

91 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

92 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

93 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 10000 0.1% 0.011756639 
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94 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

95 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

96 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

97 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

98 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

99 External 
NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

10

0 
External 

NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.01% 0.011756639 

10

1 
External 

NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

10

2 
External 

NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

10

3 
External 

NOT time 

dep. 
Air 

Laminar & 

Turbulent 
Adiabatic 0 0.1% 0.011756639 

Table 8 - General settings raw data. 

Simulation 

Number 

Input Data 

Computational Domain (chord lengths) Global Mesh 

Type Forward Aft Span Upper Lower Initial Ratio 

1 2D 1 3 0.5 1 1 4 2 

2 3D 1 3 1 1 1 4 2 

3 2D 1 3 1 1 1 4 2 

4 3D 1 3 1 1 1 4 2 

5 3D 1 3 1 1 1 4 2 

6 2D 1 3 1 1 1 4 2 

7 2D 1 3 1 1 1 5 3 

8 3D 1 3 1 1 1 5 3 

9 2D 1 3 0.25 1 1 7 2 

10 2D 1 3 0.25 1 1 7 2 

11 2D 1 3 0.25 1 1 6 2 

12 2D 1 3 0.25 1 1 5 3 

13 2D 1 3 0.25 1 1 4 2 

14 2D 1 3 0.25 1 1 7 2 

15 2D 1 3 0.25 1 1 7 2 

16 2D 1 3 0.25 1 1 7 2 

17 2D 1 3 0.25 1 1 7 2 

18 2D 1 3 0.25 1 1 3 2 

19 2D 1 3 0.25 1 1 2 2 

20 2D 1 3 0.25 1 1 1 - 

21 2D 1 3 0.25 1 1 4 2 

22 2D 1 3 0.25 1 1 4 2 

23 2D 1 3 0.25 1 1 4 2 

24 2D 1 3 0.25 1 1 5 2 
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25 2D 1 3 0.25 1 1 5 2 

26 2D 1 3 0.1 1 1 5 2 

27 2D 0.5 2.5 0.1 0.75 0.75 3 3 

28 2D 0.5 2.5 0.05 0.75 0.75 3 2 

29 2D 0.5 2.5 0.025 0.75 0.75 3 2 

30 2D 0.5 2.5 0.0125 0.75 0.75 3 2 

31 2D 0.5 2.5 0.0125 0.75 0.75 3 2 

32 2D 0.5 2.5 0.0125 0.75 0.75 3 2 

33 2D 1 3 0.00625 1 1 3 2 

34 2D 1.25 3.25 0.001 1.25 1.25 3 2 

35 2D 2 4 0.001 2 2 3 2 

36 2D 3 5 0.0001 3 3 3 2 

37 2D 3 5 0.0001 4 3 3 2 

38 2D 3 5 0.0001 4 3 3 2 

39 2D 3 5 0.0001 4 3 3 2 

40 2D 3 5 0.0001 4 3 3 2 

41 2D 3 5 0.0001 4 3 3 2 

42 2D 3 5 0.0001 4 3 3 2 

43 2D 3 5 0.0001 4 3 3 2 

44 2D 3 5 0.0001 4 3 3 2 

45 2D 3 5 0.0001 4 3 3 2 

46 2D 3 5 0.0001 4 3 3 2 

47 2D 3 5 0.0001 4 3 3 2 

48 2D 3 5 0.0001 4 3 3 2 

49 2D 3 5 0.0001 4 3 3 2 

50 2D 3 5 0.0001 4 3 3 2 

51 2D 3 5 0.0001 4 3 3 2 

52 2D 3 5 0.0001 4 3 3 2 

53 2D 3 5 0.0001 4 3 3 2 

54 2D 3 5 0.0001 4 3 3 2 

55 2D 3 5 0.0001 4 3 3 2 

56 2D 3 5 0.0001 4 3 3 2 

57 2D 3 5 0.0001 4 3 3 2 

58 2D 3 5 0.0001 4 3 3 2 

59 2D 3 5 0.0001 4 3 3 2 

60 2D 3 5 0.0001 4 3 3 2 

61 2D 3 5 0.0001 4 3 3 2 

62 2D 3 5 0.0001 4 3 3 2 

63 2D 3 5 0.0001 4 3 3 2 

64 2D 3 5 0.0001 4 3 3 2 

65 2D 3 5 0.0001 4 3 3 2 

66 2D 3 5 0.0001 4 3 3 2 

67 2D 3 5 0.0001 4 3 3 2 
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68 2D 3 5 0.0001 4 3 3 2 

