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CHAPTER I 
 

 

INTRODUCTION 

 

1.1. Whispering-Gallery Modes 

In the Temple of Heaven, Beijing, China, there is a circular wall that was built in 1530 during the 

Ming dynasty. This wall is called “Echo Wall” as two people speaking in small voices on two 

ends of the wall can hear each other clearly. A similar phenomenon was discovered in the 

“whispering gallery” of St Paul's Cathedral, London, UK, where Lord Rayleigh first studied 

whispering-gallery modes (WGMs) of sound waves [1] in 1910. 

For optical waves, however, the WGM structure remained a textbook example until 1961, when 

the first observation of optical WGMs in a spherical sample was reported [2]. WGMs of droplets 

were also studied in laser action [3, 4] and Raman scattering [5, 6]. But these early works did not 

initiate immediate scientific interest in WGMs. In 1989, Braginsky, Gorodetsky and Ilchenko 

showed the high quality (Q) factor of WGMs in a microsphere made by melting the tip of a silica 

fiber [7]. This effective and reliable method of fabricating silica microspheres spread out quickly 

and motivated a huge amount of recent works on optical WGMs. WGM microresonators, like 

microspheres, microdisks, microtoroids, microcylinders, microrings and hollow-bottle 

microresonators (HBRs), are characterized by having ultrahigh-Q factors and small optical-mode 

volumes [8], thereby making them advantageous for studies in areas such as cavity quantum  
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electrodynamics (QED), nonlinear optics, optomechanics, and high-sensitivity sensing.  

A WGM is essentially the limiting case of propagation, by total internal reflection, around the greatest 

circumference of the microresonator (Fig. 1.1). As the number of internal reflections becomes very 

large the circumference equals an integral number of wavelengths of the light.  

 

 

     

 

 
 
Figure 1.1.     Ray diagram (a) and field distribution (b) of WGMs at the equatorial plane of a     
                       microresonator [9]. 
 

 

The WGM fields of a microsphere (actually, spheroid) or HBR are described in terms of Bessel 

functions and harmonic oscillator wave functions. Three numbers, m, p, and q, characterize a WGM: 

the mode number m is the number of wavelengths around the circumference, the mode order p is the 

number of radial maxima of the mode’s intensity distribution, and q gives the number of latitudinal 

(sphere) or axial (HBR) field nodes. In addition, two different polarizations are possible for WGMs: 

transverse electric (TE) polarization and transverse magnetic (TM) polarization. The polarization 

dependence of the total-internal-reflection phase shift causes the effective refractive index to depend 

on polarization, so TE and TM modes with the same m, p, and q have different frequencies. In order 

to completely characterize a WGM inside a microresonator, we need to know all 4 indices: the mode 

numbers m, p, q and polarization (TE/TM). A “fundamental” mode has p = 1 and q = 0, giving one 

transverse maximum. 
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In a WGM, a portion of the mode is evanescent, extending a small distance outside the microresonator, 

and decaying approximately exponentially with distance from the surface (Fig. 1.2). This feature allows 

“whispering”, or weak coupling, of light into a microresonator without sacrificing the low-loss and high 

confinement nature of the WGMs. It also allows the light to interact with matter on or near the 

resonator’s surface and enables numerous sensing applications. 

           

 

 

 

 

 

 
 

Figure 1.2.     The radial field distribution of a fundamental WGM showing the evanescent fraction. 
          (Here radius a = 175 µm, wavelength λ = 1550 nm and the resonator’s surface is 
          indicated in red).                  

 

 

There are two main methods for coupling of light into and out of the WGMs of a microresonator. The 

first method is prism coupling, in which the resonator is placed in contact with a prism while a tunable 

laser is focused to a small spot size at the prism-resonator interface at an angle greater than the critical 

angle [10]. Due to total internal reflection, an evanescent field is produced and allows the laser to couple 

from the prism surface into the resonator. At the same time, the resonator’s evanescent field allows the 

light to couple back into the prism. This old method is effective but it is also very difficult 

experimentally. So prism coupling is rarely used in current research. 
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The second method is fiber coupling (Fig. 1.3), which is easier and more commonly used nowadays. In 

this method, an optical fiber is tapered to a diameter of a few microns and brought into contact with the 

resonator in its equatorial plane while light from a tunable laser is injected into one end of the fiber. 

When the light is propagating in the untapered region of the fiber it is confined within the core due to 

total internal reflection between the core and the cladding. As the light propagates into the tapered 

region it transforms from core-cladding guidance to cladding-air guidance, producing an external 

evanescent field which couples into the resonator. Likewise, the resonator’s evanescent field allows the 

light to couple back into the fiber.  

                                                 

 

    

 

 

 

 

 

 

Figure 1.3.     Fiber coupling for a microsphere.  
                      Ei and Er indicate the input field and throughput field. κsf and κfs refer to the   
                      coupling coefficients between the fiber (f) and microsphere (s) modes [11]. At the    
                      coupling point, the fiber is tapered to a diameter of a few microns (not shown). 
 

 

After the tapered region, the light propagation changes back to core-cladding guidance and the 

throughput power is detected at the other end of the fiber. Tapered fiber coupling excites WGMs of the 

microresonator by optical tunneling of photons from the fiber to the resonator. The throughput spectrum 
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that is detected will display a resonance dip for each WGM excited (Fig. 1.4). The resonance dips take 

the structure of the Lorentzian profile, which is the Fourier transform of the exponential decay [12].  

 

 

 

 

 

 

 

 

 

 

Figure 1.4.     Lorentzian dips (yellow trace) corresponding to WGMs excited in a microresonator.   
                      The slight asymmetry visible is caused by weak overlapping of nearby modes. 
 

For each dip, two parameters can be measured: mode linewidth and mode dip depth. The mode 

linewidth is proportional to the total loss, which includes radiation loss, absorption loss, surface 

scattering loss and coupling loss. The radiation, absorption, surface scattering loss are intrinsic loss 

while the coupling loss is extrinsic loss. The mode dip depth depends on the ratio of the coupling loss 

to intrinsic loss. The extremely loss-low nature of the WGMs usually results in very sharp dips, or 

modes with narrow linewidths.  

The mode quality factor Q is closely related to the linewidth as: Q = ν/Δν = ωτ, where ν = ω/2π is the 

light frequency, ∆ν is the WGM linewidth, and τ is the photon lifetime in the mode. High Q means, in 
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addition to narrow linewidth, that the light makes many intracavity round trips (longer photon lifetime). 

These two attributes are responsible for the sensitivity of the microresonator’s response to changes in 

temperature, ambient absorption coefficient, and ambient index of refraction, and make it well suited 

for use as a sensor.  

For chemical and biosensing purposes, we can measure the frequency shift of a WGM caused by the 

analyte’s perturbation of the ambient’s index of refraction [13, 14]. In addition, analyte absorption 

will change the effective intrinsic loss and Q of the WGM, and the modification of dip depth [15, 16] 

or mode linewidth [17] can be measured. As mechanical sensors, WGM microresonators can be used 

to measure strain, acceleration, and rotation. Their sensitivity to thermal effects has been noted and 

used to completely characterize microresonator losses [18]. 

 

1.2. Dissertation Organization 

In this dissertation, we focus on another important application of the WGM microresonators: achieving 

electromagnetically induced transparency (EIT) -like effects to enable use of the resultant effects such 

as slow light for optical information processing. More specifically, we will investigate the dynamics of 

cross-polarization coupling (CPC), which is one way of achieving EIT-like effects in a single resonator.  

In Chapter II, we give some background information about EIT effects. We also talk briefly about 

achieving EIT-like effects in coupled resonators, namely coupled resonator induced transparency 

(CRIT) or coupled resonator induced attenuation (CRIA). Then we look at different ways of achieving 

EIT-like effects in a single resonator, one of which involves cross coupling between orthogonally 

polarized light resulting in coupled mode induced transparency (CMIT) or coupled mode induced 

attenuation (CMIA).  
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In Chapter III, we emphasize the importance of polarization analysis and explain the nature of the CPC 

effect. We also introduce the hollow-bottle microresonator (HBR), which is the ideal resonator for our 

experiment because of several advantages over other types of resonators. 

In Chapter IV, we analyze the dynamics of CPC using a ring cavity model. From our dynamical 

analysis, we propose an independent way of estimating the CPC strength by input amplitude 

modulation, rather than finding it by model fitting.  

In Chapter V, we first describe our experimental setup and experimental procedures. Then we show 

results of estimating the CPC strength for different cases. We compare the CPC strength obtained by 

amplitude modulation to the value inferred from model fitting. Our experimental results confirm that 

we have developed an independent method of estimating the CPC strength. 

 In Chapter VI, we summarize the thesis and give an outlook for the future work.  

 

 

 

 

 

 

 

 

 



8 
 

CHAPTER II 
 

 

INDUCED TRANSPARENCY AND INDUCED ABSORPTION 

 

2.1. Electromagnetically Induced Transparency (IT) and Absorption (IA) 

Since the invention of the laser, many new discoveries have been made possible with the help of 

this highly coherent light source. One of these exciting new phenomena is electromagnetically 

induced transparency (EIT) effects where laser-induced coherence of atomic states leads to 

quantum interference between the excitation pathways that control the optical response. This 

eliminates the absorption [19] at the resonant frequency of a transition, i.e., the coherently driven 

medium is transparent to the probe field. In 1990, Harris et al. [20] first used the term EIT to 

describe the cancellation of the linear response by destructive interference in a laser-dressed 

medium. In 1991, Boller et al. [21] reported the first experimental observation of EIT in Sr vapor. 

Nowadays EIT effects are used in areas such as ultraslow group velocities, longitudinal pulse 

compression, storage of light and efficient nonlinear mixing. 

The optical properties of atomic and molecular gases are fundamentally tied to their intrinsic 

energy-level structure. So in order to understand the physics of EIT we need to look in detail at the 

dynamics in three-level atoms coupled to the applied laser fields and determine the optical response. 

Fig. 2.1 shows a Λ-type three-level system driven by a coherent coupling field. 
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Figure 2.1.     Energy-level structure of a Λ-type three-level system driven by a coherent  
                      coupling field: ωp is the frequency of the probe field and ωc is the frequency of the  
                      coupling field; Δ1 = ω31 - ωp and Δ2 = ω31 – ωc denote field detunings from atomic  
                      resonances; Γik are the radiative decay rates from state i  to state k . 

 

 

The probe field is tuned near resonance between two of the states and measures the absorption 

spectrum of the transition. The coupling field is much stronger and it is tuned near resonance at a 

different transition. If the states are selected properly, the presence of the coupling field will 

create a spectral "window" of transparency (Fig. 2.2) which will be detected by the probe. 

