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Date of Degree: MAY, 2019

Title of Study: ZEROS OF RANDOM ORTHOGONAL POLYNOMIALS

Major Field: MATHEMATICS

Abstract: Let {fj} be a sequence of orthonormal polynomials where the orthogonal-
ity relation is satisfied on either the real line (OPRL) or on the unit circle (OPUC).
We study zero distribution of random linear combinations of the form

Pn(z) =
n∑
j=0

ηjfj(z),

where {ηj} are random variables. We give quantitative estimates on the zeros accu-
mulating on the unit circle for a wide class of random polynomials Pn. When the
coefficients {ηj} are independent identically distributed (i.i.d. ) real-valued standard
Gaussian, we give asymptotics for the expected number of zeros of various classes
of random sums Pn spanned by OPUC. For the case when the coefficients {ηj} are
i.i.d. complex-valued standard Gaussian coefficients, we derive a formula for the ex-
pected number of zeros of Pn. The formula is then applied to give asymptotics of the
expected number of zeros of Pn when {fj} are from the Nevai class. We also compute
the limiting value as n → ∞ of the variance of the number of zeros of Pn in annuli
that do not contain the unit circle for the case when {ηj} are i.i.d. complex-valued
standard Gaussian random variables, and {fj} are OPUC from the Nevai class. In
the case of annuli that contain the unit circle, for a wide class of random variables
{ηj} and {fj} that are OPUC, we give quantitative results that show the variance
of the number of zeros of Pn scaled by n2 tends to zero as n tends to infinity. The
work is concluded by providing formulas for the variance of the number of zeros of
a random orthogonal power series, specifically when

∑∞
j=0 ηjfj(z), with {ηj} being

i.i.d. complex-valued standard Gaussian, and {fj} are OPUC from the Szegő class.
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CHAPTER I

INTRODUCTION

1.1 Plan of this dissertation

In this dissertation zeros of random polynomials are studied. Chapter I covers a brief

history of the subject and discusses the main results of the dissertation.

The second chapter contains results from a joint work with Pritsker [92]. The main

results of the chapter give quantitative estimates on the zeros accumulating in various

sets for a wide class of random polynomials. This wide class includes polynomials

with random coefficients that may not have identical distributions, and such that the

coefficients are dependent. The results are applied to random polynomials spanned

by various deterministic polynomial bases.

Chapter III covers results and further extensions of two works; one that is joint

work with Yattselev [122], and another that is solely by the author [124]. In the

first section of the chapter, we give asymptotics for the expected number of zeros of

various classes of random sums spanned by orthogonal polynomials on the unit circle

(OPUC) with independent identically distributed (i.i.d.) real-valued standard Gaus-

sian coefficients. The second section of the chapter considers the expected number

of zeros of a random sum with i.i.d. complex-valued standard Gaussian coefficients

spanned by a polynomial basis. Applications are directed to random sums spanned

by OPRL or OPUC, and then asymptotics for the intensity function are derived.

In the fourth and final chapter, the variance of the number of zeros of a random

sum is considered. We compute the limiting value as n → ∞ of the variance of

the number of zeros of a random sum with i.i.d. complex-valued standard Gaussian
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random variables spanned by OPUC that are from the Nevai class in annuli that

do not contain the unit circle. In the case of annuli that contain the unit circle,

asymptotics are provided for the variance of the number of zeros of a random sum

under the assumption that the distribution for each of the random coefficients satisfies

certain uniform bounds for the fractional and logarithmic moments, and the spanning

functions are OPUC that either possess recurrence coefficients that are absolutely

summable, or are such that they are regular in the sense of Ullman-Stahl-Totik. The

chapter is concluded by giving a formula for the variance of the number of zeros of

a random series with i.i.d. complex-valued standard Gaussian coefficients that are

spanned by OPUC from the Szegő class.

1.2 A brief history of the study of random polynomials

The systematic study of the expected number of real zeros of polynomials

Pn(z) = ηnz
n + ηn−1z

n−1 + · · ·+ η1z + η0 (1.2.1)

with random coefficients {ηj}, called random algebraic polynomials (or Kac polyno-

mials), dates back to the 1930’s. Let E denote the mathematical expectation, P be

the probability of an event, and let Nn(S) denote the number of zeros of Pn in a

set S. In 1932, Bloch and Pólya [11] showed that when {ηj} are independent and

identically distributed (i.i.d.) random variables such that η0 = 1 almost surely (a.s.)

(i.e. P(η0 = 1) = 1) and all other random variables that take values from the set

{−1, 0, 1} with equal probabilities, then

E[Nn(R)] = O(
√
n), as n→ ∞.

Starting in 1938 and spanning through 1948, Littlewood and Offord ([69], [70],

[71], [72], [73]) produced upper and lower bounds for Nn(R) of the random algebraic

polynomial (1.2.1). Specifically, they showed that

log n

log log log n
≪ Nn(R) ≪ log2 n,
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with probability 1 − o(1) as n → ∞, when the random variables {ηj} are i.i.d. with

common distribution that is either real-valued standard Gaussian, Bernoulli, or uni-

form on [−1, 1].

In 1943, Kac [61] produced an integral equation for E[Nn(Ω)], with Ω ⊂ R a

measurable set, for the random algebraic polynomial Pn when the random variables

{ηj} are i.i.d. standard Gaussian. The formula Kac gave is

E[Nn(Ω)] =
1

π

∫
Ω

√
1− h2n(x)

|1− x2|
dx, hn(x) =

nxn−1(1− x2)

1− x2n
. (1.2.2)

We note that independently in 1945, while studying random noise Rice [94] derived

a similar formula for E[Nn(R)] in the Gaussian setting. After Kac established the

above formula, he proceeded with the asymptotic

E[Nn(R)] =
2 + o(1)

π
log n as n→ ∞. (1.2.3)

The error term in the above asymptotic was later sharpened by Hammersley [47],

Jamrom ([57], [58]), Wang [117], Edelman and Kostlan [27], and finally Wilkins [118]

who showed that

E[Nn(R)] ∼
2

π
log n+

∞∑
k=0

Akn
−k

for some explicit constants {Ak}.

In [61] Kac conjectured that a similar formula as (1.2.2) should hold when the

random variables are i.i.d. uniform on [−1, 1] and the asymptotic (1.2.3) would follow

from his original proof. Realizing that the same proof would not go through, in a

follow up paper [62] Kac was able to produce the asymptotic (1.2.3) in this uniform

distribution case by a different method.

Due to the work of Kac and Rice, formulas for the density function for the expected

number of zeros of a random polynomial, called the intensity function (or the first

correlation function), are known as Kac-Rice formulas.

When the random variables have a discrete distribution, one can formulate an

explicit formula for the intensity function. However the formula takes a complicated

3



shape and is not amenable to computations as done in the Gaussian case. Using

a different approach of studying the number of sign changes on a fixed sequence of

points to approximate the number of roots of Pn, Erdős and Offord [28] were able

to show that when the random variables are i.i.d. from the Bernoulli distribution it

follows that

Nn(R) =
2

π
log n+ o

(
(log n)2/3) log log n

)
with probability 1 − o

(
1/
√
log log n

)
. By refining the method given by Erdős and

Offord, Ibragimov and Maslova ([51], [52]) proved that when the random variables

{ηj} are i.i.d. with mean zero and are from the domain of attraction of the normal

law, for the random polynomial Pn defined by (1.2.1) we have

E[Nn(R)] =
2

π
log n+ o(log n).

When the random variables from the domain of attraction of the normal law do not

have mean zero, Ibragimov and Maslova [53] proved the above asymptotic holds with

exactly half the expected number of zeros. In this case, the error term of o(log n) was

recently sharpened to O(1) by Nguyen, Nguyen, and Vu [87].

In 1995, considering the case when {ηj} are i.i.d. real-valued standard Gaussian,

Shepp and Vanderbei [97] gave a formula for the expected number of zeros of Pn in

(1.2.1) off the real line. In their work they were also able to obtain the limits

lim
n→∞

ρCn(z) =
1

π(1− |z|2)2

√
1−

∣∣∣∣1− |z|2
1− z2

∣∣∣∣2 (1.2.4)

and

lim
n→∞

ρRn(x) =
1

π

1

|1− x2|
, (1.2.5)

where ρCn(z) is the intensity function for the number of purely complex zeros of the

random polynomial, and ρRn(x) is the intensity function for the number of real zeros

of the random polynomial. Within the proof of computing the above limits, Shepp

and Vanderbei showed that as n → ∞, uniformly about n − (2/π) log n of zeros
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of Pn accumulate on the unit circle, and about (2/π) log n of real roots concentrate

at ±1. Ibragimov and Zeitouni [54] were able to generalize the work of Shepp and

Vanderbei by giving the limit of the expected value of a scaled version of the expected

number of zeros of the random algebraic polynomial Pn in a disk of radius r when

the random variables {ηj} are i.i.d. with common distribution that belongs to the

domain of attraction of an α-stable law.

The formulas provided by Shepp and Vanderbei for the intensity functions for the

number of real and complex zeros of the random algebraic polynomial has since forth

been generalized Feldheim [39] and independently Vanderbei [115]. These general

formulas give the intensity functions for random sums of the form
n∑
k=0

ηkfj(z),

where {ηk} are i.i.d. real-valued standard Gaussian random variables, and {fk} are

entire functions that are real-valued on the real line. In Chapter III Section 2 these

formulas are stated in shape given by Vanderbei and applied to random orthogonal

polynomials.

1.3 Equidistribution

We now give an overview of the results presented in Chapter II. For {Z1, Z2, . . . , Zn}

the set of complex zeros of the random polynomial Pn defined by (1.2.1) of degree n,

these zeros give rise to the (normalized) zero counting measure

τn =
1

n

n∑
k=1

δZk
, (1.3.1)

which is a random unit Borel measure in C. Using a classical result by Erdős and

Turán [29] as a starting point, under mild conditions on the random variables {ηj}

Shparo and Shur [103] were able to show that as n→ ∞, for any r < 1

νn(r)

n

P→ 0, and τn (Ar(α, β))
P→ β − α

2π
, (1.3.2)

5



where νn(r) = Nn({z : |z| < r}), with P→ denoting convergence in probability, and

Ar(α, β) = {z ∈ C : r < |z| < 1/r, α ≤ arg z < β}. The results of Shparo

and Shur in (1.3.2) (we note that similarly also by Arnold [4] ) show that with a

high probability, almost all of the roots of the random algebraic polynomial Pn are

uniformly concentrated near the unit circle and that the arguments of the roots are

asymptotically equidistributed.

The fact of equidistribution for the zeros of random polynomials can now be ex-

pressed via the convergence of τn in the weak∗ topology to the normalized arclength

measure µT on the unit circumference, where dµT(e
it) := dt/(2π). Recent papers on

the global limiting distribution of zeros of random polynomials includes the works of

Ibragimov and Zeitouni [54], Ibragimov and Zaporozhets [55], Hughes and Nikegh-

bali [50], and Kabluchko and Zaporozhets ([59], [60]). In particular, Ibragimov and

Zaporozhets [55] arrived at the conclusion that if the coefficients of the random alge-

braic polynomial Pn are i.i.d. random variables, then the condition E[log+ |η0|] < ∞

is necessary and sufficient for the convergence τn
∗→ µT to hold almost surely.

Under the assumption that the coefficients {ηk} of a random polynomial are i.i.d.

complex random variables with absolutely continuous distribution with E[|η0|t] = µ <

∞ for some t > 0, estimates for the rate at which τn
∗→ µT were provided by Pritsker

and Sola [89] using the largest order statistic Yn = maxk=0,...,n |ηk|. In their work

they also gave an equidistribution result that allows the condition that the random

variables {ηj} be i.i.d. can be dropped.

The main results of Chapter II are a joint work with Pritsker [92] which show

how to remove many unnecessary restrictions and generalize the results of [89] in

several directions. We first develop essentially the same theory as in [89] (but using

a different approach) for the case of coefficients that are neither independent nor

identically distributed, and whose distributions only satisfy certain uniform bounds

for the fractional and logarithmic moments. We also generalized the results of [89]

6



by considering random polynomials spanned by general bases. That is, we consider

random sums of the form

Pn(z) =
n∑
k=0

ηkBk(z),

where Bk(z) =
∑k

j=0 bj,kz
j, with bj,k ∈ C for all j and k, and bk,k ̸= 0 for all k, is a

polynomial basis, i.e. a linearly independent set of polynomials. We apply the main

theorem of Chapter II to obtain a quantitative result on the zero distribution of a cer-

tain class of random orthogonal polynomials, specifically when {Bk} are polynomials

that satisfy

lim sup
k→∞

||Bk||1/k ≤ 1, lim
k→∞

|bk,k|1/k = 1.

Note that such conditions hold for various standard bases used for representing an-

alytic functions in the disk. We also show how one can handle the discrete random

coefficients by methods involving the highest order statistic Yn, augmenting the ideas

of [89]. Furthermore, since any real random variable is the limit of an increasing se-

quence of discrete random variables, we are able to extend the arguments to arbitrary

random variables. Under the assumption that the coefficients satisfy uniform bounds

on the first two moments, we further develop the highest order statistic approach to

the case of dependent coefficients. This allows us to generalize Theorem 3.7 of [89].

It should be noted that the results of Chapter II have since been generalized by

using potential theoretic techniques by Pritsker [90]. Among the results of [90] are the

generalization of our result to orthogonal polynomials supported on general curves

and supported on various sets in the plane.

1.4 The expected number of zeros

The next four subsections provide an outline for results contained in Chapter III and

the surrounding history of the topics.

7



1.4.1 Random orthogonal polynomials

In 1971, Das [18] considered random polynomials of the form
∑n

k=0 ηkpk(z), where

{pk} are Legendre polynomials, i.e. polynomials {pk} orthogonal with respect to an

absolutely continuous measure µ that is supported on [−1, 1] with dµ(x) = dx, and

the random variables {ηk} are real-valued i.i.d. standard Gaussian. Das was able

to show that the expected number of zeros of the random orthogonal polynomial in

(−1, 1) is asymptotic to n/
√
3. Generalizing these results, Farahmand ([32], [33], [34])

examined level crossings of random Legendre polynomials with coefficients that are

allowed to have different distributions.

Das and Bhatt [19] extended the work in [18] to include the class of orthogonal

polynomials on the real line (OPRL) to be the classical orthogonal polynomials,

Jacobi (polynomials orthogonal with respect to µ on [−1, 1] with dµ(x) = (1−x)α(1+

x)βdx for α, β > −1), Laguerre (polynomials orthogonal with respect to µ on [0,∞)

with dµ(x) = e−xxα for α > −1), and Hermite (polynomials orthogonal with respect

to µ on (−∞,∞) with dµ(x) = exp(−x2)dx). They showed the same asymptotic

held true for the zeros of the random orthogonal polynomial in (−1, 1), however the

results concerning the Hermite and Laguerre cases had some gaps.

The gaps [19] were fixed in 2015 by Lubinsky, Pritsker, and Xie [77] by considering

a larger class of OPRL that had only mild assumptions on the measure and weight

function. Using potential theory for their results, they showed that the same asymp-

totic holds for random sums spanned by the larger class of OPRL. These results were

further generalized by Lubinsky, Pritsker, and Xie [78] to allow the OPRL to have

support on the whole real line and arrived at the same asymptotic in this case.

Many examples and properties of OPRL and orthogonal polynomials on the unit

circle (OPUC) are explored in the books by Szegő [111] and Simon [104]. One example

of an OPUC that we have already mentioned are the monomials, that is zn for n ∈

8



N ∪ {0}. To see that this is indeed so, we note the orthogonality following relation∫ π

−π
eimθeinθ

dθ

2π
= δm,n, m, n ∈ N ∪ {0}.

In Subsection 1.4.3 we will discuss the case when the coefficients of the ran-

dom polynomial are i.i.d. complex-valued standard Gaussian. We remark that in the

i.i.d. complex-valued standard Gaussian case, the paper of Shiffman and Zelditch [100]

mentions a heuristic argument that provides the intensity function and its asymptotic

for random polynomials spanned by OPUC associated to analytic weights in terms of

the distributional Laplacian.

Other authors have studied the asymptotic zero distribution for random polyno-

mials spanned by orthogonal polynomials with respect to various measures. There

has also been work done in the higher dimensional analogs of these settings, see Shiff-

man and Zelditch ([99]-[102]), Bloom ([12], [13]), Bloom and Shiffman [15], Bloom

and Levenberg [14], Bayraktar [6], and Pritsker ([90], [91]).

1.4.2 Random sums with real-valued i.i.d. standard Gaussian coefficients

spanned by OPUC

The third chapter begins by considering random polynomials of the form

Pn(z) =
n∑
k=0

ηkφk(z), (1.4.1)

where {ηk} are real-valued i.i.d. standard Gaussian random variables, and {φk} are

OPUC. This part of the chapter contains results from a joint work with Yattselev

[122]. Note that taking the functions of (1.4.1) to be OPUC that are real-valued on the

real line complements the case considered by Lubinsky, Pritsker, and Xie ([77], [78])

where these spanning functions are OPRL. We use a version of Christoffel-Darboux

formula suited for OPUC to simplify the intensity functions for the expected number

of real and complex zeros of Pn. From these expressions, under the assumption

that the spanning OPUC are from the Nevai class, we deduce the limiting value of

9



these density functions away from the unit circle, hence generalizing the limits (1.2.4)

and (1.2.5) provided by Shepp and Vanderbei. Under the mere assumption that the

measure µ associated to the OPUC is doubling on subarcs of T centered at 1 and −1,

we show that the expected number of real zeros of Pn is at most

(2/π) log n+O(1),

and that the asymptotic equality holds when the corresponding recurrence coefficients

associated to the OPUC decay no slower than n−(3+ϵ)/2, ϵ > 0, thus extending the

original work by Kac [61]. As with the complex Gaussian random variables case, our

results show that the zeros are accumulating on the unit circle. Hence we conclude

with providing results that estimate the expected number of complex zeros of Pn in

shrinking neighborhoods of compact subsets of the unit circle.

1.4.3 Random polynomials with i.i.d. complex-valued standard Gaussian

coefficients

We now consider the complex Kac polynomial
∑n

k=0 ηkz
k, where {ηk} are i.i.d. complex-

valued standard Gaussian random variables. That is, when ηj = αj + iβj, where αj

and βj are i.i.d. real-valued standard Gaussian for all j ∈ {0, 1, . . . , n}. The clas-

sic result of Hammersley [47] (given later in different shapes by Arnold [4], Ledoan

et. al. [41], Shiffman and Zelditch [100], and Farahmand ([31],[33])) says that the first

intensity function for a complex Kac polynomial is given by

ρn(z) =
1

π

1− |hn+1(z)|2

(1− |z|2)2
, where hn+1(z) =

(1− |z|2)(n+ 1)zn

1− |z|2(n+1)
. (1.4.2)

We remark that in contrast to real-valued Gaussian case in which there is an intensity

function for the purely complex zeros and a separate intensity function for the real

zeros, in the setting of the random coefficients being complex-valued Gaussian, there

is only an intensity function for purely complex zeros. This follows from the fact that
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when {ηk} are i.i.d. complex-valued standard Gaussian, the common probability dis-

tribution for the random variables is absolutely continuous with respect to Lebesgue

area measure (with density e−|η|2/π). Thus, since the Lebesgue area measure of a line

segment is zero, the probability that the complex Kac polynomial has any real roots

is zero. We refer the reader to pp. 142-143 of [32] for a complete discussion of this

phenomenon.

As noted by Arnold [4], Farahmand ([31],[33])), Farahmand and Jahangiri [37],

Ledoan et. al. [41], and Shiffman and Zelditch [100], one has

lim
n→∞

ρn(z) =
1

(1− |z|2)
, |z| ̸= 1.

Furthermore, in [4] and [41] it was shown that

E[Nn(D(0, r))] =
r2

1− r2
, 0 < r < 1.

Ledoan et. al. [41] also proved the following scaling limit

lim
n→∞

E[Nn(D(0, e−s/2n))]

n
=

1− e−s(1 + s)

s(1− e−s)
, s > 0.

Taking the analysis of random polynomials with complex coefficients in a different

direction, Farahmand [35] considered the spanning functions of the random polyno-

mial to be {cos jθ}nj=0, which give what are called random trigonometric polynomi-

als. For further results concerning random trigonometric polynomials with complex-

valued Gaussian coefficients we refer the reader to the work of Farahmand and Grig-

orash [36], and for those with real-valued Gaussian coefficients the works of Dunnage

[26], Das [20], Wilkins [119], Qualls [93], Sambandham [96], and Sambandham and

Maruthachalam [82].

Others have derived formulas for the intensity function of Gaussian Analytic Func-

tions (GAF) of the form P (z) =
∑∞

j=0 ηjfj(z), where the fj’s are square summable

analytic functions on a domain, and the ηj’s are i.i.d. Gaussian random variables, in

terms of the distributional Laplacian. For the case when the random variables are

11



complex-valued i.i.d. Gaussian, in 2000 Hough, Krishnapur, Peres, and Virág (Section

2.4.2, pp. 24-29 of [49]) and Feldheim (Theorem 2, p. 6 of [39]) derived the intensity

function of zeros. Feldheim also obtained the intensity function of zeros for a GAF

in the same paper (Theorem 3, p. 7 of [39]) when the fj’s are real-valued on the real

line and the ηj’s are real-valued i.i.d. standard Gaussian random variables.

1.4.4 Random sums with i.i.d. complex-valued standard Gaussian coeffi-

cients spanned by orthogonal polynomials from the Nevai class

In the second section of Chapter III, we apply an extension of the intensity function

(1.4.2) for the expected number of zeros of random sums of the form

Pn(z) =
n∑
k=0

ηkfk(z), (1.4.3)

where {ηk} are i.i.d. complex-valued standard Gaussian, and fk(z) are polynomials

of degree k, where k ∈ {0, 1, . . . , n}. The proof of the of the formula that we apply is

given in the Appendix. We note the formula we present was given independently by

Ledoan [65] in the case of taking the spanning functions {fk} to be entire functions

that are real-valued on the real line. However within the proof in [65], there are some

justifications which are not fully clarified. Remaining with case of a polynomial basis,

all these justifications can be made sound. Our main application of the formula for

the expected number of zeros of Pn is to random orthogonal polynomials spanned by

OPRL or OPUC.

Using the Christoffel-Darboux formula for OPRL and its analogue for OPUC,

the intensity function for the expected number of zeros of Pn in these cases takes

a very simple shape. From these expressions, under the mere assumption that the

orthogonal polynomials are from the Nevai class, we give the limiting value of the

intensity function away from their respective sets where the orthogonality holds. The

limiting value of the intensity function concerning random orthogonal polynomials
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spanned by OPRL extends the work of Farahmand and Grigorash (Section 4 of [36])

in which the spanning functions of their random trigonometric polynomial can be

modified to be the Chebyshev polynomials. Furthermore, our limiting value of the

intensity function for random orthogonal polynomials spanned by OPUC generalizes

the result given by Peres and Virág [88] (i.e. taking n = 1 of their Theorem 1) when

the spanning functions were the monomials to that of a very general basis of OPUC.

Our result further extends their work in that this limiting value also holds for the

exterior of the unit circle.

In the case when {fj} are OPUC, the intensity function we arrive at shows that

the zeros of Pn are clustering near the unit circle. To quantify this phenomenon, we

give a result that estimates the expected number of complex zeros of Pn in shrinking

neighborhoods of compact subsets of the unit circle.

1.5 The variance of the number of zeros of random polynomials

We now give an overview of the main results from Chapter IV. Before discussing these

results, we mention some classical results on the variance of the number of zeros of

random polynomials.

Let Var[Nn(Ω)] denote the variance of the number of zeros of a random sum in

a measurable set Ω ⊂ C. The first result concerning the variance of the number of

real zeros of a random algebraic polynomial with i.i.d. real-valued standard Gaussian

coefficients was an upper bound provided by Stevens [109] in 1965. Specifically, in

this case he gave the upper bound

Var[Nn(R)] < 32E[Nn(R)] + 2.5 + (log n)2/
√
n, for n ≥ 32.

Soon after, in 1968 Fairly [38] computed the exact variances in this case and in the

case with the coefficients of the random algebraic polynomial take the values ±1 with

equal probabilities for polynomials of degree up to 11.
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In 1974 Maslova [79] considered the case when the random algebraic polyno-

mial has i.i.d. real-valued coefficients {ηk} such that P[ηk = 0] = 0, E[ηk] = 0, and

E[|ηk|2+s| <∞ for some s > 0. For this case she established the asymptotic

Var[Nn(R)] ∼
4

π

(
1− 2

π

)
log n, as n→ ∞.

Note that if a random algebraic polynomial has coefficients {ηk} that are i.i.d. real-

valued standard Gaussian, then they satisfy the hypothesis needed for Maslova’s

asymptotic on the variance.

As the topics in the dissertation do not cover trigonometric random polynomials,

we only note that asymptotics for the variance of the number of real zeros in [0, 2π] has

been well studied (cf. Boomolny, Bohigas, Leboeuf [17], Farahmand [35], Grandville

and Wigman [46], and Su and Shao [110]). Similarly we only mention the works

of Forrester and Honner [42], Hannay [48], Shiffman and Zeldtich [101], Bleher and

Di [9], that concern asymptotics for variance of the number of zeros for weighted

random polynomials, i.e. random polynomials of the form
∑n

k=0 ηkckz
k where either

ck =
(
n
k

)1/2 or ck = 1/k!.

1.5.1 The variance of the number of zeros of a random orthogonal poly-

nomial

In 2016 Xie [121] examined the variance for the number of real zeros of random

orthogonal polynomials spanned by OPRL. Specifically, she considered

Pn(x) =
n∑
k=0

ηkpk(x),

where {ηk} are i.i.d. real-valued standard Gaussian random variables, and {pk} are

orthogonal polynomials with respect to a finite positive Borel measure µ supported

on [−1, 1] such that dµ(x) = w(x)dx with w > 0 a.e. on [−1, 1]. Under the further as-

sumption that w(cos θ)| sin θ|, with θ ∈ [−π, π], satisfies the Lipschitz-Dini condition,
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i.e.

|w(cos(θ + δ))| sin(θ + δ)| − w(cos θ)| sin θ|| < L| log δ|−1−λ,

where L, λ > 0 are fixed numbers, Xie proved

lim
n→∞

Var[Nn(R)]
n2

= 0.

Complementing the work of Xie, in the first section of Chapter 4 we study the

variance of the number of zeros for

Pn(z) =
n∑
k=0

ηkφk(z),

where {ηk} are complex-valued random variables, and {φk} are OPUC. When {ηk} are

i.i.d. complex-valued standard Gaussian, assuming that {φk} are from the Nevai class,

we prove a formula for the limiting value of variance of the number of zeros in annuli

that do not contain the unit circle. Under the assumption that the the distribution for

each ηk satisfies certain uniform bounds for the fractional and logarithmic moments,

for OPUC such that their associated recurrence coefficients are absolutely summable,

or are regular in the sense of Ullman-Stahl-Totik, we give quantitative estimates that

show that the variance of the number of zeros of Pn scaled by n2 in annuli that contain

the unit circle is o(1) as n→ ∞.

1.5.2 The variance of the number of zeros of random orthogonal power

series

Consider the GAF

f(z) =
∞∑
k=0

ηkz
k,

where {ηk} are i.i.d. complex valued standard Gaussian random variables. Let Nr be

the number of zeros of f in a disk of radius r < 1 centered at the origin. Peres and

Virág (Corollary 3. (iii) of [88]) have shown that for the random power series f(z)

we have

µr = E[Nr] =
r2

1− r2
, σ2

r = Var[Nr] =
r2

1− r4
, (1.5.1)
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and (Nr − µr)/σr converges in distribution to the standard normal as r ↑ 1. For

similar results as above concerning weighted GAF’s, we refer the reader to Sodin and

Tsirelson [105], Nazarov and Sodin [86], and Bleher, Shiffman, and Zelditch [10].

In Section 2 of Chapter 4, we generalize the basis of the random power series f(z)

to be OPUC from the Szegő class, meaning that the measure µ associated to the

OPUC posses the property that dµ(θ) = w(θ)dθ with∫ π

−π
| logw(θ)|dθ

exists, and prove the analogs of (1.5.1) for this extension in annuli (further general-

izing from disks) in the unit circle. As we will see, proving the analog of the central

limit theorem given by Peres and Virág in this setting is still out of reach.

1.6 A remark on applications

The theory of random polynomials has many applications. For instance, they occur

in approximation theory when the coefficients of a polynomial are computed from

experimental data, and in which case, these coefficients are subject to random error.

Random polynomials also arise in the study of difference and differential equations. In

this application it is possible to obtain information about the needed solution of a dif-

ferential equation by introducing random coefficients to the characteristic polynomial,

then studying the zeros of this random characteristic polynomial. The characteristic

polynomial of a random matrix can also viewed as a random polynomial, and finding

or estimating the expected zeros of the random characteristic polynomial can give

information about the eigenvalues of a random matrix. Other applications of random

polynomials occur in the study of approximate solution of operator equations, poly-

nomial regression equations estimated by the method of least squares, mathematical

economics, statistical communication theory, ect. Recently in quantum chaos theory,

studying the zeros of random polynomials that are spanned by other basis functions
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other than the monomials, i.e. replacing zm with an entire function fm(z), have been

very useful. In this setting, linear combinations of functions with random coefficients

serve as a basic model for eigenfunctions of chaotic quantum systems (cf. P. Leboeuf

and P. Shukla [64], P. Leboeuf [63]).

For a nice history of the early progress and applications in the subject of random

polynomials, we refer the reader to the books by Bharucha-Reid and Sambandham

[16] and by Farahmand [32].
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CHAPTER II

EQUIDISTRIBUTION

Let η0, η1, . . . , ηn be complex valued random variables that are not necessarily inde-

pendent nor identically distributed. Consider random polynomial Pn(z) =
∑n

k=0 ηkz
k.

Let Z(Pn) = {Z1, Z2, . . . , Zn} be the set of complex zeros of Pn. The set of zeros Z(Pn)

gives rise to the normalized zero counting measure

τn =
1

n

n∑
k=1

δZk
.

Observe that with the normalization of 1/n, the measure τn is a random unit Borel

measure in C.

In this chapter, which contains results from the joint work with Pritsker [92], our

goal is to provide estimates on the expected rate of convergence of τn in the weak∗

topology to the normalized arclength measure µT on the unit circumference T defined

by dµT := dt/(2π). A standard way to study the deviation of τn from µT is to consider

the discrepancy of these measures in the annular sectors of the form

Ar(α, β) = {z ∈ C : r < |z| < 1/r, α ≤ arg z < β}, 0 < r < 1.