69 2D 3 5 0.0001 4 3 3 2 

70 2D 3 5 0.0001 4 3 3 2 

71 2D 3 5 0.0001 4 3 3 2 

72 2D 3 5 0.0001 4 3 3 2 

73 2D 3 5 0.0001 4 3 3 2 

74 2D 3 5 0.0001 4 3 3 2 

75 2D 3 5 0.0001 4 3 3 2 

76 2D 3 5 0.0001 4 3 3 2 

77 2D 3 5 0.0001 4 3 3 2 

78 2D 3 5 0.0001 4 3 3 2 

79 2D 3 5 0.0001 4 3 3 2 

80 2D 3 5 0.0001 4 3 3 2 

81 2D 3 5 0.0001 4 3 3 2 

82 2D 3 5 0.0001 4 3 3 2 

83 2D 3 5 0.0001 4 3 3 2 

84 2D 3 5 0.0001 4 3 3 2 

85 2D 3 5 0.0001 4 3 3 2 

86 2D 3 5 0.0001 4 3 3 2 

87 2D 3 5 0.0001 4 3 3 2 

88 2D 3 5 0.0001 4 3 3 2 

89 2D 3 5 0.0001 4 3 3 2 

90 2D 3 5 0.0001 4 3 3 2 

91 2D 3 5 0.0001 4 3 3 2 

92 2D 3 5 0.0001 4 3 3 2 

93 2D 3 5 0.0001 4 3 3 2 

94 2D 3 5 0.0001 4 3 3 2 

95 2D 3 5 0.0001 4 3 3 2 

96 2D 3 5 0.0001 4 3 3 2 

97 2D 3 5 0.0001 4 3 3 2 

98 2D 3 5 0.0001 4 3 3 2 

99 2D 3 5 0.0001 4 3 3 2 

100 2D 3 5 0.0001 4 3 3 2 

101 2D 3 5 0.0001 4 3 3 2 

102 2D 3 5 0.0001 4 3 3 2 

103 2D 3 5 0.0001 4 3 3 2 

Table 9 - Input data raw data. 

Simulation 

Number 

Calculation Control Options 

Criterion to Stop Refinement 

Travels Refinements Level Cells Strategy Start Period 

1 5 - 3 1,000,000 Periodic Travels 2 1 

2 5 - 3 1,000,000 Periodic Travels 2 1 
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3 5 - 3 1,000,000 Periodic Travels 2 1 