Extreme dispersion is also created (Fig. 2.3) within this transparency "window" which leads to 

"slow light", i.e. a light pulse passing through the system with group velocity less than the speed 

of light in the atomic medium. 
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Figure 2.2.     Relative absorption as a function of detuning of probe frequency ωp from atomic   
                      resonance frequency ω31, for a system with absorption linewidth 2Γ31 when the   
                      coupling field is off (dashed line) and an EIT system when the coupling field is on   
                      (solid line).  
 
 
                                               

 

 

 

 

 

 

 

 

 

Figure 2.3.     Dispersion (or change of refractive index) as a function of detuning of probe                         
                      frequency ωp from atomic resonance frequency ω31, for a system with absorption 
                      linewidth 2Γ31 when the coupling field is off (dashed line) and an EIT system when   
                      the coupling field is on (solid line). 
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In contrast to EIT, electromagnetically induced absorption (EIA) happens when there is an increase 

in the absorption coefficient due to the constructive interference between the transfer of population 

and transfer of coherence between two hyperfine ground and excited states of an atomic system. In 

this case, the steep negative slope of refractive index vs. frequency (anomalous dispersion) on 

resonance gives rise to “fast light” [22].  

Autler–Townes splitting [23] (ATS) also displays a transparency window (similar to EIT). 

However, ATS is not the result of interferences [24] but involves field-induced splitting of energy 

levels. 

 

2.2. IT/IA in Coupled Resonators 

Induced transparency is not a quantum phenomenon, but something more universal; e.g., it can be 

observed in a system of two oscillators with equal natural frequencies but different damping rates 

that are coupled to each other. Using WGM microresonators, we can also observe classical analogs 

of the EIT effects in atomic systems. Recent theoretical analysis of coupled microresonators [25] 

has revealed that coherence effects in the coupled resonator system are remarkably similar to those 

in atoms. Experimental observation of induced transparency and absorption in coupled 

microspheres [26] has also been reported. 

In the coupled resonator experiment, two spheres are brought nearly into contact by using a precise 

actuator to control their separation. Due to the evanescent coupling between the coresonant 

whispering-gallery modes of the two microspheres, the net throughput power in the coupled 

resonator system has features analogous to the EIT and EIA phenomena [26]. This is accounted for 

by the destructive or constructive interference between the coresonant WGMs of the two 

microresonators, which either reduces or enhances light losses in the system, resulting in coupled 

resonator induced transparency (CRIT) or coupled resonator induced attenuation (CRIA) effects.  
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The inter-sphere evanescent coupling only occurs between two individual WGMs of the 

same polarization from two resonators. 

 

2.3. IT/IA in a Single Resonator 

Induced transparency can also be observed in a single microresonator. There are three methods for 

achieving IT/IA in a single resonator.  

The first method for achieving induced transparency and attenuation uses cross-polarization 

coupling (CPC) [27]. Light of one polarization circulating in a WGM of the microresonator can be 

coupled into a coresonant WGM of the orthogonal polarization. This CPC is likely a result of weak 

polarization rotation. In this case, the input light and detected throughput is one polarization, say 

TE. Because of CPC, the interaction with a coresonant TM WGM produces a throughput spectrum 

(as the driving laser is scanned in frequency) showing cross-polarization coupled-mode induced 

transparency and attenuation (CMIT, CMIA) [28]. An input pulse whose center frequency is 

resonant will be delayed or advanced [29, 30].  

The second method uses incident light linearly polarized at 45° (for example) in the TE-TM basis 

to drive coresonant modes of the two polarizations and produce induced transparency or attenuation 

in the throughput of the same linear polarization as the incident light. This occurs even in the 

absence of cross-polarization mode coupling, demonstrating that mode superposition is sufficient 

to produce these effects, including pulse delay or advancement. The effects induced in this manner 

are referred to as coresonant polarization induced transparency and attenuation (CPIT, CPIA) [31]. 

For the third method, linearly polarized light is input and excites only TE (or TM) modes; two 

modes, of like polarization but different radial order, are coresonant and coupled to each other [31-

34]. In this case, the coupling between modes is mediated by the input/output coupling fiber – light 
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circulating in one WGM couples out into the fiber and then immediately back into the other WGM. 

We use FMIT and FMIA to refer to the fiber-mediated induced transparency and attenuation effects 

seen using this method. 
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CHAPTER III 
 

 

CROSS-POLARIZATION COUPLING 

 

In most of the applications of the WGM of microresonators, typical measurements of the system 

have been taken without polarization analysis, i.e. the polarization of the light was not carefully 

controlled, nor was the throughput polarization-analyzed.    

 

3.1. Cross-Polarization Coupling (CPC) Effect 

An important feature of a microresonator is the occurrence of transverse electric (TE) and 

transverse magnetic (TM) mode families that result from the boundary conditions applied to the 

wave equation. Each mode has its own field configuration and they are polarized orthogonally to 

each other; TE modes are tangentially polarized while TM modes are radially polarized with respect 

to the resonator surface (see Fig. 3.1).  
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Figure 3.1.     Representation of the WGM structure for two different possible polarizations with  
                       respect to the resonator surface, TE or TM (indicated by the arrows).  
 

The polarization dependence of the total-internal-reflection phase shift causes the effective 

refractive index to depend on polarization, so TE and TM modes with the same m, p, and q have 

different frequencies.  In a single microresonator with TE and TM WGMs, we would expect 

interesting phenomena to happen when TE and TM modes are brought into coresonance. 

In an early series of experiments [27] it was observed that when one pumped the cavity using input 

light scanned through resonance, with linear polarization aligned to one of the cavity’s 

polarizations, peaks of orthogonally polarized light were observed in the throughput (Fig. 3.2). 
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Figure 3.2.     A direct observation of the CPC effect. The system is pumped with a pure TE   
                      cavity polarization. The resulting TE and TM fiber outputs are summed (yellow   
                      trace) and compared to an unpolarized intensity trace (red). The table lists several  
                      examples of the respective dip depths [27]  
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Shown in Fig. 3.2 is a direct observation of the CPC effect and its consequences. The cavity is fiber 

coupled and pumped with linearly polarized light, TE in the cavity’s polarization basis. This CPC 

effect must be explored rigorously if we are to infer correct information from our experiments. 

Simultaneous measurements are then made on the system throughput using separate detectors 

preceded by a polarizing beam splitter, to detect TE and TM separately, as well as another detector 

with no polarization analysis. The TE and TM output are added, in real time, and compared to the 

unpolarized detector response. If we don’t polarization analyze the throughput, we can just detect 

the sum of the two orthogonally polarized throughput powers (the superimposed yellow and red 

traces). If we analyze the throughput, we get the TE polarization (the blue trace), with dips marking 

the resonant TE WGMs. But, more remarkably, we get the orthogonally polarized throughput TM 

(the purple trace), which would be zero without the CPC effect, with several peaks demonstrating 

that CPC is occurring for several of the resonant TE WGMs. The table lists several examples of the 

respective fractional dip depths and the errors that would be made by measuring the total power 

only.  

The concurrence of the unpolarized power detector response with the direct addition of the 

orthogonal polarization powers suggests strongly that if the experimental parameters were to be 

determined without an understanding of the polarization response, the inferred parameters could be 

in serious error. 

 

3.2. Coupled-Mode Induced Transparency (CMIT) and Induced Attenuation 

(CMIA) 

Coupling between orthogonally polarized WGMs results in mode splitting, and if one mode’s Q is 

much greater than the other’s, induced transparency/ attenuation (IT/IA) can be observed. These 

effects are termed coupled-mode induced transparency (CMIT) and induced attenuation (CMIA) 
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and they enable slow light or fast light, where a light pulse passing through the system travels 

slower or faster than the speed of light in silica. These are useful in certain applications such as 

optical gyroscope sensitivity enhancement, sensing, and fast-light data buffers for 

telecommunications, so it is desirable to understand the circumstances under which the CPC effect 

can occur. 

The nature of CPC is due to the mode coupling between orthogonally polarized WGMs at 

resonance. Mode coupling is a feature of many different physical systems. For a system that is 

composed of a single oscillator, free vibrations occur when the system is displaced initially from 

its equilibrium configuration and is then allowed to oscillate by itself. Very often, however, the 

system is damped and set into oscillation by an external driving force that continues to act on the 

system after t = 0. The frequency of such a forced oscillation is then determined by the frequency 

of the driving force and not by the resonant frequency [35]. The amplitude of oscillation depends 

on the detuning of the driving frequency from resonance, and if the driving force is turned off, the 

amplitude will be reduced gradually because of the damping. However, in the real world, many 

physics systems involve coupled oscillators, in which oscillators are connected in such a way that 

energy can be transferred between them. The behavior of each oscillator influences that of the 

others, which makes the apparent motions of the system very complicated, but it is easier to 

understand if we resolve the motion into normal modes. A normal mode of a coupled oscillator 

system is a pattern of motion in which all parts of the system move sinusoidally with the same 

frequency and with a fixed phase relation. The motion described by the normal modes can take 

place at frequencies different from the system’s natural frequencies. Mode coupling can shift the 

system’s resonant frequencies. Normal modes (or supermodes) are mathematically orthogonal to 

each other and their superposition gives us the general motion of the system. For example, in a 

system with two coupled harmonic oscillators, the normal modes are the symmetric mode and the 

antisymmetric mode, when the two oscillators are in phase and out of phase, respectively. The 
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extent to which each normal mode is excited is determined by the amplitude of the driving force 

and the closeness of the driving frequency to the resonant frequency of the mode.  

CPC is a manifestation of mode coupling in optical resonators. Light circulating in one polarization 

is coupled into the other by polarization rotation caused by slight asymmetry in the microresonator 

profile which enables an optical spin-orbit interaction [36]. For the coupling between orthogonally 

polarized WGMs to be easily observable, TE-TM coresonance is required. Because when one 

polarization, TE for example, is directly excited, there is always some nonzero power in the 

orthogonal TM polarization due to CPC. But only when TM is coresonant with TE, the power in 

the TM modes can build up to an experimentally observable value. As we will discuss below, the 

hollow-bottle microresonator (HBR) is a near-ideal system in which to study these effects.  

 

3.3. Hollow-Bottle Microresonators for CMIT/CMIA 

We use a hollow-bottle microresonator [37] (HBR), instead of a silica microsphere, in our 

experiments. Due to its bottle shape, the HBR has some advantages over the microsphere for 

controlling the cross polarization coupling. Bottle resonators provide the benefits of high Q, 

tunability (by stretching), axial mode confinement, and mode selectivity (by positioning the 

coupling fiber). The WGMs of an HBR can be tuned easily by stretching the resonator, and the two 

polarizations tune at different rates, so coresonance can be imposed (rather than achieving it by 

coincidence). So it is easier to see CPC effects and study the resultant CMIT/CMIA with the help 

of HBRs.  