We will give quantitative estimates on the rates of convergence for the expected

discrepancy

E
[∣∣∣∣τn(Ar(α, β))− β − α

2π

∣∣∣∣] ,
and for the expected number of roots of Pn, denoted as E[nτn(E)], in various sets

E ⊂ C. We also study random polynomials spanned by various deterministic bases.
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2.1 Expected number of zeros of random polynomials

For Pn(z) =
∑n

k=0 ηkz
k, our first result generalizes Theorem 3.3 of [89] to allow that

the random variables {ηk} be neither independent nor identically distributed, but

require only that their distributions satisfy certain uniform bounds for the fractional

and logarithmic moments.

Theorem 2.1.1 Suppose that the coefficients of Pn(z) =
∑n

k=0 ηkz
k are complex

random variables that satisfy:

1. E[|ηk|t] <∞, k = 0, . . . , n, for a fixed t ∈ (0, 1]

2. E[log |η0|] > −∞ and E[log |ηn|] > −∞.

Then we have for all large n ∈ N that

E
[∣∣∣∣τn(Ar(α, β))− β − α

2π

∣∣∣∣] ≤ Cr

[
1

n

(
1

t
log

n∑
k=0

E[|ηk|t]−
1

2
E[log |η0ηn|]

)]1/2
,

(2.1.1)

where

Cr :=

√
2π

k
+

2

1− r
with k :=

∞∑
k=0

(−1)k

(2k + 1)2

being Catalan’s constant.

Introducing uniform bounds, we obtain the rates of convergence for the expected

discrepancy as n→ ∞.

Corollary 2.1.1 Let Pn(z) =
∑n

k=0 ηk,nz
k, n ∈ N, be a sequence of random polyno-

mials. If

M := sup{E[|ηk,n|t] | k = 0, . . . , n, n ∈ N} <∞

and

L := inf{E[log |ηk,n|] | k = 0&n, n ∈ N} > −∞,
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then

E
[∣∣∣∣τn(Ar(α, β))− β − α

2π

∣∣∣∣] ≤ Cr

[
1

n

(
log(n+ 1) + logM

t
− L

)]1/2
= O

(√
log n

n

)
as n→ ∞.

Observe that for E ⊂ C, the quantity nτn(E) gives the number of zeros of Pn in

E. Appealing to the arguments of [89], we now give quantitative results about the

expected number of zeros of random polynomials in various sets E ⊂ C. We first

consider sets separated from T, and in doing so we thus generalize Proposition 3.4 of

[89].

Proposition 2.1.1 Let E ⊂ C be a compact set such that E ∩ T = ∅, and set

d := dist(E,T). If Pn is as in Theorem 2.1.1, then the expected number of its zeros

in E satisfies

E[nτn(E)] ≤
d+ 1

d

(
2

t
log

(
n∑
k=0

E[|ηk|t]

)
− E[log |η0ηn|]

)
.

Our next proposition gives a bound on the expected number of zeros in sets that

have non-tangential contact with T, and consequently generalizes Proposition 3.5 of

[89].

Proposition 2.1.2 If E is a polygon inscribed in T, and the sequence {Pn}∞n=1 is as

in Corollary 2.1.1, then the expected number of zeros of Pn in E satisfies

E[nτn(E)] = O
(√

n log n
)

as n→ ∞.

Finally, if an open set E intersects T, then it must carry a positive fraction of

zeros according to the normalized arclength measure on T. This is illustrated below

for the disks Dr(w) = {z ∈ C : |z−w| < r}, with w ∈ T, and gives the generalization

of Proposition 3.6 of [89].

Proposition 2.1.3 If w ∈ T and r < 2, and the sequence {Pn}∞n=1 is as in Corollary

2.1.1, then the expected number of zeros of Pn in Dr(w) satisfies

E[nτ(Dr(w))] =
2 arcsin(r/2)

π
n+O

(√
n log n

)
as n→ ∞.
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2.2 Random polynomials spanned by general bases

We now analyze the behavior of random polynomials spanned by general bases.

Throughout this section, let Bk(z) =
∑k

j=0 bj,kz
j, where bj,k ∈ C for all j and k,

and bk,k ̸= 0 for all k, be a polynomial basis, i.e. a linearly independent set of poly-

nomials. Observe that deg Bk = k for all k ∈ N∪{0}. We study the zero distribution

of random polynomials

Pn(z) =
n∑
k=0

ηkBk(z).

Throughout this section, we assume that

lim sup
k→∞

∥Bk∥1/k∞ ≤ 1 and lim
k→∞

|bk,k|1/k = 1, (2.2.1)

where ∥Bk∥∞ := supT |Bk|. Observe that

|bk,k| =
∣∣∣∣ 12π

∫ π

−π
Bk

(
eiθ
)
e−ikθdθ

∣∣∣∣ ≤ 1

2π

∫ π

−π

∣∣Bk

(
eiθ
)∣∣ dθ ≤ ∥Bk∥∞.

Hence (2.2.1) in fact implies limk→∞ ∥Bk∥1/k∞ = 1. Conditions (2.2.1) hold for many

standard bases used for representing analytic functions in the unit disk, e.g., for

various sequences of orthogonal polynomials (cf. Stahl and Totik [98]). In the lat-

ter case, random polynomials spanned by such bases are called random orthogonal

polynomials.

Our main result of this section is the following:

Theorem 2.2.1 For Pn(z) =
∑n

k=0 ηkBk(z), let {ηk}nk=0 be random variables satisfy-

ing E[|ηk|t] <∞, k = 0, . . . , n, for a fixed t ∈ (0, 1], and set Dn := ηnbn,n
∑n

k=0 ηkb0,k.

If E[log |Dn|] > −∞ then we have for all large n ∈ N that

E
[∣∣∣∣τn(Ar(α, β))− β − α

2π

∣∣∣∣] (2.2.2)

≤ Cr

[
1

n

(
1

t
log

(
n∑
k=0

E[|ηk|t]

)
+ log max

0≤k≤n
∥Bk∥∞ − 1

2
E[log |Dn|]

)]1/2
,
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where

Cr =

√
2π

k
+

2

1− r
.

In particular, if E[log |ηn|] > −∞ and E[log |η0 + z|] ≥ L > −∞ for all z ∈ C, then

E[log |Dn|] ≥ log |b0,0bn,n|+ E[log |ηn|] + L > −∞, (2.2.3)

and (2.2.2) holds.

An example of a typical basis satisfying (2.2.1) is given below by orthonormal

polynomials on the unit circle (OPUC). Setting Bk(z) = φk(z), k = 0, 1, . . . , n, here

the basis {φk}nk=0 is said to be OPUC if they are defined by a probability Borel

measure µ on T such that∫
T
φk(e

iθ)φm(eiθ) dµ(e
iθ) = δkm, for all k,m ∈ N ∪ {0}.

We apply Theorem 2.2.1 to obtain a quantitative result on the zero distribution of

random orthogonal polynomials.

Corollary 2.2.1 Let Pn(z) =
∑n

k=0 ηk,nφk(z), n ∈ N, be a sequence of random or-

thogonal polynomials. Suppose that the following uniform estimates for the coefficients

hold true:

sup{E[|ηk,n|t] | k = 0, . . . , n; n ∈ N} <∞, t ∈ (0, 1], (2.2.4)

and

min

(
inf
n∈N

E[log |ηn,n|], inf
n∈N,z∈C

E[log |η0,n + z|]
)
> −∞. (2.2.5)

If the basis polynomials φk are orthonormal with respect to a positive Borel measure

µ supported on T = {eiθ : 0 ≤ θ < 2π}, such that the Radon-Nikodym derivative

dµ/dθ > 0 for almost every θ ∈ [0, 2π), then (2.2.1) is satisfied and

lim
n→∞

E
[∣∣∣∣τn(Ar(α, β))− β − α

2π

∣∣∣∣] = 0. (2.2.6)
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If dµ(θ) = w(θ) dθ, where w(θ) ≥ c > 0, θ ∈ [0, 2π), then

E
[∣∣∣∣τn(Ar(α, β))− β − α

2π

∣∣∣∣] = O

(√
log n

n

)
n→ ∞. (2.2.7)

Furthermore, if the measure of orthogonality µ associated to {φk} is regular in the

sense of Ullman-Stahl-Totik, that is,

εn :=
1

n
log |κn| → 0, as n→ ∞,

where κn is the leading coefficient of φn, it follows that

E
[∣∣∣∣τn(Ar(α, β))− β − α

2π

∣∣∣∣] = O

(
max

{√
log n

n
, ε1/4n

})
n→ ∞. (2.2.8)

It is clear that if the coefficients have identical distributions, then all uniform

bounds in (2.2.4) and (2.2.5) reduce to those on the single coefficient η0. One can

relax conditions on the orthogonality measure µ while preserving the results, e.g.,

one can show that (2.2.7) also holds for the generalized Jacobi weights of the form

w(θ) = v(θ)
∏J

j=1 |θ− θj|αj , where v(θ) ≥ c > 0, θ ∈ [0, 2π). Note that the analogs of

Propositions 2.1.2-2.1.3 for the random orthogonal polynomials follow from (2.2.7).

2.3 Discrete random coefficients

Let η0, η1, . . . be i.i.d. complex discrete random variables. We show that one can

extend the ideas of [89] and prove essentially the same results in the discrete case.

Furthermore, since any real random variable is the limit of an increasing sequence of

discrete random variables, we are able to extend the arguments to arbitrary random

variables. We assume as before that E[|η0|t] = µ <∞ for a fixed real t > 0.

Proposition 2.3.1 Let η0, η1, . . . be i.i.d. complex random variables, and let Yn :=

max
0≤k≤n

|ηk|. If µ := E[|η0|t] <∞, where t > 0, then

E[log Yn] ≤
log(n+ 1) + log µ

t
.
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This result provides an immediate extension of Theorem 3.3 of [89] to arbitrary ran-

dom variables (satisfying the moment assumption) by following the same proof. In-

deed, we have that

E[log ∥Pn∥∞] = E

[
log

(
sup
z∈T

∣∣∣∣∣
n∑
k=0

ηkz
k

∣∣∣∣∣
)]

≤ E

[
log

(
n∑
k=0

|ηk|

)]

≤ E
[
log

(
(n+ 1) max

0≤k≤n
|ηk|
)]

= log(n+ 1) + E[log Yn].

Thus referring to the proof of Theorem 3.3 of [89] and using our bound of E[log Yn]

gives the result.

2.4 Dependent coefficients

We generalize Theorem 3.7 of [89] in this section, replacing the requirement that the

first and the second moments of the absolute values of all coefficients be equal with

the requirement they be uniformly bounded. More precisely, we assume that

sup
k

E[|ηk|] =:M <∞ and sup
k

Var[|ηk|] =: S2 <∞. (2.4.1)

Following the ideas of Arnold and Groeneveld [5] (see also [21]), we show that

Proposition 2.4.1 If (2.4.1) is satisfied, then we have for Yn = max0≤k≤n |ηk| that

E[Yn] = O(
√
n) as n→ ∞.

An analog of Theorem 3.7 from [89] is obtained along the same lines as before.

Theorem 2.4.1 If the (possibly dependent) coefficients of Pn satisfy (2.4.1) as well

as E[log |η0|] > −∞ and E[log |ηn|] > −∞, then

E
[∣∣∣∣τn(Ar(α, β))− β − α

2π

∣∣∣∣] ≤ Cr

√
3
2
log(n+ 1)− 1

2
E[log |η0|]− 1

2
E[log |ηn|] +O(1)

n

as n→ ∞.
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Clearly, this result has more restrictive assumptions than Theorem 2.1.1.

2.5 Proofs

2.5.1 Proofs for Section 2.1

Define the logarithmic Mahler measure (logarithm of geometric mean) of Pn by

m(Pn) =
1

2π

∫ 2π

0

log |Pn(eiθ)|dθ.

It is immediate to see that m(Pn) ≤ log ∥Pn∥∞.

The majority of our results are obtained with help of the following modified version

of the discrepancy theorem due to Erdős and Turán (cf. Proposition 2.1 of [89]):

Lemma 2.5.1 Let Pn(z) =
∑n

k=0 ckz
k, ck ∈ C, and assume c0cn ̸= 0. For any

r ∈ (0, 1) and 0 ≤ α < β < 2π, we have∣∣∣∣τn (Ar(α, β))− β − α

2π

∣∣∣∣ ≤
√

2π

k

√
1

n
log

∥Pn∥∞√
|c0cn|

(2.5.1)

+
2

n(1− r)
m

(
Pn√
|c0cn|

)
,

where k =
∑∞

k=0(−1)k/(2k + 1)2 is Catalan’s constant.

This estimate shows how close the zero counting measure τn is to µT.

We will use the following lemma several times below.

Lemma 2.5.2 If ηk, k = 0, . . . , n, are complex random variables satisfying E[|ηk|t] <

∞, k = 0, . . . , n, for a fixed t ∈ (0, 1], then

E

[
log

n∑
k=0

|ηk|

]
≤ 1

t
log

(
n∑
k=0

E[|ηk|t]

)
. (2.5.2)

Proof. We first observe an elementary inequality. If xi ≥ 0, i = 0, . . . , n, and∑n
i=0 xi = 1, then for any t ∈ (0, 1) we have that

n∑
i=0

(xi)
t ≥

n∑
i=0

xi = 1.
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Applying this inequality with xi = |ηi|/
∑n

k=0 |ηk|, we obtain that(
n∑
k=0

|ηk|

)t

≤
n∑
k=0

|ηk|t

and

E

[
log

n∑
k=0

|ηk|

]
≤ 1

t
E

[
log

(
n∑
k=0

|ηk|t
)]

. (2.5.3)

Jensen’s inequality and linearity of expectation now give that

E

[
log

n∑
k=0

|ηk|

]
≤ 1

t
logE

[
n∑
k=0

|ηk|t
]
=

1

t
log

(
n∑
k=0

E[|ηk|t]

)
.

Proof of Theorem 2.1.1. Note thatm(Qn) ≤ log ∥Qn∥∞ for all polynomialsQn. Hence

(2.5.1) and Jensen’s inequality imply that

E
[∣∣∣∣τn (Ar(α, β))− β − α

2π

∣∣∣∣] ≤
√

2π

k

√√√√ 1

n
E

[
log

∥Pn∥∞√
|η0ηn|

]
+

2

n(1− r)
E

[
log

∥Pn∥∞√
|η0ηn|

]

≤ Cr

√√√√ 1

n
E

[
log

∥Pn∥∞√
|η0ηn|

]
,

where the last inequality holds for all sufficiently large n ∈ N. Since ∥Pn∥∞ ≤∑n
k=0 |ηk|, we use the linearity of expectation and (2.5.2) to estimate

E

[
log

∥Pn∥∞√
|η0ηn|

]
≤ E

[
log

n∑
k=0

|ηk|

]
− 1

2
E[log |η0ηn|]

≤ 1

t
log

(
n∑
k=0

E[|ηk|t]

)
− 1

2
E[log |η0ηn|].

The latter upper bound is finite by our assumptions.

Proof of Corollary 2.1.1. The result follows immediately upon using the uniform bounds

M and L in estimate (2.1.1).

Proof of Proposition 2.1.1. In was shown in [89] (see (5.3) in that paper) that

τn(C \ Ar(0, 2π)) ≤
2

n(1− r)
m

(
Pn√
|η0ηn|

)
.
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Since m(Qn) ≤ log ∥Qn∥∞ for all polynomials Qn, it follows that

τn(C \ Ar(0, 2π)) ≤
2

n(1− r)
log

(
∥Pn∥∞√
|η0ηn|

)
.

Note that for r = 1/(dist(E,T) + 1), we have E ⊂ C \ Ar(0, 2π). Estimating ∥Pn∥∞

as in the proof of Theorem 2.1.1, we obtain that

E[nτn(E)] ≤
2

1− r
E

[
log

(
∥Pn∥∞√
|η0ηn|

)]

≤ 2

1− r

(
1

t
log

(
n∑
k=0

E[|ηk|t]

)
− 1

2
E[log |η0ηn|]

)

=
d+ 1

d

(
2

t
log

(
n∑
k=0

E[|ηk|t]

)
− E[log |η0ηn|]

)
.

Proof of Proposition 2.1.2. The proof of this proposition proceeds in the same man-

ner as the proof of Proposition 3.5 in [89] by using our Corollary 2.1.1 along with

Proposition 2.1.1 .

Proof of Proposition 2.1.3. As in the previous proof, this result follows in direct par-

allel to the proof of Proposition 3.6 of [89] while taking into account our bound in

Proposition 2.1.2.

2.5.2 Proofs for Section 2.2

Proof of Theorem 2.2.1. We proceed with an argument similar to the proof of The-

orem 2.1.1. Note that the leading coefficient of Pn is ηnbn,n, and its constant term

is
∑n

k=0 ηkb0,k. Using the fact m(Qn) ≤ log ∥Qn∥∞ for all polynomials Qn, we apply

(2.5.1) and Jensen’s inequality to obtain

E
[∣∣∣∣τn (Ar(α, β))− β − α

2π

∣∣∣∣] ≤
√

2π

k

√√√√ 1

n
E

[
log

∥Pn∥∞√
|Dn|

]
+

2

n(1− r)
E

[
log

∥Pn∥∞√
|Dn|

]

≤ Cr

√√√√ 1

n
E

[
log

∥Pn∥∞√
|Dn|

]
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for all sufficiently large n ∈ N. It is clear that

∥Pn∥∞ ≤ max
0≤k≤n

∥Bk∥∞
n∑
k=0

|ηk|.

Hence (2.5.1) yields

E

[
log

∥Pn∥∞√
|Dn|

]
≤ E

[
log

n∑
k=0

|ηk|

]
+ log max

0≤k≤n
∥Bk∥∞ − 1

2
E[log |Dn|]

≤ 1

t
log

(
n∑
k=0

E[|ηk|t]

)
+ log max

0≤k≤n
∥Bk∥∞ − 1

2
E[log |Dn|].

Thus (2.2.2) follows as a combination of the above estimates.

We now proceed to the lower bound for the expectation of log |Dn| in (2.2.3) by

estimating that

E[log |Dn|] = E

[
log

∣∣∣∣∣ηnbn,n
n∑
k=0

ηkb0,k

∣∣∣∣∣
]

= E[log |ηn|] + log |bn,n|+ E

[
log

∣∣∣∣∣
n∑
k=0

ηkb0,k

∣∣∣∣∣
]

= E[log |ηn|] + log |bn,n|+ log |b0,0|+ E

[
log

∣∣∣∣∣η0 +
n∑
k=1

ηk
b0,k
b0,0

∣∣∣∣∣
]

≥ log |b0,0bn,n|+ E[log |ηn|] + L,

where we used that b0,0 ̸= 0 and E[log |η0 + z|] ≥ L for all z ∈ C.

Proof of Corollary 2.2.1. We apply (2.2.2) with (2.2.3). Writing

φk(z) = κk,kz
k + ak−1,kz

k−1 + ak−2,kz
k−2 + · · ·+ a0,k, k ∈ {0, 1, . . . , n}, (2.5.4)

the uniform bounds on the expectations for the coefficients immediately give that

1

tn
log

(
n∑
k=0

E[|ηk,n|t]

)
= O

(
log n

n

)
and 1

2n
E[log |Dn|] ≥

1

n
log |κn,n|+O

(
1

n

)
.

The assumption dµ/dθ > 0 for a.e. θ implies (2.2.1), see Corollary 4.1.2 of [98], which

in turn gives that

lim
n→∞

1

n
log |κn,n| = lim

n→∞

1

n
log max

0≤k≤n
∥φk∥∞ = 0.
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Hence (2.2.6) follows from (2.2.2). Recall that the leading coefficient κn,n of the

orthonormal polynomial φn gives the solution of the following extremal problem [98]:

|κn,n|−2 = inf

{∫
|Qn|2 dµ : Qn is a monic polynomial of degree n

}
.

Using Qn(z) = zn, we obtain that

|κn,n|2 ≤
∫ π

−π
|einθ|2dµ(θ) =

∫ π

−π
dµ(θ) = µ(T).

Consequently

|κn,n| ≥ (µ(T))−1/2 and 1

n
log |κn,n| ≥ − 1

2n
log µ(T).

We now show that log ∥φn∥∞ = O(log n) as n → ∞, provided dµ(θ) = w(θ)dθ with

w(θ) ≥ c > 0, θ ∈ [0, 2π). Indeed, the Cauchy-Schwarz inequality gives for the

orthonormal polynomial (2.5.4) that

∥φn∥∞ ≤ |κn,n|+ |an−1,n|+ |an−2,n|+ · · ·+ |a0,n|

≤
√
n+ 1

(
|κn,n|2 + |an−1,n|2 + |an−2,n|2 + · · ·+ |a0,n|2

)1/2
=

√
n+ 1

(
1

2π

∫ 2π

0

|φn(eiθ)|2 dθ
)1/2

≤
√
n+ 1

2πc

(∫ 2π

0

|φn(eiθ)|2w(θ) dθ
)1/2

=

√
n+ 1

2πc
.

This estimate completes the proof of (2.2.7).

Under the assumption the measure of orthogonality µ associated to {φk} is regular

in the sense of Ullman-Stahl-Totik, to establish (2.2.7) it suffices to show

1

n
log max

0≤k≤n
∥φk∥∞ = O(

√
εn), (2.5.5)

where εn = log |κn,n|/n.

Writing κk,k = κk, equation 1.5.22 of [104] gives

κk =
k−1∏
j=0

(1− |αj|2)−1/2, (2.5.6)
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where {αj} ⊂ D are recurrence coefficients coming from the three term recurrence

relation (c.f. Theorem 1.5.4 [104]):

φj+1(z) =
zφj(z)− ᾱjφ

∗
j(z)√

1− |αj|2
, j = 0, 1, . . . ,

with φ∗
j(z) = zjφj(1/z̄). For the normalized OPUC, denoted as Φk(z), we have

φk(z) = κkΦk(z), so that appealing to (2.5.6) and (1.5.17) of Theorem 1.5.3 of [104]

yields

log max
0≤k≤n

∥φk∥∞ = log max
0≤k≤n

∥κkΦk(z)∥∞

≤ log

(
|κn| max

0≤k≤n
∥Φk(z)∥∞

)
≤ log

(
|κn| max

0≤k≤n
exp

(
k−1∑
j=0

|αj|

))

≤ log

(
|κn| exp

(
n−1∑
j=0

|αj|

))

= log |κn|+
n−1∑
j=0

|αj|

≤ log |κn|+

(
n
n−1∑
j=0

|αj|2
)1/2

,

where we have relied on the Cauchy-Schwarz inequality in the last inequality. To

estimate the second term above, notice that since each αj ∈ D, we have

log
1

1− |αj|2
=

∞∑
k=1

|αj|2k

k
> |αj|2.

Thus

1

n
log max

0≤k≤n
∥φk∥∞ ≤ 1

n

log |κn|+

(
n
n−1∑
j=0

log
1

1− |αj|2

)1/2


=
1

n

(
log |κn|+ (2n log |κn|)1/2

)
≤ O (

√
εn) ,

which completes the desired estimate to give (2.2.8).
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2.5.3 Proofs for Section 2.3

Proof of Proposition 2.3.1. Assume that the discrete random variable |η0| takes val-

ues {xk}∞k=1 that are arranged in the increasing order, and note that the range of

values for Yn is the same. Let ak = P(Yn ≤ xk) and bk = P(|η0| ≤ xk), where k ∈ N.

It is clear that P(Yn = xk) = ak − ak−1 and P(|A0| = xk) = bk − bk−1, k ∈ N. Since

the ηk’s are independent and identically distributed, we have that

ak = P(Yn ≤ xk)

= P(|η0| ≤ xk, |η1| ≤ xk, . . . , |ηn| ≤ xk)

= P(|η0| ≤ xk)P(|η1| ≤ xk) · · ·P(|ηn| ≤ xk)

= [P(|η0| ≤ xk)]
n+1

= bn+1
k

holds for all k ∈ N. Thus

E[Y t
n ] :=

∞∑
k=1

xtk P(Yn = xk)

=
∞∑
k=1

xtk [ak − ak−1]

=
∞∑
k=1

xtk [bn+1
k − bn+1

k−1 ]

=
∞∑
k=1

xtk [bk − bk−1][b
n
k + bn−1

k bk−1 + · · ·+ bnk−1]

≤
∞∑
k=1

xtk [bk − bk−1](n+ 1)bnk

≤ (n+ 1)
∞∑
k=1

xtk P(|η0| = xk)

= (n+ 1) E[|η0|t].
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By Jensen’s inequality and the previous estimate, we have

E[log Yn] = E
[
1

t
log Y t

n

]
≤ 1

t
logE[Y t

n ]

≤ 1

t
(log((n+ 1) E[|η0|t])

=
1

t
(log(n+ 1) + log µ).

We now show that this argument can be extended to arbitrary random variables

{|γk|}nk=0. Consider the increasing sequences of simple (discrete) random variables

{|ηk,i|}∞i=1 such that limi→∞ |ηk,i| = |γk|, k = 0, . . . , n. For Yn,i = max0≤k≤n |ηk,i| and

Zn = max0≤k≤n |γk|, one can see that

lim
i→∞

Y t
n,i = Zt

n and lim
i→∞

|η0,i|t = |γ0|t,

where t > 0. Moreover, the sequence of simple random variables Y t
n,i is increasing to

Zt
n, so that the Monotone Convergence Theorem gives

lim
i→∞

E[Y t
n,i] = E[Zt

n].

Using the already proven result for discrete random variables and passing to the limit

as i→ ∞, we obtain that

E[Zt
n] ≤ (n+ 1)E[|γ0|t].

Hence Jensen’s inequality yields

E[logZn] ≤
1

t
(log(n+ 1) + logE[|γ0|t]),

as before.

2.5.4 Proofs for Section 2.4

The following lemma is due to Arnold and Groeneveld [5], and is also found in [21,

p. 110]. We prove it in our setting for completeness.
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Lemma 2.5.3 Let Xi, i = 0, 1, . . . , n, be possibly dependent random variables with

E[Xi] = µi and Var[Xi] = σ2
i . Then for any real constants ci, the ordered random

variables X0:n ≤ X1:n ≤ · · · ≤ Xn:n satisfy∣∣∣∣∣E
[

n∑
i=0

ci(Xi:n − µ̄)

]∣∣∣∣∣ ≤
(

n∑
i=0

(ci − c̄)2
n∑
i=0

[(µi − µ̄)2 + σ2
i ]

)1/2

,

where c̄ = n−1
∑n

i=0 ci, µ̄ = n−1
∑n

i=0 µi:n = n−1
∑n

i=0 µi, and µi:n = E[Xi:n].

Proof. We use the Cauchy-Schwartz inequality in the following estimate:∣∣∣∣∣
n∑
i=0

ci(Xi:n − µ̄)

∣∣∣∣∣ =
∣∣∣∣∣
n∑
i=0

(ci − c̄)(Xi:n − µ̄)

∣∣∣∣∣
≤

[
n∑
i=0

(ci − c̄)2
n∑
i=0

(Xi:n − µ̄)2

]1/2
.

Observe that |E(Y )| ≤ E(|Y |) for any random variable Y , and that E(Z1/2) ≤

[E(Z)]1/2 for Z ≥ 0 by Jensen’s inequality. Applying these facts while taking the

expectation of the previous inequality gives∣∣∣∣∣E
[

n∑
i=0

ci(Xi:n − µ̄)

]∣∣∣∣∣ ≤
[

n∑
i=0

(ci − c̄)2

]1/2 [
E

[
n∑
i=0

(Xi:n − µ̄)2

]]1/2

=

[
n∑
i=0

(ci − c̄)2

]1/2 [ n∑
i=0

E[X2
i:n]− 2E[Xi:n]µ̄− µ̄2)

]1/2

=

[
n∑
i=0

(ci − c̄)2

]1/2 [ n∑
i=0

σ2
i + (µi − µ̄)2

]1/2
.

Proof of Proposition 2.4.1. To obtain bounds for E[Yn] = µn:n = E[ηn:n], we apply
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the previous lemma while choosing c0 = c1 = · · · = cn−1 = 0 and cn = 1. This yields

E[ηn:n]− µ̄ ≤

(
(nc̄2 + (1− c̄)2)

n∑
i=0

(µ2
i − 2µiµ̄+ µ̄2 + σ2

i )

)1/2

=

((
n

(n+ 1)2
+

(
1− 1

n+ 1

)2
)

n∑
i=0

(µ2
i − 2µiµ̄+ µ̄2 + σ2

i )

)1/2

≤

(
n∑
i=0

(M2 + 2M2 +M2 + S2)

)1/2

= (4M2 + S2)1/2(n+ 1)1/2.

It follows that

E[Yn] = E[ηn:n] ≤ µ̄+ (4M2 + S2)1/2(n+ 1)1/2

≤M + (4M2 + S2)1/2(n+ 1)1/2.

Proof of Theorem 2.4.1. As in the proof of Theorem 2.1.1, we apply (2.5.1) and

Jensen’s inequality to obtain for all sufficiently large n ∈ N the following

E
[∣∣∣∣τn (Ar(α, β))− β − α

2π

∣∣∣∣] ≤ Cr

√√√√ 1

n
E

[
log

∥Pn∥∞√
|η0ηn|

]

= Cr

√
E[log ∥Pn∥∞]− 1

2
E[log |η0|]− 1

2
E[log |ηn|]

n
.

Observe that

∥Pn∥∞ = sup
T

∣∣∣∣∣
n∑
k=0

ηkz
k

∣∣∣∣∣ ≤
n∑
k=0

|ηk| ≤ (n+ 1) max
0≤k≤n

|ηk| = (n+ 1)Yn.
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Taking the logarithm and then the expectation of the above yields

E[log ∥Pn∥∞] ≤ E[log(n+ 1) + log Yn]

= log(n+ 1) + E[log Yn]

≤ log(n+ 1) + logE[Yn],

where the last inequality follows from Jensen’s inequality. As n → ∞, applying

Proposition 2.4.1 gives

log(n+ 1) + logE[Yn] ≤ log(n+ 1) + logO(
√
n)

= log(n+ 1) +
1

2
log n+O(1)

<
3

2
log(n+ 1) +O(1).

Combining these bounds gives the result of Theorem 2.4.1.
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CHAPTER III

THE EXPECTED NUMBER OF ZEROS

Let {fj}nj=0 be a sequence of orthonormal polynomials where the orthogonality rela-

tion is satisfied on either the real line (OPRL) or on the unit circle (OPUC). In this

chapter we study zero distribution of random linear combinations of the form

Pn(z) =
n∑
j=0

ηjfj(z),

where η0, . . . , ηn are i.i.d. real-valued or complex-valued standard Gaussian random

variables.

We first consider the case when {ηj} are i.i.d. real-valued standard Gaussian ran-

dom variables and {fj} are OPUC. These results are a joint work with Yattselev [122].