4 5 - 3 1,000,000 Periodic Travels 2 1 

5 5 - 3 1,000,000 Periodic Travels 2 1 

6 5 - 3 1,000,000 Periodic Travels 2 1 

7 5 - 3 1,000,000 Periodic Travels 2 1 

8 5 - 3 1,000,000 Periodic Travels 2 1 

9 6 - 4 1,000,000 Periodic Travels 3 2 

10 6 - 4 1,000,000 Periodic Travels 3 2 

11 6 - 4 1,000,000 Periodic Travels 3 2 

12 6 - 4 1,000,000 Periodic Travels 3 2 

13 5 - 3 1,000,000 Periodic Travels 3 2 

14 7 - 4 1,000,000 Periodic Travels 4 2 

15 7 - 4 1,000,000 Periodic Travels 4 2 

16 10 - 7 1,000,000 Periodic Travels 5 2 

17 10 7 7 1,000,000 Periodic Travels 5 2 

18 10 2 2 1,000,000 Periodic Travels 7 1 

19 10 1 1 1,000,000 Periodic Travels 8 1 

20 10 - - - - - - - 

21 10 4 4 1,000,000 Periodic Travels 5 1 

22 10 4 4 1,000,000 Periodic Travels 5 1 

23 10 4 4 1,000,000 Periodic Travels 5 1 

24 10 5 5 1,000,000 Periodic Travels 5 1 

25 12 5 5 1,000,000 Periodic Travels 6 1 

26 12 5 5 2,000,000 Periodic Travels 5 1 

27 12 5 5 2,000,000 Periodic Travels 6 1 

28 12 5 5 1,500,000 Periodic Travels 6 1 

29 12 4 4 1,500,000 Periodic Travels 7 1 

30 12 4 4 1,000,000 Periodic Travels 7 1 

31 10 4 4 3,000,000 Periodic Travels 5 1 

32 10 4 4 3,000,000 Periodic Travels 5 1 

33 15 7 7 3,000,000 Periodic Travels 7 1 

34 15 7 7 4,000,000 Periodic Travels 7 1 

35 12 5 5 4,000,000 Periodic Travels 6 1 

36 15 4 4 3,000,000 Periodic Travels 10 1 

37 14 4 4 2,000,000 Periodic Travels 10 1 

38 14 4 4 2,000,000 Periodic Travels 10 1 

39 14 4 4 2,000,000 Periodic Travels 10 1 

40 14 4 4 2,000,000 Periodic Travels 10 1 

41 14 4 4 2,000,000 Periodic Travels 10 1 

42 14 4 4 2,000,000 Periodic Travels 10 1 

43 15 5 5 2,000,000 Periodic Travels 10 1 

44 15 5 5 2,000,000 Periodic Travels 10 1 

45 15 5 5 2,000,000 Periodic Travels 10 1 
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46 15 5 5 2,500,000 Periodic Travels 10 1 

47 15 5 5 2,500,000 Periodic Travels 10 1 

48 15 5 5 3,000,000 Periodic Travels 10 1 

49 15 5 5 3,000,000 Periodic Travels 10 1 

50 15 5 5 3,000,000 Periodic Travels 10 1 

51 15 5 5 3,000,000 Periodic Travels 10 1 

52 15 5 5 3,000,000 Periodic Travels 10 1 

53 15 5 5 3,000,000 Periodic Travels 10 1 

54 15 5 5 3,000,000 Periodic Travels 10 1 

55 15 5 5 3,000,000 Periodic Travels 10 1 

56 15 5 5 3,000,000 Periodic Travels 10 1 

57 15 5 5 3,000,000 Periodic Travels 10 1 

58 15 5 5 3,000,000 Periodic Travels 10 1 

59 15 5 5 3,000,000 Periodic Travels 10 1 

60 15 5 5 3,000,000 Periodic Travels 10 1 

61 15 5 5 3,000,000 Periodic Travels 10 1 

62 15 5 5 3,000,000 Periodic Travels 10 1 

63 15 5 5 3,000,000 Periodic Travels 10 1 

64 15 5 5 3,000,000 Periodic Travels 10 1 

65 15 5 5 3,000,000 Periodic Travels 10 1 

66 15 5 5 3,000,000 Periodic Travels 10 1 

67 15 5 6 3,000,000 Periodic Travels 9 1 

68 15 5 6 4,000,000 Periodic Travels 9 1 

69 15 6 6 5,000,000 Periodic Travels 9 1 

70 15 5 5 3,000,000 Periodic Travels 10 1 

71 15 5 5 3,000,000 Periodic Travels 10 1 

72 15 5 5 3,000,000 Periodic Travels 10 1 

73 15 5 5 3,000,000 Periodic Travels 10 1 

74 15 5 5 3,000,000 Periodic Travels 10 1 

75 15 5 5 3,000,000 Periodic Travels 10 1 

76 15 5 5 3,000,000 Periodic Travels 10 1 

77 15 5 5 3,000,000 Periodic Travels 10 1 

78 15 5 5 3,000,000 Periodic Travels 10 1 

79 15 5 5 3,000,000 Periodic Travels 10 1 

80 15 5 5 3,000,000 Periodic Travels 10 1 

81 15 5 5 3,000,000 Periodic Travels 10 1 

82 15 5 5 3,000,000 Periodic Travels 10 1 

83 15 5 5 3,000,000 Periodic Travels 10 1 

84 15 5 5 3,000,000 Periodic Travels 10 1 

85 15 5 5 3,000,000 Periodic Travels 10 1 

86 15 5 5 3,000,000 Periodic Travels 10 1 

87 15 5 5 3,000,000 Periodic Travels 10 1 

88 15 5 5 3,000,000 Periodic Travels 10 1 
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89 15 5 5 3,000,000 Periodic Travels 10 1 