To make the HBR, a fused-silica capillary is internally etched with a hydrofluoric acid solution to 

thin its walls to a thickness of 5-10 μm, and then a short length is heated using a hydrogen torch 
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while under internal air pressure, leading to the formation of a bottle-shaped bulge [37]. A typical 

HBR made in our lab is shown in Fig. 3.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.     A hollow bottle resonator (HBR) obtained by manual compression of air inside the   
                      capillary. Initial diameter of the capillary is about 350 μm and the diameter at the   
                      bulge is about 500 μm. The wall thickness is about 5 μm after etching.   
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As a sensor, the HBR takes advantage of intracavity enhancement (because it is a resonator), and 

in addition it combines the advantages of capillary-based optical ring resonators (because it is 

hollow) and whispering-gallery bottle resonators (because of the bottle shape).  Capillary-based 

optical ring resonators are advantageous because they permit internal sensing (see Fig. 3.4), which 

means that much smaller volumes of analyte are required, and it is easy to incorporate the sensor 

into microfluidic and/or chromatographic systems. Bottle resonators provide the benefits of high 

Q, tunability (by stretching), axial mode confinement, and mode selectivity (by positioning the 

coupling fiber).   

 

 

 

 

 

 

Figure 3.4.     Radial mode profile for TE polarization in a HBR with outer radius of 175 µm and   
                      inner radius of 170 µm. Both internal (red) and external (blue) evanescent                            
                      fractions can be used for sensing.  
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The HBR, then, has all of these positive attributes, and can be used in any application where a 

capillary-based sensor could, while providing significantly enhanced sensitivity owing to the 

HBR’s one- to two-order-of-magnitude higher Q. The HBR is an especially promising platform for 

sensing and other applications. 
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CHAPTER IV 
 

 

DYNAMICS OF CPC 

 

4.1. Ring Cavity Model 

To get a physical understanding of the dynamics of CPC and the resultant CMIT/CMIA effects, we 

can use a ring cavity model as shown in Fig. 4.1. In the model, the CPC between the intracavity 

circulating TE and TM modes is treated as a cross-polarization rotation near the input/output 

coupling point. Two input fields (actually, the TE and TM components of a single input field) are 

injected into the resonator, where they couple to each other. The net reflected fields are analogous 

to the throughput fields in a whispering-gallery microresonator system. The labeled fields and 

system parameters are defined and discussed in the following text. 



24 
 

 

 

Figure 4.1.     Ring cavity model consists of four mirrors: the top left mirror is partially   
                      transmitting while all others have 100% reflectivity.  
  

 

In the model, Ej (j = 1, 2) are orthogonal polarization components of the input field. One of the four 

mirrors is a partially transmitting mirror with reflection and transmission coefficients rj and itj, 

while the other three mirrors are perfectly reflective. (Because the input and output coupling 

coefficients, κfs and κfs of Fig. 1.3, differ by only about 10% [11], they are both taken to be equal to 

itj in this model.) The partial reflector is assumed to be ideal, so that its reflectivity Rj  and 

transmissivity Tj satisfy Rj + Tj = 1, where 22  and jjjj tTrR == .  Immediately after the fields enter 

the cavity, CPC (modeled here as polarization rotation) takes place with an amplitude of ts. As the 

polarization rotates clockwise in the 1-2 basis, we have ts for E1 to E2 coupling and -ts for E2 to E1 

coupling. Thus, 22 1 sss rtT −==  is the cross coupling probability per round trip, and is the measure 

of intermodal coupling strength. The intracavity fields of the two orthogonally polarized modes 



25 
 

just before and just after the input/output coupler are 
jj cs EE  and , respectively. With CPC just after 

the coupler, we assume round-trip intensity losses of Ljα  and round-trip phase shifts jδ .  The

jrE denote the throughput fields, which are given by 

  
2211 222111      and     srsr EitErEEitErE +=+= ,  (4.1) 

where, in steady state, 
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4.2. Analytical Analysis of CPC Dynamics 

We assume that changes in a round trip are small, so that the fields on the right-hand sides of the 

first two of Eqs. (4.2) are actually one round trip earlier (denoted by primes below) than the left-

hand sides, and the steady-state equations can be converted into time-evolution equations by using, 

for example, 
j
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j
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= , where the 

jrtτ are the round-trip times in the two modes.  

The relation between the coefficients and total (complex) loss rate jγ  for intracavity fields 
jsE  is 

given by,   
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with field decay rate is jrtjjj j
LT ττακ 2/12/)( =+= , where τj is the photon lifetime for mode 

j; and θj is detuning of the resonant frequency of mode j from the input frequency, in units of half 

the mode linewidth. The cross-polarization coupling to the orthogonal mode comes in as an 

additional “intrinsic” loss. Note that the quality factor of mode j can be written as 

( )jjjjjQ κωτω 2== , where jω is mode j’s resonant frequency. 

In this way we will get the differential equations for intracavity field amplitudes, 
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These equations have the correct steady-state limit and a form that makes physical sense. 

Now using 
jj sjjjr EitErE +=  gives the differential equations for the throughput fields. So the 

first-order differential equations for throughput fields are  

2
21

1

2
1

22
2

1
1111

11

2

1

11
)()( EtttEtErE

t
ttErEEE

rt

s

rt
r

rt

s
rr τττ

γ +−−−−−=  ,                  (4.6) 

1
21

2

2
2

11
1

2
2222

22

1

2

22
)()( EtttEtErE

t
ttErEEE

rt

s

rt
r

rt

s
rr τττ

γ −−−+−−=  .               (4.7) 

For the case where the input fields are not assumed to be constant ( 0≠jE ), the second-order 

differential equations (throughput) are 

  
jj sjjjr EitErE  += .                    (4.8) 
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We can look at
1sE  as an example,  
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which, with Eqs. (4.4) and (4.5) gives 
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Then, if we assume the intermodal coupling strength sT  is very small and both modes are driven on 

resonance (θj = 0), so jj κγ ≈ , we have: 
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which is a general result and has the form of a damped driven oscillator. 

In the case of no driving, input fields E1 = E2 = 0, we can try t
s eE β−∝

1
 in Eq. (4.11) and get:  
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The roots of this equation give us the complex decay constants of the supermodes: 
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Then for weak (but non-negligible) intermode coupling: 
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positive and gives two real values for ±β , and the destructive interference between the direct and 
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indirect excitation paths of the intracavity fields produces the induced transparency (CMIT) feature 

of the throughput power.  

In contrast, if the coupling is made strong enough: 
2
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κκ

ττ rtrt

sT , the radicand becomes 

negative and gives two complex values for ±β , indicating a frequency splitting. The throughput 

now is split on both sides from the center of the feature due to the coupling between the intracavity 

TE and TM modes, and this phenomenon is referred to as Autler-Townes splitting (ATS) [24]. 

If we look at the case of one component where that component is the only input and might be 

sinusoidally modulated in amplitude at frequency Ω:  

        tieAE Ω−= 11 , 02 =E .                              (4.14) 
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which then gives 
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where 
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0
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κκ +=Ω , and is a measure of the CPC coupling strength. 

So now the amplitude of the throughput field is  
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Within the same resonator, the two modes have very nearly the same n, so same τrt; also, rj can be 

approximated by 1, so we have: 

                                 
)(

)]([)(

21
22

0

21
12122

0

1

1

κκ

κκ
ττ

κ

+Ω−Ω−Ω

+−Ω+−Ω−Ω
=

i

TiT

A
A

rtrtr .                               (4.18) 

We can look at the simple case where the two modes have the same Q. Then we can drop the 1, 2 

subscripts and write:   
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Let’s interpret this result with some typical parameter values. Recall that 
τ

κ
2
1

= ; choose 

8102.1 ×=Q , 81051.2 −×=sT , and carrier wavelength 55.1=cλ µm. Then, from ωτ=Q , we 

have 61007.5
22

1
×====

Q
c

Q cλ
πω

τ
κ  s-1, and with radius a = 300 µm, n = 1.44, we have 

121004.92 −×==
c
an

rt
πτ  s. Then we get the effective resonance frequency of the damped driven 

oscillator: 7
2

2
0 1082.1 ×=+=Ω

rt

sT
τ

κ  s-1 (or 91.2
2

0
0 =

Ω
=

π
ν  MHz).  

Now choose 0Ω=Ω , then Eq. (4.19) becomes 
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Look at the imaginary term in the numerator: it will be small compared to the real term, at least in 

the limit of strong overcoupling (T >> αL). Then 
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A
Ar . The -i means a 90 ̊ phase shift.  

We took tiAeE Ω−= , to represent the physical input tAE Ω= sin , so the throughput Ar will vary 

as 2
πititi eeie

−Ω−Ω− =− , leading the input by π/2. Measurement of this modulation resonance 

frequency Ω0 can be used to determine the intermode coupling strength Ts; however, we will show 

that there is an even simpler method, without requiring strong over coupling, to use modulation 

response to determine Ts. 

 

4.3. Numerical Analysis of CPC Dynamics 

The ring cavity model described above has been incorporated into a Mathematica program for 

calculation of CMIT/CMIA behavior (intermode CPC).  Depending on what we want to see, the 

input amplitude can be Gaussian modulated (to see pulse response), sinusoidally modulated (to see 

throughput modulation amplitude and phase shift), or square-pulse modulated (to see precursors). 

In the program, typical experimental parameter values are input, and the cross-polarization 
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coupling strength is treated as an adjustable parameter. The output coupling and intrinsic loss are 

input indirectly by giving the values of the quality factor Q of each mode (determines total loss), 

of the depth of each mode’s resonance dip (determines ratio of losses), and of the coupling regime 

(allows determination of each loss independently). The coupling regimes are overcoupled (coupling 

loss greater), undercoupled (intrinsic loss greater), and critical (losses equal).  

 

4.3.1 CMIT/CMIA with Gaussian Pulse Response 

Here, if cw light is input (linearly polarized, only one mode is driven) the program plots the 

throughput spectrum (relative throughput power as a function of detuning of the input light from 

coresonance), and the dispersion (phase of the throughput field as a function of detuning). Then it 

also plots the throughput as a function of time when a resonant Gaussian pulse is input (showing 

attenuation and delay or advancement).   

An example [28] of CMIT is shown in Fig. 4.2. The parameter values are: quality factors Q1 = 8 × 

106, Q2 = 1.98 × 108; cross coupling probability Ts = 5 × 10-8; dip depths M1 = 0.96 (overcoupled), 

M2 = 0.93 (undercoupled). For this CMIT, we see a steep normal dispersion and pulse delay.  