We use an analogue of the Christoffel-Darboux formula for OPRL suited for OPUC

to simplify the density functions provided by Vanderbei for the expected number of

real and complex of zeros Pn. From these expressions, under the assumption that the

measure µ associated to the OPUC is from the Nevai class, we deduce the limiting

value of the density functions away from the unit circle. Under the mere assumption

that µ is doubling on subarcs of T centered at 1 and −1, we show that the expected

number of real zeros of Pn is at most

(2/π) log n+O(1),

and that the asymptotic equality holds when the corresponding recurrence coefficients

decay no slower than n−(3+ϵ)/2, ϵ > 0. The section is concluded by providing results

that estimate the expected number of complex zeros of Pn in shrinking neighborhoods

of compact subsets of T.
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For the case when {ηj} are i.i.d. complex-valued standard Gaussian and {fj} are

OPRL or OPUC, we apply a general formula by Peres and Virág [88] for the ex-

pected number of zeros of Pn. In the setting that our applications are in, e.g. {fj}

is a polynomial basis, in the appendix following the method of Vanderbei [115] we

give an alternate proof the formula for the expected number of zeros of Pn. Using the

Christoffel-Darboux formula for OPRL and its analogue for OPUC, the density func-

tion for the expected number of zeros of Pn in these cases takes a very simple shape.

When the orthogonal polynomials are from the Nevai class, we give the limiting value

of the density function away from their respective sets where the orthogonality holds.

In the case when {fj} are OPUC, the density function shows that the expected num-

ber of zeros of Pn are clustering near the unit circle. To quantify this phenomenon, we

give a result that estimates the expected number of complex zeros of Pn in shrinking

neighborhoods of compact subsets of the unit circle.

3.1 Expected number of zeros of random orthogonal polynomials with

real-valued Gaussian coefficients

As previously mentioned, the results of this section were obtained as joint work with

Yattselev [122]. This work generalizes the asymptotic (1.2.3) given by Kac for the

expected number of real zeros and the limits (1.2.4) and (1.2.5) of these intensity

functions by Shepp and Vanderbei for random orthogonal polynomials of the form

Pn(z) = η0φ0(z) + η1φ1(z) + · · ·+ ηn−1φn−1(z), (3.1.1)

where {ηj} are real-valued i.i.d. standard Gaussian variables, and {φj} are OPUC

that are real-valued on the real line. We note that the key formulas in this section

we arrive at are the result by using the analogue of the Christoffel-Darboux formula

suited for OPUC. Hence, to simplify formulas the random orthogonal polynomial Pn

is taken to have n− 1 summands.
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Taking the random variables {ηj} to be real-valued i.i.d. standard Gaussian vari-

ables, the density function for the expected number of zeros of Pn, which is known as

the intensity function, will have support on the real line and in the complex plane.

To distinguish these two intensity functions of the random orthogonal polynomial Pn,

we write

E[Nn(Ω)] =

∫
Ω∩R

ρ(1,0)n (x) dx+

∫
Ω

ρ(0,1)n (z) dx dy, (3.1.2)

where Ω ⊂ C is measurable, with ρ(1,0)n (x) being the intensity function for the expected

number of real zeros, and ρ
(0,1)
n (z) is intensity function for the expected number of

zeros in C \ R.

We will rely on the generalizations of Kac’s formula (1.2.2) for the intensity func-

tion on the real line, and of the formula given by Shepp and Vanderbei [97] for the

intensity function off the real line. For these generalizations, we will replace the basis

{zj} from the previous works with an arbitrary set of polynomials {fj(z)} that are

real on the real line with deg fj = j, for j ∈ {0, 1, . . . }. That is, we will be considering

random functions of the form

Pn(z) = η0f0(z) + η1f1(z) + · · ·+ ηn−1fn−1(z), (3.1.3)

where {ηj} are i.i.d. real-valued standard Gaussian variables. In this case it is well

known (cf. Edelman and Kostlan [27], Das [18], Lubinsky, Pritsker, and Xie [77], and

Vanderbei [115]) that

ρ(1,0)n (x) =
1

π

√
Kn(x, x)K

(1,1)
n (x, x)−K

(1,0)
n (x, x)2

Kn(x, x)
, (3.1.4)

and due to Vanderbei [115] we have

ρ
(0,1)
n (z) =

1

π

K
(1,1)
n (z, z)(

Kn(z, z)2 − |Kn(z, z)|2
)1/2

− 1

π

Kn(z, z)
(
|K(1,0)

n (z, z)|2 + |K(1,0)
n (z, z)|2

)(
Kn(z, z)2 − |Kn(z, z)|2

)3/2
+

2

π

Re
(
Kn(z, z)K

(1,0)
n (z, z)K

(1,0)
n (z, z)

)(
Kn(z, z)2 − |Kn(z, z)|2

)3/2 ,

(3.1.5)
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where
Kn(z, w) =

∑n−1
j=0 fj(z)fj(w),

K
(1,0)
n (z, w) =

∑n−1
j=0 f

′
j(z)fj(w),

K
(1,1)
n (z, w) =

∑n−1
j=0 f

′
j(z)f

′
j(w).

(3.1.6)

In this section we will consider the case when fj = φj, where {φj} are OPUC.

We remind the reader that the OPUC are orthogonal polynomials {φj} defined by a

probability Borel measure µ on T such that∫
T
φn(e

iθ)φm(eiθ) dµ(e
iθ) = δnm, for all n,m ∈ N ∪ {0}. (3.1.7)

Observe that when we restrict µ to be symmetric with respect to conjugation, the

sequence {φj} of OPUC will have real coefficients and consequently be real-valued

on the real line.

The Three Term Recurrence Relation (Theorem 1.5.4 [104]) for a sequence {φn}

of OPUC says

φn+1(z) =
zφn(z)− ᾱnφ

∗
n(z)√

1− |αn|2
, n = 0, 1, . . . , (3.1.8)

where the sequence of recurrence coefficients {αn} ⊂ D, and φ∗
n(z) = znφn(1/z̄).

Writing φn(z) = κnΦn(z), where Φn is monic, the above equivalence relation in this

case for polynomials Φn can be written as

Φn+1(z) = zΦn(z)− ᾱnΦ
∗
n(z), n = 0, 1, . . . , (3.1.9)

where Φ∗
n(z) := znΦn(1/z̄).

We remark that under the assumption {φj} are real-valued on the real-line, it

follows that {αj} ⊂ (−1, 1). Recall also that given {αj} ⊂ (−1, 1), there exists a

unique conjugate-symmetric probability measure µ whose monic orthogonal polyno-

mials satisfy (3.1.9), see [104, Theorem 1.7.11]. Moreover, in this case it holds that

κn =
n−1∏
j=0

(
1− α2

j

)−1/2
, (3.1.10)
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see [104, Equation (1.5.22)].

Taking the functions fj = φj, for j = 0, 1, . . . , n − 1, to be OPUC that are real-

valued on the real line complements the case considered by Lubinsky, Pritsker, and

Xie ([77], [78]) where fj, j = 0, 1, . . . , n− 1, were OPRL.

Theorem 3.1.1 Let {φj} be a sequence of polynomials satisfying (3.1.7). Further,

let Pn be a real random polynomial (3.1.1) with {ηj} being i.i.d. real-valued standard

Gaussian random variables. Then the intensity function ρ
(1,0)
n from (3.1.4) can be

written as

ρ(1,0)n (x) =
1

π

√
1− h2n(x)

|1− x2|
, hn(x) =

(1− x2)b′n(x)

1− b2n(x)
, bn(x) =

φn(x)

φ∗
n(x)

. (3.1.11)

Clearly, when the recurrence coefficients are all zero, φn(x) = xn and respectively

bn(x) = xn. That is, we recover the intensity function from the Kac formula (1.2.2).

Since the Blaschke products bn necessarily satisfy |bn(z)| ≤ 1 in D, they form a

normal family there. Moreover, as

bn(1/z) =
φn(1/z)

φ∗
n(1/z)

=
φn(1/z)

z−nφn(z)
=
φ∗
n(z)

φn(z)
=

1

bn(z)
,

where we have used that {φj} are real-valued on the real line in the second to last

equality, we see that

ρ(1,0)n (1/x) = x2ρ(1,0)n (x). (3.1.12)

The following corollary is immediate.

Corollary 3.1.1 In the setting of Theorem 3.1.1, let N ⊂ N be such that bn(z) →

b(z) ̸≡ 1 as N ∋ n→ ∞ for some analytic function b(z) in D. Then

ρ(1,0)n (x) → 1

π

√
1− h2(x)

1− x2
, h(x) = b′(x)

1− x2

1− b2(x)
,

locally uniformly on (−1, 1) as N ∋ n → ∞. In particular, if αk → 0 as k → ∞,

then

ρ(1,0)n (x) → 1

π

1

|1− x2|
as n→ ∞

uniformly on closed subsets of (−∞,−1) ∪ (−1, 1) ∪ (1,∞) as n→ ∞.
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The ratio asymptotics ([104], Theorem 1.7.4) for OPUC state that

lim
n→∞

φn+1(z)

φn(z)
= z,

uniformly on compact subsets of C \ D. Theorem 1.7.4 of [104] also shows that the

above is equivalent to

lim
n→∞

αn = 0 ⇐⇒ lim
n→∞

φn(z)

φ∗
n(z)

= 0, (3.1.13)

where the convergence holds locally uniformly for z ∈ D. When (3.1.13) holds for a

sequence {φn} of OPUC, we say that the sequence is from the Nevai Class. Thus

the second claim of the corollary is a straightforward consequence of the fact that

bn(z) = φn(z)/φ
∗
n(z) → 0 locally uniformly in D.

To prove an asymptotic result for the expected number of real zeros of the random

orthogonal polynomial Pn defined in (3.1.1) similar to (1.2.3) done by Kac, we first

need to relate the measure µ to the kernels Kn(z, z), K(1,0)
n (z, z), K(1,1)

n (z, z). For the

upper bound of E[Nn(R)], we will assume that the measure µ is doubling on subarcs

of T centered at 1 and −1. Recall that a measure µ is called doubling on a subarc

T ⊆ T if there exists a constant L > 0 such that

µ(2I) ≤ Lµ(I), 2I ⊆ T,

for any subarc I, where 2I is a subarc of T with the same center as I and twice the

arclength.

Theorem 3.1.2 Let Pn(z) =
∑n−1

k=0 ηkφk(z), where {ηk} are i.i.d. real-valued stan-

dard Gaussian, and {φk} are OPUC defined by a measure that is symmetric with

respect to conjugation. Assume that there exist two subarcs of T, centered at 1 and

−1, on which µ is doubling. Then it holds that

E[Nn(R)] ≤
2

π
log n+O(1). (3.1.14)

41



Moreover, if the quantities |kpαk| are uniformly bounded above for some p > 3/2, then

E[Nn(R)] =
2 + o(1)

π
log n. (3.1.15)

The assumption on αk’s in (3.1.15) implies for an absolute constant C, we have
∞∑
k=0

|αk| ≤ C

∞∑
k=0

1

k3/2
<∞,

that is the αk’s are absolutely summable. This condition not only allows one to prove

a lower bound of E[Nn(R)], but by Baxter’s theorem [104, Theorem 5.2.1] this is

known to be equivalent to µ being absolutely continuous with respect to the arclenth

distribution on T and the Radon-Nikodym derivative is continuous and positive there.

In particular, µ is doubling on T.

Proposition 3.1.1 In the setting of Theorem 3.1.1, assume that

µ = tν + (1− t)δ1, t ∈ (0, 1),

where ν is a conjugate-symmetric probability measure on the unit circle such that

|kpαk(ν)| are uniformly bounded above for some p > 3/2. Then (3.1.15) holds while

αn−1 = αn−1(ν) + φn−1(1; ν)φn(1; ν)

√
1− |αn−1(ν)|2

t(1− t)−1 +Kn(1, 1; ν)
, (3.1.16)

where the quantities αn(ν), φn(z; ν), Kn(z, w; ν) are defined as before only with respect

to the measure ν.

Formula (3.1.16) was derived in [120] and shows that αn ∼ 1/n as n→ ∞, that is,

the recurrence coefficients do not obey the conditions of Theorem 3.1.2. Indeed, the

coefficients αk(ν) are absolutely summable. Thus, there exists a constant c > 1 such

that c−1 ≤ |φk(1; ν)| ≤ c for all k, see [104, Equation (1.5.16)] and (3.1.10). Hence,

n/c2 ≤ Kn(1, 1; ν) ≤ nc2, which yields the claim.

Theorem 3.1.3 In the setting of Theorem 3.1.1, assume that αk → 0 as k → ∞.

Then we have

ρ(0,1)n (z) → 1

π(1− |z|2)2

√
1−

∣∣∣∣1− |z|2
1− z2

∣∣∣∣2
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locally uniformly in C \ (T ∪ R) as n→ ∞.

It follows from Theorem 3.1.3 that the unit circle is attracting the zeros of Pn. To

quantify this phenomena we will rely on a universality result by Levin and Lubinsky

[68] which concerns OPUC that are regular in the sense of Ullman-Stahl-Totik. OPUC

{φj} are said to be regular in the sense of Ullman-Stahl-Totik if

lim
n→∞

log |κn|
n

= 0, (3.1.17)

where κn is the leading coefficient of φn(z). Observe that if one assumes that the

recurrence coefficients associated to {φj} satisfy αj → 0 as j → ∞, appealing to

(3.1.10) we see that

lim
n→∞

log |κn|
n

= lim
n→∞

−1
2

∑n
j=0 log |1− α2

j |
n

= 0 (3.1.18)

so that the measure µ is regular in the sense of Ullman-Stahl-Totik. Hence this class

of OPUC contains the Nevai class.

Theorem 3.1.4 In the setting of Theorem 3.1.1, assume that αk → 0 as k → ∞.

Let S be a compact subset of T \ {±1}. Assume, in addition, that µ is absolutely

continuous with respect to the arclength measure on an open set containing S and

its Radon-Nikodym derivative is positive and continuous at each point of S. Given

−∞ < τ1 < τ2 <∞, it follows that

1

n
E
[
Nn

(
Ω(S, τ1, τ2)

)]
→ |S|

2π

(
H ′(τ2)

H(τ2)
− H ′(τ1)

H(τ1)

)
as n→ ∞, (3.1.19)

where Ω(S, τ1, τ2) :=
{
rz : z ∈ S, r ∈ (1 + τ1

2n
, 1 + τ2

2n
)
}

and H(τ) :=
eτ − 1

τ
.

It can be readily verified that H ′/H is increasing on the real line with

lim
τ→−∞

H ′(τ)

H(τ)
= 0 and H ′(τ)

H(τ)
= 1− H ′(−τ)

H(−τ)
.

Thus, the zeros of Pn approaching S are expected to be contained in an annular band

around S of width n−1+ϵ for any ϵ > 0.
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3.2 Expected number of zeros for random orthogonal polynomials with

complex Gaussian coefficients

Let us first start with a motivating example. Consider the complex Kac polynomial

pn(z) =
n∑
k=0

ηkz
k, (3.2.1)

with ηj = αj + iβj, j = 0, 1, . . . , n, where {αj}nj=0 and {βj}nj=0 are sequences of

i.i.d. standard normal random variables. Define

A(s, t) := {z ∈ C : 0 ≤ s < |z| < t}.

Using a classical result by Hammersely [47] that gives a formula for the expected

number of zeros of pn, we have the following:

Proposition 3.2.1 For the complex Kac polynomial pn(z) we have

E[Nn(A(s, t))] =
1

1− t2
− n+ 1

1− t2n+2
−
(

1

1− s2
− n+ 1

1− s2n+2

)
, (3.2.2)

provided the annulus A(s, t) does not contain the unit circle.

Corollary 3.2.1 The complex Kac polynomial pn(z) possess the properties that the

density function for the expected number of zeros is equal to

n(n+ 2)

12π
, for |z| = 1, (3.2.3)

and

E[Nn(D)] =
n

2
. (3.2.4)

We are interested in examining asymptotic analogues of the above results for random

sums spanned a polynomial basis instead of remaining with the monomials as the

basis. Before going further, we need an extension of Hammersely’s formula for such

random sums.
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Let {fj} be a sequence of polynomials such that deg fj = j, for j ∈ {0, 1, . . . , n}.

Set

Pn(z) =
n∑
j=0

ηjfj(z), z ∈ C, (3.2.5)

where n is a fixed integer, and ηj = αj + iβj, j = 0, 1, . . . , n, with {αj}nj=0 and

{βj}nj=0 being sequences of i.i.d. real-valued standard Gaussian random variables.

For a Jordan region Ω ⊂ C, applying a general result of Peres and Virág [88] (c.f.

Shiffman and Zeldith [100] and Ledoan [66] for alternate versions of the result), the

formula for the expected number of zeros of Pn is given by

E[Nn(Ω)] =

∫
Ω

ρ(1)n (x, y) dx dy,

with

ρ(1)n (x, y) = ρ(1)n (z) =
K

(1,1)
n (z, z)Kn(z, z)−

∣∣∣K(0,1)
n (z, z)

∣∣∣2
π (Kn(z, z))

2 , (3.2.6)

where

Kn(z, w) =
n∑
j=0

fj(z)fj(w), K(0,1)
n (z, w) =

n∑
j=0

fj(z)f ′
j(w), (3.2.7)

and

K(1,1)
n (z, w) =

n∑
j=0

f ′
j(z)f

′
j(w). (3.2.8)

Following the method of proof given by Vanderbei [115], in the Appendix we give an

alternate proof of (3.2.6) for the setting in which our applications are in, that is when

{fj} is a polynomial basis with deg fj = j, for j ∈ {0, 1, . . . , n} .

We note that since all the functions that make up ρ(1)n are real valued, the function

ρ
(1)
n is real valued. We also remark that since {fj} is a polynomial basis, we have

Kn(z, z) ≥ |f0(z)|2 > 0. Since Cauchy Schwarz gives

K(1,1)
n (z, z)Kn(z, z)−

∣∣K(0,1)
n (z, z)

∣∣2 ≥ 0,

the function ρ
(1)
n is also in fact nonnegative. Furthermore, for (a, b) ⊂ R, it is also

known the E[Nn(a, b)] = 0, so that ρ(1)n does not have mass on the real line.
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In the following results we will be considering the case when the spanning functions

{fj} of (3.2.5) are OPRL or OPUC (cf. definition (3.1.7)). We say that a collection of

polynomials {pj}j≥0 are orthogonal on the real line (OPRL) with respect to µ, with

supp µ ⊆ R, if ∫
pn(x)pm(x)dµ(x) = δnm, for all n,m ∈ N ∪ {0}. (3.2.9)

We note that when polynomials are orthogonal on the real line, they have real coef-

ficients, and thus are real-valued on the real line.

For analogues of our results concerning random linear combinations of OPRL or

OPUC with the random coefficients {ηj} of Pn being real-valued standard i.i.d. Gaus-

sian, we refer the reader to works of Das [18], Das and Bhatt [19], Lubinsky, Pritsker,

and Xie ([77], [78] Theorems 2.2 and 2.3), and the previous section taken from the

work of Yattselev and the author [122].

Using the Christoffel-Darboux formula we show that the intensity function from

(3.2.6) greatly simplifies when the spanning functions are OPRL or OPUC.

Theorem 3.2.1 Let Pn(z) =
∑n

j=0 ηjfj(z), where {ηj} are complex-valued i.i.d. stan-

dard Gaussian random variables, and {fj} are orthogonal polynomials. Let ρ(1)n be

defined as in (3.2.6).

1. When fj = pj, j = 0, . . . , n, where the pj’s are OPRL, the intensity function

simplifies as

ρ(1)n (z) =
1− hn(z)

2

4π (Im(z))2
, hn(z) =

Im(z)|c′n(z)|
Im(cn(z))

, cn(z) =
pn+1(z)

pn(z)
, (3.2.10)

for z ∈ C.

2. Let fj = φj, j = 0, . . . , n, where the φj’s are OPUC. When |z| ̸= 1, the intensity

function reduces to

ρ(1)n (z) =
1− |kn(z)|2

π(1− |z|2)2
, kn(z) =

(1− |z|2)b′n(z)
1− |bn(z)|2

, bn(z) =
φn+1(z)

φ∗
n+1(z)

. (3.2.11)

where φ∗
n(z) = znφn

(
1
z̄

)
.

46



Regarding (3.2.10), we note that

Im(cn(z)) = 0 ⇐⇒ cn(z) = cn(z) = cn(z̄) ⇐⇒ z ∈ R.

Thus as written in the shape above (which is written as such for purposes of com-

puting the limit as n → ∞), the intensity function ρ
(1)
n in (3.2.10) appears to have

singularities on the real axis due to the Im(z) and Im(cn(z)) in the denominators.

However these singularises exist only due to the way the intensity function is written.

The restriction |z| ̸= 1 in (3.2.11) of Theorem 3.2.1 is present due to the use and

hence assumptions of the Christoffel-Darboux formula for OPUC. This restriction is

from the fact that only when |z| = 1 do we have |φ∗
n+1(z)| = |φn+1(z)| (i.e. |bn(z)| =

1). Furthermore, it is known that all the zeros of φn+1(z) lie in D, and all the zeros of

φ∗
n+1(z) are outside of D. Thus these two polynomials cannot vanish simultaneously.

Our limiting results of ρ(1)n will be phrased in terms of assumptions on the recur-

rence coefficients of the orthogonal polynomials. When {φn} are OPUC, we remind

the reader of the recurrence relation (3.1.8), and the definition of the Nevai class

(3.1.13). For a sequence {pn} of OPRL, the Three Term Recurrence Relation (Theo-

rem 3.2.1 [111]) states

xpn(z) = anpn+1(z) + bnpn(z) + an−1pn−1(z), n = 1, 2, . . . , (3.2.12)

where the recurrence coefficient sequences {an} and {bn} can be given explicitly in

terms of the leading coefficient of pn and pn−1. Due to Nevai (Theorem 13 p. 33 [85],

see also Totik p. 99 [113]), the condition that an → a and bn → b as n → ∞, with

a ≥ 0 and b ∈ R, is equivalent to

lim
n→∞

pn+1(z)

pn(z)
=
z − b+

√
(z − b)2 − 4a2

2
, (3.2.13)

with the convergence being valid locally uniformly for z /∈ supp µ. When (3.2.13)

holds for a sequence {pn} of OPRL, we say that the sequence is in the Nevai Class.

We note that this class is sometimes denoted as M(a, b).
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Corollary 3.2.2 Let Pn(z) =
∑n

j=0 ηjfj(z), where {ηj} are complex-valued i.i.d. stan-

dard Gaussian random variables, and {fj} are orthogonal polynomials.

1. When {pj} are OPRL from the Nevai class, the intensity function ρ
(1)
n from

(3.2.10) for the random orthogonal polynomial satisfies

lim
n→∞

ρ(1)n (z) =
1

4π (Im(z))2
−

|z − b+
√

(z − b)2 − 4a2|2

4π|(z − b)2 − 4a2|(Im(z +
√
(z − b)2 − 4a2 ))2

,

(3.2.14)

locally uniformly for all z /∈ supp µ.

2. Let {φj} be OPUC from the Nevai class. Then the intensity function ρ
(1)
n in

(3.2.11) for the random orthogonal polynomial possesses the property that

lim
n→∞

ρ(1)n (z) =
1

π(1− |z|2)2
, (3.2.15)

locally uniformly for all z ∈ C \ T.

When a = 1/2 and b = 0 in the definition of the Nevai class for the OPRL (3.2.13),

it is known that this class contains contains the Chebyshev polynomials. The result

of (3.2.14) extends the limiting value given by Farahmand and Grigorash (Section

4 of [36]) in which the spanning functions of their random trigonometric polynomial

can be modified to be the Chebyshev polynomials.

We note that the result of (3.2.15) extends the limiting value of the first correlation

function given by Peres and Virág [88] (i.e. taking n = 1 of their Theorem 1) when

the spanning functions were the monomials to that of a very general basis of OPUC.

The result further extends their work in that this limiting value also holds for the

exterior of the unit circle.

Due to the simplicity and local uniform convergence in (3.2.15), we have the

following:

Corollary 3.2.3 Provided the annuli A(s, t) does not contain the unit circle, for the

random orthogonal polynomial spanned by {φj} that are OPUC from the Nevai class,
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we have

lim
n→∞

E[Nn(A(s, t))] =
t2 − s2

(1− t2)(1− s2)
.

Observe that taking s = 0 and t < 1 in the above result we achieve

lim
n→∞

E[Nn(D(0, t))] =
t2

1− t2
,

where D(0, t) = {z ∈ C : |z| < t}.

From (3.2.11) of Theorem 3.2.1 and (3.2.15) of Corollary 3.2.2 we see that the in-

tensity function and its limiting value for the random orthogonal polynomial spanned

by OPUC is singular on the unit circle. Assuming a little more on the measure µ

associated to the OPUC we can quantify how the zeros approach the unit circle.

Theorem 3.2.2 Let Pn(z) =
∑n

j=0 ηjφj(z), where {ηj} are complex-valued i.i.d. stan-

dard Gaussian random variables, and {φj} are OPUC that are regular in the sense

of Ullman-Stahl-Totik (cf. definition (3.1.17)). Let S be a compact subset of T. As-

sume, in addition, that the measure µ associated to the sequence {φj} is absolutely

continuous with respect to the arclength measure on an open set containing S and

its Radon-Nikodym derivative is positive and continuous at each point of S. Given

−∞ < τ1 < τ2 <∞, it follows that

lim
n→∞

1

n
E
[
Nn

(
Ω(S, τ1, τ2)

)]
=

|S|
2π

(
H ′(τ2)

H(τ2)
− H ′(τ1)

H(τ1)

)
, (3.2.16)

where Ω(S, τ1, τ2) :=
{
rz : z ∈ S, r ∈ (1 + τ1

2n
, 1 + τ2

2n
)
}

and H(τ) :=
eτ − 1

τ
.

Remarkably, both the cases of random orthogonal polynomials with real-valued or

complex-valued coefficients yield the same asymptotic in (3.2.16). Due to the sim-

plicity of the intensity function ρ(1)n (z) in the complex-valued i.i.d. standard Gaussian

case, we note that the result of Theorem 3.2.2 holds valid for a larger class of OPUC,

namely OPUC that are Ullman-Stahl-Totik regular.
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3.3 Proofs for Chapter 3

3.3.1 Proofs for Section 3.1

Proof of Theorem 3.1.1. According to the Christoffel-Darboux formula [104, Theo-

rem 2.2.7], since our random sum has n− 1 terms and the polynomials φn have real

coefficients, it holds that

Kn(z, w) =
n−1∑
k=0

φk(z)φk(w) =
φ∗
n(z)φ

∗
n(w)− φn(z)φn(w)

1− zw
. (3.3.1)

Hence,

K(1,0)
n (z, w) =

n−1∑
k=0

φ′
k(z)φk(w) =

(φ∗
n)

′(z)φ∗
n(w)− φ′

n(z)φn(w)

1− zw
+ w

Kn(z, w)

1− zw
(3.3.2)

and

K(1,1)
n (z, w) =

n−1∑
k=0

φ′
k(z)φ

′
k(w)

=
(φ∗

n)
′(z)(φ∗

n)
′(w)− φ′

n(z)φ
′
n(w)

1− zw
+ z

(φ∗
n)

′(z)φ∗
n(w)− φ′

n(z)φn(w)

(1− zw)2

+ w
φ∗
n(z)(φ

∗
n)

′(w)− φn(z)φ
′
n(w)

(1− zw)2
+

(1 + zw)Kn(z, w)

(1− zw)2
. (3.3.3)

Thus,

Kn(x, x)K
(1,1)
n (x, x)−K(1,0)

n (x, x)2 =
K2
n(x, x)

(1− x2)2
−
(
φ∗
n(x)φ

′
n(x)− φn(x)(φ

∗
n)

′(x)

1− x2

)2

.

Therefore, the claim of the theorem now follows from (3.1.4) since

ρ(1,0)n (x)2 =
1

π2

Kn(x, x)K
(1,1)
n (x, x)−K

(1,0)
n (x, x)2

Kn(x, x)2

=
1

π2

[
1

(1− x2)2
−
(

b′n(x)

1− b2n(x)

)2
]

=
1

π2

1− h2n(x)

(1− x2)2
,

where

hn(x) = b′n(x)
1− x2

1− b2n(x)
, with bn(x) =

φn(x)

φ∗
n(x)

.
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Proof of Theorem 3.1.2. In what follows, to avoid complicated schemes of labeling

constants, we shall write

fn(z) ≲ gn(z), z ∈ K, n ∈ N ⇔ fn(z) ≤ Cgn(z), z ∈ K, n ∈ N,

where the constant C depends possibly on K but not on z. Furthermore, we write

fn(z) ≍ gn(z) ⇔ fn(z) ≲ gn(z) ≲ fn(z).

An Auxiliary Estimate: Recall that the n-th Christoffel function of µ is given by

λn(z;µ) := inf
deg(p)≤n−1

|p(z)|−2

∫
|p|2dµ = K−1

n (z, z), (3.3.4)

where the last equality is extremely well known, see for example [104, Equation (1.2.39)].

We will prove the following claim: if the measure µ is doubling on a subarc T ⊂ T,

then it holds that

λn
(
zeia/n;µ

)
≍ µn(z) :=

∫
T (z, 1

n
)

dµ, z ∈ T ′, |a| ≤ 2, (3.3.5)

uniformly with respect to z, a, n, where T ′ ⊂ T is a subarc with endpoints different

from those of T and T (z, δ) stands for the subarc of T centered at z of arclength

2δ. When µ is doubling on the whole circle T and a = 0, this claim is simply [81,

Theorem 4.3]. The proof of the localized version (3.3.5) is quite similar to the one of

[81, Theorem 4.3]. However, to improve readability, we adduce the full proof of this

fact below.
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Given an integer m that we shall fix later, put

Sn(z, η) := γn

(
n−1∑
k=0

(
z

η

)k)m(n−1∑
k=0

(
η

z

)k)m

= γn

(
1− (z/η)n

1− z/η

)m(
1− (η/z)n

1− η/z

)m
= γn

(
1

zη

)m(n−1)(
zn − ηn

z − η

)2m

= γn

(
eia − eib

ei(a+b)(n−1)/(2n)(eia/n − eib/n)

)2m

, z = eia/n, η = eib/n

= γn

(
ei(a−b)/2 − e−i(a−b)/2

ei(a−b)/(2n) − e−i(a−b)/(2n)

)2m

= γn

(
sin(a−b

2
)

sin(a−b
2n

)

)2m

where the normalizing constant γn is chosen so that
∫
T Sn(z, η)|dη| = 1. It is known

that γn ≍ n−2m+1. The last representation of Sn(z, η) shows that

Re
(
Sn
(
eia/n, eib/n

))
≳ n. (3.3.6)

locally uniformly for |a − b| < 2π. Similarly, we can easily see from the third repre-

sentation that

|Sn(z, η)| ≲


n, |z − η| ≤ 1

n
,

n−2m+1|z − η|−2m, |z − η| ≥ 1
n
,

(3.3.7)

for |n(|z| − 1)|, |n(|η| − 1)| ≤ A, where the constant is uniform in A > 0.

