
DEEP AUTOENCODERS FOR CROSS-MODAL RETRIEVAL

By

AYESHA SIDDIQUA

Bachelor of Science in Computer Science and
Engineering

Shahjalal University of Science and Technology
Sylhet, Bangladesh

2007

Master of Science in Electrical and Computer
Engineering

Oklahoma State University
Stillwater, Oklahoma

2011

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

May, 2019



DEEP AUTOENCODERS FOR CROSS-MODAL RETRIEVAL

Dissertation Approved:

Dr. Guoliang Fan

Dissertation Advisor

Dr. Martin Hagan

Dr. Weihua Sheng

Dr. Christopher John Crick

ii



ACKNOWLEDGMENTS

I would first like to express my sincere gratitude to my advisor Dr. Guoliang Fan

for his continuous support during my graduate studies through his knowledge, moti-

vation, and patience. I am grateful for his insightful suggestions and encouragement

to overcome many difficulties during this research endeavor. His enthusiasm and ded-

ication to this research work was a constant motivation for me to push boundaries to

successfully complete this research project.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.

Dr. Martin Hagan, Prof. Dr. Weihua Sheng, and Prof. Dr. Christopher Crick for

their prompt response to any of my e-mails and committing their valuable time for this

project. I have learned a lot from their insightful questions which encouraged me to

delve deeper into my research from different perspective to improve my understanding

of the project.

I am in debt to Dr. Martin Hagan for my fundamental understanding of Neural

Network and Deep learning through the classes he has offered. These classes gave me

a foundation to build upon. I would also like to thank my committee members Dr.

Christopher John Crick for his dedication and commitment throughout the review

of this dissertation. I greatly appreciate their extremely helpful guidance during the

past few years. I am also grateful to Dr. Weihua Sheng for being kind enough to

agree to be one of my committee members in such a short notice.

I owe a great deal to Nate Hannan for his time and effort on reviewing and proof

Acknowledgements reflect the views of the author and are not endorsed by committee members

or Oklahoma State University.

iii



reading my thesis. I would like to thank Guo Lin for his insightful comments on my

thesis and Mahdi Yazdanpour for his help and support. I would also like to take

this opportunity to thank Dr. Vijay Venkataraman, Dr. Yi Ding, Dr. Xin Zhang,

Dr. Liangjiang Yu for their kind support and invaluable suggestions during my early

graduate life. Thank you to all VCIPL lab members including Dr. Wei Liu, Yong Li,

Le Zhou, Ryan Swann, Andersen Lin.

Last but not the least, I appreciate all my family members for their continuous

and unconditional support. I would like to thank my parents, specially my father,

without his inspiration I would not have started the degree. This acknowledgement

would be incomplete if I don’t mention two of the most important people in my life

- my husband, Arif, without his support I could not have finished this work and my

precious little girl Ayaat who has been a great source of joy for me.

Acknowledgements reflect the views of the author and are not endorsed by committee members

or Oklahoma State University.