An example [28] of CMIA is shown in Fig. 4.3. The parameter values are: quality factors Q1 = 8 × 

106, Q2 = 1.98 × 108; cross coupling probability Ts = 6.3 × 10-9; dip depths M1 = 0.36 (overcoupled), 

M2 = 0.53 (undercoupled). For this CMIA, we see a steep anomalous dispersion and pulse 

advancement. 

In these examples, we assume a large difference in Q values and a typical (relatively low) CPC 

strength. 
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Figure 4.2.     CMIT (CPC). Top to bottom: throughput power spectrum, dispersion, pulse  
                      response - input Gaussian pulse in black and delayed throughput pulse in blue [28].  
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Figure 4.3.     CMIA (CPC). Top to bottom: throughput power spectrum, dispersion, pulse  
          response - input Gaussian pulse in black and delayed throughput pulse in blue [28]. 
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4.3.2 Response to Sinusoidal Input Modulation 

Now the input amplitude is sinusoidally modulated to see throughput modulation amplitude and 

phase shift. With sinusoidal input, there will be an obvious phase shift and the amplitude is not just 

the zero-detuning value of the throughput power. We will see the occurrence of sidebands and the 

attenuation on the throughput amplitude can be strong or weak depending on the position of the 

sidebands on the throughput power spectrum. 

To analyze the modulation behavior in terms of the frequency sidebands, we can add “carrier 

detuning” as another adjustable parameter to the program. If the optical carrier frequency is ω, the 

modulated input is 

                      ])cos()[cos(
2
1sinsin ttAttAE Ω+−Ω−=Ω= ωωω .     (4.21) 

 

So the input frequency spectrum looks like Fig. 4.4: 

 

 
 
 
 

                           
 
 
 
 
Figure 4.4.     Illustration of frequency sidebands for an optical carrier frequency of ω. 
 

 

 

 



35 
 

The beat at 2Ω describes the intensity: ]2cos1[
2
1sin 2 tt Ω−=Ω . The carrier frequency is 

resonant with the coresonant WGMs, so the sidebands are symmetrically displaced into regions of 

smaller throughput power in the case of CMIT when the modulation frequency is not too large. 

Let’s first choose the same parameter values as in the example in the analytical analysis: both modes 

have high quality factors Q1 = Q2 = 1.2 × 108; cross coupling probability Ts = 2.5 × 10-8; dip depths 

M1 = 0.05 (overcoupled), M2 = 0.05 (overcoupled); in the example, we get ν0 = 2.91 MHz and 

choose to modulate at the resonant frequency, so we set the value for Ω = 2π × (2.91 MHz).  

With the same cw light input (linearly polarized, only one mode is driven) the program again plots 

the throughput spectrum, the dispersion, and the throughput as a function of time for a sinusoidally 

modulated input.  (The dispersion is not shown in the figures that follow.) 

We can see from Fig. 4.5 that mode splitting occurs rather than induced transparency, because κ1 = 

κ2 in this case and Eq. (4.13) gives frequency splitting. We also note that the throughput field is 

indeed leading the input field by π/2, making the throughput power appear to be leading by π. Also, 

the throughput power is consistent with the analytical prediction that it should be about 7.8% of the 

input power. This confirms our analytical results in the previous chapter. 

In the case of same Q, comparing the throughput spectrum in Fig. 4.5(a) to the modulated 

throughput in Fig. 4.5(b) shows us that the throughput at the sidebands (± 2.91 MHz) has the same 

amplitude as the modulated throughput. 
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Figure 4.5.     For the case of same Q: (a) mode splitting in the throughput spectrum;  
                      (b) throughput power (blue curve) and input power (black curve) as a  
                      function of time for a sinusoidal modulation. 
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From Eq. (4.19) we can plot 
2

A
Ar  vs Ω  in the range of (

2
0Ω , 2 0Ω ) as in Fig. 4.6(a); we can also 

plot )(2
A
AArg r  vs Ω  in the same range, as in Fig. 4.6(b). For our case of same Q values, the 

resonance frequency is calculated to be 7
0 1082.1 ×=Ω  s-1 (or 91.20 =ν  MHz). On resonance (

0Ω=Ω ), we can estimate from Fig. 4.6(a) that the amplitude at the modulation frequency of 

71082.1 ×=Ω s-1 is around 0.08. In our analytical analysis, the throughput power is about 7.8% of 

the input power. This confirms that our amplitude plot is consistent with our model. Now let’s look 

at our phase plot of Fig. 4.6(b). At the modulation frequency of 71082.1 ×=Ω s-1 the phase shift 

is about -3.1, which is almost equal to –π, meaning the throughput power is leading the input by π. 

This confirms that our phase plot is also consistent with our model. We may be able to generalize 

these plotting methods to other cases.    
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Figure 4.6.     For the case of same Q: throughput amplitude (a) and phase (b) with  
                       respect to input as a function of modulation frequency. 
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Now let’s look at some cases where the Q values are very different. We can take the case of CMIT 

as in Fig. 4.2, the case of CMIA as in Fig. 4.3 and another case of ATS with the same parameters 

as our CMIT but with larger Ts.  

As given in [28], the parameter values are: for CMIT, quality factors Q1 = 8 × 106, Q2 = 1.98 × 108; 

cross coupling probability Ts = 5 × 10-8; dip depths M1 = 0.96 (overcoupled), M2 = 0.93 

(undercoupled); for CMIA, the parameters are the same as for CMIT except for these: M1 = 0.36, 

M2 = 0.53, Ts = 6.3 × 10-9; for ATS, same parameters as CMIT but Ts = 10-6. We can zoom in on 

the CMIT/CMIA and ATS throughput spectra by decreasing the plotting range to check the 

throughput power at the sidebands. With the given parameter values above, the throughput 

spectrum looks like Fig. 4.7(a) for CMIT, Fig. 4.8(a) for CMIA, and Fig. 4.9(a) for ATS. 

Using these parameter values and the definition of the modulation resonance frequency, 

21

21
2

0
rtrt

sT
ττ

κκ +=Ω , we can calculate for each case: 17
0 10907.2 −×=Ω s  (or 63.40 =ν MHz) 

for CMIT, 17
0 1076.1 −×=Ω s  (or 8.20 =ν MHz) for CMIA and 18

0 10115.1 −×=Ω s  (or 

7.170 =ν  MHz) for ATS.  

For the sinusoidally modulated input, on resonance ( 0Ω=Ω ), the modulation response looks like 

Fig. 4.7(b) for CMIT,  Fig. 4.8(b) for CMIA, and Fig. 4.9 (b)for ATS. In each case, the throughput 

seen in Figs. 4.7(a), 4.8(a), and 4.9(a) at the sidebands (± 4.63 MHz for CMIT, ±2.8 MHz for CMIA 

and ±17.7 MHz for ATS) has the same amplitude as the modulated throughput seen in the (b) plots 

of the same figure (0.04 for CMIT, 0.658 for CMIA and 0.01 for ATS), respectively. 
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Figure 4.7.     For CMIT: (a) throughput spectrum; (b) throughput power (blue curve) and  
                      input power (black curve) as a function of time for a sinusoidal modulation. 
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Figure 4.8.     For CMIA: (a) throughput spectrum; (b) throughput power (blue curve) and     
                      input power (black curve) as a function of time for a sinusoidal modulation. 
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Figure 4.9.     For ATS: (a) throughput spectrum; (b) throughput power (blue curve) and  
                      input power (black curve) as a function of time for a sinusoidal modulation. 
 
 

(b) 

P t
/P

i 
P 

(a
rb

) 

t (µs) 

(a) 

ν-ν0 (MHz) 



43 
 

For the case of same Q values, we plotted the amplitude and phase of the throughput with respect 

to the input using the simplified Eq. (4.19). Now for the cases of different Q values, we can use the 

general Eq. (4.18) to plot 
2

1

1

A
Ar  vs Ω  in the range of (

2
0Ω , 2 0Ω ), as in Fig. 4.10(a) for CMIT,  

Fig. 4.11(a) for CMIA, and Fig. 4.12(a) for ATS; we can also plot )(2
1

1

A
A

Arg r  vs Ω  in the same 

range, as in Fig. 4.10(b) for CMIT,  Fig. 4.11(b) for CMIA, and Fig. 4.12(b) for ATS.  
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Figure 4.10.     For CMIT: throughput amplitude (a) and phase (b) with respect to input as  
                        a function of modulation frequency. 
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Figure 4.11.     For CMIA: throughput amplitude (a) and phase (b) with respect to input 
                        as a function of modulation frequency. 
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Figure 4.12.     For ATS: throughput amplitude (a) and phase (b) with respect to input as  
                        a function of modulation frequency. 
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For the case of CMIT, we can see from the amplitude plot of Fig. 4.10(a) that the amplitude at 

modulation frequency of 710907.2 ×=Ω s-1 is around 0.04. From the phase plot of Fig. 4.10(b), 

we can see that at the modulation frequency of 710907.2 ×=Ω s-1 the phase shift is about -5.5, 

which is a little more than -2π. Both the amplitude and phase agree with the modulated throughput 

response of Fig. 4.7(b).    

For the case of CMIA, we can see from the amplitude plot of Fig. 4.11(a) that the amplitude at 

modulation frequency of 71076.1 ×=Ω s-1 is around 0.658. From the phase plot of Fig. 4.11(b), 

we can see that at modulation frequency of 71076.1 ×=Ω s-1 the phase shift is about -0.085, which 

is a little less than 0. Both the amplitude and phase agree with the modulated throughput response 

of Fig. 4.8(b). 

For the case of ATS, we can see from the amplitude plot of Fig. 4.12(a) that the amplitude at 

modulation frequency of 810115.1 ×=Ω s-1 is around 0.01. From the phase plot of Fig. 4.12(b), 

we can see that at the modulation frequency of 810115.1 ×=Ω s-1 the phase shift is almost 0. Both 

the amplitude and phase agree with the modulated throughput response of Fig. 4.9(b). 