90 15 5 5 3,000,000 Periodic Travels 10 1 

91 15 5 5 3,000,000 Periodic Travels 10 1 

92 15 5 5 3,000,000 Periodic Travels 10 1 

93 15 5 5 3,000,000 Periodic Travels 10 1 

94 15 5 5 3,000,000 Periodic Travels 10 1 

95 25 5 5 3,000,000 Periodic Travels 20 1 

96 25 5 5 3,000,000 Periodic Travels 20 1 

97 15 5 5 3,000,000 Periodic Travels 10 1 

98 15 5 5 3,000,000 Periodic Travels 10 1 

99 15 5 5 3,000,000 Periodic Travels 10 1 

100 25 5 5 3,000,000 Periodic Travels 20 1 

101 25 5 5 3,000,000 Periodic Travels 20 1 

102 25 5 5 3,000,000 Periodic Travels 20 1 

103 25 5 5 3,000,000 Periodic Travels 20 1 

Table 10 - Calculation control options raw data. 
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1 1.15E-01 9.05E-03 1.15E-01 9.05E-03 1.95E-01 1.54E-02 - - - 

2 7.75E-02 1.65E-02 7.75E-02 1.65E-02 6.60E-02 1.41E-02 - - - 

3 2.26E-01 1.83E-02 2.26E-01 1.83E-02 1.92E-01 1.56E-02 - - - 

4 2.05E-01 1.06E-02 2.03E-01 2.84E-02 1.73E-01 2.42E-02 - - - 

5 3.36E-01 -3.43E-03 3.31E-01 5.49E-02 2.82E-01 4.67E-02 - - - 

6 1.91E+00 -9.23E-02 1.90E+00 2.41E-01 1.61E+00 2.05E-01 - - - 

7 1.55E+00 -1.91E-01 1.56E+00 8.08E-02 1.32E+00 6.88E-02 - - - 

8 7.27E-01 -9.95E-03 7.26E-01 2.81E-02 6.18E-01 2.39E-02 - - - 

9 1.88E-01 -3.48E-03 1.88E-01 6.38E-03 6.40E-01 2.17E-02 - - - 

10 4.68E-02 3.35E-03 4.68E-02 3.35E-03 1.59E-01 1.14E-02 - - - 

11 1.66E-02 4.85E-03 1.68E-02 3.97E-03 5.71E-02 1.35E-02 - - - 

12 2.50E-01 -1.20E-02 2.50E-01 9.84E-03 8.50E-01 3.35E-02 - - - 

13 2.31E-01 -1.03E-02 2.31E-01 9.86E-03 7.87E-01 3.36E-02 - - - 

14 2.27E-01 -1.16E-02 2.27E-01 8.21E-03 7.73E-01 2.79E-02 - - - 

15 2.53E-01 -1.33E-02 2.53E-01 8.77E-03 8.61E-01 2.99E-02 - - - 

16 2.45E-01 -1.20E-02 2.45E-01 9.39E-03 8.35E-01 3.19E-02 - - - 

17 2.03E-01 -2.76E-03 2.02E-01 1.49E-02 6.89E-01 5.09E-02 - - - 

18 1.70E-01 -1.01E-03 1.69E-01 1.38E-02 5.76E-01 4.70E-02 - - - 

19 1.91E-01 -7.22E-03 1.91E-01 9.47E-03 6.50E-01 3.22E-02 - - - 

20 1.63E-01 -9.00E-04 1.63E-01 1.33E-02 5.53E-01 4.53E-02 - - - 

21 2.49E-01 -1.29E-02 2.50E-01 8.86E-03 8.49E-01 3.02E-02 - - - 
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22 2.49E-01 -1.28E-02 2.49E-01 8.90E-03 8.47E-01 3.03E-02 - - - 