iv



Name: Ayesha Siddiqua

Date of Degree: May, 2019

Title of Study: DEEP AUTOENCODERS FOR CROSS-MODAL RETRIEVAL

Major Field: ELECTRICAL AND COMPUTER ENGINEERING

Abstract: Increased accuracy and affordability of depth sensors such as Kinect has
created a great depth-data source for 3D processing. Specifically, 3D model retrieval
is attracting attention in the field of computer vision and pattern recognition due to
its numerous applications. A cross-domain retrieval approach such as depth image
based 3D model retrieval has the challenges of occlusion, noise, and view variability
present in both query and training data. In this research, we propose a new su-
pervised deep autoencoder approach followed by semantic modeling to retrieve 3D
shapes based on depth images. The key novelty is the two-fold feature abstraction
to cope with the incompleteness and ambiguity present in the depth images. First,
we develop a supervised autoencoder to extract robust features from both real depth
images and synthetic ones rendered from 3D models, which are intended to balance
reconstruction and classification capabilities of mix-domain data. We investigate the
relation between encoder and decoder layers in a deep autonecoder and claim that an
asymmetric structure of a supervised deep autoencoder is more capable of extracting
robust features than that of a symmetric one. The asymmetric deep autoencoder
features are less invariant to small sample changes in mixed domain data. In addi-
tion, semantic modeling of the supervised autoencoder features offers the next level of
abstraction to the incompleteness and ambiguity of the depth data. It is interesting
that, unlike any other pairwise model structures, the cross-domain retrieval is still
possible using only one single deep network trained on real and synthetic data. The
experimental results on the NYUD2 and ModelNet10 datasets demonstrate that the
proposed supervised method outperforms the recent approaches for cross modal 3D
model retrieval.

v



TABLE OF CONTENTS

Chapter Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Research Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Proposed Retrieval Algorithms . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Unsupervised deep-autoencoder approaches . . . . . . . . . . . . . . . 13

2.2 Supervised deep-autoencoder approaches . . . . . . . . . . . . . . . . 15

2.3 Pairwise models for cross-domain retrieval . . . . . . . . . . . . . . . 19

2.4 Semantic models for cross-domain retrieval . . . . . . . . . . . . . . . 21

2.5 Asymmetric and symmetric autoencoder approaches . . . . . . . . . . 22

III DEEP AUTOENCODERS FOR CROSS MODAL RETRIEVAL 24

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Single deep unsupervised autoencoder model (SDA) . . . . . . . . . . 26

3.2.1 Network architecture for SDA . . . . . . . . . . . . . . . . . . 27

3.2.2 Loss function for SDA . . . . . . . . . . . . . . . . . . . . . . 27

3.2.3 Optimization and retrieval using SDA . . . . . . . . . . . . . . 28

3.3 Single supervised deep autoencoder model (SSDA-1) . . . . . . . . . 29

3.3.1 Network architecture for SSDA-1 . . . . . . . . . . . . . . . . 30

3.3.2 Loss function for SSDA-1 . . . . . . . . . . . . . . . . . . . . . 31

vi



3.3.3 Optimization and retrieval using SSDA-1 . . . . . . . . . . . . 32

3.4 Single supervised deep autoencoder model (SSDA-2) . . . . . . . . . 33

3.4.1 Network architecture for SSDA-2 . . . . . . . . . . . . . . . . 33

3.4.2 Loss function for SSDA-2 . . . . . . . . . . . . . . . . . . . . . 35

3.4.3 Optimization and retrieval using SSDA-2 . . . . . . . . . . . . 35

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.2 Performance comparison . . . . . . . . . . . . . . . . . . . . . 57

3.5.3 Retrieval results . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.4 Analysis and discussion . . . . . . . . . . . . . . . . . . . . . . 65

IV ASYMMETRIC SUPERVISED DEEP AUTOENCODERS . . . 75

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Single supervised deep asymmetric autoencoder(SSDAA) . . . . . . . 76

4.2.1 Supervised structure . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.2 Asymmetric structure . . . . . . . . . . . . . . . . . . . . . . 77

4.2.3 Network structure and loss function . . . . . . . . . . . . . . . 78

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.2 Performance comparison . . . . . . . . . . . . . . . . . . . . . 81

4.3.3 Retrieval results . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.4 Analysis and discussion . . . . . . . . . . . . . . . . . . . . . . 85

V SEMANTICS-ENHANCED AUTOENCODERS . . . . . . . . . 90

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Semantics-enhanced single deep supervised autoencoder (S3DA) . . . 92

5.2.1 Building the semantic space . . . . . . . . . . . . . . . . . . . 92

5.2.2 Retrieval using the semantic space . . . . . . . . . . . . . . . 94

vii



5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.2 Performance comparison . . . . . . . . . . . . . . . . . . . . . 96

5.3.3 Retrieval results . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.4 Analysis and discussion . . . . . . . . . . . . . . . . . . . . . . 107