If we look at the 
2

1

1

A
Ar plots and )(2

1

1

A
A

Arg r  plots, it seems like there is a correlation between Ω

at minimum amplitude and the point at zero phase (at least for CMIT and ATS plots). So we can 

try writing Eq. (4.18) as 

   )(

2
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2
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22

11

21
22

0

21
12122

0

1

211

)(

)]([)(
ϕϕ

ρ
ρ

κκ

κκ
ττ

κ
−==

+
+

=
+Ω−Ω−Ω

+−Ω+−Ω−Ω
= irtrtr e

z
z

iyx
iyx

i

TiT

A
A

,       (4.22) 



48 
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From trigonometric identity   
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Setting 0tan =φ  gives us (for large Q2 ),  

                   221
2

0212
2

0
2

min )(
rt

sT
τ

κκκκκ =−Ω≈+−Ω=Ω .                                        (4.28) 

So from Eq. (4.28), when the two Qs are very different, specifically Q2 >> Q1 so 12 κκ << ,the 

intermode coupling strength Ts is determined only by the modulation frequency at minimum 

amplitude minΩ .  

To illustrate this, we looked at a case of typical CMIT from the model, where the parameter values 

chosen are experimentally realistic [29]. In this CMIT case the coupling strength is Ts = 5 × 10-8. 

We wrote a separate Mathematica program that calculates the modulation frequency Ωmin at the 

minimum modulation amplitude using Eq. (4.18). For our CMIT with Ts = 5 × 10-8, the program 

gives Ωmin = 2.36 × 107 s-1. And then with minimal perturbation to our CMIT feature and keeping 

the two Qs very different, we tried in the ring cavity model a range of different values of Ts and 

calculated Ωmin for each case, as in Table 1. The square of the calculated values of Ωmin has a near 

proportional dependence on Ts (Fig. 4. 13).  

We continued with a case of ATS where the parameter values are the same as our CMIT but with 

a larger Ts. In the ring cavity model, choosing Ts = 10-6 gave us an ATS feature, for which our new 

program gives Ωmin = 1.1 × 108 s-1. Again, while keeping the ATS feature and two different Qs, we 

tried another range of different values of Ts and calculated the corresponding values for Ωmin in 

each case, as in Table 2. The square of the calculated values of Ωmin also has a near proportional 

dependence on Ts (Fig. 4.14). 
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Table 1. Calculated values of Ωmin
2 (s-2) for a range of Ts for CMIT. 

  

 Ts  Ωmin Ωmin
2 

1 × 10-8 0.757 × 107 0.573049 × 1014 

2 × 10-8 1.36 × 107 1.8496 × 1014 

3 × 10-8 1.76 × 107 3.0976 × 1014 

4 × 10-8 2.08 × 107 4.3264 × 1014 

5 × 10-8 2.36 × 107 5.5696 × 1014 

6 × 10-8 2.6 × 107 6.76 × 1014 

7 × 10-8 2.83 × 107 8.0089 × 1014 

8 × 10-8 3.04 × 107 9.2416 × 1014 

9 × 10-8 2.23 × 107 10.4329 × 1014 

10 × 10-8 3.43 × 107 11.6964 × 1014 

 

 

 

 
Figure 4.13.     Near proportional dependence of Ts on Ωmin

2 for CMIT. 
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Table 2. Calculated values of Ωmin
2 (s-2) for a range of Ts for ATS. 

                                

Ts  Ωmin Ωmin
2 

0.3 × 10-6 0.6 × 108 0.36 × 1016 

0.5 × 10-6 0.78 × 108 0.6084 × 1016 

0.7 × 10-6 0.92 × 108 0.8464 × 1016 

0.9 × 10-6 1.046 × 108 1.094116 × 1016 

1 × 10-6 1.1 × 108 1.21 × 1016 

3 × 10-6 1.91 × 108 3.6481 × 1016 

5 × 10-6 2.47 × 108 6.1009 × 1016 

7 × 10-6 2.92 × 108 8.5264 × 1016 

9 × 10-6 3.31 × 108 10.9561 × 1016 

                               

 

 

 
Figure 4.14.     Near proportional dependence of Ts on Ωmin

2 for ATS. 
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Both graphs are linear, meaning that our approximation in Eq. (4.28) in numerical analysis is 

reasonable, at least for CMIT and ATS where the two Qs are very different. In the graphs, the y-

intercept represents the difference between the true values of Ωmin
2 and our approximation in Eq. 

(4.28), namely κ2
2. For our cases, however, this difference can be neglected since κ2 << κ1. Then 

we can establish a direct proportional relation between Ωmin
2 and Ts. Previously [30], experimental 

throughput spectra such as in Fig. 4.2(a) and 4.3(a) were fit to the model by adjusting the value of 

Ts in the model. This is how the values of Ts used in those figures were found. Our numerical 

investigation leads us to think that, experimentally, by only finding the modulation frequency 

corresponding to minimum modulation amplitude, we should be able to directly estimate the CPC 

strength without the need to fit to a computer model.  
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CHAPTER V 
 

 

EXPERIMENTAL RESULTS 

 

We have investigated in the numerical model the dependence of the response on CPC strength, 

input coupling regimes and strength, Q values, etc. Now that we have a clear understanding, we 

can compare these results to expectations from the analytic analysis and predict which parameter 

ranges should enhance experimental observation of the CPC effects. Using these guidelines, we 

have performed an experimental investigation of CPC dynamics in the HBR system. Specifically, 

we use sinusoidal modulation to independently determine the CPC strength in CMIT/ATS 

experiments. 

 

5.1. Experimental Setup 

The experimental setup we used is shown in Fig. 5.1 and explained in detail in the following text. 
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Figure 5.1.     Experimental setup for studying the CPC dynamics in an HBR [29]. 
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The tunable diode laser is scanned in frequency by function generator FG1. An acousto-optic 

modulator (AOM), controlled by function generator FG2, is then used to split the incoming beam 

into two outgoing parts: the zeroth-order undeflected beam of higher intensity with the same 

frequency and direction, and the first-order deflected beam of lower intensity with different 

frequency and direction from the incoming beam. Before going to the fibercoupler (FC), the 

deflected light beam passes through a set of wave plates (WP) which are used to control the input 

polarization. Usually, the wave plates are adjusted to provide linearly polarized light. The fiber 

coupler FC launches the light into a single mode fiber. The fiber isolator, acting as an optical diode, 

is used to prevent any backward propagating light. The single mode fiber is also mounted in a 

compression based polarization controller, PC, for further regulation of the input light. The fiber is 

made adiabatically bi-tapered using a puller stage (see Fig. 5.2) controlled by a LabVIEW program 

and brought into contact with the HBR in its equatorial plane using a 3D translation stage (not 

shown). The HBR is mounted on a piezo-controlled strain tuner (see Fig. 5.3) for strain tuning.  
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Figure 5.2.     Fiber puller stage for tapering optical fibers. 

 
   

 

 

                    
                   
                        
 
 
 
 
  
 
 
 
 
 

 
 
 

Figure 5.3.     Piezo-controlled strain tuner. The HBR is glued at two points on the PZT   
                      for streching. 
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In all cases, the resonator is kept inside an acrylic box to minimize the temperature fluctuations and 

other effects of air movement. The output signal is sent to a fiber coupled polarization analyzer 

(PA) which includes the polarizing beam splitter (PBS) and two detectors, 1-fast detector and 2-

slow detector. For data analysis, the signal on the slow detector is captured with the power meter 

and sent to the oscilloscope while the fast detector is directly connected to the oscilloscope. 

Strain tuning to coresonance and proper adjustment of the input polarization will result in the 

throughput spectrum consisting of the throughput power vs. scanned laser frequency. A set of 

typical CMIT and CMIA throughput spectra are shown in Fig. 5.4 where the input is TM polarized. 
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Figure 5.4.     Experimental throughput power spectra (lower, yellow trace).  
                       (a): CMIT; (b): CMIA. [30]. 
 

 

(a) 

(b) 
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5.2.  Experimental Procedures    
 

To start the CMIT/CMIA experiments, first we need to make sure only one polarization is driven 

at the input. Using only one polarization, either TE or TM, for the input will reduce the spectral 

mode density of the throughput signal, compared to the spectral mode density of the throughput 

power when the input has an arbitrary polarization (as seen in Fig. 5.5).  

In Fig. 5.5 and subsequent oscilloscope traces, the horizontal time axis is converted to frequency 

through the use of a Mathematica scaling program. This program is the result of a careful calibration 

of frequency scan range dependence on the amplitude of the triangle-wave voltage signal provided 

by FG1 of Fig. 5.1. This, together with the frequency of the triangle wave, allows the conversion 

from time to scanned frequency.  
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Figure 5.5.     Throughput spectrum when the input has TE polarization (a) compared to  
                      throughput spectrum when the input has arbitrary polarization (b). Blue: TE  
                      throughput; yellow: TM throughput. 
 

(b) 

(a) 
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We begin by applying some voltage across the PZT (around 50 V) before exciting WGMs, so we 

have the freedom to strain tune in both directions from 0 to 100 V. Then, to get linearly polarized 

light at the input, we excite the WGMs and rotate the analyzer 45 degrees with respect to the vertical 

(TE) axis. In this orientation, each detector (fast detector and slow detector) will display dips 

corresponding to both TE and TM modes. Now we rotate the polarization controller (PC) to make 

half of the modes disappear in each channel. Then we move the fiber away from the resonator and 

rotate the analyzer back to 0 degree. If the power in the slow detector increases and the power in 

the fast detector decreases, then we have more TM polarization at the input than TE polarization. 

If the power in the slow detector decreases and the power in the fast detector increases, then we 

have more TE polarization at the input than TM polarization. At this point, we can use the wave 

plates to maximize the power in one of the channels and get linearly polarized input on whichever 

channel we need. 

The examples in Fig. 5.4 are CMIT/CMIA detected on the slow detector when the input is linearly 

TM polarized. And TM polarization at the input is preferred because the TM modes usually have 

lower Q values. In our experiment, we can also use TE polarization at the input. But in both cases, 

we need to show the CMIT/CMIA feature on the fast detector channel (Fig. 5.6). Because we are 

going to modulate the input sinusoidally to look at the response on the throughput amplitude and 

phase. Modulation frequency is in the range of a few MHz. The slow detector cannot respond to 

these frequencies. Only the fast detector is able to respond to this modulation (Fig. 5.7). So in our 

experiments, when we have TE input, we look for the CMIT/CMIA features in the fast detector 

(TE) channel without rotating the analyzer. When we have TM input, we look for the CMIT/CMIA 

features in the slow detector (TM) channel and rotate the analyzer by 90 degrees for modulating 

the throughput amplitude.  
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Figure 5.6.     Experimental throughput power spectra in the fast detector channel when  
                      the input has TE polarization (upper, blue trace). (a): CMIT; (b): CMIA. 
 

(a) 

(b) 
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Figure 5.7.     Modulation response of the fast detector channel (upper, blue trace) and  
                      slow detector (lower, yellow trace) to a low frequency (a) and a high   
                      frequency (b). 