23 2.62E-01 -1.28E-02 2.63E-01 1.01E-02 8.94E-01 3.44E-02 - - - 

24 5.51E-02 4.10E-03 5.51E-02 4.10E-03 1.87E-01 1.40E-02 - - - 

25 2.80E-01 -2.15E-02 2.80E-01 1.28E-02 9.54E-01 4.35E-02 - - - 

26 1.14E-01 -8.50E-03 1.14E-01 5.40E-03 9.68E-01 4.59E-02 - - - 

27 1.93E-02 1.74E-03 1.93E-02 1.74E-03 1.64E-01 1.48E-02 - - - 

28 1.01E-02 1.02E-03 1.01E-02 1.02E-03 1.72E-01 1.73E-02 - - - 

29 5.31E-03 4.64E-04 5.31E-03 4.64E-04 1.81E-01 1.58E-02 - - - 

30 2.60E-03 2.31E-04 2.60E-03 2.31E-04 1.77E-01 1.58E-02 4:17:07 - Manual 

31 5.88E-04 2.93E-04 6.03E-04 2.62E-04 4.10E-02 1.78E-02 1:15:46 437,126 Automatic 

32 2.63E-03 2.30E-04 2.63E-03 2.30E-04 1.79E-01 1.57E-02 8:18:03 822,868 Manual 

33 1.46E-03 1.10E-04 1.46E-03 1.10E-04 1.99E-01 1.50E-02 16:32:19 2,857,961 Manual 

34 2.49E-04 1.78E-05 2.49E-04 1.78E-05 2.12E-01 1.52E-02 6:03:18 3,781,639 Manual 

35 2.88E-04 1.48E-05 2.88E-04 1.48E-05 2.45E-01 1.26E-02 16:05:17 3,396,957 Manual 

36 3.18E-05 1.48E-06 3.18E-05 1.48E-06 2.70E-01 1.26E-02 11:20:19 1,033,394 Manual 

37 3.37E-05 1.59E-06 3.37E-05 1.59E-06 2.87E-01 1.35E-02 1:06:19 619,112 Automatic 

38 8.67E-06 5.47E-07 8.67E-06 5.47E-07 2.95E-01 1.86E-02 7:29:05 1,157,778 Manual 

39 2.41E-05 -1.29E-06 2.41E-05 8.16E-07 8.21E-01 2.78E-02 0:46:40 358,489 Automatic 

40 3.42E-07 5.94E-07 3.73E-07 5.75E-07 1.27E-02 1.96E-02 15:55:19 775,205 Manual 

41 3.61E-05 -4.16E-06 3.63E-05 2.17E-06 1.23E+00 7.40E-02 8:18:08 461,071 Manual 

42 1.87E-05 1.29E-07 1.87E-05 1.11E-06 6.36E-01 3.77E-02 11:05:09 709,482 Manual 

43 1.83E-05 -3.58E-07 1.83E-05 6.03E-07 6.24E-01 2.05E-02 3:00:51 1,338,051 Automatic 

44 2.43E-05 -1.29E-06 2.43E-05 8.30E-07 8.26E-01 2.83E-02 3:55:20 1,102,245 Automatic 

45 2.77E-06 2.10E-07 2.77E-06 2.10E-07 2.62E-01 1.98E-02 15:56:35 1,937,980 Manual 

46 6.36E-08 2.13E-07 7.47E-08 2.09E-07 7.06E-03 1.98E-02 12:04:12 2,364,854 Manual 

47 5.38E-06 -2.48E-08 5.37E-06 2.57E-07 5.08E-01 2.43E-02 21:41:10 2,413,928 Manual 

48 8.16E-06 -3.33E-07 8.16E-06 3.79E-07 7.71E-01 3.59E-02 13:26:41 1,927,154 Manual 

49 1.33E-05 -1.54E-06 1.34E-05 7.92E-07 1.26E+00 7.49E-02 19:41:23 1,771,116 Manual 