VI CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . 113

6.1 Deep autoencoder structures . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Semantic modeling of autoencoder features . . . . . . . . . . . . . . . 114

6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

viii



LIST OF TABLES

Table Page

1.1 Proposed models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 NYUD2 and ModelNet10 dataset. . . . . . . . . . . . . . . . . . . . . 40

3.3 Performance metrics comparison of depth-image based 3D model re-

trieval on the NYU Depth V2 dataset and the ModelNet10 benchmark. 57

3.4 SSDA-1 vs SSDA-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Performance comparison between training with and without real depth

images. Nearest neighbor metric comparison of depth-image based 3D

model retrieval on the NYU Depth V2 dataset and the ModelNet10

becnhmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Performance metrics comparison of depth-image based 3D model re-

trieval on the NYU Depth V2 dataset and the ModelNet10 benchmark. 81

5.1 Performance metrics comparison of depth-image based 3D model re-

trieval on the NYU Depth V2 dataset and the ModelNet10 becnhmark. 96

ix



LIST OF FIGURES

Figure Page

1.1 Research problem: retrieve the best matched 3D-models from the 3D

model database for the given depth image object. . . . . . . . . . . . 2

1.2 Challenges of incompleteness, noise, occlusion and partial view present

in the real depth images. . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 (a)Augmented reality, (b)Product design, (c)3D model retrieval and

scene rearrangement , (d)Google’s self-driving car uses lidar to create

3D image of its surroundings . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Deep learning representation using autoencoder for 3D shape retrieval 13

2.2 3D model retrieval based on deep autoencoder neural networks . . . . 14

2.3 Example of supervised autoencoder approaches. . . . . . . . . . . . . 15

2.4 Semi supervised learning with sparse autoencoders in phone classification 16

2.5 The framework of representation learning via semi-supervised autoen-

coder for multi-task learning . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 The framework of semi-supervised variational autoencoder for text

classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 The framework for semi-supervised learning of compact document rep-

resentation with deep networks . . . . . . . . . . . . . . . . . . . . . 18

2.8 Pairwise neural network for depth image-based 3D model retrieval . . 19

2.9 Pairwise siamese network model for sketch-based 3D model retrieval . 20

2.10 Learning domain invariant features using pairwise neural network model

for depth image-based 3D model retrieval . . . . . . . . . . . . . . . . 21

x



2.11 A new approach to Cross-Modal Multimedia Retrieval. . . . . . . . . 22

3.1 General (supervised/unsupervised) single autoencoder approaches for

3D model retrieval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Single Deep Autoencoder (SDA) approach for 3D model retrieval. . . 26

3.3 Deep network architecture for unsupervised autoencoder. . . . . . . 27

3.4 Supevised autoencoder network with dropout for SSDA-1. . . . . . . 29

3.5 Deep network architecture for supervised autoencoder of SSDA-1. . . 30

3.6 Supevised autoencoder network with dropout for SSDA-2. . . . . . . 34

3.7 Deep network architecture for the supervised autoencoder of SSDA-2. 34

3.8 Example of segmented objects from 3 NYUD2 depth images. A candi-

date input depth image contains one of the ten objects (bathtub, bed,

chair, desk, dresser, monitor, nightstand, sofa, table and toilet). The

depth images only have two candidate depth images each. . . . . . . 38

3.9 Example of segmented objects from three NYUD2 depth images. A

candidate input depth image contains one of the ten objects (bathttub,

bed, chair, desk, dresser, monitor, nightstand, sofa, table and toilet).