(b) 

(a) 
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To measure the relevant parameters of the CMIT coupling modes, the input polarization is changed 

to linear at 45 degrees by using the half-wave plate. At this point the throughput powers measured 

from the fast detector and the slow detector are equal, and the coresonant TE and TM pair of modes 

with very different quality factors are determined as follows. During the CMIT experiment, CPC 

can happen and change the true values of the mode parameters like quality factors, dip depths, and 

coupling regimes of the coresonant TE and TM modes. So in order to determine the mode 

parameters correctly, detuning the coresonant TE and TM modes is necessary. For CMIT/CMIA 

or ATS features as Fig.5.6, we want to detune the resonance modes at 45 degrees input as shown 

in Fig. 5.8; coresonant in (a), detuned and indicated by arrows in (b). And then look at the individual 

modes in each polarization and measure the mode parameters. We use those values to fit the 

throughput spectrum to the model and get our first estimate of Ts.  
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Figure 5.8.     Coresonant TE and TM modes showing CMIT in (a) and detuned and  
                       indicated by arrows in (b) when the input polarization is 45 degrees. 
 

(b) 

(a) 
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After we detune the modes at 45 degrees input, the two modes are off resonance so we don’t see 

an IT anymore. But this doesn’t mean we can take measurements of the individual mode parameters 

at this point. Because when the input polarization is at 45 degrees, we have both TE and TM input. 

Even if they are completely detuned, some residues from one polarization will remain in the 

throughput spectrum of the other polarization. In order to solve this problem, we take measurements 

at 0 degree input and 90 degrees input, for TE and TM modes, respectively. 

At 0 degree input, we will get the detuned TE mode in Channel 2, from which we take our 

measurements for mode linewidth in time (from which we use the Mathematica scaling program to 

calculate the mode quality factor Q), as in Fig. 5.9. We also measure mode dip depth (the ratio of 

the voltage difference at the dip to the full voltage difference), as in Fig. 5.10.  

 

 

 

 

 

 

 

 
 
 

Figure 5.9.     Linewidth measurement for TE mode (upper, blue trace). A linewidth in   
                      time of 84.0 µs corresponds to a quality factor of Q = 2.7 × 107. 
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Figure 5.10.     Dip depth measurement for TE mode (upper, blue trace). The ratio of the  
                         cursor voltage difference at the dip (a) to the full voltage difference (b)  
                         gives a dip depth of 0.93. 
 

(a) 

(b) 
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Finally, the coupling regime of the mode is found by adding extra loss by touching the mode region 

with a segment of another tapered fiber: if the dip of the WGM throughput gets shallower, we have 

an undercoupled mode; if the dip of the WGM throughput gets deeper, we have an overcoupled 

mode. Fig. 5.11 illustrates WGM dip depth variation for undercoupled and overcoupled modes. We 

need to be very careful when determining the coupling regimes. We need to put the segment of the 

second tapered fiber in contact with the HBR on the opposite side of the working tapered fiber. 

This increases the total round-trip loss. It has to be done in a gentle manner. For example, for an 

overcoupled mode, if we push the second fiber too hard, the dip depth may get shallower, because 

it passes through critical coupling, and make the mode look like an undercoupled mode. 

 

        

       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5.11.     WGM dip depth variation for overcoupled and undercoupled modes.  
                        When the round-trip loss increases, the dip gets shallower for  
                         undercoupled WGMs; the dip gets deeper for overcoupled WGMs. 
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After taking measurements for the TE mode, we rotate our input polarization to 90 degrees, while 

keeping the output analyzer at 0 degree. This step will minimize the TE channel and maximize the 

TM channel. So we can take the measurements for TM mode (Fig. 5.12, Fig. 5.13) and determine 

the coupling regime for TM mode as in Fig. 5.11. 

 

 

 

 

 

                               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          
 
 
 

 
 
 
 

Figure 5.12.     Linewidth measurement for TM mode (lower, yellow trace). A linewidth  
                        in time of 264 µs corresponds to a quality factor of Q = 8.3 × 106. 
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Figure 5.13.     Dip depth measurement for TM mode (lower, yellow trace). The ratio of    
                        the cursor voltage difference at the dip (a) to the full voltage difference (b)  
                         gives a dip depth of 0.88. 

(a) 

(b) 
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Using the individual mode parameters, we fit our CMIT feature in the program by adjusting the 

value of CPC strength and get our first estimate of the Ts.  

After that, we carefully bring the two detuned modes back to resonance and retrieve our CMIT 

feature. And then we turn on the sinusoidal modulation to look at the response of the throughput 

spectrum. We vary the modulation frequency and record the amplitude of the modulated signal at 

different modulation frequencies (Fig. 5.14). Here we are looking for the modulation frequency 

that gives the minimum amplitude at the WGM resonance (the IT peak) relative to the modulation 

amplitude far off resonance, as in Fig. 5.14 (c).  
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Figure 5.14.     Relative amplitude of the modulated throughput signal in the fast detector  
                        channel (upper, blue trace) at a range of different modulation               
                        frequencies of the AOM. (a) at 1 MHz, (a) at 3 MHz and (c) at 4.2 MHz.        

(b) 

(c) 

(a) 
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We hope that, at the frequency that gives the minimum modulation amplitude, we can use the 

relation 2
2

min
rt

sT
τ

=Ω  to find another estimate of the CPC strength for comparison.   

 

5.3. Results and Discussion 
 

The following results were obtained by using 4 HBRs with different radii: 180 µm, 190 µm, 200 

µm and 220 µm. The tapered fiber diameter ranges from 2 µm to 3.5 µm.  

In each case, we started from a CMIT/ATS feature in one channel as in Fig. 5.15, and detuned the 

modes using the procedures outlined above and took measurements for the individual modes. From 

Fig. 5.15, we can also see some nonzero power in the second channel (both in the experiment and 

in the model). This indicates that our CMIT/ATS effects are truly the result of cross coupling 

between the two orthogonal polarization rather than interference between modes of the same 

polarization. 

After measuring the individual mode parameter values, we fit the experimental CMIT feature to 

our model. This gives us the first estimate of the CPC strength. 
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Figure 5.15.    CMIT/ATS experimental throughput spectrum (top) compared to model   
                        throughput spectrum (bottom). Some nonzero power can be seen in the   
                        second channel (both experimentally and in the model prediction),   
                        indicating that our CMIT/ATS effects are truly the result of CPC.  
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Then we turned on the sinusoidal modulation on the AOM and tried to minimize the relative 

amplitude (as in Fig. 5.14). When we have a minimum relative amplitude, we record the modulation 

frequency. Using the modulation frequency at the minimum modulation amplitude, we calculate 

the CPC strength from 2
2

min
rt

sT
τ

=Ω , where 
c
an

rt
πτ 2

= .The two values of CPC strength are then 

compared to each other. For each case, we use Eq. (4.13) to determine if it is CMIT or ATS: 

2
21

2
21







 −

<
κκ

ττ rtrt

sT  for CMIT and 
2

21

2
21







 −

>
κκ

ττ rtrt

sT for ATS. 

Note that the sinusoidal modulation of the input field amplitude is achieved by using our AOM, 

which has a finite response time and limits the modulation frequency to less than 10 MHz (actually 

the modulation signal starts to be distorted when the frequency exceeds 5 MHz). So we had to keep 

the modulation frequency relatively low. From the model fitting result, we estimate the range of 

the modulation frequency we need. If it is too large, we will skip that set of data and look for another 

CMIT/ATS feature that gives a modulation frequency within the safe range. Another challenge is 

that the presence of mode overlap in the throughput spectra made it difficult to find clear CMIT 

and ATS features. By using tapered fibers with larger diameters, we reduced the mode density and 

hence minimized mode overlap of the WGMs when the tapered fiber is in contact with the HBR. 

For a number of cases of CMIT and ATS, we estimated the CPC strength from model fitting and 

observed the modulation amplitude of the input field to get another estimate of CPC strength; these 

are shown in Figs. 5.16 – 5.35. In the captions of Figs. 5.16 – 5.35, “detuning” means the difference 

ν2 – ν1 of the resonant frequencies of the two WGMs. Table 3 compares the values of Ts from 

numerical fitting and from amplitude modulation for the cases shown in Figs. 5.16 – 5.35.  
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First, let’s look at some cases when the input has TE polarization. Figs. 5.16 – 5.22 show some 

experimental CMIT throughput spectra (gray) fitted with model (blue) in the top figures; and the 

bottom figures show the modeled relative modulation amplitude (blue) corresponding to the fitted 

Ts compared to the minimum relative modulation amplitude (green dashed lines) found in the 

experiment. The experimental throughput spectrum is properly scaled in frequency, as discussed 

earlier, and imported into the Mathematica model program using Python. This allows us to directly 

compare the experimental trace to the model trace and do the fitting precisely.  