50 8.98E-06 -5.31E-07 8.98E-06 5.68E-07 8.49E-01 5.37E-02 23:58:55 2,302,325 Manual 

51 5.17E-06 1.35E-06 5.23E-06 1.08E-06 1.78E-01 3.67E-02 19:36:17 2,192,871 Manual 

52 1.39E-05 8.99E-07 1.39E-05 8.99E-07 4.73E-01 3.06E-02 12:17:57 2,212,533 Manual 

53 2.38E-05 5.05E-07 2.37E-05 1.75E-06 8.06E-01 5.95E-02 11:04:25 1,875,554 Manual 

54 3.47E-05 -1.67E-06 3.47E-05 1.36E-06 1.18E+00 4.63E-02 13:20:47 1,319,634 Manual 

55 4.77E-05 -6.23E-06 4.80E-05 2.14E-06 1.64E+00 7.29E-02 8:45:23 1,453,805 Automatic 

56 1.85E-04 -2.39E-05 1.86E-04 8.54E-06 1.58E+00 7.27E-02 4:33:38 1,818,681 Manual 

57 1.45E-04 -8.38E-06 1.45E-04 4.30E-06 1.24E+00 3.66E-02 4:24:31 805,540 Automatic 

58 1.20E-04 -2.87E-06 1.20E-04 3.43E-06 1.02E+00 2.92E-02 2:03:02 1,088,140 Automatic 

59 7.31E-05 3.27E-06 7.31E-05 3.27E-06 6.22E-01 2.78E-02 6:18:17 1,688,703 Automatic 

60 2.87E-05 4.07E-06 2.88E-05 2.56E-06 2.45E-01 2.18E-02 11:05:43 1,537,721 Manual 

61 -1.01E-06 4.90E-06 -7.55E-07 4.94E-06 -6.42E-03 4.21E-02 12:16:07 1,320,683 Manual 

62 3.28E-05 2.41E-06 3.28E-05 2.41E-06 2.79E-01 2.05E-02 13:59:38 1,679,233 Automatic 

63 6.11E-05 3.69E-07 6.10E-05 3.57E-06 5.19E-01 3.04E-02 1:04:10 1,254,884 Manual 

64 9.05E-05 -4.44E-06 9.05E-05 3.46E-06 7.70E-01 2.94E-02 5:21:09 907,926 Manual 
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65 1.36E-04 -1.69E-05 1.36E-04 6.90E-06 1.16E+00 5.87E-02 21:16:13 1,252,091 Automatic 

66 3.64E-05 1.55E-06 3.64E-05 1.55E-06 3.10E-01 1.31E-02 10:18:27 2,882,018 Manual 

67 7.91E-06 4.39E-07 7.91E-06 4.39E-07 2.69E-01 1.49E-02 6:34:39 2,899,413 Manual 

68 3.06E-06 2.36E-07 3.06E-06 2.36E-07 2.90E-01 2.23E-02 16:29:58 3,889,480 Manual 

69 8.46E-06 -4.23E-07 8.47E-06 3.16E-07 8.00E-01 2.99E-02 14:50:32 4,166,323 Manual 

70 2.41E-05 -1.31E-06 2.42E-05 7.97E-07 8.23E-01 2.71E-02 1:52:10 817,883 Automatic 

71 9.94E-05 -5.87E-06 9.95E-05 2.82E-06 8.47E-01 2.40E-02 1:42:23 755,298 Automatic 

72 1.45E-04 -8.48E-06 1.46E-04 4.21E-06 1.24E+00 3.59E-02 4:24:10 814,646 Automatic 

73 7.79E-05 3.29E-06 7.79E-05 3.29E-06 6.63E-01 2.80E-02 13:56:16 2,209,186 Manual 

74 3.31E-05 2.41E-06 3.31E-05 2.41E-06 2.81E-01 2.05E-02 5:49:25 1,591,293 Automatic 

75 3.26E-05 2.41E-06 3.26E-05 2.41E-06 2.77E-01 2.05E-02 15:03:21 1,548,300 Manual 