The depth image has five possible candidate depth images. . . . . . . 38

3.10 The rendered depth images under 95 views of a 3D chair model from

ModelNet10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.11 Learning rate experiment for unsupervised autoencoder for 5 categories. 44

3.12 Learning rate experiment for unsupervised autoencoder for 10 categories. 45

3.13 Dropout layer experiment for unsupervised autoencoder for 5 categories. 46

3.14 Dropout layer experiment for unsupervised autoencoder for 10 categories. 47

3.15 Training unsupervised autoencoder for 5 categories. . . . . . . . . . . 48

3.16 Training unsupervised autoencoder for 7 categories. . . . . . . . . . . 48

3.17 Training unsupervised autoencoder for 10 categories. . . . . . . . . . 49

3.18 Training supervised autoencoder (SSDA-1) for 5 categories. . . . . . . 50

xi



3.19 Training supervised autoencoder (SSDA-1) for 7 categories. . . . . . . 51

3.20 Training supervised autoencoder (SSDA-1) for 10 categories. . . . . . 52

3.21 Training supervised autoencoder (SSDA-2) for 5 categories. . . . . . . 53

3.22 Training supervised autoencoder (SSDA-2) for 7 categories. . . . . . . 55

3.23 Training supervised autoencoder (SSDA-2) for 10 categories. . . . . . 56

3.24 PR curve for 5 category experiment. . . . . . . . . . . . . . . . . . . 58

3.25 PR curve for 7 category experiment. . . . . . . . . . . . . . . . . . . 59

3.26 PR Curve for 10 category experiment. . . . . . . . . . . . . . . . . . 59

3.27 Retrieval example: bathtub. . . . . . . . . . . . . . . . . . . . . . . . 61

3.28 Retrieval example: bed. . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.29 Retrieval example: desk. . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.30 Retrieval example: dresser. . . . . . . . . . . . . . . . . . . . . . . . . 63

3.31 Retrieval example: chair. . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.32 Retrieval example: dresser. . . . . . . . . . . . . . . . . . . . . . . . . 65

3.33 Feature space visualization: 3D PCA on 30D SDA (unsupervised) fea-

ture and 30D SSDA (supervised) feature. . . . . . . . . . . . . . . . . 66

3.34 Effect of supervision in cross modal retrieval: determining stopping

criteria for autoencoder training based on an adequate accuracy. From

supervised training presented in (b), we can choose trained network

parameters at a certain iteration point (such as 3000 or 6000) based

on real training depth accuracy. . . . . . . . . . . . . . . . . . . . . 68

3.35 Classification loss (Softmax loss), SSDA-1 vs SSDA-2. . . . . . . . . 71

4.1 Effect of supervision: supervised autoencoder groups real and rendered

depths of same category in the same region. . . . . . . . . . . . . . . 76

4.2 Deep network architecture, (a) Supervised symmetric autoencoder SSDA-

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 PR curve for 5-category experiment. . . . . . . . . . . . . . . . . . . 82

xii



4.4 PR curve for 7-category experiment. . . . . . . . . . . . . . . . . . . 83

4.5 PR curve for 10-category experiment. . . . . . . . . . . . . . . . . . . 83

4.6 Retrieval example: bed. . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7 Retrieval example: dresser. . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8 Retrieval results in mAP for different number of encoder-decoder au-

toencoder structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.9 Retrieval results in NN for different number of encoder-decoder au-

toencoder structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.10 Retrieval results in mAP for different number of encoder-decoder au-

toencoder structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.11 Retrieval results in NN for different number of encoder-decoder au-

toencoder structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.12 Retrieval results in mAP for different number of encoder-decoder au-

toencoder structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.13 Retrieval results in NN for different number of encoder-decoder au-

toencoder structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Semantics-enhanced supervised deep autoencoder model (S3DA) for

3D model retrieval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Semantics space S consisting of SM and SD. . . . . . . . . . . . . . . 94