The results are presented with increasing modulation frequency of the AOM. 
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Figure 5.16.    CMIT (TE input) with 220-µm-radius HBR.  
                       Top: experimental throughput trace (gray) fit into the model (blue) throughput  
                       spectra, which gives Ts = 1.26 × 10-8. Bottom: Modeled relative modulation  
                       amplitude of 0.23 corresponding to the fitted Ts. Mode parameters: Q1 = 1.5 × 107,  
                                   Q2 = 8.6 × 107; M1 = 0.90 (undercoupled), M2 = 0.74 (undercoupled);  
                       detuning = 1.2 MHz. A minimum relative modulation amplitude of 0.20 was   
                       found (green dashed line) at 3.5 MHz using the AOM, giving Ts = 2.11 × 10-8. 
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Figure 5.17.    CMIT (TE input) with 200-µm-radius HBR.  
                       Top: experimental throughput trace (gray) fit into the model (blue) throughput  
                       spectra, which gives Ts = 1.99 × 10-8. Bottom: Modeled relative modulation  
                       amplitude of 0.40 corresponding to the fitted Ts. Mode parameters: Q1 = 9.6 × 106,  
                                   Q2 = 5.2 × 107; M1 = 0.70 (undercoupled), M2 = 0.65 (undercoupled);  
                       detuning = 2.3 MHz. A minimum relative modulation amplitude of 0.40 was  
                       found (green dashed line) at 4.0 MHz using the AOM, giving Ts = 2.29 × 10-8. 
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Figure 5.18.    CMIT (TE input) with 200-µm-radius HBR.  
                        Top: experimental throughput trace (gray) fitted with the model (blue) throughput  
                        spectra, which gives Ts = 2.51 × 10-8. Bottom: Modeled relative modulation  
                        amplitude of 0.20 corresponding to the fitted Ts. Mode parameters: Q1 = 1.6 × 107, 
                        Q2 = 9.7 × 107; M1 = 0.55 (overcoupled), M2 = 0.42 (undercoupled);  
                        detuning = -0.4 MHz. A minimum relative modulation amplitude of 0.19 was   
                        found (green dashed line) at 4.0 MHz using the AOM, giving Ts = 2.29 × 10-8. 
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Figure 5.19.    CMIT (TE input) with 180-µm-radius HBR.  
                       Top: experimental throughput trace (gray) fit into the model (blue) throughput   
                       spectra, which gives Ts = 1.58 × 10-8. Bottom: Modeled relative modulation  
                       amplitude of 0.12 corresponding to the fitted Ts. Mode parameters: Q1 = 7.7 × 106,  
                                   Q2 = 3.7 × 107; M1 = 0.94 (undercoupled), M2 = 0.91 (undercoupled);  
                       detuning = -0.8 MHz. A minimum relative modulation amplitude of 0.10 was                  
                       found (green dashed line) at 4.5 MHz using the AOM, giving Ts = 2.35 × 10-8. 
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Figure 5.20.    CMIT (TE input) with 180-µm-radius HBR.  
                       Top: experimental throughput trace (gray) fit into the model (blue) throughput   
                       spectra, which gives Ts = 2.51 × 10-8. Bottom: Modeled relative modulation  
                       amplitude of 0.15 corresponding to the fitted Ts. Mode parameters: Q1 = 4.1 × 106,  
                                   Q2 = 5.0 × 107; M1 = 0.89 (undercoupled), M2 = 0.82 (undercoupled);  
                       detuning = -1.6 MHz. A minimum relative modulation amplitude of 0.20 was  
                       found (green dashed line) at 5.0 MHz using the AOM, giving Ts = 2.90 × 10-8. 
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Figure 5.21.    CMIT (TE input) with 190-µm-radius HBR.  
                       Top: experimental throughput trace (gray) fit into the model (blue) throughput  
                       spectra, which gives Ts = 3.98 × 10-8. Bottom: Modeled relative modulation  
                       amplitude of 0.41 corresponding to the fitted Ts. Mode parameters: Q1 = 6.4 × 106,  
                                   Q2 = 6.4 × 107; M1 = 0.74 (undercoupled), M2 = 0.31 (undercoupled);  
                       detuning = - 4.6 MHz. A minimum relative modulation amplitude of 0.24 was       
                       found (green dashed line) at 6.5 MHz using the AOM, giving Ts = 5.45 × 10-8. 
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Figure 5.22.   CMIT (TE input) with 180-µm-radius HBR.  
                      Top: experimental throughput trace (gray) fit into the model (blue) throughput  
                      spectra, which gives Ts = 1.26 × 10-8. Bottom: Modeled relative modulation  
                      amplitude of 0.29 corresponding to the fitted Ts. Mode parameters: Q1 = 7.7 × 106,  
                                  Q2 = 5.4 × 107; M1 = 0.76 (undercoupled), M2 = 0.81 (overcoupled);  
                      detuning = 0.4 MHz. A minimum relative modulation amplitude of 0.10 was  
                      found (green dashed line) at 6.5 MHz using the AOM, giving Ts = 4.89 × 10-8. 
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For TE input polarization, Figs. 5.23 – 5.30 show some experimental ATS throughput spectra 

(gray) fitted with model (blue) in the top figures; and the bottom figures show the modeled relative 

modulation amplitude (blue) corresponding to the fitted Ts compared to the minimum relative 

modulation amplitude (green dashed lines) found in the experiment. The results are presented with 

increasing modulation frequency of the AOM. 
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Figure 5.23.    ATS (TE input) with 180-µm-radius HBR.  
                       Top: experimental throughput trace (gray) fit into the model (blue) throughput  
                        spectra, which gives Ts = 1.00 × 10-8. Bottom: Modeled relative modulation   
                        amplitude of 0.44 corresponding to the fitted Ts. Mode parameters: Q1 = 1.9 × 107,  
                                     Q2 = 5.3 × 107; M1 = 0.72 (undercoupled), M2 = 0.34 (overcoupled);  
                        detuning = 1.5 MHz. A minimum relative modulation amplitude of 0.25 was  
                        found (green dashed line) at 4.1 MHz using the AOM, giving Ts = 1.95 × 10-8. 
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Figure 5.24.     ATS (TE input) with 180-µm-radius HBR.  
                        Top: experimental throughput trace (gray) fit into the model (blue) throughput  
                        spectra, which gives Ts = 1.99 × 10-8. Bottom: Modeled relative modulation  
                        amplitude of 0.4 corresponding to the fitted Ts. Mode parameters: Q1 = 2.3 × 107,  
                                     Q2 = 2.9 × 107; M1 = 0.81 (undercoupled), M2 = 0.67 (undercoupled);  
                        detuning = -0.2 MHz. A minimum relative modulation amplitude of 0.30 was  
                        found (green dashed line) at 4.2 MHz using the AOM, giving Ts = 2.04 × 10-8. 
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Figure 5.25.    ATS (TE input) with 180-µm-radius HBR.  
                       Top: experimental throughput trace (gray) fit into the model (blue) throughput  
                       spectra, which gives Ts = 3.16 × 10-8. Bottom: Modeled relative modulation  
                       amplitude of 0.05 corresponding to the fitted Ts. Mode parameters: Q1 = 1.3 × 107,  
                                   Q2 = 2.7 × 107; M1 = 0.99 (overcoupled), M2 = 0.72 (undercoupled);  
                       detuning = 1.0 MHz. A minimum relative modulation amplitude of 0.05 was  
                       found (green dashed line) at 5.2 MHz using the AOM, giving Ts = 3.13 × 10-8. 
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Figure 5.26.    ATS (TE input) with 180-µm-radius HBR.  
                       Top: experimental throughput trace (gray) fit into the model (blue) throughput  
                       spectra, which gives Ts = 3.98 × 10-8. Bottom: Modeled relative modulation   
                       amplitude of 0.18 corresponding to the fitted Ts. Mode parameters: Q1 = 8.0 × 106,  
                                   Q2 = 2.3 × 107; M1 = 0.93 (undercoupled), M2 = 0.72 (undercoupled);  
                       detuning = -2.0 MHz. A minimum relative modulation amplitude of 0.15 was  
                       found (green dashed line) at 6.7 MHz using the AOM, giving Ts = 5.21 × 10-8. 
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Figure 5.27.    ATS (TE input) with 190-µm-radius HBR.  
                       Top: experimental throughput trace (gray) fit into the model (blue) throughput  
                       spectra, which gives Ts = 6.31 × 10-8. Bottom: Modeled relative modulation  
                       amplitude of 0.28 corresponding to the fitted Ts. Mode parameters: Q1 = 8.5 × 106,  
                       Q2 = 1.4 × 107; M1 = 0.87 (undercoupled), M2 = 0.81 (undercoupled);  
                       detuning = 0 MHz. A minimum relative modulation amplitude of 0.25 was  
                       found (green dashed line) at 7.2 MHz using the AOM, giving Ts = 6.69 × 10-8. 
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Figure 5.28.    ATS (TE input) with 190-µm-radius HBR.  
                       Top: experimental throughput trace (gray) fit into the model (blue) throughput  
                       spectra, which gives Ts = 1.00 × 10-7. Bottom: Modeled relative modulation  
                       amplitude of 0.05 corresponding to the fitted Ts. Mode parameters: Q1 = 5.8 × 106,  
                       Q2 = 3.7 × 107; M1 = 0.85 (overcoupled), M2 = 0.72 (undercoupled);  
                       detuning = 0.5 MHz. A minimum relative modulation amplitude of 0.05 was  
                       found (green dashed line) at 8.5 MHz using the AOM, giving Ts = 9.30 × 10-8. 
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Figure 5.29.    ATS (TE input) with 180-µm-radius HBR.  
                        Top: experimental throughput trace (gray) fitted with the model (blue) throughput  
                        spectra, which gives Ts = 1.26 × 10-7. Bottom: Modeled relative modulation  
                        amplitude of 0.25 corresponding to the fitted Ts. Mode parameters: Q1 = 1.3 × 107, 
                        Q2 = 1.4 × 107; M1 = 0.17 (overcoupled), M2 = 0.85 (undercoupled);  
                        detuning = -7 MHz. A minimum relative modulation amplitude of 0.05 was   
                        found (green dashed line) at 9.0 MHz using the AOM, giving Ts = 9.40 × 10-8. 
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Figure 5.30.    ATS (TE input) with 200-µm-radius HBR.  
                       Top: experimental throughput trace (gray) fit into the model (blue) throughput  
                       spectra, which gives Ts = 1.00 × 10-7. Bottom: Modeled relative modulation  
                       amplitude of 0.33 corresponding to the fitted Ts. Mode parameters: Q1 = 5.0 × 106,  
                        Q2 = 1.6 × 107; M1 = 0.77 (undercoupled), M2 = 0.68 (undercoupled);  
                       detuning = -3.5 MHz. A minimum relative modulation amplitude of 0.20 was  
                       found (green dashed line) at 9.5 MHz using the AOM, giving Ts = 1.29 × 10-7. 
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Now, let’s look at some cases when the input has TM polarization. Fig. 5.31 shows an experimental 

CMIT throughput spectrum (gray) fitted with model (blue) in the top figure; and the bottom figure 

shows the modeled relative modulation amplitude (blue) corresponding to the fitted Ts compared 

to the minimum relative modulation amplitude (green dashed lines) found in the experiment. 
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Figure 5.31.    CMIT (TM input) with 180-µm-radius HBR.  
                       Top: experimental throughput trace (gray) fit into the model (blue) throughput  
                       spectra, which gives Ts = 1.26 × 10-8. Bottom: Modeled relative modulation  
                       amplitude of 0.47 corresponding to the fitted Ts. Mode parameters: Q1 = 7.5 × 106,  
                                   Q2 = 5.3 × 107; M1 = 0.60 (undercoupled), M2 = 0.73 (undercoupled);  
                       detuning = 2.0 MHz. A minimum relative modulation amplitude of 0.25 was  
                       found (green dashed line) at 4.8 MHz using the AOM, giving Ts = 2.67 × 10-8. 
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For TM input polarization, Figs. 5.32 – 5.35 show some experimental ATS throughput spectrum 