We start with an upper bound. Let z ∈ T ′ and |a| ≤ 2. Since Sn
(
zeia, zeia

)
=

γnn
2m ≍ n, it is immediate from (3.3.4) that

λn
(
zeia;µ

)
≤ |S⌊n/2m⌋

(
zeia, zeia

)
|−2

∫
T
|S⌊n/2m⌋

(
zeia, η

)
|2dµ(η)

≲ 1

n

∫
T

|S⌊n/2m⌋
(
zeia, η

)
|2µn(η)|dη|+

1

n2

∫
T\T

|S⌊n/2m⌋
(
zeia, η

)
|2dµ(η), (3.3.8)

where the inequality on T follows from [2, Equation (4.25)]. It is known, see for

example [81, Lemma 2.1(ix)], that the doubling property is equivalent to

µn(η) ≲ (1 + n|z − η|)sµn(z), (3.3.9)
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uniformly z, η ∈ T , where the parameter s depends only on the constant L in the

doubling inequality µ(2I) ≤ Lµ(I). Choose m > (s+ 1)/2. Then (3.3.7) and (3.3.9)

yield that the first integral in (3.3.8) can be estimates above by a constant times

µn(z)

n

∫
T

|S⌊n/2m⌋
(
zeia, η

)
|2(1 + n|z − η|)s|dη|

≲ nµn(z)

∫
T (z, 1

n
)

|dη|+ µn(z)

n4m−s−1

∫
T\T (z, 1

n
)

|dη|
|z − η|4m−s ≲ µn(z). (3.3.10)

To estimate the second integral in (3.3.8), let us point out that (3.3.9) is a conse-

quence of the inequality∫
I

dµ ≲
(
|I|+ |J |+ dist(I, J)

|J |

)s ∫
J

dµ, I, J ⊆ T,

where the constant is independent of I, J , see [81, Lemma 2.1(viii)]. Therefore,

µn(z) ≳ n−s, z ∈ T. (3.3.11)

Thus, our choice of m, (3.3.7), and (3.3.11) imply that

1

n2

∫
T\T

|S⌊n/2m⌋(z, η)|2dµ(η) ≲
1

n4m

∫
T\T

dµ(η)

|z − η|4m
≲ 1

n4m
≲ 1

n2s+2
≲ µn(z).

(3.3.12)

The upper bound in (3.3.5) follows now by plugging estimates (3.3.10) and (3.3.12)

into (3.3.8).

It only remains to prove the lower bound in (3.3.5). Let z ∈ T ′ and |a| ≤ 2.

Define

Qn(w) := wm(⌊n/2m⌋−1)

∫
T
S⌊n/2m⌋(w, η)

(
nµn(η)

)1/2|dη|,
which is a polynomial of degree at most n− 2m. We get from (3.3.6) and (3.3.9) that

∣∣Qn

(
zeia/n

)∣∣ ≳
∣∣∣∣∣
∫
T (z, 1

n
)

Re
(
S⌊n/2m⌋

(
zeia/n, η

))
(nµn(η)

)1/2|dη|∣∣∣∣∣
=

∣∣∣∣∫ 1

−1

1

n
Re
(
S⌊n/2m⌋

(
eia/n, eit/n

))
(nµn

(
zeit/n

))1/2
dt

∣∣∣∣
≳

∫ 1

−1

(nµn
(
zeit/n

))1/2
dt ≳ (nµn(z)

)1/2
. (3.3.13)
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As Sn(w, η) is positive for w, η ∈ T, it follows from the normalization of Sn and

Jensen’s inequality that

|Qn(z)|2 ≤
(∫

T

+

∫
T\T

)
S⌊n/2m⌋(z, η)nµn(η)|dη|.

Similarly to (3.3.10), the first integral above can be estimated as follows:∫
T

S⌊n/2m⌋(z, η)nµn(η)|dη| ≲ nµn(z)

∫
T

(1 + n|z − η|)sS⌊n/2m⌋(z, η)|dη| ≲ nµn(z),

where the first estimate follows from (3.3.9) and the second one from (3.3.7). More-

over, we also have that∫
T\T

S⌊n/2m⌋(z, η)nµn(η)|dη| ≲ n

∫
T\T

S⌊n/2m⌋(z, η)|dη| ≲
1

n2(m−1)
≤ n

ns
≲ nµn(z),

where we again used (3.3.7) as well as (3.3.11). Altogether, we get that

|Qn(z)|2 ≲ nµn(z), z ∈ T ′. (3.3.14)

Let Tn be a polynomial of degree at most n − 1 normalized to have value 1 at

zeia/n. It follows from (3.3.13) and (3.3.14) that

∫
|Tn|2dµ ≥

∫
T ′
|Tn|2dµ ≳

∫
T ′
|Tn(η)|2nµn(η)|dη| ≳

∫
T ′
|(TnQn)(η)|2|dη|

=
∣∣Qn

(
zeia/n

)∣∣2 ∫
T ′

|(TnQn)(η)|2

|Qn(zeia/n)|2
|dη| ≳ nµn(z)

∫
T ′

|(TnQn)(η)|2

|Qn(zeia/n)|2
|dη|,

where we also used [2, Equation (4.25)] for the second inequality. Since the polynomial

in the last integral above is normalized to have value 1 at zeia/n and is of degree at

most 2n, (3.3.4) yields that

λn
(
zeia/n;µ

)
≳ nµn(z)λ2n

(
zeia/n;σ

)
, (3.3.15)

where σ is the arclength measure on T ′. Now, we know from [116, Theorem 2.4] that

nλ2n(z;σ) = nK−1
2n (z, z;σ) ≳ 1, z ∈ T ′, (3.3.16)
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with the constant independent of z and n, where K2n(z, w;σ) is defined exactly as

in (3.1.6) with fi(z) = φi(z;σ) and φi(z;σ) being i-th orthonormal polynomial with

respect to σ. Then since

|K2n(z, w;σ)| ≤
√
K2n(z, z;σ)

√
K2n(w,w;σ),

which is simply an application of the Cauchy-Schwarz inequality, and by applying

Bernstein-Walsh inequality to each variable of K2n(z, w;σ) as it was done in [68,

Lemma 6.2], we get from (3.3.16) that

∣∣K2n

(
ueib/n, veic/n;σ

)∣∣ ≲ n, u, v ∈ T ′, |b|, |c| ≤ 2.

The lower bound in (3.3.5) now follows by restricting the above inequality to the

diagonal and plugging it in (3.3.15).

Upper Estimate: It follows from (3.1.2), (3.1.11), and (3.1.12) that

E[Nn(R)] = 2

∫ 1

−1

ρ(1,0)n (x)dx

≤ 2

π
log n+O(1) + 2

(∫ −1+1/n

−1

+

∫ 1

1−1/n

)
ρ(1,0)n (x)dx.

We would like to show that the last two integrals are bounded above by an absolute

constant. We shall show this only for the integral on [1− 1
n
, 1], the case of the other

one being completely identical. It holds that

∫ 1

1−1/n

ρ(1,0)n (x)dx ≤
∫ 1

1−1/n

√
K

(1,1)
n (x, x)

Kn(x, x)

dx

π
=

∫ 1

0

√
K

(1,1)
n (1− y

n
, 1− y

n
)

n2Kn(1− y
n
, 1− y

n
)

dy

π
.

(3.3.17)

which is an easy consequence of (3.1.4). As µ is doubling in some neighborhood of 1,

it follows from the Cauchy-Schwarz inequality, (3.3.4), and the lower bound in (3.3.5)

that

∣∣∣Kn

(
1 +

u

n
, 1 +

v̄

n

)∣∣∣ ≤ K1/2
n

(
1 +

u

n
, 1 +

u

n

)
K1/2
n

(
1 +

v̄

n
, 1 +

v̄

n

)
≲ µ−1

n (1)
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for |u|, |v| ≤ 3/2. Consequently, the Cauchy integral formula for derivatives of holo-

morphic functions gives us∣∣∣K(1,1)
n

(
1 +

u

n
, 1 +

v̄

n

)∣∣∣ = ∣∣∣∣∣ 1

(2πi)2

∫
|η|=3/2

∫
|ξ|=3/2

Kn(1 +
η
n
, 1 + ξ̄

n
)

( η
n
− u

n
)2( ξ̄

n
− v̄

n
)2

dη

n

dξ̄

n

∣∣∣∣∣ ≲ n2

µn(1)

for |u|, |v| ≤ 1. The desired claim now follows from the above inequality combined

with the upper estimate in (3.3.5).

Lower Estimate: Under the current assumptions the measure µ is doubling on the

whole circle (see the explanation after the statement of the theorem) and therefore

we only need to prove the lower estimate. To this end, observe that

E[Nn(R)] >
2

π

∫ 1− logn
n

−1+ logn
n

√
1− h2n(x)

1− x2
dx ≥ − 2

π

√
1−M2

n log

(
log n

n

)
,

where Mn is the maximum of |hn(x)| on the interval of integration above. Thus, to

prove (3.1.15) it is enough to show that Mn = o(1) as n→ ∞.

By the conditions of the theorem the sequence of the recurrence coefficients is

absolutely summable. Hence, it follows from [104, Theorem 1.5.3] that

1 ≲ |Φ∗
n| ≲ 1 (3.3.18)

uniformly on D. As |Φn| = |Φ∗
n| on T, it also follows from the Bernstein-Walsh

inequality that

|Φn(z)| ≲ |z|n, |z| ≥ 1. (3.3.19)

We now claim that

Φ∗
n(z) = 1− z

n−1∑
k=0

αkΦk(z). (3.3.20)

Observe that (3.1.9) gives

Φ∗
n+1(z) = Φ∗

n(z)− αnzΦn(z).

As Φ0(z) = 1 = Φ∗
0(z), we have

Φ∗
1(z) = 1− α0zΦ0(z),
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and

Φ∗
2(z) = Φ∗

1(z)− α1zΦ1(z) = 1− z(α0Φ0(z) + α1Φ1(z)).

Hence we have a basis for induction. Assume that

Φ∗
n−1(z) = 1− z

n−2∑
k=0

αkΦk(z)

holds true. Then

Φ∗
n(z) = Φ∗

n−1(z)− αn−1Φn−1(z) = 1− z
n−1∑
k=0

αkΦk(z),

so that (3.3.20) is valid by Math Induction.

From (3.3.20), (3.3.19), and the absolute summability of αk’s that

|Φ∗
n(z)| ≲

n−1∑
k=0

|αk||z|k+1 =

(
m−1∑
k=0

+
n−1∑
k=m

)
|αk||z|k+1 ≲ |z|m + Λm|z|n (3.3.21)

for |z| ≥ 1, where Λm :=
∑∞

k=m |αk|. That is, it holds that

|Φn(z)| = |znΦ∗
n(1/z)| ≲ Λm + |z|n−m, |z| ≤ 1. (3.3.22)

Combining the above inequality with the lower bound in (3.3.18), we see that

|bn(z)| =
∣∣∣∣φn(z)φ∗

n(z)

∣∣∣∣ = ∣∣∣∣Φn(z)

Φ∗
n(z)

∣∣∣∣ ≲ Λm + |z|n−m, |z| ≤ 1. (3.3.23)

It further follows from the Cauchy integral formula for the derivatives that∣∣(zbn−1(z)
)′∣∣ ≤ ∫

|ζ|=r

|ζbn−1(ζ)|
|ζ − z|2

|dζ|
2π

≤ r2
Λm + rn−m−1

r2 − |z|2
, |z| < r. (3.3.24)

On the other hand, the Bernstein inequality for polynomials on the disk of radius r,

(3.3.18), and (3.3.22) yield that

max
|z|≤r

∣∣(zbn−1(z)
)′∣∣ ≲ n

(
Λm + rn−m−1

)
. (3.3.25)

Now, take m to be the integer part of n/ log n and recall that Λm ≲ m1−p according

to the condition placed on the recurrence coefficients. Thus, inequalities (3.3.24) and

(3.3.25), both applied with r = 1− log n/n, give

∣∣(zbn(z))′∣∣ ≲ ( log n)p−1


n3/2−p, |z| ≤ 1− n−1/2,

n2−p, 1− n−1/2 < |z| ≤ 1− logn
n
.

(3.3.26)
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It also follows from (3.3.23) that for x ∈ (−1, 1) we have that

1− x2

1− (xbn−1(x))2
≲


1, |x| ≤ 1− n−1/2,

n−1/2, 1− n−1/2 < |x| ≤ 1− logn
n
.

Now observe that from the recurrence relation (3.1.9) it follows that

hn(z) = (1− z2)
(zbn−1(z))

′

1− (zbn−1(z))2
. (3.3.27)

Therefore, we deduce from (3.3.27) that Mn ≲ (log n)p−1n3/2−p = o(1) as desired.

Proof of Proposition 3.1.1. Notice that the upper bound (3.1.14) remains valid in

this case. We prove the lower bound as in the previous section by showing that the

maximum of |hn+1(x)| on [−1 + log n/n, 1− log n/n] behaves like o(1) as n→ ∞.

It was discovered by Geronimus [44], see also [120], that

Φn(z) = Φn(z; ν)−
Φn(1; ν)Kn(z, 1; ν)

t(1− t)−1 +Kn(1, 1; ν)
. (3.3.28)

As Φn(1; ν) = κ−1
n φn(1; ν) and φn(1; ν)φ

∗
n(1; ν) = φ2

n(1; ν), using the Christoffel-

Darboux formula (3.3.1) yields

Φn(1; ν)Kn(z, 1; ν) = κ−1
n φn(1; ν)

(
φ∗
n(z; ν)φ

∗
n(1; ν)− φn(z; ν)φn(1; ν)

1− z

)
= φ2

n(1; ν)

(
Φ∗
n(z; ν)− Φn(z; ν)

1− z

)
.

Thus (3.3.28) can be written as

Φn(z) = Φn(z; ν)− βn
Φ∗
n(z; ν)− Φn(z; ν)

1− z

where we have set

βn :=
φ2
n(1; ν)

t(1− t)−1 +Kn(1, 1; ν)
.

Consequently

Φ∗
n(z) = Φ∗

n(z; ν)− zβn
Φ∗
n(z; ν)− Φn(z; ν)

1− z
.
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Put sn(z) := zbn(z; ν). Then it holds that

zbn(z) =
(1− z)sn(z)− βn(z − sn(z))

1− z(1 + βn) + βnsn(z)
= 1− (1− z)(1− sn(z))

1− z(1 + βn) + βnsn(z)
.

Therefore,

1−
(
zbn(z)

)2
= (1− z)2(1− sn(z))

1 + sn(z) + 2(sn(z)− z) βn
1−z

(1− z(1 + βn) + βnsn(z))2

and (
zbn(z)

)′
=

(1− z)2(1 + βn)s
′
n(z)− βn((1 + sn(z)(sn(z)− 2))

(1− z(1 + βn) + βnsn(z))2
.

Thus, we get from (3.3.27) that

hn+1(z) =
(1− z2)(1 + βn)s

′
n(z)− βn

1+z
1−z (1 + sn(z)(sn(z)− 2))

(1− sn(z))(1 + sn(z) +
2βn
1−z (sn(z)− z))

. (3.3.29)

It follows from the explanation given after the statement of the proposition that

βn ≍ 1/n and therefore

βn
1 + x

1− x
|1 + sn(x)(sn(x)− 2)| ≲ βn

1− x
≲ 1

log n
, −1 ≤ x ≤ 1− log n

n
,

where we used the fact that |sn(z)| ≤ 1 in D. It also follows from (3.3.26) that

(1− x2)(1 + βn)|s′n(x)| ≲ (log n)p−1n3/2−p, |x| ≤ 1− log n

n
.

Hence, the numerator of (3.3.29) is of order o(1) as n→ ∞ on the interval of interest.

Similarly, we see from (3.3.23) that the denominator behaves like 1+o(1) there, which

finishes the proof of the proposition.

Proof of Theorem 3.1.3. Let us modify expression (3.1.5) for ρ(0,1)n to make it more

amenable to the asymptotic analysis. Write

π
(
Kn(z, z)

2 − |Kn(z, z)|2
)3/2

ρ(0,1)n (z) := S1(z) + S2(z) + S3(z), (3.3.30)

where from (3.1.5) we have

S1(z) := K(1,1)
n (z, z)

(
Kn(z, z)

2 − |Kn(z, z̄)|2
)
,

S2(z) := −Kn(z, z)
(∣∣K(1,0)

n (z, z)
∣∣2 + ∣∣K(1,0)

n (z, z̄)
∣∣2) ,

S3(z) := 2Re
(
Kn(z, z̄)K

(1,0)
n (z, z)K(1,0)

n (z̄, z)
)
.
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For brevity, put

Sn(z, w) := (φ∗
n)

′(z)φ∗
n(w)− φ′

n(z)φn(w).

Then it follows from (3.3.1)–(3.3.3) that S1(z) is equal to

1 + |z|2

(1− |z|2)2
Kn(z, z)

(
Kn(z, z)

2 − |Kn(z, z)|2
)

(3.3.31)

+ 2
Re(zSn(z, z))
(1− |z|2)2

(
Kn(z, z)

2 − |Kn(z, z)|2
)

(3.3.32)

+
|(φ∗

n)
′(z)|2 − |φ′

n(z)|2

1− |z|2
(
Kn(z, z)

2 − |Kn(z, z)|2
)
, (3.3.33)

S2(z) is equal to

−|z|2Kn(z, z)

(
Kn(z, z)

2

(1− |z|2)2
+

|Kn(z, z)|2

|1− z2|2

)
(3.3.34)

− 2
Kn(z, z)

2Re(zSn(z, z))
(1− |z|2)2

− 2
Kn(z, z)Re

(
zKn(z, z)Sn(z, z)

)
|1− z2|2

(3.3.35)

− Kn(z, z)|Sn(z, z)|2

(1− |z|2)2
− Kn(z, z)|Sn(z, z)|2

|1− z2|2
, (3.3.36)

and S3(z) is equal to

Kn(z, z)|Kn(z, z)|2

1− |z|2

(
1− |z|4

|1− z2|2
− 1

)
(3.3.37)

+ 2
|Kn(z, z)|2

1− |z|2
Re
(
zSn(z, z)

1− z2

)
+ 2

Kn(z, z)

1− |z|2
Re
(
zKn(z, z)Sn(z, z)

1− z2

)
(3.3.38)

+
2

1− |z|2
Re
(
Kn(z, z)Sn(z, z)Sn(z, z)

1− z2

)
, (3.3.39)

where we used the identity 2Re(z2) = 1 + |z|4 − |1 − z2|2 in (3.3.37). Then we can

rewrite (3.3.30) as

π
(
Kn(z, z)

2 − |Kn(z, z)|2
)3/2

ρ(0,1)n (z) := Σn,1(z) + Σn,2(z) + Σn,3(z), (3.3.40)

where Σn,1 is the sum of (3.3.31), (3.3.34), and (3.3.37), Σn,2 is the sum of (3.3.32),

(3.3.35), and (3.3.38), and Σn,3 is the sum of (3.3.33), (3.3.36), and (3.3.39). One can

readily verify that

Σn,1(z) =
Kn(z, z)

3

(1− |z|2)2
−Kn(z, z)|Kn(z, z)|2

(
2

(1− |z|2)2
− 1

|1− z2|2

)
. (3.3.41)
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Furthermore, one can check that the sum of (3.3.32) and the first summands of

(3.3.35) and (3.3.38) is equal to

2
Re
(
(z − z)Kn(z, z)(φ

∗
n(z)

2 − φn(z)
2)Sn(z, z)

)
(1− |z|2)2|1− z2|2

,

while the sum of the last summands of (3.3.35) and (3.3.38) is equal to

2
Re
(
(z − z)Kn(z, z)(|φ∗

n(z)|2 − |φn(z)|2)Sn(z, z)
)

(1− |z|2)2|1− z2|2
.

By adding up the last two expressions and simplifying, we get that

Σn,2(z) =
2Re

(
(z − z̄)Kn(z, z̄)((φ∗

n)
′(z)φn(z)− φ′

n(z)φ
∗
n(z))(φn(z)φ

∗
n(z)− φ∗

n(z)φn(z))
)

(1− |z|2)2|1− z2|2
.

(3.3.42)

To compute Σn,3, notice that the sum of the first summands of (3.3.33) and (3.3.36)

is equal to

−Kn(z, z)|(φ∗
n)

′(z)φn(z)− φ′
n(z)φ

∗
n(z)|2

(1− |z|2)2
.

The remaining summand of (3.3.33) is equal to

(
|φ′
n(z)|2 − |(φ∗

n)
′(z)|2

) |φn(z)|4 + |φ∗
n(z)|4 − 2Re

(
φ∗
n(z)

2φn(z)2
)

(1− |z|2)|1− z2|2
,

while the remaining summand of (3.3.36) is equal to

|φ′
n(z)|2

|φn(z)|4 − |φn(z)φ∗
n(z)|2

(1− |z|2)|1− z2|2
− |(φ∗

n)
′(z)|2 |φ

∗
n(z)|4 − |φn(z)φ∗

n(z)|2

(1− |z|2)|1− z2|2

+ 2Kn(z, z)
Re
(
(φ∗

n)
′(z)φ∗

n(z)φ
′
n(z)φn(z)

)
|1− z2|2

.

Moreover, (3.3.39) can be rewritten as

|φ′
n(z)|2

2Re
(
φ∗
n(z)

2φn(z)2
)
− 2|φn(z)|4

(1− |z|2)|1− z2|2
−|(φ∗

n)
′(z)|2

2Re
(
φ∗
n(z)

2φn(z)2
)
− 2|φ∗

n(z)|4

(1− |z|2)|1− z2|2

− 2Kn(z, z)
Re
(
(φ∗

n)
′(z)φ∗

n(z)φ
′
n(z)φn(z) + (φ∗

n)
′(z)φn(z)φ′

n(z)φ
∗
n(z)

)
|1− z2|2

.

By adding the last four expressions together we get that

Σn,3(z) = Kn(z, z)|(φ∗
n)

′(z)φn(z)−φ′
n(z)φ

∗
n(z)|2

(
1

|1− z2|2
− 1

(1− |z|2)2

)
. (3.3.43)
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Notice that

(φ∗
n)

′(z)φn(z)− φ′
n(z)φ

∗
n(z)

ϕ2
n(z)

=


−b′n(z), |z| < 1,

(b−1
n )′(z), |z| > 1,

(3.3.44)

where

ϕn(z) :=


φ∗
n(z), |z| < 1,

φn(z), |z| > 1.

Finally, the assumption αk → 0 as k → ∞ implies that
bn(z) → 0, locally uniformly in |z| < 1,

b−1
n (z) → 0, locally uniformly in |z| > 1,

(3.3.45)

as n → ∞ according to [104, Theorem 1.7.4], and since φn(z) are real-valued on the

real line so that b−1
n (z) = bn(1/z). By recalling (3.3.1) and pugging (3.3.44) into

(3.3.42), (3.3.43) and using (3.3.45), we get that

(Σn,2 + Σn,3)(z)

|ϕn(z)|6
→ 0 (3.3.46)

as n→ ∞ locally uniformly in C \ T. Similarly, we get that

Σn,1(z)

|ϕn(z)|6
→ 1

|1− |z|2|

(
1

(1− |z|2)2
− 1

|1− z2|2

)2

(3.3.47)

as n→ ∞ locally uniformly in C \ T. Finally, since

Kn(z, z)
2 − |Kn(z, z)|2

|ϕn(z)|4
→
(

1

(1− |z|2)2
− 1

|1− z2|2

)
as n→ ∞ locally uniformly in C \ T, the claim of the theorem follows from (3.3.47),

(3.3.46), and (3.3.40).

The final proof of this section will rely on a universality result by Levin and

Lubinsky [68]. For convenience of the reader, the result we will use is the following:

Theorem 3.3.1 (Theorem 6.3 Levin and Lubinsky [68]) Let µ be a finite pos-

itive Borel measure on [−π, π) that is Ullman-Stahl-Totik regular. Let J ⊂ (−π, π) be
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compact, and such that µ is absolutely continuous in an open interval containing J .

Assume moreover, that w = µ′ is positive and continuous at each point of J . Then

uniformly for a, b in compact subsets of the plane and z = eiθ, θ ∈ J and we have

lim
n→∞

Kn

(
z
(
1 + i2πa

n

)
, z
(
1 + i2πb

n

))
Kn(z, z)

= eiπ(a−b)
sin π(a− b)

π(a− b)
.

Changing the variables by a = u/(2πi) and b̄ = v̄/(2πi), the conclusion of the above

result can be restated as

lim
n→∞

Kn

(
z
(
1 + u

n

)
, z
(
1 + v

n

))
Kn(z, z)

=
eu+v − 1

u+ v
:= H(u+ v).

Proof of Theorem 3.1.4. It follows from (3.1.2) that

1

n
E
[
Nn

(
Ω(S, τ1, τ2)

)]
=

1

n

∫∫
Ω(S,τ1,τ2)

ρ(0,1)n (z)dA

=
1

n

∫
S

∫ 1+
τ2
2n

1+
τ1
2n

ρ(0,1)n (zr)rdr|dz|

=
1

2n2

∫
S

∫ τ2

τ1

ρ(0,1)n

(
z
(
1 +

τ

2n

))(
1 +

τ

2n

)
dτ |dz|.

Since
1

2

∫
S

|dz| = |S|
2
,

and as n → ∞ we have 1 + τ/(2n) → 1 uniformly for τ on compact subsets of the

real line, to complete the the proof it suffices to show

lim
n→∞

1

n2
ρ(0,1)n

(
z
(
1 +

τ

2n

))
=

1

π

(
H ′(τ)

H(τ)

)′

(3.3.48)

uniformly for z ∈ S and τ on compact subsets of the real line.

Under the assumption that αk → 0 as k → ∞, the measure µ is regular in

the sense of Ullman-Stahl-Totik, see (3.1.10) and (3.1.17). Therefore, Theorem 3.3.1

(taken from [68, Theorem 6.3]) is applicable on S and hence

lim
n→∞

Kn(zn,u, zn,v)K
−1
n (z, z) = H(u+ v) (3.3.49)

63



uniformly for z ∈ S and u, v on compact subsets of C, where zn,a := z(1 + a/n).

Moreover, we have that

∂i+j

∂ui∂vj
Kn(zn,u, zn,v) =

zi−j

ni+j
K(i,j)
n (zn,u, zn,v)

for any non-negative integers i, j. Thus Cauchy’s integral formula and the uniform

convergence of (3.3.49) give

lim
n→∞

zi−j

ni+j
K

(i,j)
n (zn,u, zn,v)

Kn(z, z)
= H(i+j)(u+ v) (3.3.50)

uniformly for z ∈ S and u, v on compact subsets of C.

In another connection, since αi → 0 as i→ ∞, [83, Theorem 4] states that

lim
n→∞

max
z∈T

|φn(z)|2K−1
n (z, z) = 0.

By compactness, the set S can be covered by finitely many closed subarcs Ij ⊂

T \ {±1} such that µ′ is continuous and positive on each Ij. Since ∪jIj is separated

from ±1, the Christoffel-Darboux formula (3.3.1) and the above limit yield that

lim
n→∞

max
z∈∪jIj

Kn(z, z)K
−1
n (z, z) = 0.

Since Kn(z, z) is a polynomial of degree 2n − 2, it follows from Lemma 6.1 in [68]

applied on each Ij separately, that

|Kn(zn,a, zn,a)| ≲ max
z∈∪jIj

|Kn(z, z)|

uniformly in n and a on compact subsets of C. Thus, it holds that

lim
n→∞

|Kn(zn,a, zn,a)|K−1
n (z, z) = 0 (3.3.51)

uniformly for z ∈ S and a on compact subsets of C. Moreover, since

K(1,0)
n (zn,a, zn,a) =

n

2z

∂

∂a
Kn(zn,a, zn,a),

it follows from (3.3.51) and Cauchy’s integral formula that

lim
n→∞

n−1|K(1,0)
n (zn,a, zn,a)|K−1

n (z, z) = 0 (3.3.52)
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uniformly for z ∈ S and a on compact subsets of C.

The desired claim (3.3.48) now is an immediate consequence of (3.1.5) and (3.3.49)–

(3.3.52).

3.3.2 Proofs for Section 3.2

Proof of Proposition 3.2.1. The classic result of Hammersley [47] says that the first

intensity function for a complex Kac polynomial
∑n

k=0 ηkz
k is

ρ(1)n (z) =
1

π

1− |hn+1(z)|2

(1− |z|2)2
, where hn+1(z) =

(1− |z|2)(n+ 1)zn

1− |z|2(n+1)
.

Thus for A(s, t) not containing the unit circle it follows that

E[Nn(A(s, t))] =

∫
A(s,t)

ρ(1)n (z)dA(z)

=
1

π

∫
A(s,t)

(
1

(1− |z|2)2
− (n+ 1)2|z|2n

(1− |z|2(n+1))2

)
dA(z)

=
1

π

∫ 2π

0

∫ t

s

(
1

(1− r2)2
− (n+ 1)2r2n

(1− r2(n+1))2

)
r dr dθ

=
1

1− t2
− n+ 1

1− t2n+2
−
(

1

1− s2
− n+ 1

1− s2n+2

)
.

Proof of Corollary 3.2.1. The conclusion of (3.2.3) first follows from writing the first

intensity function in the form

πρ(1)n (z) =
Kn(z, z)K

(1,1)
n (z, z)− |K(0,1)

n (z, z)|2

Kn(z, z)2
, (3.3.53)

where

Kn(z, z) =
n∑
k=0

|z|2k, K(0,1)
n (z, z) =

n∑
k=0

kzkzk−1, K(1,1)
n (z, z) =

n∑
k=0

k2|z|2k−2.

(3.3.54)

When |z| = 1, using standard summation formulas the kernels take the shape

Kn(z, z) = n+ 1, K(0,1)
n (z, z) =

1

z

n(n+ 1)

2
, K(1,1)

n (z, z) =
n(n+ 1)(2n+ 1)

6
.

(3.3.55)
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Inserting the above evaluations of the kernels in first intensity function (3.3.53) and

simplifying then gives (3.2.3).

For the result in (3.2.4), with setting s = 0 and 0 < t < 1 in (3.2.2) we have

E[Nn(D(0, t))] =
t2(1− t2n(1 + n(1− t2)))

(1− t2)(1− t2n+2)
.

Appealing to L’Hopital’s rule twice we see that

lim
t→1

t2(1− t2n(1 + n(1− t2)))

(1− t2)(1− t2n+2)
=
n

2
,

which yields the desired result.