5.3 PR curve for 5-category experiment. . . . . . . . . . . . . . . . . . . 97

5.4 PR curve for 7-category experiment. . . . . . . . . . . . . . . . . . . 98

5.5 PR curve for 10-category experiment. . . . . . . . . . . . . . . . . . . 98

5.6 Retrieval example: bed (first ten retrieved bed models). . . . . . . . . 100

5.7 Retrieval example: chair (first ten retrieved chair models). . . . . . . 101

5.8 Retrieval example: dresser(first ten retrieved dresser models). . . . . 102

5.9 Retrieval example: sofa (first ten retrieved sofa models). . . . . . . . 102

5.10 Retrieval example: dresser (first ten retrieved dresser models). . . . . 103

xiii



5.11 Retrieval example: monitor (first ten retrieved monitor models). . . . 104

5.12 Retrieval example: sofa (first ten retrieved sofa models). . . . . . . . 105

5.13 Retrieval example: dresser (first ten retrieved dresser models). . . . . 105

5.14 Retrieval example: bathtub (first ten retrieved bathtub models). . . . 106

5.15 Feature space visualization for 5 category: 3D PCA on 30D SSDA-2

feature and 30D S3DA feature. The SVM classification accuracy for

3D features of S3DA is 46% and 39% for SSDA-2, around 1.18 times

greater than SSDA-2. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.16 Feature space visualization for 7 category experiment: 3D PCA on 30D

SSDA-2 feature and 30D S3DA feature. . . . . . . . . . . . . . . . . 108

5.17 Feature space visualization for 10 category experiment: 3D PCA on

30D SSDA-2 feature and 30D S3DA feature. . . . . . . . . . . . . . . 108

5.18 Pairwise feature space comparison: 3D PCA of 30D S3DA features are

sharper than SSDA-2 feature which indicates less overlap. . . . . . . 109

5.19 Pairwise feature space comparison. . . . . . . . . . . . . . . . . . . . 110

5.20 Feature space visualization for 5, 7 and 10 category experiment: 3D

PCA on 30D SSDA-2 feature and 30D S3DA feature. The SVM clas-

sification accuracy for 3D features of S3DA is around 1.18, 1.14 and

1.12 times greater than SSDA-2 for 5, 7 and 10 category clusters re-

spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.21 Pairwise feature space comparison: 3D PCA of 30D S3DA feature are

sharper than SSDA-2 feature which suggests less overlap. . . . . . . 112

xiv



CHAPTER I

INTRODUCTION

The emergence of inexpensive depth sensors in recent years has made depth image

based 3D model retrieval a competitive approach for cross-modal retrieval. It is a more

affordable approach than sketch-based 3D model retrieval and RGB-D image based

3D model retrieval. Scanning and rebuilding 3D scenes using 3D CAD model database

has many applications in many areas such as robotics, surveillance, object detection,

interior design and providing user interaction interface facility. Successful depth image

based 3D model retrieval has many powerful applications and can also help in the fields

of computer vision, product design, architecture, information retrieval, augmented

reality and many others. Existing 3D model retrieval processes require digitization to

eventually produce a draft to retrieve CAD models. This process is time consuming

and requires manual work. Since RBG-D cameras are becoming handy and available

at a low cost, depth image based 3D model retrieval is becoming more practical and

desirable by returning a set of relevant existing 3D models quickly and easily. The

retrieved CAD models can be directly modified for effective product design process.

In this work, for the first time, we study the application of a supervised deep au-

toencoder for a cross-modal retrieval (3D model retrieval based on real depth images)

followed by semantic modeling. Supervised and semi supervised autoencoders have

been used in face recognition, speech recognition, sentiment analysis, text classifica-

tion, phone classification, multi-task learning and many other areas [1–8]. The deep

autoencoder is a class of deep learning. An autoencoder tries to learn an approxi-

mation to the identity function in an unsupervised way which means only the data
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is available without a label. By constraining the hidden layer with different number

of neurons, sparsity, weight decay or corrupted input, we can reveal strong feature

structure present in the data. A supervised deep autoencoder can restructure features

by providing label information when the data is incomplete and occluded. The deep

supervised structure of an autoencoder can effectively learn complicated structures

from raw depth images and requires less domain knowledge. To compare the effective-

ness of a supervised autoencoder over an unsupervised autoencoder, we propose one

unsupervised deep autoencoder approach and two supervised deep autoencoder ap-

proaches for retrieval. Supervising an autoencoder with label information has turned

out to be a useful method for retrieving 3D models based on incomplete depth images.