(gray) fitted with model (blue) in the top figures; and the bottom figures show the modeled relative 

modulation amplitude (blue) corresponding to the fitted Ts compared to the minimum relative 

modulation amplitude (green dashed lines) found in the experiment. The results are presented with 

increasing modulation frequency of the AOM. 
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Figure 5.32.    ATS (TM input) with 180-µm-radius HBR.  
                       Top: experimental throughput trace (gray) fit into the model (blue) throughput  
                       spectra, which gives Ts = 3.16 × 10-8. Bottom: Modeled relative modulation  
                       amplitude of 0.33 corresponding to the fitted Ts. Mode parameters: Q1 = 7.6 × 106,  
                                   Q2 = 2.7 × 107; M1 = 0.77 (undercoupled), M2 = 0.64 (undercoupled);  
                       detuning = 1.6 MHz. A minimum relative modulation amplitude of 0.20 was  
                       found (green dashed line) at 6.1 MHz using the AOM, giving Ts = 4.30 × 10-8. 
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Figure 5.33.    ATS (TM input) with 200-µm-radius HBR.  
                       Top: experimental throughput trace (gray) fit into the model (blue) throughput  
                       spectra, which gives Ts = 6.31 × 10-8. Bottom: Modeled relative modulation  
                       amplitude of 0.03 corresponding to the fitted Ts. Mode parameters: Q1 = 7.0 × 106,  
                                   Q2 = 2.7 × 107; M1 = 0.99 (overcoupled), M2 = 0.71 (undercoupled);  
                       detuning = 3.0 MHz. A minimum relative modulation amplitude of 0.05 was  
                       found (green dashed line) at 7.5 MHz using the AOM, giving Ts = 8.07 × 10-8. 
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Figure 5.34.    ATS (TM input) with 180-µm-radius HBR.  
                       Top: experimental throughput trace (gray) fit into the model (blue) throughput  
                       spectra, which gives Ts = 6.31 × 10-8. Bottom: Modeled relative modulation  
                       amplitude of 0.63 corresponding to the fitted Ts. Mode parameters: Q1 = 9.4 × 106,  
                       Q2 = 2.0 × 107; M1 = 0.46 (undercoupled), M2 = 0.75 (overcoupled);  
                       detuning = 1.2 MHz. A minimum relative modulation amplitude of 0.40 was  
                       found (green dashed line) at 9.5 MHz using the AOM, giving Ts = 1.05 × 10-7. 
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Figure 5.35.    ATS (TM input) with 190-µm-radius HBR.  
                        Top: experimental throughput trace (gray) fit into the model (blue) throughput   
                        spectra, which gives Ts = 1.26 × 10-7. Bottom: Modeled relative modulation  
                        amplitude of 0.35 corresponding to the fitted Ts. Mode parameters: Q1 = 4.5 × 106,      
                                     Q2 = 1.1 × 107; M1 = 0.78 (undercoupled), M2 = 0.94 (overcoupled);  
                        detuning = -3.0 MHz. A minimum relative modulation amplitude of 0.30 was  
                        found (green dashed line) at 10 MHz using the AOM, giving Ts = 1.29 × 10-7. 
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The uncertainty in )log( sT  is 0.1 in all the fitting done in the cases shown here. This means the Ts 

found by fitting has an uncertainty of 25%. The uncertainty in the modulation frequency ν is about 

0.1 MHz. From ν = Ω/2π and 2
2

min
rt

sT
τ

=Ω , we can estimate the corresponding uncertainty in Ts 

ranges from 6% to 2% as ν ranges from 3.5 MHz to 10 MHz. However, other effects (described 

later) suggests that a better estimate of the uncertainty in the Ts found by modulation is 25%. 

The percent difference is defined as: %100
2/)(
×

+

−
fit

s
ampl

s

fit
s

ampl
s

TT
TT

, where fit
sT is the coupling 

strength obtained by model fitting and ampl
sT  is the coupling strength found from amplitude 

modulation. Then we can calculate the percent difference between the two estimated values of Ts 

for each case. Then we can make a comparison as in Table 3.   
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Table 3.  Comparing the values of Ts from numerical fitting and from amplitude modulation. 
 

Modulation 
frequency 

(νmin = 
Ωmin/2π) 

 

Effect 
Q values 

(Q1), (Q2) 

Ts (±25%) 

(model 
fitting) 

Ts (±25%) 

(amplitude 
modulation) 

%diff. 

3.5 MHz CMIT (1.5 × 107), 
(8.6 × 107) 1.26 × 10-8 2.11 × 10-8 50.4% 

4.0 MHz CMIT (9.6 × 106), 
(5.2 × 107) 1.99 × 10-8 2.29 × 10-8 14.0% 

4.0 MHz CMIT (1.6 × 107), 
(9.7 × 107) 2.51 × 10-8 2.29 × 10-8 -9.2% 

4.5 MHz CMIT (7.7 × 106), 
(3.7 × 107) 1.58 × 10-8 2.35 × 10-8 39.2% 

5.0 MHz CMIT (4.1 × 106), 
(5.0 × 107) 2.51 × 10-8 2.90 × 10-8 14.4% 

6.5 MHz CMIT (6.4 × 106), 
(6.4 × 107) 3.98 × 10-8 5.45 × 10-8 31.2% 

6.5 MHz CMIT (7.7 × 106), 
(5.4 × 107) 1.26 × 10-8 4.89 × 10-8 118.0% 

4.1 MHz ATS (1.9 × 106), 
(5.3 × 107) 1.00 × 10-8 1.95 × 10-8 64.4 % 

4.2 MHz ATS (2.3 × 107), 
(2.9 × 107) 1.99 × 10-8 2.04 × 10-8 2.5% 

5.2 MHz ATS (1.3 × 107), 
(2.7 × 107) 3.16 × 10-8 3.13 × 10-8 -1.0% 

6.7 MHz ATS (8.0 × 106), 
(2.3 × 107) 3.98 × 10-8 5.21 × 10-8 26.8% 

7.2 MHz ATS (8.5 × 106), 
(1.4 × 107) 6.31 × 10-8 6.69 × 10-8 5.8% 

8.5 MHz ATS (5.8 × 106), 
(3.7 × 107) 1.00 × 10-7 9.30 × 10-8 -7.3% 

9.0 MHz ATS (1.3 × 107), 
(1.4 × 107) 1.26 × 10-7 9.40 × 10-8 -29.1% 

9.5 MHz ATS (5.0 × 106), 
(1.6 × 107) 1.00 × 10-7 1.29 × 10-7 25.3% 

4.8 MHz CMIT (7.5 × 106), 
(5.3 × 107) 1.26 × 10-8 2.67 × 10-8 71.8% 

6.1 MHz ATS (7.6 × 106), 
(2.7 × 107) 3.16 × 10-8 4.30 × 10-8 30.6% 

7.5 MHz ATS (7.0 × 106), 
(2.7 × 107) 6.31 × 10-8 8.07 × 10-8 24.5% 

9.5 MHz ATS (9.4 × 106), 
(2.0 × 107) 6.31 × 10-8 1.05 × 10-7 49.9% 

10.0 MHz ATS (4.5 × 106), 
(1.1 × 107) 1.26 × 10-7 1.29 × 10-7 2.4% 
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Out of the results, those with percent difference less than 40% are within the expected experimental 

uncertainty (15 out of 20 cases). For most cases of ATS, the two values of CPC strength for each 

case agree well, with only a small percent difference. We also had some good agreements for CMIT 

cases. Even for the cases that had percent difference of greater than 40%, because CPC from TE to 

TM can have a different strength from the CPC from TM to TE, the results might be in good 

agreement. 

Based on these results, we can say that we have developed an independent method of estimating 

the CPC strength, by amplitude modulation (without the need to fit into a computer model). 

So far we have three different methods for finding the CPC strength. First method is by fitting the 

experimental throughput spectra to a computational model to infer the CPC strength indirectly; 

second method is a theoretical calculation of CPC strength based on the transverse structure of 

WGMs [38]; and the third method is directly estimating the CPC strength from the response of the 

throughput amplitude to a sinusoidal modulation, which is presented in this dissertation. All three 

methods give us about same order of magnitude of the CPC strength. Before us, no one even knew 

what order of magnitude the CPC strength should be.  

Here, for the cases of CMIT and ATS, most of our results gave the same order of magnitude for 

the values of the CPC strength. But we had better agreements for the cases of ATS than for the 

cases of CMIT. There might be several reasons for this trend of disagreement. First, the CMIT 

feature itself is hard to observe given the level of mode overlap in our experiment. Second, our 

measurements of the mode parameters may not be accurate enough (for example, coupling 

regimes). Third, the AOM we used in the modulation experiments has a finite response time, so the 

modulation signal may have been distorted for the higher frequencies, making it harder for us to 

observe the modulation amplitude.  
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In addition to the potential experimental difficulties noted above, two assumptions made in the 

analysis of Chapter IV may be violated in some cases. We assumed Q2 >> Q1, but in many of the 

examples of Table 3, this is not true and the value of Ts found by amplitude modulation may be too 

low since then κ2
2 cannot be neglected in Eq. (4.28). Also, it may be the case that the modulation 

frequencies for zero phase and minimum throughput amplitude are not always equal. Further 

investigation needs to be done on these two points. Another potential problem is discussed in the 

next chapter. 
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CHAPTER VI 
 

 

CONCLUSIONS 

 

6.1. Summary 

The coupling effect between orthogonally polarized modes in a single resonator can lead to 

CMIT/CMIA or to ATS. These effects enable slow light or fast light and have potential 

applications, which make it important for us to get a clear understanding of the dynamics of the 

CPC. Previously, the intermode coupling strength was determined by fitting the experimental 

throughput spectra to a Mathematica model. Now the modulation response gives us an independent 

way to find the value of the CPC strength Ts. Being able to determine the intermode coupling 

strength without model fitting may help us to get a better understanding of the dynamics of the 

CPC effect in microresonators. In particular, a good understanding of the exceptional point, where 

the IT – ATS transition takes place, may enhance slow light and sensing applications of 

microresonators. We also expect other applications to be improved with the help of our dynamics 

study.
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6.2. Future Work 

As we mentioned in Chapter V, some of the experimental results in the cases of CMIT don’t agree 

with the model prediction to within the expected uncertainty, but the disagreements are not large 

(say, greater than a factor of 2). Some possible reasons were discussed in the previous chapter. 

It has recently been shown [38] that the CPC from TE to TM can have a different strength from the 

CPC from TM to TE, and because of this the values of Ts found by fitting and by modulation can 

be different. A revised model is currently being investigated in our lab, and this may help to resolve 

some of the disagreement in the results presented in Table 3.  Thus we plan to do further CMIT/ATS 

experiments to test the revised model and try to determine the two CPC strengths separately. 

Other experimental goals are to further reduce mode overlap, and find cases with Q2 >> Q1 and 

relatively low νmin. The results from further CMIT/ATS experiments testing the revised model will 

be compared to expectations from the analytical analysis in order to predict which parameter ranges 

should enhance experimental observation of the CPC effects. 
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