We will now specify {fj} to be either OPRL or OPUC, and then use the Christoffel-

Darboux formula and its analogue for OPUC (3.3.1) to simplify the kernels Kn(z, z),

K
(0,1)
n (z, z), and K

(1,1)
n (z, z) which make up the intensity function ρn from (3.2.6).

For convenience of the reader, we state the Christoffel-Darboux formula for OPRL

(Theorem 3.2.2, p. 43 of [111]): for z, w ∈ C and {pj}j≥0 OPRL, with kj being the

leading coefficient of pj, we have

n∑
j=0

pj(z)pj(w) =
kn
kn+1

· pn+1(z)pn(w)− pn(z)pn+1(w)

z − w
, z ̸= w. (3.3.56)

Furthermore, on the diagonal z = w it takes the form

n∑
j=0

(pj(z))
2 =

kn
kn+1

· (p′n+1(z)pn(z)− p′n(z)pn+1(z)). (3.3.57)

Before obtaining our representations of the kernels, let us note that since the

polynomials {pj} are orthogonal on the real line, and since we are assuming that the

recurrence coefficients {αj} associated to {φj} satisfy {αj} ⊂ (−1, 1), both classes of

orthogonal polynomials have real coefficients. Thus when using conjugation we have

that pj(z) = pj(z̄) and φj(z) = φj(z̄) for all j = 0, 1, . . . , and all z ∈ C.
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Proof of (3.2.10) in Theorem 3.2.1. For z ̸= w, taking derivatives of (3.3.56) yields

n∑
j=0

pj(z)p
′
j(w) =

kn
kn+1

(
pn+1(z)p

′
n(w)− pn(z)p

′
n+1(w)

z − w

+
pn+1(z)pn(w)− pn(z)pn+1(w)

(z − w)2

)

=
kn
kn+1

·
pn+1(z)p

′
n(w)− pn(z)p

′
n+1(w)

z − w
+

∑n
j=0 pj(z)pj(w)

z − w
, (3.3.58)

and

n∑
j=0

p′j(z)p
′
j(w) =

kn
kn+1

(
p′n+1(z)p

′
n(w)− p′n(z)p

′
n+1(w)

z − w

−
pn+1(z)p

′
n(w)− pn(z)p

′
n+1(w)

(z − w)2

+
p′n+1(z)pn(w)− p′n(z)pn+1(w)

(z − w)2

− 2 (pn+1(z)pn(w)− pn(z)pn+1(w))

(z − w)2

)

=
kn
kn+1

·
p′n+1(z)p

′
n(w)− p′n(z)p

′
n+1(w)

z − w

−
∑n

j=0 pj(z)p
′
j(w)

z − w
+

∑n
j=0 p

′
j(z)pj(w)

z − w
. (3.3.59)

Setting w = z̄ in (3.3.56), (3.3.58), and (3.3.59), since the coefficients of {pj} are

real it follows that

Kn(z, z) =
n∑
j=0

pj(z)pj(z) =
kn
kn+1

· pn+1(z)pn(z̄)− pn(z)pn+1(z̄)

2iIm(z)
, (3.3.60)

K(0,1)
n (z, z) =

n∑
j=0

pj(z)p′j(z) =
kn
kn+1

·
pn+1(z)p

′
n(z̄)− pn(z)p

′
n+1(z̄)

2iIm(z)
+
Kn(z, z)

2iIm(z)
,

(3.3.61)

K(1,1)
n (z, z) =

n∑
j=0

p′j(z)p
′
j(z) =

kn
kn+1

·
Im(p′n+1(z)p

′
n(z̄))

Im(z)
− K

(0,1)
n (z, z)

2iIm(z)
+
K

(0,1)
n (z, z)

2iIm(z)
.

(3.3.62)

For our representation of Kn(z, z̄) we simply use (3.3.57) and again that the
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coefficients of {pj} are real to achieve

Kn(z, z̄) =
n∑
j=0

pj(z)pj(z̄) =
n∑
j=0

pj(z)pj(z) =
kn
kn+1

(
p′n+1(z)pn(z)− p′n(z)pn+1(z)

)
.

(3.3.63)

Using our derived expressions (3.3.60), (3.3.61), (3.3.62), and (3.3.63), the numer-

ator of the intensity function ρn from (3.2.6) simplifies as

K(1,1)
n (z, z)Kn(z, z)− |K(0,1)

n (z, z)|2 = (Kn(z, z))
2 − |Kn(z, z̄)|2

4 (Im(z))2
.

Therefore, using the expression for the numerator above and recalling the relations

(3.3.60) and (3.3.63), we see that the intensity function given by (3.2.6) is

ρ(1)n (z) =
K

(1,1)
n (z, z)Kn(z, z)− |K(0,1)

n (z, z)|2

π (Kn(z, z))
2

=
1

4π (Im(z))2

(
1− |Kn(z, z̄)|2

(Kn(z, z))
2

)

=
1

4π (Im(z))2

(
1−

(2iIm(z))2
∣∣p′n+1(z)pn(z)− p′n(z)pn+1(z)

∣∣2
(pn+1(z)pn(z̄)− pn(z)pn+1(z̄))

2

)

=
1

4π (Im(z))2

1−
(2iIm(z))2

∣∣∣∣(pn+1(z)
pn(z)

)′∣∣∣∣2(
pn+1(z)
pn(z)

− pn+1(z̄)
pn(z̄)

)2


=
1− hn(z)

2

4π (Im(z))2
,

where

hn(z) =
Im(z)|c′n(z)|
Im(cn(z))

, cn(z) =
pn+1(z)

pn(z)
,

which gives the result of (3.2.10) in Theorem 3.2.1.

Proof of (3.2.11) in Theorem 3.2.1. Applying the analogue of the Christoffel-Darboux

formula (3.3.1), and making derivations analogously as done for the kernels for OPRL,

our representations of Kn(z, z), K(0,1)
n (z, z), and K

(1,1)
n (z, z) are as follows:

Kn(z, z) =
n∑
j=0

φj(z)φj(z) =

∣∣φ∗
n+1(z)

∣∣2 − |φn+1(z)|2

1− |z|2
, (3.3.64)
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K(0,1)
n (z, z) =

n∑
j=0

φj(z)φ′
j(z) =

φ∗ ′
n+1(z)φ

∗
n+1(z)− φ′

n+1(z)φn+1(z)

1− |z|2
+
zKn(z, z)

1− |z|2
,

(3.3.65)

and

K(1,1)
n (z, z) =

n∑
j=0

|φ′
j(z)|2

=
|φ∗ ′
n+1(z)|2 − |φ′

n+1(z)|2

1− |z|2
+
z̄K

(0,1)
n (z, z) + zK

(0,1)
n (z, z) +Kn(z, z)

1− |z|2
.

(3.3.66)

Using (3.3.64), (3.3.65), and (3.3.66), the numerator of the intensity function ρn

from (3.2.6) reduces to

K(1,1)
n (z, z)Kn(z, z)− |K(0,1)

n (z, z)|2 = (Kn(z, z))
2

(1− |z|2)2

−
∣∣φ∗

n+1(z)φ
′
n+1(z)− φ∗ ′

n+1(z)φn+1(z)
∣∣2

(1− |z|2)2
.

From the above numerator and (3.3.64), the intensity function becomes

ρ(1)n (z) =
K

(1,1)
n (z, z)Kn(z, z)−

∣∣∣K(0,1)
n (z, z)

∣∣∣2
π (Kn(z, z))

2

=
1

π (1− |z|2)2

(
1−

∣∣φ∗
n+1(z)φ

′
n+1(z)− φ∗ ′

n+1(z)φn+1(z)
∣∣2

(Kn(z, z))
2

)

=
1

π (1− |z|2)2

(
1−

(1− |z|2)2
∣∣φ∗

n+1(z)φ
′
n+1(z)− φ∗ ′

n+1(z)φn+1(z)
∣∣2(

|φn+1(z)|2 − |φ∗
n+1(z)|2

)2
)

(3.3.67)

=
1

π (1− |z|2)2

1−
(1− |z|2)2

∣∣∣∣(φn+1(z)
φ∗
n+1(z)

)′∣∣∣∣2(∣∣∣φn+1(z)
φ∗
n+1(z)

∣∣∣2 − 1

)2


=

1− |kn(z)|2

π(1− |z|2)2
,
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where

kn(z) =
(1− |z|2)b′n(z)
1− |bn(z)|2

, bn(z) =
φn+1(z)

φ∗
n+1(z)

,

and hence completes the proof of (3.2.11) in Theorem 3.2.1.

Proof of (3.2.14) in Corollary 3.2.2. Since the convergence of (3.2.13) is uniform on

compact subsets away from the support of µ, for z /∈ supp µ we can differentiate to

yield

lim
n→∞

c′n(z) = lim
n→∞

(
pn+1(z)

pn(z)

)′

=
d

dz

(
z − b+

√
(z − b)2 − 4a2

2

)

=
z − b+

√
(z − b)2 − 4a2

2
√

(z − b)2 − 4a2
. (3.3.68)

Also from (3.2.13) we see that

lim
n→∞

Im(cn(z)) = lim
n→∞

pn+1(z)
pn(z)

− pn+1(z̄)
pn(z̄)

2i

=
z +

√
(z − b)2 − 4a2 − (z̄ +

√
(z̄ − b)2 − 4a2 )

4i
(3.3.69)

Combining (3.3.68) and (3.3.69) gives

lim
n→∞

hn(z)
2 = lim

n→∞

(Im(z))2 |c′n(z)|2

(Im(cn(z)))
2 =

(Im(z))2 |z − b+
√
(z − b)2 − 4a2|2

|(z − b)2 − 4a2|(Im(z +
√
(z − b)2 − 4a2 ))2

.

Therefore, using the representation of the intensity function in (3.2.10) of Theorem

3.2.1, from the above limit we see that

lim
n→∞

ρ(1)n (z) = lim
n→∞

1− h2n(z)

4π (Im(z))2

=
1

4π (Im(z))2
−

|z − b+
√

(z − b)2 − 4a2|2

4π|(z − b)2 − 4a2|(Im(z +
√

(z − b)2 − 4a2 ))2
,

locally uniformly for z /∈ supp µ, and thus completes the proof.

Proof of (3.2.15) in Corollary 3.2.2. Under the assumption that {φj} are OPUC in

the Nevai class, (3.1.13) gives

lim
n→∞

bn(z) = lim
n→∞

φn+1(z)

φ∗
n+1(z)

= 0, (3.3.70)

70



uniformly on compact subsets of D. Since the convergence is locally uniform in D,

within D we can differentiate to achieve

lim
n→∞

b′n(z) = lim
n→∞

d

dz

(
φn+1(z)

φ∗
n+1(z)

)
= 0. (3.3.71)

Thus combining (3.3.70) and (3.3.71) we see that

lim
n→∞

kn(z) = lim
n→∞

(1− |z|2)b′n(z)
1− |bn(z)|2

= 0. (3.3.72)

This gives that the intensity function in Theorem 3.2.1 represented by (3.2.11) satisfies

lim
n→∞

ρn(z) = lim
n→∞

1− |kn(z)|2

π(1− |z|2)2
=

1

π(1− |z|2)2

locally uniformly on D.

To see that the same limit holds in the exterior of the disk, as noted by Igor

Pritsker, observe that for w = z̄−1 ∈ D

φ∗
n(z)

φn(z)
=
znφn(1/z̄)

φn(z)
=
w̄−nφ(w)

φ(1/w̄)
=

(
φn(w)

φ∗
n(w)

)
.

Thus, under the assumption that {φj} are from the Nevai class, for z ∈ C\D we have

lim
n→∞

φ∗
n(z)

φn(z)
= 0. (3.3.73)

Notice that from (3.3.67) we can factor in a different manor to achieve

ρ(1)n (z) =
1

π(1− |z|2)2

(
1−

(1− |z|2)2|φ∗
n+1(z)φ

′
n+1(z)− φ∗ ′

n+1(z)φn+1(z)|2

(|φn+1(z)|2 − |φ∗
n+1(z)|2)2

)

=
1

π(1− |z|2)2

1−
(1− |z|2)2

∣∣∣∣(φ∗
n+1(z)

φn+1(z)

)′∣∣∣∣2(∣∣∣φ∗
n+1(z)

φn+1(z)

∣∣∣2 − 1

)2


=

1− |ln(z)|2

π(1− |z|2)2
,

where

ln(z) =
(1− |z|2)d′n(z)
1− |dn(z)|2

, dn(z) =
φ∗
n+1(z)

φn+1(z)
.
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Using (3.3.73) and continuing analogously as done for the case in the unit disk, it

follows that ln(z) → 0 locally uniformly for z ∈ C \ D as n→ ∞. Therefore

lim
n→∞

ρ(1)n (z) = lim
n→∞

1− |ln(z)|2

π(1− |z|2)2
=

1

π(1− |z|2)2
(3.3.74)

uniformly on compact subsets of C \ D, and hence gives our desired result.

Proof of Corollary 3.2.3. Since the convergence of (3.2.15) in Corollary 3.2.2 is locally

uniform on annuli that do not contain the unit circle, we can pass the limit through

the integral over

A(s, t) = {z ∈ C \ T : 0 ≤ s < |z| < t}.

We remark that formally we need to consider a closed annulus the does not contain

the unit circle. However, since the measure associated to the integral is Lebesgue area

measure which is absolutely continuous, and the limiting values above are continuous

functions away from the unit circle, we have that the boundary of the closed annulus

has measure zero. Hence we just consider the open annulus A(s, t). Thus we have

lim
n→∞

∫
A(s,t)

ρ(1)n (z) dz =

∫
A(s,t)

lim
n→∞

ρ(1)n (z) dz

=
1

π

∫
A(s,t)

1

(1− |z|2)2
dz

=
1

π

∫ 2π

0

∫ t

s

r

(1− r2)2
dr dθ

=
1

1− t2
− 1

1− s2

=
t2 − s2

(1− t2)(1− s2)
.
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Proof of Theorem 3.2.2. It follows from definition of the intensity function that

1

n
E
[
Nn

(
Ω(S, τ1, τ2)

)]
=

1

n

∫∫
Ω(S,τ1,τ2)

ρ(1)n (z) dA

=
1

n

∫
S

∫ 1+
τ2
2n

1+
τ1
2n

ρ(1)n (zr)rdr|dz|

=
1

2n2

∫
S

∫ τ2

τ1

ρ(1)n

(
z
(
1 +

τ

2n

))(
1 +

τ

2n

)
dτ |dz|.

Since
1

2

∫
S

|dz| = |S|
2
,

and as n → ∞ we have 1 + τ/(2n) → 1 uniformly for τ on compact subsets of the

real line, to complete the the proof it suffices to show

lim
n→∞

1

n2
ρ(1)n

(
z
(
1 +

τ

2n

))
=

1

π

(
H ′(τ)

H(τ)

)′

(3.3.75)

uniformly for z ∈ S and τ on compact subsets of the real line.

To this end, using the representation (3.2.6) of ρ(1)n and the two limits (3.3.49)

and (3.3.50), we see that

1

n2
ρ(1)n

(
z
(
1 +

τ

2n

))
=

1

n2π

Kn(zn,τ/2, zn,τ̄/2)K
(1,1)
n (zn,τ/2, zn,τ̄/2)− |K(0,1)

n (zn,τ/2, zn,τ̄/2)|2

Kn(zn,τ/2, zn,τ̄/2)2

=
1

π

Kn(zn,τ/2,zn,τ̄/2)K
(1,1)
n (zn,τ/2,zn,τ̄/2)

n2Kn(z,z)2
− |K(0,1)

n (zn,τ/2,zn,τ̄/2)|2

n2Kn(z,z)2

Kn(zn,τ/2,zn,τ̄/2)
2

Kn(z,z)2

→ 1

π

H(τ)H ′′(τ)−H ′(τ)2

H(τ)2
(n→ ∞)

=
1

π

(
H ′(τ)

H(τ)

)′

,

and thus completes the proof.
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CHAPTER IV

VARIANCE OF THE NUMBER OF ZEROS OF RANDOM SUMS

In this chapter we study the variance of the number of zeros for

Pn(z) =
n∑
k=0

ηkφk(z) and P (z) =
∞∑
k=0

ηkφk(z),

where {ηk} are complex-valued random variables, and {φ} are OPUC. For measurable

Ω ⊂ C, the variance of the number of zeros of Pn in Ω will be denoted as

Var[Nn(Ω)] := E[Nn(Ω)
2]− E[Nn(Ω)]

2, (4.0.1)

and respectively for P as

Var[N(Ω)] := E[N(Ω)2]− E[N(Ω)]2. (4.0.2)

When {ηk} are complex-valued random variables whose distributions only satisfy

certain uniform bounds for the fractional and logarithmic moments, and the recur-

rence coefficients {αk} associated to {φk} are absolutely summable, or such that the

measure of orthogonality µ associated to {φk} is regular in the sense of Ullman-Stahl-

Totik (UST), we give quantitative estimates that show the variance of the number

of zeros scaled by n2 of Pn in annuli that intersect the unit circle is o(1) as n → ∞.

When {ηk} are i.i.d. complex-valued standard Gaussian, and {φk} are OPUC asso-

ciated to a conjugate symmetric measure µ from the Nevai class, we give the limit

of the variance of the number of zeros of Pn in annuli that do not contain the unit

circle.

Setting {ηk} to be i.i.d. complex-valued standard Gaussian, we take {φk} to be

from the Szegő class to ensure the almost sure convergence of the random series P
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within the unit disk. In this case we compute the variance of the number of zeros of

P in annuli contained in the unit disk.

We note the hierarchy of the classes of OPUC we are considering as spanning

functions:

{{φk} : the associated recurrence coefficients {αk} are absolutely summable}

⊂ {{φk} from the Szegő class}

⊂ {{φk} from the Nevai class}

⊂ {{φk} : the associated measure µ of orthogonality is regular in the sense of UST}.

In the case that {ηk} are i.i.d. complex-valued standard Gaussian, we will study

the variance of the number of zeros via examining the second correlation function.

We denote the second correlation function for Pn(z) as ρ(2)n (z, w), and ρ(2)(z, w) for

P (z). To see the connection between the variance of the number of zeros and the

second correlation function, observe that for a measurable set Ω ⊂ C it follows that

Var[Nn(Ω)] = E[(Nn(Ω))
2]− (E[Nn(Ω)])

2

= E[Nn(Ω)]− E[Nn(Ω)] + E[(Nn(Ω))
2]− (E[Nn(Ω)])

2

= E[Nn(Ω)] + E[Nn(Ω)(Nn(Ω)− 1)]− (E[Nn(Ω)])
2

=

∫
Ω

ρ(1)n (z) dA(z) +

∫
Ω

∫
Ω

ρ(2)n (z, w) dA(z) dA(w)

−
∫
Ω

∫
Ω

ρ(1)n (z)ρ(1)n (w) dA(z) dA(w), (4.0.3)

where the equality

E[Nn(Ω)(Nn(Ω)− 1)] =

∫
Ω

∫
Ω

ρ(2)n (z, w) dA(z) dA(w)

is a known result. Replacing Nn(Ω) by N(Ω) in the above, similarly we have a relation

for ρ(2)(z, w).
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4.1 The variance of the number of zeros for random orthogonal

polynomials

Let us first consider the simplest type of OPUC, {zk}, as a spanning basis. In this

case we have the complex Kac polynomial Pn(z) =
∑n

k=0 ηk,nz
k, where {ηk,n} are

complex-valued random variables. Let

Ar(α, β) = {z ∈ C : α ≤ arg z < β ≤ 2π, 1/r < |z| < r, 0 < r < 1}.

Set

M := sup{E[|ηk,n|t] | k = 0, 1, . . . , n, n ∈ N} <∞, t ∈ (0, 1] (4.1.1)

and

L := inf{E[log |ηk,n|] | k = 0 & n, n ∈ N} > −∞. (4.1.2)

As an application of Corollary 2.1.1 we obtain the following result concerning the

scaled variance of the number of zeros of the complex Kac polynomial.

Theorem 4.1.1 For Pn(z) =
∑n

k=0 ηk,nz
k where {ηk,n} are complex valued random

variables satisfying conditions (4.1.1) and (4.1.2), we have

Var[Nn(Ar(α, β))]

n2
= O

(√
log n

n

)
, as n→ ∞. (4.1.3)

Consider now the random orthogonal polynomial Pn(z) =
∑n

k=0 ηk,nφk(z) where

{φk} are OPUC, and {ηk,n} are complex valued random variables such that

sup{E[|ηk,n|t] | k = 0, 1, . . . , n, n ∈ N} <∞, t ∈ (0, 1] (4.1.4)

and

min

(
inf
n∈N

E[log |ηn,n|], inf
n∈N,z∈C

E[log |η0,n + z|]
)
> −∞. (4.1.5)

Applying the results of (2.2.7) and (2.2.8) of Corollary 2.2.1 we are able achieve

the following:
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Theorem 4.1.2 Let Pn(z) =
∑n

k=0 ηk,nφk(z) where {ηk,n} are complex valued random

variables satisfying conditions (4.1.4) and (4.1.5).

1. When the recurrence coefficients {αk} associated to {φk} are absolutely summable,

we have
Var[Nn(Ar(α, β))]

n2
= O

(√
log n

n

)
, as n→ ∞. (4.1.6)

2. Assume the measure of orthogonality µ associated to {φk} is regular in the sense

of Ullman-Stahl-Totik, that is,

εn :=
1

n
log |κn| → 0, as n→ ∞, (4.1.7)

where κn is the leading coefficient of φn. Then

Var[Nn(Ar(α, β))]

n2
= O

(
max

{√
log n

n
, ε1/4n

})
as n→ ∞, (4.1.8)

where εn is given by (4.1.7).

We remark that the result of (2.2.7) of Corollary 2.2.1 was stated for {φk} that

are orthonormal with respect to a positive Borel measure µ supported on the unit

circle, such that dµ(θ) = w(θ)dθ, where w(θ) ≥ c > 0, θ ∈ [0, 2π). Due to Baxter’s

Theorem (see [104], Theorem 5.2.1) this assumption is equivalent to
∑∞

k=0 |αk| <∞.

We also note that since
∞∑
k=0

|αk|2 ≤

(
∞∑
k=0

|αk|

)2

<∞,

relying on Theorem 2.7.15 of [104] which states that the condition
∑∞

k=0 |αk|2 < ∞

is equivalent to {φk} being in the Szegő class, we see that the result of (4.1.6) holds

for a subset of OPUC from the Szegő class, and consequently a subset of OPUC from

the Nevai class.

For the random sum fn(z) =
∑n

k=0 ηkpj(z), where {ηj} are complex valued

i.i.d. Gaussian random variables and {pj(z)} are a polynomial basis with the de-

gree of pj(z) equal to j, Corollary 3.4.2 of [49] gives the following formulas for the
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correlation functions:

ρ(m)
n (z1, . . . , zm) =

Perm(C −B∗A−1B)

πmDet(A) , (4.1.9)

where Perm(·) denotes the permanent of a matrix, B∗ is the conjugate transpose of

the matrix B, and

A =
[
E
[
pn(zi)pn(zj)

]]
0≤i,j≤m

=

[
n∑
k=0

pk(zi)pk(zj)

]
0≤i,j≤m

:= [Kn(zi, zj)]0≤i,j≤m,

B =
[
E
[
pn(zi)p′n(zj)

]]
0≤i,j≤m

=

[
n∑
k=0

pk(zi)p′k(zj)

]
0≤i,j≤m

:= [K(0,1)
n (zi, zj)]0≤i,j≤m,

C =
[
E
[
p′n(zi)p

′
n(zj)

]]
0≤i,j≤m

=

[
n∑
k=0

p′k(zi)p
′
k(zj)

]
0≤i,j≤m

:= [K(1,1)
n (zi, zj)]0≤i,j≤m,

with the second equality in each row above following from the property that the

random variables {ηj} have mean zero and variance one. We remark that for the

second correlation function with m = 2 in the above and z1 = z and z2 = w, in this

case we have

detA = Kn(z, z)Kn(w,w)−Kn(z, w)Kn(w, z)

=
n∑
j=0

|pj(z)|2
n∑
j=0

|pj(w)|2 −

∣∣∣∣∣
n∑
j=0

pj(z)pj(w)

∣∣∣∣∣
2

=
n∑
k=1

|p0(z)pk(w)− p0(w)pk(z)|2 +
n∑
k=2

|p1(z)pk(w)− p1(w)pk(z)|2

+ · · ·+
n∑

k=n−2

|pn−3(z)pk(w)− pn−3(w)pk(z)|2 + |pn(z)pn−1(w)− pn(w)pn−1(z)|2

≥ |p0(z)p1(w)− p0(w)p1(z)|2.

As {pj} is a polynomial basis with deg pj = j for all j ∈ N ∪ {0}, we have p0(z) = c

and p1(z) = az + b, for some constants a, b, c, with a, c ̸= 0. Thus

|p0(z)p1(w)− p0(w)p1(z)|2 = |c(aw + b)− c(az + b)|2 = |ca(w − z)|2.
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Hence we see that detA > 0 for all z ̸= w. As ρ(2)n (z, z) = 0, we see that the

representation

ρ(2)n (z, w) =
Perm(C −B∗A−1B)

πmDet(A)

is valid everywhere for all random polynomials spanned by a polynomial basis.

Expanding the permanent and the determinant in the definition of second corre-

lation function, one sees that ρ(2)n (z, w) can be written as

π2ρ(2)n (z, w) = fn(z, w)fn(w, z) + gn(z, w)gn(w, z), (4.1.10)

where

fn(z, w) =
K

(1,1)
n (z, z)

(Kn(z, z)Kn(w,w)− |Kn(z, w)|2)1/2

+
2Re

(
Kn(z, w)K

(0,1)
n (z, z)K

(0,1)
n (w, z)

)
(Kn(z, z)Kn(w,w)− |Kn(z, w)|2)3/2

− Kn(w,w)|K(0,1)
n (z, z)|2 +Kn(z, z)|K(0,1)

n (w, z)|2

(Kn(z, z)Kn(w,w)− |Kn(z, w)|2)3/2
,

and

gn(z, w) =
K

(1,1)
n (z, w)

(Kn(z, z)Kn(w,w)− |Kn(z, w)|2)1/2

+
Kn(z, w)K

(0,1)
n (z, z)K

(0,1)
n (w,w) +Kn(z, w)K

(0,1)
n (w, z)K

(0,1)
n (z, w)

(Kn(z, z)Kn(w,w)− |Kn(z, w)|2)3/2

− Kn(w,w)K
(0,1)
n (z, z)K

(0,1)
n (z, w) +Kn(z, z)K

(0,1)
n (w, z)K

(0,1)
n (w,w)

(Kn(z, z)Kn(w,w)− |Kn(z, w)|2)3/2
.

As an observation, we note that

fn(z, z) =
K

(1,1)
n (z, z)

(Kn(z, z)Kn(z, z)− |Kn(z, z)|2)1/2

+
2Re

(
Kn(z, z)K

(1,0)
n (z, z)K

(1,0)
n (z, z)

)
(Kn(z, z)Kn(z, z)− |Kn(z, z)|2)3/2

− Kn(z, z)|K(1,0)
n (z, z)|2 +Kn(z, z)|K(1,0)

n (z, z)|2

(Kn(z, z)Kn(z, z)− |Kn(z, z)|2)3/2

= πρ(0,1)n (z),
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where ρ(0,1)n (z) was given by Vanderbei [115] as the first intensity function for the

expected number of purely complex zeros for a random sum gn(z) =
∑n

k=0 ξkpk(z)

with {ξk} being i.i.d. real-valued standard Gaussian random variables.

For our remaining results of this section we consider random orthogonal polyno-

mials of the form

Pn(z) =
n∑
j=0

ηjφj(z), z ∈ C, (4.1.11)

where {ηj} are i.i.d. complex-valued standard Gaussian random variables, and {φj}

are orthogonal polynomials from the Nevai class that are real valued on the real line.

While the formula for the second correlation function associated to the random

orthogonal polynomial (4.1.11) is rather complicated, its limit as n tends to infinity

has a striking simplicity.

Theorem 4.1.3 When z and w are both in the unit disk or both in the the exterior

of the unit disk, the second correlation function for the random orthogonal polynomial

(4.1.11) satisfies

lim
n→∞

ρ(2)n (z, w) =
1

π2

(
1

(1− |z|2)2(1− |w|2)2
− 1

|1− zw|4

)
, (4.1.12)

where the above convergence takes place locally uniformly.

Our next theorem gives the limiting value of the variance of the number of zeros

of the random orthogonal polynomial (4.1.11) in an annulus

A(s, t) = {z ∈ C : 0 ≤ s < |z| < t},

that does not contain the unit disk.

Theorem 4.1.4 The random orthogonal polynomial (4.1.11) possesses the property

that

lim
n→∞

Var[Nn(A(s, t))] =


(t2 − s2)[1− s2(t4(2 + s2)− 2)]

(1− t4)(1− s4)(1− (st)2)
, A(s, t) ⊊ D,

(t2 − s2)[1− t2(s4(2 + t2)− 2)]

(1− t4)(1− s4)(1− (st)2)
, A(s, t) ⊊ C \ D.
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We note that taking s = 0 and t < 1 in the above theorem, we achieve that the

random orthogonal polynomial (4.1.11) gives

lim
n→∞

Var[N(D(0, t))] =
t2

1− t4
,

where D(0, t) = {z ∈ C : |z| < t}.

Given our results concerning random orthogonal polynomials Pn(z) =
∑n

k=0 ηkφk,

where {ηk} are complex-valued random variables, and {φk} are OPUC, we end this

section on some conjectures that the author intends to work on in the future.

Conjecture (Due to Igor Pritsker): For suitable assumptions on {ηk} and {φk}, and

and c a positive constant, we have

lim
n→∞

Var[Nn(D)]
n

= c.

Conjecture: For suitable assumptions on {ηk} and {φk}, it follows that

Nn(D)− E[Nn(D)]√
Var[Nn(D)]

d→ N(0, 1), as n→ ∞.

4.2 The variance of the number of zeros for a random power series

Let

f(z) =
∞∑
k=0

ηkz
k,

D(0, r) := {z ∈ C : |z| < r < 1}, and N(D(0, r)) be the number of zeros of f in

D(0, r). The goal of this section is to extend the results given by Peres and Virág

(Corollary 3. (iii) of [88]) which state that for the random power series f(z), it follows

that

µr = E[N(D(0, r))] =
r2

1− r2
, and σ2

r = Var[N(D(0, r))] =
r2

1− r4
. (4.2.1)
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We note that Peres and Virág also showed that (Nr−µr)/σr converges in distribution

to the standard normal as r ↑ 1.