76 3.38E-05 2.26E-06 3.38E-05 2.26E-06 2.88E-01 1.92E-02 2:55:55 1,356,089 Automatic 

77 3.12E-05 2.32E-06 3.12E-05 2.32E-06 2.66E-01 1.97E-02 6:04:23 1,395,674 Manual 

78 3.22E-05 2.32E-06 3.22E-05 2.32E-06 2.74E-01 1.97E-02 11:13:28 1,565,631 Manual 

79 3.43E-05 2.81E-06 3.43E-05 2.81E-06 2.92E-01 2.39E-02 8:24:24 1,781,052 Manual 

80 3.26E-05 2.25E-06 3.26E-05 2.25E-06 2.77E-01 1.91E-02 13:09:48 1,558,725 Manual 

81 2.99E-05 1.30E-06 2.99E-05 1.30E-06 2.55E-01 1.11E-02 8:05:48 2,879,525 Manual 

82 8.89E-05 -1.18E-05 8.89E-05 1.16E-05 7.57E-01 9.87E-02 11:30:33 1,186,929 Manual 

83 9.42E-05 -5.63E-06 9.43E-05 2.60E-06 8.03E-01 2.21E-02 12:01:22 1,094,835 Manual 

84 1.01E-04 -6.15E-06 1.01E-04 2.65E-06 8.58E-01 2.25E-02 1:08:37 527,548 Automatic 

85 9.92E-05 -5.91E-06 9.93E-05 2.76E-06 8.45E-01 2.35E-02 3:27:58 1,209,570 Automatic 

86 1.22E-04 -4.64E-06 1.21E-04 2.09E-05 1.03E+00 1.78E-01 10:24:23 1,170,015 Manual 

87 1.55E-04 -9.33E-06 1.54E-04 1.76E-05 1.31E+00 1.50E-01 5:06:40 1,097,344 Manual 

88 1.21E-04 -1.13E-05 1.21E-04 3.52E-06 1.03E+00 2.99E-02 2:33:32 901,059 Automatic 

89 1.33E-04 -1.46E-05 1.33E-04 4.00E-06 1.13E+00 3.41E-02 6:55:37 1,336,947 Manual 

90 1.39E-04 -1.33E-05 1.39E-04 8.64E-06 1.19E+00 7.35E-02 6:50:28 1,165,366 Manual 

91 1.39E-04 -1.13E-05 1.38E-04 1.54E-05 1.18E+00 1.31E-01 10:36:41 1,098,309 Manual 

92 2.76E-05 -2.10E-06 2.76E-05 1.28E-06 9.41E-01 4.35E-02 10:53:45 1,442,952 Manual 

93 4.02E-05 4.93E-06 4.02E-05 4.93E-06 3.42E-01 4.19E-02 13:59:05 1,838,683 Manual 

94 1.19E-04 -1.05E-05 1.19E-04 4.07E-06 1.01E+00 3.46E-02 3:21:51 846,699 Automatic 

95 1.60E-04 -1.40E-05 1.61E-04 5.68E-06 1.37E+00 4.84E-02 3:54:41 1,067,425 Automatic 

96 4.00E-05 -2.73E-06 4.00E-05 2.16E-06 1.36E+00 7.36E-02 10:03:23 1,247,052 Manual 

97 1.50E-05 9.22E-07 1.50E-05 9.22E-07 5.10E-01 3.14E-02 9:17:20 2,333,168 Manual 

98 -4.28E-06 4.79E-06 -4.02E-06 5.01E-06 -3.42E-02 4.26E-02 6:10:35 1,456,857 Manual 

99 1.31E-04 -1.62E-05 1.31E-04 6.75E-06 1.12E+00 5.74E-02 6:27:57 1,516,572 Manual 

100 3.36E-05 2.48E-06 3.36E-05 2.48E-06 2.86E-01 2.11E-02 3:51:20 1,266,824 Manual 

101 -8.32E-07 3.10E-06 -6.69E-07 3.14E-06 -5.69E-03 2.67E-02 0:55:54 809,315 Manual 

102 1.50E-04 -2.07E-05 1.52E-04 5.75E-06 1.29E+00 4.89E-02 4:57:23 965,094 Manual 

103 2.47E-05 4.24E-06 2.49E-05 2.94E-06 2.12E-01 2.50E-02 17:12:37 1,881,038 Manual 

Table 11 - Results raw data. 
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Figure 66 - E387 at Re = 60,000 and α = 0°. 