We will generalize the basis of the random power series f(z) to be OPUC from

the Szegő class and prove the analogs of (4.2.1) for this extension in annuli (further

generalizing from disks) in the unit circle. Before defining the Szegő class, recall

that the OPUC associated to non-negative 2π-periodic weight W (θ) that is Lebesgue

integrable on [−π, π] such that ∫ π

−π
W (θ) dθ > 0,

are polynomials {φk} that satisfy

1

2π

∫ π

−π
φn(e

iθ)φm(eiθ)W (eiθ) dθ = δnm, n,m ∈ N ∪ {0}.

We will assume that the weight function W (θ) is an even function to ensure that that

coefficients of {φk} are real. We say that a collection of OPUC {φk} are from the

Szegő class if their associated weight function W (θ) possesses the property that∫ π

−π
| logW (θ)| dθ

is finite. Note that in case considered by Peres and Virág, the weight function for the

monomials is W (θ) = 1 which is clearly in the Szegő class.

Our object of study in this section is the random orthogonal series

P (z) =
∞∑
k=0

ηkφk(z), (4.2.2)

where {φk} are OPUC associated to an even weight function from the Szegő class.

When z ∈ D, due to Szegő (see equation (12.3.17) p. 303 in [111]) we know that∑∞
k=0 |φk(z)|2 < ∞, where the convergence takes place locally uniform. Hence by

the random variables {ηk} being i.i.d. mean zero with variance one, by Lemma 2.2.3

of [49], the random power series (4.2.2) converges almost surely locally uniformly on

the unit disk and thus defines a holomorphic function. This gives that the random
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orthogonal series (4.2.2) is of the class of functions known as Gaussian Analytic

Functions (GAF).

To prove the next two theorems, we rely on a formula for the n-point correlation

function provided by Hough, Krishnapur, Peres, and B. Virág ([49],Corollary 3.4.2.)

which we state at (4.3.65). In the cases when n = 1 and n = 2, their formula gives

a representation for the first intensity function and second intensity function. We

denote the number of zeros of P (z) in a measurable region Ω ⊂ D by N(Ω), and the

first and second correlation functions by ρ(1)(z) and ρ(2)(z, w) respectively.

Theorem 4.2.1 When z ∈ D, the first correlation function for the random orthogonal

series (4.2.2) is given by

ρ(1)(z) =
1

π(1− |z|2)2
. (4.2.3)

Theorem 4.2.2 The second correlation function for the random orthogonal series

(4.2.2) satisfies

ρ(2)(z, w) =
1

π2

(
1

(1− |z|2)2(1− |w|2)2
− 1

|1− zw|4

)
. (4.2.4)

Remark: For K(z, w) :=
∑∞

j=0 φj(z)φj(w), to appeal to Corollary 3.4.2 of [49], it is

required that when z ̸= w, we have

K(z, z)K(w,w)− |K(z, w)|2 ̸= 0.

To see that this is indeed so, since equation (12.3.17) of page 303 in [111], gives

K(z, w) =
∞∑
k=0

φk(z)φk(w) =
1

D(z)D(w)(1− zw)
, (4.2.5)

where

D(ξ) = D(W ; ξ) = exp

{
1

4π

∫ π

−π
logW (θ)

1 + ξe−iθ

1− ξe−iθ
dθ

}
, (4.2.6)
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it follows that

K(z, z)K(w,w)− |K(z, w)|2 = 1

|D(z)|2(1− |z|2)
1

|D(w)|2(1− |w|2)

− 1

|D(z)D(w)|2|1− zw|2

=
|z|2 + |w|2 − zw − zw

|D(z)D(w)|2(1− |z|2)(1− |w|2)|1− zw|2

=
|z − w|2

|D(z)D(w)|2(1− |z|2)(1− |w|2)|1− zw|2
,

which is zero precisely when z = w.

As a further remark, when z = w in the formula for the second correlation function

given in Corollary 3.4.2. of [49], in the case when the spanning functions of the random

orthogonal series are OPUC from the Szegő class, it follows that limw→z ρ
(2)(z, w) = 0.

Corollary 4.2.1 For the random orthogonal series (4.2.2), when Ω ⊂ D is a mea-

surable set we have

Var[N(Ω)] =
1

π

∫
Ω

1

(1− |z|2)2
dz − 1

π2

∫
Ω

∫
Ω

1

|1− zw̄|4
dz dw. (4.2.7)

Since the integrals on the right hand side of (4.2.7) were computed in Theorem 4.1.4,

we immediately obtain our next result.

Corollary 4.2.2 The random orthogonal series (4.2.2) possesses the property that

when t < 1 we have

E[N(A(s, t))] =
t2 − s2

(1− t2)(1− s2)
, (4.2.8)

and

Var[N(A(s, t))] =
(t2 − s2)[1− s2(t4(2 + s2)− 2)]

(1− t4)(1− s4)(1− (st)2)
. (4.2.9)

As a consequence of the above corollary, taking s = 0 in the above we achieve

E[N(D(0, t))] =
t2

1− t2
and Var[N(D(0, t))] =

t2

1− t4
, (4.2.10)

84



thus giving the extension of the formulas for the expectation and variance provided

in Corollary 3 (iii) of [88] to hold for random orthogonal series spanned OPUC from

the Szegő class.

Given our explicit formulas for the first and second correlation functions in Corol-

lary 4.2.2, we make the following

Conjecture : For the random orthogonal series (4.2.2) we have

N(A(s, t))− E[N(A(s, t))]√
Var[N(A(s, t))]

→ N(0, 1), as t ↑ 1, (4.2.11)

where the convergence takes place in a distributional sense.

We now give some insights for making such a conjecture. From Theorems 4.2.1

and 4.2.2, for the correlation functions for the random orthogonal series (4.2.2) we

know that

ρ(1)(z1) =
1

π(1− |z1|2)2
= K(z1, z1)

and

ρ(2)(z1, z2) =
1

π2

(
1

(1− |z1|2)2(1− |z2|2)2
− 1

|1− z1z2|4

)

= det

K(z1, z1) K(z1, z2)

K(z2, z1) K(z2, z2)

 ,
where K(z, w) = (π)−1

∑∞
k=0(k + 1)zkwk is the Bergman kernel. Note that the

Bergman kernel satisfies the Hermitian symmetry property K(z, w) = K(w, z). If

one could conclude that

ρ(n)(z1, . . . , zn) = det[K(zi, zj)]0≤i,j≤n, (4.2.12)

we would know that we have a determinantal random process. Furthermore by each

of the annuli A(s, t) having compact closure in the disk, and as t→ 1 it follows that

lim
t↑1

Var[N(A(s, t))] = lim
t↑1

(t2 − s2)[1− s2(t4(2 + s2)− 2)]

(1− t4)(1− s4)(1− (st)2)
= +∞, (4.2.13)
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appealing to a result of Soshnikov (c.f. Theorem on page 497 of [106], which is specified

to our needed situation above in [107] p. 174), the result of the conjecture would follow.

Thus the conjecture actually rest on the conjecture that (4.2.12) holds true.

4.3 Proofs for Chapter 4

4.3.1 Proofs for Section 4.1

Proof of Theorem 4.1.1. Under the assumptions of the theorem, by Corollary 2.1.1

we have

E
[∣∣∣∣τn(Ar(α, β))− β − α

2π

∣∣∣∣] = O

(√
log n

n

)
. (4.3.1)

Then

E

[∣∣∣∣∣τn(Ar(α, β))2 −
(
β − α

2π

)2
∣∣∣∣∣
]

= E
[∣∣∣∣(τn(Ar(α, β))− β − α

2π

)(
τn(Ar(α, β) +

β − α

2π

)∣∣∣∣]
≤ 2E

[∣∣∣∣τn(Ar(α, β))− β − α

2π

∣∣∣∣]

= O

(√
log n

n

)
. (4.3.2)

Thus

E
[
τn(Ar(α, β))

2
]
≤ O

(√
log n

n

)
+

(
β − α

2π

)2

.
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Therefore

Var[Nn(Ar(α, β))]

n2
=

1

n2
E[Nn(Ar(α, β))

2]− 1

n2
(E[Nn(Ar(α, β))])

2 (4.3.3)

= E[τn(Ar(α, β))2]− E[τn(Ar(α, β))]2

≤ O

(√
log n

n

)
+

(
β − α

2π

)2

− E[τn(Ar(α, β))]2

= O

(√
log n

n

)

+

(
β − α

2π
− E[τn(Ar(α, β))]

)(
β − α

2π
+ E[τn(Ar(α, β))]

)
≤ O

(√
log n

n

)
+ E

[∣∣∣∣τn(Ar(α, β))− β − α

2π

∣∣∣∣](β − α

2π
+ 1

)

= O

(√
log n

n

)
+O

(√
log n

n

)

= O

(√
log n

n

)
,

which gives the result of the theorem.

Proof of Theorem 4.1.2. The hypothesis of the theorem allows us to apply (2.2.7) of

Corollary 2.2.1

E
[∣∣∣∣τn(Ar(α, β))− β − α

2π

∣∣∣∣] = O

(√
log n

n

)
, n→ ∞, (4.3.4)

when the recurrence coefficients are absolutely summable, and (2.2.8) of Corollary

2.2.1

E
[∣∣∣∣τn(Ar(α, β))− β − α

2π

∣∣∣∣] = O

(
max

{√
log n

n
, ε1/4n

})
,

when the measure of orthogonality µ is regular in the sense of Ullman-Stahl-Totik.

Given the above bounds, repeating the calculations (4.3.2) and (4.3.3) one obtains

the desired result.

Proof of Theorem 4.1.3. For a collection of OPUC {φj}j≥0, the Christoffel-Darboux

formula (c.f. Theorem 2.2.7, p. 124 of [104]) states that for z, w ∈ C with w̄z ̸= 1, we
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have

Kn(z, w) =
n∑
j=0

φj(z)φj(w) =
φ∗
n+1(w)φ

∗
n+1(z)− φn+1(w)φn+1(z)

1− w̄z
, (4.3.5)

where φ∗
n(z) = znφn

(
1
z̄

)
.

Before obtaining our representations of the kernels, let us note that since we are

assuming that the OPUC are real valued on the real line, when using conjugation we

have that φj(z) = φj(z̄) for all j = 0, 1, . . . , and all z ∈ C.

Taking the derivative of (4.3.5) with respect to w yields

K(0,1)
n (z, w) =

n∑
j=0

φj(z)φ′
j(w) =

Sn(z, w)

1− zw
+
zKn(z, w)

1− zw
, (4.3.6)

with

Sn(z, w) = (φ∗
n+1)

′(w)φ∗
n+1(z)− φ′

n+1(w)φn+1(z). (4.3.7)

Differentiating (4.3.6) with respect to z gives

K(1,1)
n (z, w) =

n∑
j=0

φ′
j(z)φ

′
j(w)

=
Rn(z, w)(1− zw) + zSn(w, z) + wSn(z, w) + (1 + zw)Kn(z, w)

(1− zw)2
,

(4.3.8)

with

Rn(z, w) = (φ∗
n+1)

′(w)(φ∗
n+1)

′(z)− φ′
n+1(w)φ

′
n+1(z). (4.3.9)

Let us rewrite (4.1.10) as

π2ρ(2)n (z, w) =
f̃n(z, w)f̃n(w, z) + g̃n(z, w)g̃n(w, z)

(Kn(z, z)Kn(w,w)− |Kn(z, w)|2)3
(4.3.10)

where

f̃n(z, w) = K(1,1)
n (z, z)(Kn(z, z)Kn(w,w)− |Kn(z, w)|2) (4.3.11)

+ 2Re
(
Kn(z, w)K

(0,1)
n (z, z)K(0,1)

n (w, z)
)

(4.3.12)

−Kn(w,w)|K(0,1)
n (z, z)|2 +Kn(z, z)|K(0,1)

n (w, z)|2, (4.3.13)
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and

g̃n(z, w) = K(1,1)
n (z, w)(Kn(z, z)Kn(w,w)− |Kn(z, w)|2) (4.3.14)

+Kn(z, w)K
(0,1)
n (z, z)K(0,1)

n (w,w) +Kn(z, w)K
(0,1)
n (w, z)K(0,1)

n (z, w)

(4.3.15)

−Kn(w,w)K
(0,1)
n (z, z)K(0,1)

n (z, w) +Kn(z, z)K
(0,1)
n (w, z)K(0,1)

n (w,w).

(4.3.16)

We now introduce the notation that bn(z) := φn(z)/φ
∗
n(z). Observe that since the

OPUC {φn} have real coefficients, we have b−1
n (z) = bn(1/z). Thus the condition of

the OPUC being from the Nevai class can be restated as
bn(z) → 0, locally uniformly in |x| < 1,

b−1
n (z) → 0, locally uniformly in |x| > 1.

(4.3.17)

Consequently

φ′
n(z)φ

∗
n(z)− φn(z)(φ

∗
n)

′(z)

ϕ2
n(z)

=


b′n(z) → 0, locally uniformly in |x| < 1,

−(b−1
n )′(z) → 0, locally uniformly in |x| > 1,

(4.3.18)

where

ϕn(z) :=


φ∗
n(z), |x| < 1,

φn(z), |x| > 1.

Hence appealing to the above and (4.3.5), we see that as n→ ∞ the denominator of

πρ
(2)
n (z, w) is

(Kn(z, z)Kn(w,w)− |Kn(z, w)|2)3

= |ϕn+1(z)ϕn+1(w)|6
[(

1

(1− |z|2)(1− |w|2)
− 1

|1− zw|2

)3

+ o(1)

]
(4.3.19)
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We now find the asymptotic for f̃n(z, w). Set

S1(z, w) = (4.3.11), S2(z, w) = (4.3.12), S3(z, w) = (4.3.13).

Using (4.3.6) and (4.3.8) we see that

S1(z, w) =
(1 + |z|2)Kn(z, z)

(1− |z|2)2
(Kn(z, z)Kn(w,w)− |Kn(z, w)|2) (4.3.20)

+
2Re (zSn(z, z))

(1− |z|2)2
(Kn(z, z)Kn(w,w)− |Kn(z, w)|2) (4.3.21)

+
Rn(z, z)

1− |z|2
(Kn(z, z)Kn(w,w)− |Kn(z, w)|2), (4.3.22)

S2(z, w) = −|w|2Kn(z, z)|Kn(z, w)|2

|1− zw|2
− |z|2Kn(z, z)

2Kn(w,w)

(1− |z|2)2
(4.3.23)

− 2Kn(z, z)Re (wSn(w, z)Kn(z, w))

|1− zw|2
− 2Kn(z, z)Kn(w,w)Re (zSn(z, z))

(1− |z|2)2

(4.3.24)

− Kn(z, z)|Sn(w, z)|2

|1− zw|2
− Kn(w,w)|Sn(z, z)|2

(1− |z|2)2
, (4.3.25)

S3(z, w) =
Kn(z, z)|Kn(z, w)|2

1− |z|2

(
1− |zw|2

|1− zw|2
− 1

)
(4.3.26)

+
2|Kn(z, w)|2

1− |z|2
Re
(
wSn(z, z)

1− zw

)
(4.3.27)

+
2Kn(z, z)

1− |z|2
Re
(
zKn(z, w)Sn(w, z)

1− zw

)
(4.3.28)

+
2

1− |z|2
Re
(
Kn(z, w)Sn(z, z)Sn(w, z)

1− zw

)
, (4.3.29)

where we have made use of the identity 2Re(zw) = 1 + |zw|2 − |1 − zw|2 to get the

expression in parentheses of (4.3.26) in the shape it is in.

We now define

Σn,1(z, w) := (4.3.20) + (4.3.23) + (4.3.26)

Σn,2(z, w) := (4.3.21) + (4.3.24) + (4.3.27) + (4.3.28)

Σn,3(z, w) := (4.3.22) + (4.3.25) + (4.3.29).
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Simplifying and then appealing to (4.3.5), (4.3.17), and (4.3.18), we see that

Σn,1(z, w) =
Kn(z, z)

2Kn(w,w)

(1− |z|2)2
− Kn(z, z)|Kn(z, w)|2

1− |z|2

(
2

1− |z|2
+

|w|2 − 1

|1− zw|2

)
= |ϕn+1(z)|4|ϕn+1(w)|2

[
1

(1− |z|2)4(1− |w|2)

− 1

(1− |z|2)|1− zw|2

(
2

1− |z|2
+

|w|2 − 1

|1− zw|2

)
+ o(1)

]

= |ϕn+1(z)|4|ϕn+1(w)|2
(

|z − w|4

(1− |z|2)4(1− |w|2)|1− zw|4
+ o(1)

)
. (4.3.30)

Turning now to the asymptotic for Σn,2(z, w), observe the first summand of

(4.3.21) and second summand of (4.3.24) cancel algebraically, and that the sum of

the second summand in (4.3.21) and the first summand of (4.3.27) simplify to

2
|Kn(z, w)|2

(1− |z|2)2
Re
(
(w − z)Sn(z, z)

1− zw

)
. (4.3.31)

The sum of the first summand of (4.3.24) and (4.3.28) collect to give

2Kn(z, z)

(1− |z|2)|1− zw|2
Re ((z − w)Kn(z, w)Sn(w, z)) . (4.3.32)

Combining (4.3.31) with (4.3.32) then appealing to (4.3.5), (4.3.6), (4.3.8) to simplify

the expressions, and finally using the asymptotics of (4.3.17) and (4.3.18) on sees

Σn,2(z, w) =
1

(1− |z|2)2|1− zw|2

· 2Re
[
(w − z)Kn(z, w)

(
φn+1(z)(φ∗

n+1)
′(z)− φ′

n+1(z)φ
∗
n+1(z)

)
· (φn+1(z)φ

∗
n+1(w)− φ∗

n+1(z)φn+1(w))
]

= o(|ϕn+1(z)|4|ϕn+1(w)|2). (4.3.33)

For the sum Σn,3(z, w), first notice using (4.3.5) the first summand of (4.3.22) and

the second summand of (4.3.25) sum to

− Kn(w,w)

(1− |z|2)2
|(φ∗

n+1)
′(z)φn+1(z)− φ∗

n+1(z)φ
′
n+1(z)|2. (4.3.34)
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Appealing to (4.3.5), the remaining summand of (4.3.22) simplifies as

(|φ′
n+1(z)|2 − |(φ∗

n+1)
′(z)|2)

·
|φ∗
n+1(z)φ

∗
n+1(w)|2 + |φn+1(z)φn+1(w)|2 − 2Re

(
φ∗
n+1(z)φ

∗
n+1(w)φn+1(z)φn+1(w)

)
(1− |z|2)|1− zw|2

,

(4.3.35)

the remaining summand of (4.3.25) reduces to

2Kn(z, z)Re
(
(φ∗

n+1)
′(z)φ∗

n+1(w)φ
′
n+1(z)φn+1(w)

)
|1− zw|2

− 1

(1− |z|2)|1− zw|2
[
|(φ∗

n+1)
′(z)|2

(
|φ∗
n+1(z)φ

∗
n+1(w)|2 − |φn+1(z)φ

∗
n+1(w)

)
+ |φn+1(z)|2

(
|φ∗
n+1(z)φn+1(w)|2 − |φn+1(z)φn+1(w)

) ]
,

(4.3.36)

and (4.3.29) can be written as

2|(φ∗
n+1)

′(z)|2

(1− |z|2)|1− zw|2
(
|φ∗
n+1(z)φ

∗
n+1(w)|2 − Re

(
φ∗
n+1(z)φn+1(z)φ

∗
n+1(w)φn+1(w)

))
−

2|φ′
n+1(z)|2

(1− |z|2)|1− zw|2
(
|φn+1(z)φn+1(w)|2 − Re

(
φ∗
n+1(z)φn+1(z)φ

∗
n+1(w)φn+1(w)

))
−

2
(
|φ∗
n+1(w)|2 − |φn+1(w)|2

)
Re
(
(φ∗

n+1)
′(z)φ∗

n+1(z)φ
′
n+1(z)φn+1(z)

)
(1− |z|2)|1− zw|2

−
2Kn(z, z)Re

(
(φ∗

n+1)
′(z)φ∗

n+1(w)φ
′
n+1(z)φn+1(w)

)
|1− zw|2

. (4.3.37)

Simplifying the sum of expressions (4.3.35), (4.3.36), and (4.3.37), then combining

with (4.3.34) we achieve

Σn,3(z, w) =
Kn(w,w)|(φ∗

n+1)
′(z)φn+1(z)− φ∗

n+1(z)φ
′
n+1(z)|2

1− |z|2

(
1− |w|2

|1− zw|2
− 1

1− |z|2

)
= o(|ϕn+1(z)|4|ϕn+1(w)|2). (4.3.38)

Thus the sum of (4.3.30), (4.3.33), and (4.3.38), combine to give

f̃n(z, w) = |ϕn+1(z)|4|ϕn+1(w)|2
(

|z − w|4

(1− |z|2)4(1− |w|2)|1− zw|4
+ o(1)

)
. (4.3.39)
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The calculations for g̃n(z, w) are done in a similar fashion as for f̃(z, w). Due the

complication nature of the computations, we see fit to include the complete derivation

of g̃n(z, w). Let

S4(z, w) = (4.3.14), S5(z, w) = (4.3.15), S6(z, w) = (4.3.16).

From (4.3.6) and (4.3.8) it follows that

S4(z, w) =
(1 + zw)Kn(z, w)

(1− zw)2
(Kn(z, z)Kn(w,w)− |Kn(z, w)|2) (4.3.40)

+
zSn(w, z) + wSn(z, w)

(1− zw)2
(Kn(z, z)Kn(w,w)− |Kn(z, w)|2) (4.3.41)

+
Rn(z, w)

1− zw
(Kn(z, z)Kn(w,w)− |Kn(z, w)|2), (4.3.42)

S5(z, w) = −|z|2Kn(z, z)Kn(w,w)Kn(z, w)

(1− |z|2)(1− zw)
− |w|2Kn(z, z)Kn(w,w)Kn(z, w)

(1− |w|2)(1− zw)

(4.3.43)

− Kn(z, w)

1− zw

(
zKn(w,w)Sn(z, z)

1− |z|2
+
wKn(z, z)Sn(w,w)

1− |w|2

)
(4.3.44)

− Kn(z, z)Kn(w,w)

1− zw

(
zSn(z, w)

1− |z|2
+
wSn(w, z)

1− |w|2

)
(4.3.45)

− Kn(w,w)Sn(z, z)Sn(z, w)

(1− |z|2)(1− zw)
− Kn(z, z)Sn(w,w)Sn(w, z)

(1− |w|2)(1− zw)
, (4.3.46)

S6(z, w) =
zwKn(z, z)Kn(w,w)Kn(z, w)

(1− |z|2)(1− |w|2)
+
zwK(z, w)|K(z, w)|2

(1− zw)2
(4.3.47)

+K(z, w)

(
wKn(w,w)Sn(z, z) + zKn(z, z)Sn(w,w)

(1− |z|2)(1− |w|2)

)
(4.3.48)

+K(z, w)

(
wKn(z, w)Sn(z, w) + zKn(z, w)Sn(w, z)

(1− zw)2

)
(4.3.49)

+
Kn(z, w)Sn(z, z)Sn(w,w)

(1− |z|2)(1− |w|2)
+
Kn(z, w)Sn(w, z)Sn(z, w)

(1− zw)2
. (4.3.50)
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We now set

Σn,4(z, w) := (4.3.40) + (4.3.43) + (4.3.47)

Σn,5(z, w) := (4.3.41) + (4.3.44) + (4.3.45) + (4.3.48) + (4.3.49)

Σn,6(z, w) := (4.3.42) + (4.3.46) + (4.3.50).

Simplifying then using the relations (4.3.5), (4.3.17), and (4.3.18) yields

Σn,4(z, w) = Kn(z, z)Kn(w,w)Kn(z, w)

(
1 + z(w − 2z) + w(z − 2w + w|z|2)

(1− |z|2)(1− |w|2)(1− zw)2

)
− Kn(z, w)|Kn(z, w)|2

(1− zw)2

= |ϕn+1(z)|2|ϕn+1(w)|2ϕn+1(z)ϕn+1(w)

·
(
1 + z(w − 2z) + w(z − 2w + w|z|2)
(1− |z|2)2(1− |w|2)2(1− zw)3

− 1

(1− zw)4(1− zw)
+ o(1)

)
= |ϕn+1(z)|2|ϕn+1(w)|2ϕn+1(z)ϕn+1(w)

·
(

−|z − w|4

(1− |z|2)2(1− |w|2)2(1− zw)4(1− zw)
+ o(1)

)
. (4.3.51)

To begin calculating Σn,5, first we combine (4.3.41), (4.3.45), and (4.3.49), to give

Kn(z, z)Kn(w,w)

(1− zw)2

(
(z − w)Sn(w, z)

1− |w|2
− (z − w)Sn(z, w)

1− |z|2

)
. (4.3.52)

Now combing (4.3.44) with (4.3.48) yields

Kn(z, w)Kn(w,w)Sn(z, z)

1− |z|2

(
w

1− |w|2
− z

1− zw

)
+
Kn(z, w)Kn(z, z)Sn(w,w)

1− |w|2

(
z

1− |z|2
− w

1− zw

)
. (4.3.53)

Summing (4.3.52) with (4.3.53) then using (4.3.5), (4.3.6), (4.3.8) to simplify the
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expressions, and finally appealing the asymptotics of (4.3.17) and (4.3.18) on sees

Σn,5(z, w) =
1

(1− |z|2)(1− |w|2)(1− zw)2

·
[
(z − w)Kn(w,w)(φn+1(z)(φ

∗
n+1)

′(z)− φ∗
n+1(z)φ

′
n+1(z))

· (φ∗
n+1(z)φn+1(w)− φn+1(z)φ∗

n+1(w))

+ (z − w)Kn(z, z)(φn+1(w)(φ∗
n+1)

′(w)− φ∗
n+1(w)φ

′
n+1(w))

· (φ∗
n+1(z)φn+1(w)− φn+1(z)φ

∗
n+1(w))

]
= o(|ϕn+1(z)|2|ϕn+1(w)|2ϕn+1(z)ϕn+1(w)). (4.3.54)

Turning now to Σn,6(z, w), combining the first summands of (4.3.42) and (4.3.46)

and using (4.3.5), (4.3.6), (4.3.8) to further simplify gives

Kn(w,w)

(1− |z|2)(1− zw)
((φ∗

n+1)
′(z)φn+1(z)− φ∗

n+1(z)φ
′
n+1(z))

· (φ′
n+1(w)φ

∗
n+1(z)− φn+1(z)(φ∗

n+1)
′(w)). (4.3.55)

From the relations (4.3.5), (4.3.6), and (4.3.8), the sum of second summands of

(4.3.42) and (4.3.50) reduces to

Kn(z, w)

(1− zw)2
(φn+1(z)(φ

∗
n+1)

′(z)− φ′
n+1(z)φ

∗
n+1(z))

· ((φ∗
n+1)

′(w)φn+1(w)− φ∗
n+1(w)φ

′
n+1(w)). (4.3.56)

Using (4.3.5), (4.3.6), and (4.3.8), second summand of (4.3.46) with first summand

of (4.3.50) combine to yield

(1− zw)Kn(z, w)

(1− |z|2)(1− |w|2)(1− zw)
(φn+1(z)(φ

∗
n+1)

′(z)− φ∗
n+1(z)φ

′
n+1(z))

· (φ∗
n+1(w)φ

′
n+1(w)− φn+1(w)(φ∗

n+1)
′(w)). (4.3.57)

Combining (4.3.55), (4.3.56), and (4.3.57), then again appealing (4.3.5), (4.3.6),

(4.3.8) to simplify the expressions, and using the asymptotics of (4.3.17) and (4.3.18)
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it follows that

Σn,6(z, w) =
Kn(z, w)

1− zw
((φ∗

n+1)
′(z)φn+1(z)− φ∗

n+1(z)φ
′
n+1(z))

· (φ∗
n+1(w)φ

′
n+1(w)− φn+1(w)(φ∗

n+1)
′(w))

·
(

1− zw

(1− |z|2)(1− |w|2)
− 1

1− zw

)
= o(|ϕn+1(z)|2|ϕn+1(w)|2ϕn+1(z)ϕn+1(w)). (4.3.58)

Summing (4.3.51), (4.3.54), and (4.3.58), we see that

g̃n(z, w) = |ϕn+1(z)ϕn+1(w)|2ϕn+1(z)ϕn+1(w)

·
(

−|z − w|4

(1− |z|2)2(1− |w|2)2(1− zw)4(1− zw)
+ o(1)

)
. (4.3.59)

Combining (4.3.10), (4.3.19), (4.3.39), and (4.3.59), we therefore achieve

π2ρ(2)n (z, w) =

(
|ϕn+1(z)ϕn+1(w)|6

((
1

(1− |z|2)(1− |w|2)
− 1

|1− zw|2

)3

+ o(1)

))−1

·

[
|ϕn+1(z)|4|ϕn+1(w)|2

(
|z − w|4

(1− |z|2)4(1− |w|2)|1− zw|4
+ o(1)

)
· |ϕn+1(w)|4|ϕn+1(z)|2

(
|z − w|4

(1− |w|2)4(1− |z|2)|1− zw|4
+ o(1)

)
+ |ϕn+1(z)ϕn+1(w)|2ϕn+1(z)ϕn+1(w)

·
(

−|z − w|4

(1− |z|2)2(1− |w|2)2(1− zw)4(1− zw)
+ o(1)

)
· |ϕn+1(w)ϕn+1(z)|2ϕn+1(w)ϕn+1(z)

·
(

−|z − w|4

(1− |z|2)2(1− |w|2)2(1− zw)4(1− zw)
+ o(1)

)]

=
1

(1− |z|2)2(1− |w|2)2
− 1

|1− zw|4
+ o(1), as n→ ∞.

Proof of Theorem 4.1.4. Recall that for the random orthogonal polynomial (4.1.11)

we have

lim
n→∞

ρ(1)n (z) =
1

π(1− |z|2)2
(4.3.60)
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locally uniformly for all z ∈ C \ T. Appealing to (4.0.3) gives

lim
n→∞

Var[Nn(A(s, t))] =
1

π

∫
A(s,t)

1

(1− |z|2)2
dA(z)

+
1

π2

∫
A(s,t)

∫
A(s,t)

(
1

(1− |z|2)2(1− |w|2)2
− 1

|1− zw|4

)
dA(z)dA(w)

− 1

π2

∫
A(s,t)

∫
A(s,t)

1

(1− |z|2)2(1− |w|2)2
dA(z)dA(w)

=
1

π

∫
A(s,t)

1

(1− |z|2)2
dA(z) (4.3.61)

− 1

π2

∫
A(s,t)

∫
A(s,t)

1

(1− zw̄)2(1− z̄w)2
dA(z)dA(w), (4.3.62)

where we have used that the convergence of (4.3.60) and (4.1.12) are locally uniform

on annuli that do not contain the unit circle so that we can pass the limit over the

integration. We remark that formally we need to consider a closed annulus the does

not contain the unit circle in the above. However, since the measure associated to the

integrals is Lebesgue area measure which is absolutely continuous, and the limiting

values above are continuous functions away from the unit circle, we have that the

boundary of the closed annulus has measure zero. Hence we just consider the open

annulus A(s, t).

Recall that (4.3.61) simply integrates as

1

π

∫
A(s,t)

1

(1− |z|2)2
dz =

t2 − s2

(1− t2)(1− s2)
. (4.3.63)

We will compute (4.3.62) separately depending on whether or not the annulus

is contained within the unit disk. We first consider the case when the annulus is

contained with in the unit disk. Since for x, y ∈ D we have

1

(1− xy)2
=

∞∑
n=0

(n+ 1)(xy)n,

switching to polar coordinates with z = reiθ and w = ueiϕ, the double integral (4.3.62)

becomes

1

π2

∫ 2π

0

∫ t

s

∫ 2π

0

∫ t

s

(
∞∑
k=0

(k + 1)(ru)keik(θ−ϕ)
∞∑
n=0

(n+ 1)(ru)nein(ϕ−θ)

)
rudrdθdudϕ.

(4.3.64)
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By the convergence of the above series being locally uniform in the unit disk, we can

interchange the infinite sums and integrals. After expanding the product of sums,

any sum with n ̸= k will give ∫ 2π

0

ei(k−n)θdθ = 0,

and similarly for the terms with ϕ. Thus only the terms n = k will survive the

integration. This yields (4.3.64) is now

4

∫ t

s

∫ t

s

∞∑
k=0

(k + 1)2(ru)2k+1drdu = 2

∫ t

s

∞∑
k=0

(k + 1)u2k+1(t2k+2 − s2k+2)du

=
∞∑
k=0

(t2k+2 − s2k+2)2

=
t4

1− t4
− 2

(st)2

1− (st)2
+

s4

1− s4

=
(t2 − s2)2(1 + (st)2)

(1− t4)(1− s4)(1− (st)2)
.

Therefore, combining the above with (4.3.63) we see that for A(s, t) ⊊ D

Var[Nn(A(s, t))] =
1

π

∫
A(s,t)

1

(1− |z|2)2
dz

− 1

π2

∫
A(s,t)

∫
A(s,t)

1

(1− zw̄)2(1− z̄w)2
dz dw

=
t2 − s2

(1− t2)(1− s2)
−
(

(t2 − s2)2(1 + (st)2)

(1− t4)(1− s4)(1− (st)2)

)
=

(t2 − s2)[1− s2(t4(2 + s2)− 2)]

(1− t4)(1− s4)(1− (st)2)
.

When A(s, t) ⊂ C \ D, notice that for x, y ∈ C \ D it follows that

1

(1− xy)2
=

1

(xy)2(1− (xy)−1)2
=

1

(xy)2

∞∑
n=0

(n+ 1)(xy)−n.

Thus setting x = z = reiθ and y = w = ueiϕ we have

1

(1− zw)2
1

(1− zw)2
=

1

(ru)4

∞∑
k=0

(k + 1)(ru)−keik(ϕ−θ)
∞∑
n=0

(n+ 1)(ru)−nein(θ−ϕ).
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As in the case in the unit disk, due to the orthogonality of the exponential func-

tion, within the integral of (4.3.62) only the terms when n = k will give a nonzero

integration to hence yield that (4.3.62) is

4

∫ t

s

∫ t

s

∞∑
k=0

(k + 1)2(ru)−2k−3drdu = −2

∫ t

s

∞∑
k=0

(k + 1)u−2k−3(t−2k−2 − s−2k−2)du

=
∞∑
k=0

(t−2k−2 − s−2k−2)2

=
t4

1− t4
− 2

(st)2

1− (st)2
+

s4

1− s4

=
−(t2 − s2)2(1 + (st)2)

(1− t4)(1− s4)(1− (st)2)
.

Combining the above with (4.3.63), we conclude that for A(s, t) ⊂ C \ D it follows

that

Var[Nn(A(s, t))] =
1

π

∫
A(s,t)

1

(1− |z|2)2
dz

− 1

π2

∫
A(s,t)

∫
A(s,t)

1

(1− zw̄)2(1− z̄w)2
dz dw

=
t2 − s2

(1− t2)(1− s2)
−
(

−(t2 − s2)2(1 + (st)2)

(1− t4)(1− s4)(1− (st)2)

)
=

t2 − s2

(1− t2)(1− s2)
+

(t2 − s2)2(1 + (st)2)

(1− t4)(1− s4)(1− (st)2)

=
(t2 − s2)[1− t2(s4(2 + t2)− 2)]

(1− t4)(1− s4)(1− (st)2)
.
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4.3.2 Proofs for Section 4.2

As in the case random sums with a finite index set, for GAF’s we have that for a

measurable set Ω ⊂ D,

Var[N(Ω)] = E[(N(Ω))2]− (E[N(Ω)])2

= E[N(Ω)]− E[N(Ω)] + E[(N(Ω))2]− (E[N(Ω)])2

= E[N(Ω)] + E[N(Ω)(N(Ω)− 1)]− (E[N(Ω)])2

=

∫
Ω

ρ(1)(z) dz +

∫
Ω

∫
Ω

ρ(2)(z, w) dz dw −
∫
Ω

∫
Ω

ρ(1)(z)ρ(1)(w) dz dw,

where the equality

E[N(Ω)(N(Ω)− 1)] =

∫
Ω

∫
Ω

ρ(2)(z, w) dz dw

is a known result.

Due to Hough, Krishnapur, Peres, and Virág (c.f. Corollary 3.4.2. on page 40 of

[49], or Proposition 8 of [88]) there are general formulas for correlation functions of

GAF’s which state that

ρ(n)(z1, . . . , zn) =
Perm(C −BA−1B∗)

πnDet(A) , (4.3.65)

where

A =
[
E[p(zi)p(zj)]

]
1≤i,j≤n

:= [K(zi, zj)]1≤i,j≤n,

B =
[
E[p′(zi)p(zj)]

]
1≤i,j≤n

:= [K(1,0)(zi, zj)]1≤i,j≤n,

C =
[
E[p′(zi)p′(zj)]

]
1≤i,j≤n

:= [K(1,1)(zi, zj)]1≤i,j≤n,

with Perm(·) denoting the permanent of a matrix, and B∗ the conjugate transpose of

the matrix B.

In the case for the random power series (4.2.2), due to random variables being

i.i.d. of mean zero and variance one, and along with Equation (12.3.17) of page 303
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in [111], the kernels that arises in the matrix A are of the form

K(z, w) =
∞∑
k=0

φk(z)φk(w) =
1

D(z)D(w)(1− zw)
, (4.3.66)

where

D(ξ) = D(W ; ξ) = exp

{
1

4π

∫ π

−π
logW (θ)

1 + ξe−iθ

1− ξe−iθ
dθ

}
. (4.3.67)

We note that under the assumption that the weight function W (θ) is from the Szegő

class, the function D(ξ) is analytic and non-vanishing in D (see Theorem 2.4.1. (i)

p. 144 of [104]). The other kernels for the matrices B and C in correlation functions

are the following derivatives of (4.3.66):

K(1,0)(z, w) =
∞∑
k=0

φ′
k(z)φk(w) =

(
w

1− zw
− D′(z)

D(z)

)
K(z, w), (4.3.68)

and

K(1,1)(z, w) =
∞∑
k=0

φ′
k(z)φ

′
k(w) =

(
z

1− zw
− D′(w)

D(w)

)
K(1,0)(z, w) +

K(z, w)

(1− zw)2
.

(4.3.69)

Proof of Theorem 4.2.1. In the case when n = 1, the matrices which make up the

formula (4.3.65) are A = K(z, z), B = K(1,0)(z, z), and C = K(1,1)(z, z). Thus

(4.3.65) can be written as

ρ(1)(z) =
K(1,1)(z, z)−K(1,0)(z, z)(K(z, z))−1K(1,0)(z, z)

πK(z, z)

=
K(z, z)K(1,1)(z, z)− |K(1,0)(z, z)|2

πK(z, z)2
. (4.3.70)

Evaluating (4.3.66), (4.3.68), and (4.3.69) on the diagonal, after simplifying it

follows that

K(z, z)K(1,1)(z, z)− |K(1,0)(z, z)|2 = 1

|D(z)|4(1− |z|2)4
=

1

(1− |z|2)2
K(z, z)2.

(4.3.71)

Combining (4.3.70) with (4.3.71) we achieve the result of the theorem.
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Proof of Theorem 4.2.2. To ease notation, we will write z1 = z and z2 = w. The

matrices which make up the formula for the second correlation function given by

(4.3.65) are

A =

K(z, z) K(z, w)

K(w, z) K(w,w)

 , B =

K(1,0)(z, z) K(1,0)(z, w)

K(1,0)(w, z) K(1,0)(w,w)

 ,

C =

K(1,1)(z, z) K(1,1)(z, w)

K(1,1)(w, z) K(1,1)(w,w)

 .
Setting

Ã =

 K(w,w) −K(z, w)

−K(w, z) K(z, z)

 ,
equation (4.3.65) can be written as

ρ(2)(z, w) =
Perm(Det(A)C −BÃB∗)

π2(Det(A))3 . (4.3.72)

After the matrix multiplication, we see that

Perm(Det(A)C −BÃB∗) = f(z, w)f(w, z) + g(z, w)g(w, z), (4.3.73)

where

f(z, w) = (K(z, z)K(w,w)− |K(z, w)|2)K(1,1)(z, z)− |K(1,0)(z, z)|2K(w,w)

+ 2Re
[
K(1,0)(z, w)K(w, z)K(1,0)(z, z)

]
− |K(1,0)(z, w)|2K(z, z), (4.3.74)

and

g(z, w) = (K(z, z)K(w,w)− |K(z, w)|2)K(1,1)(z, w)−K(w,w)K(1,0)(z, z)K(1,0)(w, z)

+K(w, z)K(1,0)(z, w)K(1,0)(w, z) +K(z, w)K(1,0)(z, z)K(1,0)(w,w)

−K(z, z)K(1,0)(z, w)K(1,0)(w,w). (4.3.75)
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Substituting the relations (4.3.66), (4.3.68), and (4.3.69), we see that the terms

which make up f(z, w) are

(K(z, z)K(w,w)− |K(z, w)|2)K(1,1)(z, z)

= K(z, z)
(
K(z, z)K(w,w)− |K(z, w)|2

)
·

[
1 + |z|2

(1− |z|2)2
− 2Re (zD′(z)/D(z))

1− |z|2
+

∣∣∣∣D′(z)

D(z)

∣∣∣∣2
]
, (4.3.76)

−|K(1,0)(z, z)|2K(w,w) = −(K(z, z))2K(w,w)

·

[
|z|2

(1− |z|2)2
− 2Re (zD′(z)/D(z))

1− |z|2
+

∣∣∣∣D′(z)

D(z)

∣∣∣∣2
]
,

(4.3.77)

2Re
[
K(1,0)(z, w)K(w, z)K(1,0)(z, z)

]
= 2K(z, z)|K(z, w)|2Re

[
zw

(1− |z|2)(1− zw)
− wD′(z)

D(z)(1− zw)
− zD′(z)

D(z)(1− |z|2)

]

+ 2K(z, z)|K(z, w)|2
∣∣∣∣D′(z)

D(z)

∣∣∣∣2 , (4.3.78)

and

−|K(1,0)(z, w)|2K(z, z) = −K(z, z)|K(z, w)|2

·

(
|w|2

|1− zw|2
− 2Re

[
wD′(z)

D(z)(1− zw)

]
+

∣∣∣∣D′(z)

D(z)

∣∣∣∣2
)
.

(4.3.79)

Combining (4.3.76), (4.3.77), (4.3.78), (4.3.79), we see that from equation (4.3.74) we

have

f(z, w) =
(K(z, z))2K(w,w)

(1− |z|2)2

−K(z, z)|K(z, w)|2
[

1 + |z|2

(1− |z|2)2
− 2Re (zw/(1− zw))

1− |z|2
+

|w|2

|1− zw|2

]
=

|z − w|4

|D(z)|4|D(w)|2(1− |w|2)(1− |z|2)4|1− zw|4
. (4.3.80)
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Using the relations (4.3.66), (4.3.68), and (4.3.69), the terms within g(z, w) are

(K(z, z)K(w,w)− |K(z, w)|2)K(1,1)(z, w)

= K(z, w)
(
K(z, z)K(w,w)− |K(z, w)|2

)
·

[
1 + zw

(1− zw)2
− 1

1− zw

(
zD′(z)

D(z)
+
wD′(w)

D(w)

)
+
D′(z)D′(w)

D(z)D(w)

]
,

(4.3.81)

−K(w,w)K(1,0)(z, z)K(1,0)(w, z)

= −K(z, z)K(w,w)K(z, w)

·

[
|z|2

(1− |z|2)(1− zw)
− zD′(w)

(1− |z|2)D(w)
− zD′(z)

(1− zw)D(z)
+
D′(z)D′(w)

D(z)D(w)

]
,

(4.3.82)

K(w, z)K(1,0)(z, w)K(1,0)(w, z)

= K(z, w)|K(z, w)|2
[

zw

(1− zw)2
− 1

1− zw

(
wD′(w)

D(w)
+
zD′(z)

D(z)

)
+
D′(z)D′(w)

D(z)D(w)

]
,

(4.3.83)

K(z, w)K(1,0)(z, z)K(1,0)(w,w)

= K(z, z)K(w,w)K(z, w)

·

[
zw

(1− |z|2)(1− |w|2)
− zD′(w)

(1− |z|2)D(w)
− wD′(z)

(1− |w|2)D(z)

D′(z)D′(w)

D(z)D(w)

]
(4.3.84)

and

−K(z, z)K(1,0)(z, w)K(1,0)(w,w)

= −K(z, z)K(w,w)K(z, w)

·

[
|w|2

(1− |w|2)(1− zw)
− wD′(w)

(1− zw)D(w)
− wD′(z)

(1− |w|2)D(z)
+
D′(z)D′(w)

D(z)D(w)

]
.

(4.3.85)
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Combining (4.3.81), (4.3.82), (4.3.83), (4.3.84), (4.3.85), we see that

g(z, w) = −K(z, w)|K(z, w)|2

(1− zw)2

+K(z, z)K(w,w)K(z, w) ·

[
1 + zw

(1− zw)2
− |z|2

(1− |z|2)(1− zw)

+
zw

(1− |z|2)(1− |w|2)
− |w|2

(1− |w|2)(1− zw)

]

=
−|z − w|4

D(z)D(w)|D(z)D(w)|2(1− |w|2)2(1− |z|2)2(1− zw)4(1− zw)
. (4.3.86)

Thus from (4.3.80) and (4.3.86) we achieve

Perm(Det(A)C −BÃB∗) = f(z, w)f(w, z) + g(z, w)g(w, z)

=
|z − w|8

|D(z)D(w)|6(1− |z|2)5(1− |w|2)5|1− zw|8

+
|z − w|8

|D(z)D(w)|6(1− |z|2)4(1− |w|2)4|1− zw|10

=

(
1

(1− |z|2)2(1− |w|2)2
− 1

|1− zw|4

)
·

(
1

|D(z)D(w)|2(1− |z|2)(1− |w|2)

− 1

|D(z)D(w)|2|1− zw|2

)3

=

(
1

(1− |z|2)2(1− |w|2)2
− 1

|1− zw|4

)
(Det(A))3.

Therefore, combining the above with (4.3.72) we arrive at the desired expression for

the second correlation function.
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APPENDICES

Derivation of the Intensity Function for a Random Polynomial with

I.I.D. Complex-Valued Standard Gaussian Random Variables Spanned

by a Polynomial Basis

In this Appendix we derive the intensity function for the expected number of

zeros of a random polynomial with complex-valued i.i.d. standard Gaussian random

variables spanned by a polynomial basis given in Chapter 3 (3.2.6). We note that

the formula was also derived by Shiffman and Zelditch [100], Ledoan [66] (assuming

the spanning functions are entire functions that are real-valued on the real line),

and Peres and Virá [88] (assuming the spanning functions were entire functions).

The proof we give follows the method given by Vanderbei [115] for the case when

the random variables are real-valued i.i.d. standard Gaussian, and the spanning

functions are entire functions that are real-valued on the real line. Assuming that

the spanning functions of random polynomial are a polynomial basis, we are able to

give an alternate proof than given in [100], [66], and [88] that fully justifies all steps

(some of which that were previously deemed ”tedious, but doable” with no indication

on how one would proceed).

To be specific of the result, let {fj} be a sequence of polynomials such that

deg fj = j and fj, for j ∈ {0, 1, . . . , n}. Set

Pn(z) =
n∑
j=0

ηjfj(z), z ∈ C, (A.1)

where n is a fixed integer, and ηj = αj+ iβj, j = 0, 1, . . . , n, with {αj}nj=0 and {βj}nj=0

being sequences of i.i.d. real-valued standard Gaussian random variables.
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Theorem 0.0.1 Let Pn(z) be the random sum (A.1) with complex-valued i.i.d. Gaus-

sian coefficients. For each Jordan region Ω, the intensity function ρ
(1)
n (z) satisfies

E[Nn(Ω)] =

∫
Ω

ρ(1)n (x, y) dx dy,

with

ρ(1)n (x, y) = ρ(1)n (z) =
K

(1,1)
n (z, z)Kn(z, z)−

∣∣∣K(0,1)
n (z, z)

∣∣∣2
π (Kn(z, z))

2 , (A.2)

where

Kn(z, w) =
n∑
j=0

fj(z)fj(w), K(0,1)
n (z, w) =

n∑
j=0

fj(z)f ′
j(w), (A.3)

and

K(1,1)
n (z, w) =

n∑
j=0

f ′
j(z)f

′
j(w). (A.4)

The proof of this theorem consists of two main lemmas that relate the expected

number of zeros of the random sum Pn to the kernels given in (A.3) and (A.4). To fully

prove the first of these two lemmas, there are four additional lemmas required. Three

of these gives a known result that completely explains what the complex Jacobian is

in our situation. The other additional lemma shows the justification of the use of the

complex form of the Fubini-Tonelli Theorem. Once these lemmas are established, the

proof of Theorem 0.0.1 is presented.

As previously mentioned, to prove Theorem 0.0.1 we follow the method of proof

given by Vanderbei in [115]. We note that many of the parts of the proof of this

theorem are nearly identical to that given by Vanderbei in [115]. The one major

difference in our proof is that since the random variables in the random sum are

complex-valued, we will work with their real and imaginary parts, which in turn

will make the covariance matrix we compute different than the one in the result by

Vanderbei. The other major difference in our proof is that since we are restricting

to a polynomial basis {fj} with deg fj = j, j = 0, . . . , n, we are able to fully justify

some parts of Vanderbei’s method.

Our first needed lemma is the following:
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Lemma 0.0.1 For each Jordan region Ω ⊂ C, it follows that

E[Nn(Ω)] =
1

2πi

∫
∂Ω

E
[
P ′
n(z)

Pn(z)

]
dz. (A.5)

Proof. Using the argument principle in [114] on page 79, we have an explicit formula

for the random variable Nn(Ω) given by

Nn(Ω) =
1

2πi

∫
∂Ω

P ′
n(z)

Pn(z)
dz.

Taking the expectation and then interchanging the expectation and the contour in-

tegral via the complex form of the Fubini-Tonelli Theorem (Theorem 8.8, p. 164 of

[95]) we obtain the desired result. A full proof of the justification of the exchange of

the contour integral and the expectation is in the next two lemmas.

To justify the use of the Fubini-Tonelli we will use a change of variables that

relates the zeros of the random sum Pn to the random variables {ηj}. In our setting,

this change of variables will require knowing the complex Jacobian. The next three

of these lemmas is to identify this Jacobian. The first lemma is given in [67]. For

convenience of the reader provide a detailed proof of this lemma.

Lemma 0.0.2 Let U ⊂ Cn be an open set and f : U → Cn be a holomorphic function.

Let DRf(a) denote the real Jacobian matrix of f and

Df(a) =

[
∂fj
∂zk

(a)

]
1≤j,k≤n

,

which is the holomorphic derivative (or complex Jacobian Matrix) of f . Then

|detDf(a)|2 = detDRf(a) (A.6)

Proof. Observe that by U ⊂ Cn and f : U → Cn, the matrix Df(a) will be an

n × n complex matrix. Since f is holomorphic each fj(zk) = u(zk) + iv(zk), where

zk = xk + iyk, for j = 1, . . . , n satisfies the Cauchy Riemann Equations. Hence we

can write the entries in the matrix Df(a) as

∂fj
∂zk

(a) =
∂uj
∂xk

(a) + i
∂vj
∂xk

(a).
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We can also write each entry ∂fj
∂zk

(a) of Df(a) as a 2× 2 matrix of the form

∂fj
∂zk

(a) =

 ∂uj
∂xk

∂uj
∂yk

∂vj
∂xk

∂vj
∂yk

 .

Using the above expression for each j, k = 1, . . . , n, rewrite the matrix Df(a) as

2n× 2n real matrix DRf(a). Let us now make a change of basis from (x+ iy, x+ iy)

to (x + iy, x − iy) and denote the matrix relative to this basis change as M . Note

that under this change of basis, the 2n× 2n matrix M will take the following form:

M =



1 0 · · · 0 1 0 · · · 0

−i 0 · · · 0 i 0 · · · 0

0 1 · · · 0 0 1 · · · 0

0 −i · · · 0 0 i · · · 0

... ... . . . ... ... ... . . . ...

0 0 · · · 1 0 0 · · · 1

0 0 · · · −i 0 0 · · · i



,

with inverse

M−1 =



1
2

i
2

0 0 · · · 0 0

0 0 1
2

i
2

· · · 0 0

... ... ... ... . . . ... ...

0 0 0 0 · · · 1
2

i
2

1
2

− i
2

0 0 · · · 0 0

0 0 1
2

− i
2

· · · 0 0

... ... ... ... . . . ... ...

0 0 0 0 · · · 1
2

− i
2



.

Furthermore, this change of basis matrix M gives us that

M−1DRf(a)M =

Df(a) 0

0 Df(a)

 .
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Therefore

det(DRf(a)) = det(M)−1 det(M) det(DRf(a))

= det(M−1) det(DRf(a)) det(M)

= det(M−1DRf(a)M)

= det(Df(a)Df(a))

= det(Df(a))det(Df(a))

= det(Df(a))det(Df(a))

= |det(Df(a))|2 .

We now use the previous lemma to compute the determinant of the real Jacobian

matrix for a function that maps roots of a monic polynomial to it’s coefficients. For

this, let

p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0,

where an−1, an−2, . . . , a0 are complex numbers, and z is a complex variable. Let

z1, z2, . . . , zn be the zeros of p(z). By Vieta’s formulas, we have the relationship

between the coefficients and zeros is given by the following:

−an−1 = z1 + z2 + · · ·+ zn,

an−2 = z1z2 + z1z3 + · · ·+ z2z3 + z2z4 + · · ·+ zn−1zn

...

(−1)na0 = z1z2 · · · zn.

Let T : Cn → Cn be the map

T (z1, . . . , zn) = (an−1, . . . , a0).
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Lemma 0.0.3 For p(z) and T as above, the determinant of the real Jacobian matrix

for T is ∏
1≤i<j≤n

|zi − zj|2. (A.7)

Proof. From Vieta’s Equations we see that the determinant of the complex Jacobian

matrix of T is

detDT = det



−1 −1 · · · −1
n∑
i=2

zi

n∑
i=1
i̸=2

zi · · ·
n−1∑
i=1

zi

... ... . . . ...

(−1)n
n∏
i=2

zi (−1)n
n∏

i=1
i ̸=2

zi · · · (−1)n
n−1∏
i=1

zi



= (−1)n+1det



1 1 · · · 1
n∑
i=2

zi

n∑
i=1
i̸=2

zi · · ·
n−1∑
i=1

zi

... ... . . . ...
n∏
i=2

zi

n∏
i=1
i̸=2

zi · · ·
n−1∏
i=1

zi


:= (−1)n+1 detA.

If two zeros zi and zj, where i ̸= j, of p(z) are such that zi = zj, then two columns in

the above matrix will be equal. When this happens, the determinant above will be

zero. Since zi and zj were two arbitrary zeros of p(z), we have that
∏

1≤i<j≤n(zi− zj)

is a factor of detDT .

When one computes the determinant of the matrix A by expanding the determi-

nant along the first row, each term in the computed determinant we will have powers

of the product of zi’s, i = 1, . . . , n, such that the sum of these powers in each term

is
∑n

k=1(k − 1) = 1
2
n(n − 1). That is, detA, and consequently detDT , will be a

homogenous polynomial in the product of the zi’s, i = 1, . . . , n, of degree 1
2
n(n− 1).
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If one expands the product
∏

1≤i<j≤n(zi − zj) we see that each term in this ex-

panded product will also be a product of the zi’s, i = 1, . . . , n, with powers that sum

to 1
2
n(n − 1). Hence

∏
1≤i<j≤n(zi − zj) is also a homogenous polynomial of degree

1
2
n(n− 1).

Since both detA and
∏

1≤i<j≤n(zi − zj) are homogenous polynomials of degree
1
2
n(n−1), to show that detA =

∏
1≤i<j≤n(zi−zj) we must show the each coefficient of

these polynomials are the same. Note that when expanding detA and
∏

1≤i<j≤n(zi−

zj), all terms that are of the form
∏n

j=1 zj cancel out. Hence term in each of the

homogenous polynomials is only a product of n− 1 distinct zj’s.

Recall that for a matrix B = (bij)1≤i,j≤n we have the formula

detB =
∑

σ a permutations
of {1,2,...,n}

sign(σ)b1σ(1)b2σ(2) · · · bnσ(n).

Thus expanding out detA the coefficients of the homogenous polynomial are (−1)k,

k = 0, . . . , n. Similarly expanding out
∏

1≤i<j≤n(zi − zj) the coefficients are (−1)k,

k = 0, . . . , n. Consequently each term in detA and
∏

1≤i<j≤n(zi − zj) have the same

coefficient. Hence

detA =
∏

1≤i<j≤n

(zi − zj),

and which gives us

detDT = (−1)n+1 detA = (−1)n+1
∏

1≤i<j≤n

(zi − zj).

Therefore, using Lemma 0.0.2 we obtain

detDRT = |detDT |2 =

∣∣∣∣∣(−1)n+1
∏

1≤i<j≤n

(zi − zj)

∣∣∣∣∣
2

=
∏

1≤i<j≤n

|zi − zj|2.

We will now apply the previous lemmas to general polynomials in z. To this end,

let

q(z) = ηnz
n + ηn−1z

n−1 + · · ·+ η1z + η0,
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where ηn, ηn−1, . . . , η0 are complex numbers, z is a complex variable, and ζ1, ζ2, . . . , ζn

are the zeros of q(z). As before, using Vieta’s formulas we have the relationship

between the coefficients and zeros given by the following:

−ηn−1

ηn
= ζ1 + ζ2 + · · ·+ ζn,

ηn−2

ηn
= ζ1ζ2 + ζ1ζ3 + · · ·+ ζ2ζ3 + ζ2ζ4 + · · ·+ ζn−1ζn

...

(−1)n
η0
ηn

= ζ1ζ2 · · · ζn.

Let ϕ : Cn → Cn be the map

ϕ(ζ1, . . . , ζn) =

(
ηn−1

ηn
, . . . ,

η0
ηn

)
. (A.8)

Lemma 0.0.4 For q(z) and ϕ as above, the determinant of the real Jacobian matrix

of ϕ is

|ηn|2n
∏

1≤i<j≤n

|ζi − ζj|2. (A.9)

Proof. Using the Vieta’s Equations, the determinant of the complex Jacobian matrix
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for ϕ is

detDϕ = det



−ηn −ηn · · · −ηn

ηn

n∑
i=2

ζi ηn

n∑
i=1
i ̸=2

ζi · · · ηn

n−1∑
i=1

ζi

... ... . . . ...

(−1)nηn

n∏
i=2

ζi (−1)nηn

n∏
i=1
i̸=2

ζi · · · (−1)nηn

n−1∏
i=1

ζi



= (−1)n+1ηnndet



1 1 · · · 1
n∑
i=2

ζi

n∑
i=1
i̸=2

ζi · · ·
n−1∑
i=1

ζi

... ... . . . ...
n∏
i=2

ζi

n∏
i=1
i̸=2

ζi · · ·
n−1∏
i=1

ζi


.

Observe that the determinant above is exactly the determinant that was calculated

in Lemma 0.0.3. Therefore using Lemma 0.0.2 and then Lemma 0.0.3 to compute the

determinant of the above matrix, we obtain

detDRϕ =

∣∣∣∣∣(−1)n+1ηnn
∏

1≤i<j≤n

(ζi − ζj)

∣∣∣∣∣
2

= |ηn|2n
∏

1≤i<j≤n

|ζi − ζj|2.

Justification of the use of Fubini-Tonelli. Since Pn and P ′
n both depend on the ran-

dom variables η0, η1, . . . , ηn, we write Pn(z, η⃗) and P ′
n(z, η⃗) where η⃗ := (η0, . . . , ηn).

We denote the joint density function for the random variables η0, . . . , ηn by

f(η0, η1, . . . , ηn) = f(η⃗) =
exp (−

∑n
k=0 |ηk|2)

πn+1
.

To use the Fubini-Tonelli Theorem we must show
∣∣∣P ′

n(z,η⃗)
Pn(z,η⃗)

∣∣∣ is measurable and that∫
R2(n+1)

∫
∂Ω

∣∣∣∣P ′
n(z, η⃗)

Pn(z, η⃗)

∣∣∣∣ |dz| f(η⃗) dV <∞. (A.10)
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Observe that since E[Nn(Ω)] is a local property, it suffices to prove (A.10) when

Ω is a disk D := {z ∈ C : |z| < R}.

We will first prove (A.10) when Pn(z) is just a random algebraic polynomial

with complex coefficients, and then generalize to random polynomials spanned by

polynomials fj(z) where deg fj(z) = j for j = 0, 1, . . . , n. To this end, let

Pn(z) = ηnz
n + ηn−1z

n−1 + · · ·+ η0,

and let {ζk}nk=1 = {ζk(η⃗)}nk=1 be the zeros of Pn(z). Then∣∣∣∣P ′
n(z)

Pn(z)

∣∣∣∣ =
∣∣∣∣∣
n∑
k=1

1

z − ζk

∣∣∣∣∣ ≤
n∑
k=1

∣∣∣∣ 1

z − ζk

∣∣∣∣ .
From the above we see that if we can show that all the quotients

∣∣∣ 1
z−ζk

∣∣∣, k = 1, . . . , n

satisfy ∫
R2(n+1)

∫
∂D

∣∣∣∣ 1

z − ζk(η⃗)

∣∣∣∣ |dz| f(η⃗) dV <∞, (A.11)

appealing to the linearity of the integration and the triangle inequality we will have

(A.10).