 

Figure 67 - E387 at Re = 60,000 and α = 5°. 

 

Figure 68 - E387 at Re = 60,000 and α = 7°. 

 

Figure 69 - E387 at Re = 100,000 and α = 0°. 
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Figure 70 - E387 at Re = 100,000 and α = 5°. 

 

Figure 71 - E387 at Re = 100,000 and α = 7°. 

 

Figure 72 - E387 at Re = 200,000, α = 0°, and roughness = 1,000 μin. 

 

Figure 73 - E387 at Re = 200,000 and α = 0°. 
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Figure 74 - E387 at Re = 200,000, α = 5°, and roughness = 1,000 μin. 

 

Figure 75 - E387 at Re = 200,000, α = 5°, and roughness = 10,000 μin. 

 

Figure 76 - E387 at Re = 200,000, α = 5°, and roughness = 100,000 μin. 

 

Figure 77 - E387 at Re = 200,000 and α = 5°. 



98 
 

 

Figure 78 - E387 at Re = 200,000 and α = 7°. 

 

Figure 79 - E387 at Re = 200,000 and α = 8°. 

 

Figure 80 - E387 at Re = 200,000 and α = 9°. 

 

Figure 81 - E387 at Re = 200,000 and α = 10°. 
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Figure 82 - E387 at Re = 200,000 and α = 11°. 

 

Figure 83 - E387 at Re = 200,000 and α = 12°. 

 

Figure 84 - E387 at Re = 200,000 and α = 15°. 

 

 

Figure 85 - FX 63-137 at Re = 100,000 and α = 0°. 
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Figure 86 - FX 63-137 at Re = 100,000 and α = 7°. 

 

Figure 87 - FX 63-137 at Re = 200,000 and α = 0°. 

 

Figure 88 - FX 63-137 at Re = 200,000 and α = -3°. 

 

Figure 89 - FX 63-137 at Re = 200,000 and α = 5°. 
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Figure 90 - FX 63-137 at Re = 200,000 and α = 7°. 

 

 

Figure 91 - M06-13-128 at Re = 200,000, α = 0°, and roughness = 10,000 μin. 

 

Figure 92 - M06-13-128 at Re = 200,000, α = 0°, and turbulence intensity = 0.01%. 
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Figure 93 - M06-13-128 at Re = 200,000, α = 0°, and turbulence intensity = 1%. 

 

Figure 94 - M06-13-128 at Re = 200,000, α = 0°, turbulence intensity = 10%, and turbulence length = 0.001 in. 

 

Figure 95 - M06-13-128 at Re = 200,000, α = 0°, turbulence intensity = 10%, and turbulence length = 0.1 in. 

 

Figure 96 - M06-13-128 at Re = 200,000, α = 0°, and turbulence intensity = 10%. 
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Figure 97 - M06-13-128 at Re = 200,000, α = 0°, and turbulence intensity = 50%. 

 

Figure 98 - M06-13-128 at Re = 200,000, α = 0°, and turbulence intensity = 100%. 

 

Figure 99 - M06-13-128 at Re = 200,000, and α = 0°. 

 

Figure 100 - M06-13-128 at Re = 200,000, and α = -3°. 
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Figure 101 - M06-13-128 at Re = 200,000, and α = 7°. 

 

Figure 102 - M06-13-128 at Re = 200,000, and α = 10°. 

 

Figure 103 - NACA 2412 at Re = 3,100,000, and α = 0°. 

 

Figure 104 - NACA 2412 at Re = 3,100,000, and α = -3°. 
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Figure 105 - NACA 2412 at Re = 3,100,000, and α = 5°. 

 

Figure 106 - NACA 2412 at Re = 3,100,000, and α = 10°. 
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