For notational sake, we write dVk to stand for the volume measure in Ck. The

integration will be done as follows:∫
C(n+1)

∫
∂D

∣∣∣∣ 1

z − ζk(η0, . . . , ηn)

∣∣∣∣ |dz| f(η0, . . . , ηn) dVn+1

=

∫
C

∫
Cn

∫
∂D

∣∣∣∣ 1

z − ζk(η0, . . . , ηn)

∣∣∣∣ |dz| f(η0, . . . , ηn−1) dVn f(ηn) dηn,

where by abuse of notation we mean that

f(η0, . . . , ηn−1) =
exp

(
−
∑n−1

k=0 |ηk|2
)

πn
and f(ηn) =

exp(−|ηn|2)
π

.

Fixing the outer variable ηn, by Lemma 0.0.4 we have an almost everywhere

differentiable change of variables ϕ : Cn → Cn given at (A.8) from the set of roots to

the set of coefficients with Jacobian determinant

|ηn|2n
∏

1≤i<j≤n

|ζi − ζj|2 := J(ϕ).
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Let us first consider the case when an arbitrary zero ζk(η⃗) of Pn(z) lies on the

contour ∂D. Define A := {coefficients of Pn(z) : ζk(η⃗) ∈ ∂D}. We will show that

Vn+1(A) = 0. Since

ϕ({roots of Pn(z)}) = {coefficients of Pn(z)},

we have

ϕ({roots of Pn(z) : ζk(η⃗) ∈ ∂D}) = A.

Using the change of variables it follows that

Vn(A) =

∫
ϕ({roots of Pn(z):ζk(η⃗)∈∂D})

dVn

=

∫
{roots of Pn(z):ζk(η⃗)∈∂D}

J(ϕ) dVn

≤
∫
∏n

k=1 ∂D(0,R)

J(ϕ) dVn

= 0,

where the last equality follows since
∏n

k=1 ∂D(0, R) is direct product of n circles which

has Cn−1-dimension and is a strictly less dimensional set than what is being integrated

over in the Cn-dimensional volume Vn. Hence we have Vn(A) = 0, and consequently

Vn+1(A) = 0 as needed. Therefore the set A is negligible for (A.11) to hold, so that

|P ′
n(z)/Pn(z)| is measurable.

We now turn to the case when the zeros of Pn(z) do not lie on the contour ∂D

that is being integrated over. When |z − ζk(η⃗)| ≥ 1 for z ∈ ∂D, trivially we have∣∣∣ 1
z−ζk(η⃗)

∣∣∣ ≤ 1, so that∫
R2(n+1)

∫
∂D

∣∣∣∣ 1

z − ζk(η⃗)

∣∣∣∣ |dz| f(η⃗) dV ≤ 2πR <∞.

Consider the case when 0 < |z−ζk(η⃗)| < 1, and for now let us assume that ζk ∈ D.

Let us further assume that ζk is on the line segment (0, R). Then
∣∣∣ 1
z−ζk(η⃗)

∣∣∣ the largest
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when arg z ∈ (−π
2
, π
2
), and for all z such that arg z ∈ [π

2
,−π

2
] we have |z− ζk(η⃗)| ≥ R.

Thus ∫
∂D

∣∣∣∣ 1

z − ζk(η⃗)

∣∣∣∣ |dz| =
∫ π

2

−π
2

∣∣∣∣ 1

z − ζk(η⃗)

∣∣∣∣ |dz|+
∫ −π

2

π
2

∣∣∣∣ 1

z − ζk(η⃗)

∣∣∣∣ |dz|

≤
∫ π

2

−π
2

∣∣∣∣ 1

z − ζk(η⃗)

∣∣∣∣ |dz|+ π

=

∫ π
2

0

2R√
(R cos t− ζk(η⃗))2 + (R sin t)2

dt+ π, (A.12)

where have used that the integrand is an even function of t to obtain the last equality.

Given that ζk ∈ (0, R) and |R−ζk| < 1, somewhere on the interval [0, π
2
] is R−ζk.

Hence for the integral above we split the integration as follows∫ π
2

0

2R√
(R cos t− ζk(η⃗))2 + (R sin t)2

dt =

∫ R−ζk

0

+

∫ π
2

R−ζk
:= I1 + I2.

Since 0 ≤ (R cos t − ζk(η⃗))
2 and 0 ≤ 2

π
t ≤ sin t when t ∈ [0, π

2
], for I2 we have the

bound

I2 ≤
∫ π

2

R−ζk

2R√
(R sin t)2

dt ≤
∫ π

2

R−ζk

2
2
π
t
dt = π log

(π
2

)
+ π log

(
1

R− ζk

)
.

For I1, using (cos t)2 + (sin t)2 = 1 and cos t ≤ 1, yields

I1 =

∫ R−ζk

0

2R√
R2 − 2Rζk cos t+ ζ2k

dt ≤
∫ R−ζk

0

2R√
R2 − 2Rζk + ζ2k

dt = 2R.

Combining the estimates for I1 and I2 and using (A.12) gives us∫
∂D

∣∣∣∣ 1

z − ζk(η⃗)

∣∣∣∣ |dz| ≤ C + π log

(
1

R− ζk

)
,

where C = 2R + π log
(
π
2

)
+ π.

Hence to show (A.11) we need to show that∫
R2(n+1)

log

(
1

R− ζk

)
f(η⃗) dV <∞.

Before showing the above bound, we note that all the estimates were under the

assumption that ζk ∈ (0, R). Since that argument given is rotationally invariant, we
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can have ζk anywhere in the disk D if we replace in our estimates the R − ζk with

R − |ζk|. Furthermore, since we have assumed that 0 < |z − ζk| < 1 with z ∈ ∂D, it

is possible that ζk is outside the disk D. Replacing in our argument |R− |ζk|| where

R− |ζk| is, we now have a bound that will work for all 0 < |z − ζk| < 1. Taking this

into account and using the change of variables with the map ϕ from the set of zeros

to the set of coefficients yields∫
R2(n+1)

log

(
1

|R− |ζk||

)
f(η⃗) dV

=

∫
R2

∫
R2n

log

(
1

|R− |ζk||

)
f(ϕ(η0, . . . , ηn−1))|ηn|2n

∏
1≤i<j≤n

|ζi − ζj|2 dVn f(ηn) dV1.

We denote

f(ϕ(η0, . . . , ηn−1)) = f

(
−ηn

n∑
i=1

ζi, ηn
∑
i<j

ζiζj, . . . , (−1)nηn

n∏
i=1

ζi

)

= exp

−

∣∣∣∣∣ηn
n∑
i=1

ζi

∣∣∣∣∣
2

−

∣∣∣∣∣ηn∑
i<j

ζiζj

∣∣∣∣∣
2

− · · · −

∣∣∣∣∣ηn
n∏
i=1

ζi

∣∣∣∣∣
2
 /πn

:= g(ζ).

To facilitate the computation, observe that since we have assumed that 0 < |z −

ζk| < 1 with z ∈ ∂D, we have |ζk| < R + 1. Thus

n∏
i=1
i̸=k

|ζk − ζi|2 ≤
n∏

i=1
i̸=k

(|ζk|+ |ζi|)2 <
n∏

i=1
i ̸=k

(R + 1 + |ζi|)2.

The integral which we need to bound has integration with respect to ζk and posses

a logarithmic singularity when |ζk| = R. After moving the above mentioned product

outside the integration with respect to ζk, the integral that we need to show is bounded

is ∫
R2

log

(
1

|R− |ζk||

)
g(ζ) dV1.

We will use polar integration with r being the radial variable to work with the

above integral. When r ≥ R+ 1 we have |z − ζk| ≥ 1 for z ∈ ∂D. Since this case has
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already be handled, the limits of integration with respect to r that we need to take

care of will be from 0 to R+ 1. Taking this into account and using polar integration

we have ∫
{ζk: 0<|z−ζk|<1, z∈∂D}

log

(
1

|R− |ζk||

)
g(ζ) dV1

=

∫ 2π

0

∫ R+1

0

log

(
1

|R− r|

)
g(r, θ)r dθ dr

=

∫ 2π

0

∫ R

0

log

(
1

|R− r|

)
g(r, θ)r dθ dr

+

∫ 2π

0

∫ R+1

R

log

(
1

|R− r|

)
g(r, θ)r dθ dr

:= I3 + I4,

where g(r, θ) is the same as g(ζ) except replacing ζk by reiθ where it shows up in the

expression for g(ζ) and not altering the other zeros ζi, i = 1, . . . , n, i ̸= k.

For the I3, observe that∫ R

0

log

(
1

|R− r|

)
dr =

∫ R

0

log

(
1

R− r

)
dr = R−R logR <∞.

Since the function g(r, θ)r is a bounded function, it follows that

I3 =

∫ 2π

0

∫ R

0

log

(
1

|R− r|

)
g(r)r dθ dr

≤ 2πR max
{ζk∈D}

g(ζ)

∫ R

0

log

(
1

R− r

)
dr

= 2π max
{ζk∈D}

g(ζ)(R2 −R2 logR).

In I4 we have∫ R+1

R

log

(
1

|R− r|

)
dr =

∫ R+1

R

log

(
1

r −R

)
dr = 1.
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Again since the function g(r, θ)r is bounded function, we have

I4 =

∫ 2π

0

∫ R+1

R

log

(
1

|R− r|

)
g(r)r dθ dr

≤ 2π(R + 1) max
{ζk∈D(0,R+1)\D}

g(ζ)

∫ R+1

R

log

(
1

r −R

)
dr

= 2π max
{ζk∈D(0,R+1)\D}

g(ζ)(R + 1).

Therefore we have that I3 and I4 are convergent integrals. Taking into account

the bound on the Jacobian that was obtained, and setting

K1 := 2π(R2 −R2 logR) and K2 := 2π(R + 1),

to complete this case of the proof we need that

K1

∫
R2

∫
R2n−2

|ηn|2n
∏

1≤i<j≤n
i,j ̸=k

|ζi − ζj|2
n∏

i=1
i̸=k

(R + 1 + |ζi|)2 max
{ζk∈D}

g(ζ)f(ηn) dVn−1 dV1

and

K2

∫
R2

∫
R2n−2

|ηn|2n
∏

1≤i<j≤n
i,j ̸=k

|ζi − ζj|2
n∏

i=1
i̸=k

(R+1+|ζi|)2 max
{ζk∈D(0,R+1)\D}

g(ζ)f(ηn) dVn−1 dV1

are finite.

Notice that both

max
{ζk∈D}

g(ζ) and max
{ζk∈D(0,R+1)\D}

g(ζ)

decay at infinity exponentially with each |ζi| → ∞, i = 1, . . . , n. Hence the above

two integrals are convergent. Therefore when the zero ζk is not on the contour, the

bound (A.11) and consequently the bound (A.10) holds true.

This completes the justification of the use of the Fubini-Tonelli Theorem when

the random sum is a random algebraic polynomial.

Now assume that

Pn(z) =
n∑
j=0

νjfj(z),
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where the νj’s are complex Gaussian random variables and the fj’s are polynomials

such that

fj(z) = aj,jz
j + aj,j−1z

j−1 + · · ·+ aj,0

with aj,i ∈ C for i = 0, 1, . . . , j and j = 0, 1 . . . , n. Then

Pn(z) = νnan,nz
n

+ (νnan,n−1 + νn−1an−1,n−1)z
n−1

+ (νnan,n−2 + νn−1an−1,n−2 + νn−2an−2,n−2)z
n−2

...

+ νnan,0 + νn−1an−1,0 + · · ·+ ν0a0,0.

Let us now make the following change of variables

ηn = νnan,n

ηn−1 = νnan,n−1 + νn−1an−1,n−1

ηn−2 = νnan,n−2 + νn−1an−1,n−2 + νn−2an−2,n−2

...

η0 = νnan,0 + νn−1an−1,0 + · · ·+ ν0a0,0,

and call the map which makes this change of variables ψ. That is for

ν⃗ = (νnan,n, νnan,n−1 + νn−1an−1,n−1, . . . , νnan,0 + νn−1an−1,0 + · · ·+ ν0a0,0),

we have ψ(ν⃗) = (ηn, . . . , η0) = η⃗.

The real Jacobian determinant for this change of variables is

| detDψ|2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣
det



an,n 0 0 · · · 0

an,n−1 an−1,n−1 0 · · · 0

... ... ... . . . ...

an,0 an−1,0 an−2,0 · · · a0,0



∣∣∣∣∣∣∣∣∣∣∣∣∣

2

=
n∏
j=0

|aj,j|2.
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Since Pn(z) depends on νn, . . . , ν0, we write Pn(z) as Pn(z, ν⃗). Using the change

of variables formula we have∫
ψ(R2(n+1))

∫
∂Ω

∣∣∣∣P ′
n(z, ν⃗)

Pn(z, ν⃗)

∣∣∣∣ |dz| f(ν⃗) dV

=

∫
R2(n+1)

∫
∂Ω

∣∣∣∣P ′
n(z, ψ(ν⃗))

Pn(z, ψ(ν⃗))

∣∣∣∣ |dz| f(ψ(ν⃗))
n∏
j=0

|aj,j|2 dV

=
n∏
j=0

|aj,j|2
∫
R2(n+1)

∫
∂Ω

∣∣∣∣P ′
n(z, η⃗)

Pn(z, η⃗)

∣∣∣∣ |dz| f(η⃗) dV <∞,

since
∏n

j=0 |aj,j|2 <∞, and by our previous calculations.

Also with a calculation analogously as done to show that |P ′
n(z)/Pn(z)| is measur-

able when Pn(z) was assumed to be a random algebraic polynomial, using the change

of variable map ψ, we have that |P ′
n(z, ν⃗)/Pn(z, ν⃗)| is measurable.

Therefore by |P ′
n(z, ν⃗)/Pn(z, ν⃗)| being measurable, and by the above bound, we

are justified in using the complex version of the Fubini-Tonelli theorem to exchange

the expectation and the contour integral when

Pn(z) =
n∑
j=0

νjpj(z).

To prove Theorem 0.0.1 we need one more lemma.

Lemma 0.0.5 The following holds:

E
[
P ′
n(z)

Pn(z)

]
=
K

(0,1)
n (z, z)

Kn(z, z)
.

Proof. Since Pn(z) =
∑n

j=0 ηjfj(z) and P
′
n(z) =

∑n
j=0 ηjfj

′(z), with ηj = αj + iβj,

are both complex Gaussian random variables, we will work their real and imaginary

parts

Re Pn(z) =
n∑
j=0

(αjaj − βjbj) := ξ1, Im Pn(z) =
n∑
j=0

(αjbj + βjaj) := ξ2,
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Re P ′
n(z) =

n∑
j=0

(αjcj − βjdj) := ξ3, Im P ′
n(z) =

n∑
j=0

(αjdj + βjcj) := ξ4,

where

aj = Re fj(z), bj = Im fj(z), cj = Re f ′

j(z), dj = Im f
′

j(z).

Following Vanderbei’s method proof, we will now be forming the covariance matrix

of the vector ξ := (ξ1, ξ2, ξ3, ξ4)
T . Before doing so, observe that since the random

variables {αj}nj=0 and {βj}nj=0 are independent identically distributed N(0, 1), for

j = 0, 1, . . . , n we have that E[αj] = E[βj] = 0 and E[α2
j ] = E[β2

j ] = 1. Thus

by the expectation being linear, it follows that E[ξ1] = E[ξ2] = E[ξ3] = E[ξ4] = 0.

Consequently each entry in the covariance matrix for ξ is of the form E[(ξi−E[ξi])(ξk−

E[ξk])] = E[ξiξk], where i, k = 1, . . . , 4. Using these observations, by definition of the

covariance matrix we see that

Cov[ξ] = E
[
ξξT
]
=



E[ξ21 ] E[ξ1ξ2] E[ξ1ξ3] E[ξ1ξ4]

E[ξ2ξ1] E[ξ22 ] E[ξ2ξ3] E[ξ2ξ4]

E[ξ3ξ1] E[ξ3ξ2] E[ξ23 ] E[ξ3ξ4]

E[ξ4ξ1] E[ξ4ξ2] E[ξ4ξ3] E[ξ24 ]


. (A.13)

Observe that the matrix Cov[ξ] is a symmetric matrix. If the matrix is positive

definite, by a known result in matrix theory (c.f. Theorem 5.2-3 p. 88 of [45]), the

matrix can be represented as LLT , where L is a lower triangular matrix. We will

first show that Cov[ξ] is real-valued. To this end, recall that the random variables

{αj}nj=0 and {βj}nj=0 are independent identically distributed N(0, 1); consequently

E[ων] = E[ω]E[ν] for ω and ν being any two distinct elements among the αj’s and

the βj’s. Using these properties and the definitions of the sums Kn(z, z), K(0,1)
n (z, z),
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and K
(1,1)
n (z, z) yields

E[ξ21 ] = E

[(
n∑
j=0

(αjaj − βjbj

)(
n∑
j=0

(αjaj − βjbj

)]

=
n∑
j=0

(a2j + b2j)

=
n∑
j=0

[
(Re(fj(z)))2 + (Im(fj(z))

2
]

=
n∑
j=0

|fj(z)|2

= Kn(z, z),

E[ξ2ξ1] = E

[(
n∑
j=0

(αjbj + βjaj

)(
n∑
j=0

(αjaj − βjbj

)]

=
n∑
j=0

(ajbj − ajbj)

= 0,

E[ξ3ξ1] = E

[(
n∑
j=0

(αjcj − βjdj

)(
n∑
j=0

(αjaj − βjbj

)]

=
n∑
j=0

(ajcj + bjdj)

=
n∑
j=0

[Re(fj(z))Re(f ′(z)) + Im(fj(z))Im(f ′(z))]

=
n∑
j=0

fj(z)f
′
j(z) + fj(z)f ′

j(z)

2
=
K

(0,1)
n (z, z) +K

(0,1)
n (z, z)

2

= Re(K(0,1)
n (z, z)),
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E[ξ4ξ1] = E

[(
n∑
j=0

(αjdj + βjcj

)(
n∑
j=0

(αjaj − βjbj

)]

=
n∑
j=0

(ajdj − bjcj)

=
n∑
j=0

[Re(fj(z))Im(f ′(z))− Im(fj(z))Re(f ′(z))]

=
n∑
j=0

fj(z)f
′
j(z)− fj(z)f ′

j(z)

2i
=
K

(0,1)
n (z, z)−K

(0,1)
n (z, z)

2i

= Im(K
(0,1)
n (z, z)),

E[ξ22 ] = E

[(
n∑
j=0

(αjbj + βjaj

)(
n∑
j=0

(αjbj + βjaj

)]

=
n∑
j=0

(b2j + a2j)

=
n∑
j=0

[
(Im(fj(z)))

2 + (Re(fj(z))2
]

=
n∑
j=0

|fj(z)|2

= Kn(z, z),

E[ξ3ξ2] = E

[(
n∑
j=0

(αjcj − βjdj

)(
n∑
j=0

(αjbj + βjaj

)]

=
n∑
j=0

(bjcj − ajdj)

= −E[ξ4ξ1]

= −Im(K
(0,1)
n (z, z)),
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E[ξ4ξ2] = E

[(
n∑
j=0

(αjdj + βjcj

)(
n∑
j=0

(αjbj + βjaj

)]

=
n∑
j=0

(bjdj + ajcj)

= E[ξ3ξ1]

= Re(K(0,1)
n (z, z)),

E[ξ23 ] = E

( n∑
j=0

(αjcj − βjdj

)2


=
n∑
j=0

(c2j + d2j)

=
n∑
j=0

[
(Re(f ′

j(z)))
2 + (Im(f ′

j(z))
2
]

=
n∑
j=0

|f ′
j(z)|2

= K(1,1)
n (z, z),

E[ξ3ξ4] = E

[(
n∑
j=0

(αjdj + βjcj

)(
n∑
j=0

(αjcj − βjdj

)]

=
n∑
j=0

(djcj − cjdj)

= 0,
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and

E[ξ24 ] = E

( n∑
j=0

(αjdj + βjcj

)2


=
n∑
j=0

(d2j + c2j)

=
n∑
j=0

[
(Im(f ′

j(z)))
2 + (Re(f ′

j(z))
2
]

=
n∑
j=0

|f ′
j(z)|2

= K(1,1)
n (z, z).

Thus

Cov[ξ] = E
[
ξξT
]

=



Kn(z, z) 0 Re(K(0,1)
n (z, z)) Im(K

(0,1)
n (z, z))

0 Kn(z, z) −Im(K
(0,1)
n (z, z)) Re(K(0,1)

n (z, z))

Re(K(0,1)
n (z, z)) −Im(K

(0,1)
n (z, z)) K

(1,1)
n (z, z) 0

Im(K
(0,1)
n (z, z)) Re(K(0,1)

n (z, z)) 0 K
(1,1)
n (z, z)


,

(A.14)

which is real-valued. Appealing to Theorem 12.4 of [56], we can conclude that this

matrix is positive semidefinite. Thus to complete the argument that Cov[ξ] is positive

definite, it suffices to show for v = [v1 v2 v3v4]
T , we have vTCov[ξ]v = 0 implies that
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v = 0. To simplify this computation, observe the identity: vTCov[ξ]v = Var(vT ξ). As

vT ξ = v1Re(Pn(z)) + v2Im(Pn(z)) + v3Re(P ′
n(z)) + v4Im(P ′

n(z))

=
n∑
j=0

v1(αjaj − βjbj) +
n∑
j=0

v2(αjbj + βjaj)

+
n∑
j=0

v3(αjcj − βjdj) +
n∑
j=0

v4(αjdj + βjcj)

=
n∑
j=0

(v1aj + v2bj + v3cj + v4dj)αj +
n∑
j=0

(−v1bj + v2aj − v3dj + v4cj)βj,

we have

Var(vT ξ) = E[(vT ξ)2]− (E[vT ξ])2

=
n∑
j=0

(v1aj + v2bj + v3cj + v4dj)
2 +

n∑
j=0

(−v1bj + v2aj − v3dj + v4cj)
2.

Hence vTCov[ξ]v = Var(vT ξ) = 0 if and only if for all j = 0, . . . , n we have

(v1aj + v2bj + v3cj + v4dj)
2 = 0, and (−v1bj + v2aj − v3dj + v4cj)

2 = 0. (A.15)

Recall that the polynomial basis is such that {fj(z)} = {aj(z) + ibj(z)}, {f ′
j(z)} =

{cj(z) + idj(z)}, and deg fj = j, for all j ∈ {0, 1, . . . , n}. Observe that since f0(z) =

a0(z)+ ib0(z) = a0+ ib0 is constant, it follows that f ′
0(z) = c0(z)+ id0(z) = 0, so that

c0 = d0 = 0. Thus for term j = 0 in (A.15) we have

0 = (v1a0 + v2b0)
2 + (−v1b0 + v2a0)

2 = (v1a0)
2 + (v2b0)

2 + (v1b0)
2 + (v2a0)

2.

Since we have a polynomial basis both a0 and b0 cannot both be zero. Thus we

achieve that v1 = v2 = 0. Using this result and looking at the term j = 1 in (A.15),

we similarly we see that

0 = (v3c1 + v4d1)
2 + (−v3d1 + v4c1)

2 = (v3c1)
2 + (v4d1)

2 + (v3d1)
2 + (v4c1)

2.

As deg f1 = 1, we have deg f ′
1 = 0, so that c1 and d1 are constants, that cannot both

of which be zero. Hence from the above we see that v3 = v4 = 0.
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Therefore we achieve that when vTCov[ξ]v = 0, it follows that v = 0. This

along with the mentioned result in [56] gives that Cov[ξ] is positive definite. Invoking

Theorem 5.2-3 p. 88 of [45], the matrix Cov[ξ] can be represented as LLT , where L is

a lower triangular matrix. Given this fact, we now represent the correlated Gaussian

random variables ξ1, ξ2, ξ3, ξ4 in terms of four independent standard normals by finding

a lower triangular matrix L = [lpq], p, q = 1, 2, 3, 4, with the property that ξ d
=Lζ,

where the notation d
= denotes equality in distribution, with ζ = (ζ1, ζ2, ζ3, ζ4)

T being

a vector of four independent standard normal random variables. We note that ζ is

ensured to be a vector of standard normal variables given that the matrix Cov[ξ] is

non-vanishing, which coupled with the vector ξ be a standard normal vector, gives

that ζ as linear combination of standard normal vectors, hence yielding a standard

normal vector. Since

Cov[ξ] = E
[
ξξT
]
= E

[
LζζTLT

]
= LLT , (A.16)

we see that L is the Cholesky factor for the covariance matrix.

By ξ d
=Lζ, and the fact that L is lower triangular, we have

P ′
n(z)

Pn(z)
=
ξ3 + iξ4
ξ1 + iξ2

d
=

(l31 + il41)ζ1 + (l32 + il42)ζ2 + (l33 + il43)ζ3 + il44ζ4
(l11 + il21)ζ1 + il22ζ2

.

So with α = l31 + il41, β = l32 + il42, γ = l11 + il21, and δ = il22, using the

independence of the ζi’s, it follows that

E
[
P ′
n(z)

Pn(z)

]
= E

[
αζ1 + βζ2
γζ1 + δζ2

]
.

If we now split up the numerator of the above and use the property that ζ1 and ζ2

are exchangeable, we can write the expectation as

F (z) = E
[
P ′
n(z)

Pn(z)

]
=
α

δ
f(γ/δ) +

β

γ
f(δ/γ),

where f : C \ R → C by f(w) = E
[

ζ1
wζ1+ζ2

]
. Using the definition of the expectation

141



in our Gaussian setting, and appealing to polar integration we see that

f(w) = E
[

ζ1
wζ1 + ζ2

]
=

1

2π

∫ 2π

0

∫ ∞

0

ρ cos θ

wρ cos θ + ρ sin θ
e−ρ

2/2ρdρdθ

=
1

2π

∫ 2π

0

dθ

w + tan θ

=


1

w+i
if Im(w) > 0,

1
w−i if Im(w) < 0.

We need to evaluate f at γ/δ and δ/γ. Since in general l11 and l22 are nonnegative, we

have that γ/δ = l21/l22− il11/l22 has negative imaginary part while δ/γ = l21l22/(l
2
11+

l221) + il11l22/(l
2
11 + l221) has positive imaginary part. Thus

F (z) =
α

δ
f(γ/δ) +

β

γ
f(δ/γ)

=
α

δ

1
γ
δ
− i

+
β

γ

1
δ
γ
+ i

=
iα + β

iγ + δ

=
l32 − l41 + i(l31 + l42)

−l21 + i(l11 + l22)
. (A.17)

From the above we see that we need explicit formulas for the elements of the Cholesky

factor L. Using (A.13) and (A.16) we obtain

E[ξ21 ] = l211,

E[ξ2ξ1] = l21l11, E[ξ22 ] = l221 + l222,

E[ξ3ξ1] = l31l11, E[ξ3ξ2] = l31l21 + l32l22,

E[ξ4ξ1] = l41l11, E[ξ4ξ2] = l41l21 + l42l22.

Using values in (A.14) and solving for the needed entries of the Cholesky factor
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L it follows that

l11 =
√
Kn(z, z) ,

l21 = 0 , l22 =
√
Kn(z, z) ,

l31 =
Re(K(0,1)

n (z, z))√
Kn(z, z)

, l32 =
−Im(K

(0,1)
n (z, z))√

Kn(z, z)
,

l41 =
Im(K

(0,1)
n (z, z))√
Kn(z, z)

, l42 =
Re(K(0,1)

n (z, z))√
Kn(z, z)

.

Therefore substituting these expressions into (A.17) and simplifying gives

F (z) =
l32 − l41 + i(l31 + l42)

−l21 + i(l11 + l22)

=

−Im(K
(0,1)
n (z,z))√
Kn(z,z)

− Im(K
(0,1)
n (z,z))√
Kn(z,z)

+ i

(
Re(K(0,1)

n (z,z))√
Kn(z,z)

+ Re(K(0,1)
n (z,z))√
Kn(z,z)

)
0 + i

(√
Kn(z, z) +

√
Kn(z, z)

)

=
Re(K(0,1)

n (z, z)) + iIm(K
(0,1)
n (z, z))

Kn(z, z)

=
K

(0,1)
n (z, z)

Kn(z, z)
.

We are now ready to give the proof of Theorem 0.0.1.

Proof of Theorem 0.0.1. Let us first observe that since Kn(z, z) is the sum of the

modulus squared of a polynomial basis fj(z), j = 0, 1, . . . , n, it follows that Kn(z, z) ̸=

0. For a Jordan region Ω ⊂ C, by Green’s Theorem we have

E[Nn(Ω)] =
1

2πi

∫
∂Ω

F (z) dz =
1

π

∫
Ω

∂F (z, z)

∂z
dx dy,

where are writing F (z, z̄) to emphasize that F is a function of both z and z̄.
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Let the symbol ∂ denote partial derivatives with respect to z. Our goal is to

simplify 1
π
∂F (z, z̄) to hn(z), where by Lemma 0.0.5,

F (z, z̄) =
K

(0,1)
n (z, z)

Kn(z, z)
.

Using the Quotient Rule we see that

∂F (z, z̄) =
∂K

(0,1)
n (z, z)Kn(z, z)−K

(0,1)
n (z, z)∂Kn(z, z)

(Kn(z, z))
2 . (A.18)

We now will verify the following relations:

∂Kn(z, z) = K(0,1)
n (z, z) and ∂K

(0,1)
n (z, z) = K(1,1)

n (z, z). (A.19)

Indeed,

∂Kn(z, z) =
n∑
j=0

∂
(
fj(z)fj(z)

)
=

n∑
j=0

fj(z)∂
(
fj(z)

)
=

n∑
j=0

fj(z)f ′
j(z)

= K(0,1)
n (z, z),

and

∂K
(0,1)
n (z, z) =

n∑
j=0

∂
(
fj(z)f

′
j(z)

)
=

n∑
j=0

f ′
j(z)∂

(
fj(z)

)
=

n∑
j=0

f ′
j(z)f

′
j(z)

= K(1,1)
n (z, z).

Since

K
(0,1)
n (z, z)K(0,1)

n (z, z) =
∣∣K(0,1)

n (z, z)
∣∣2 ,
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substituting the relations (A.19) into (A.18) yields

∂F (z, z̄) =
K

(1,1)
n (z, z)Kn(z, z)− |K(0,1)

n (z, z)|2

(Kn(z, z))
2 .

Therefore

ρ(1)n (z) =
1

π
∂F (z, z̄) =

K
(1,1)
n (z, z)Kn(z, z)− |K(0,1)

n (z, z)|2

π (Kn(z, z))
2 .
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