Figure 1.1: Research problem: retrieve the best matched 3D-models from the 3D

model database for the given depth image object.

Usually cross-modal retrieval methods involve training two different domains with

a parallel or paired network structure [7, 9–11]. The cross-modal retrieval is based

on the assumption of training two different supervised networks for two different

2



domains which facilitates transfer learning. We show that training one single deep

autoencoder with rendered and real depth images together is more efficient to bring

cross domains in single feature space. One other positive side of our model is that

there is no restriction of having equal number of depth images and 3D models. On the

contrary, most of the cross-modal retrieval approaches such as correlation modeling

(CM) [12] and semantic correlation modeling (SCM) [12] algorithms are restricted

to have the same number of text and images due to the dimension requirement of

canonical correlation analysis (CCA). In our proposed approaches, we take depth

images as the direct input rather than handcrafted features.

Figure 1.2: Challenges of incompleteness, noise, occlusion and partial view present in

the real depth images.

Though supervised autoencoder features can deal with the incompleteness present

in the data, those features do not have perfect image interpretation due to ambigu-

ities present among the depth image objects. Semantic modeling over supervised

autoencoder features provides higher level abstraction of the ambiguities present in

the depth images which is helpful for cross modal retrieval. 3D models projected

on to multiple 2D views are reasonable to match with 2D depth image objects. We

have rendered ninety five different views which have improved 3D model retrieval for

3



incomplete and partial depth images. Since retrieval would be done using two differ-

ent domains, we have used two different databases. The first domain is depth image

database and the second domain is 3D model database. For depth images we have

used NYD Depth Dataset V2(NYD2) [13]. NYD2 is a database of RGBD images

from a variety of indoor scenes. The images have been collected using a Microsoft

kinect. NYUD2 has 1449 densely labeled pairs of aligned RGB and depth images.

Only depth images have been used. The depth images containing any of the ten

indoor objects (bathtub, bed, chair, desk, dresser, nightstand, table, toilet, monitor

and sofa) is considered as candidate inputs. The input depth image has one object

per image. We have selected 3D models from ModelNet10 [14] benchmark database

belonging to the ten indoor objects. In [9], they have rendered line drawings from 3D

model view. In [7], they have projected 3D shape into many 2D depth images for 3D

shape retrieval.

1.1 Research Goal

We address the challenging cross-modal retrieval problem of depth image based 3D

model retrieval with significant occlusion. With the advent of the Kinect, comes a

great depth-data source for 3D model retrieval due to it’s increased accuracy at a

lower cost. 3D model retrieval is attracting the attention of various fields due to its

numerous applications in computer vision and artificial intelligence. A cross-domain

retrieval approach like depth image based 3D model retrieval has the challenges of

occlusion, noise and view variability present in the real depth images. In this re-

search, we aim to articulate a new supervised deep autoencoder approach followed

by semantic modeling to retrieve 3D shapes based on depth images. Retrieving 3D

models based on depth images can be considered as a transfer learning or cross-

domain approach since real depth and rendered depth have different depth quality.

Real depth images have noise and incomplete object information. We aim to bring
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two variant domains (depth image and 3D model) into one single feature space by

training one single supervised deep autoencoder with real depth images and rendered

depth images from 3D models to bring those cross-modal data in the same feature

space. It is interesting that, unlike any other pairwise model structures, cross-domain

retrieval is still possible using only one single deep network in our model. Rendering

different views for each 3D model matching with the real depth image scenario is

an effective way for 3D model retrieval. And again training rendered and real depth

images together is promising way to bridge the gap between 3D models and depth

data.

The goal of our research is to achieve a two-fold abstraction of incompleteness and

ambiguity present in the real depth images by the supervised autoencoder and seman-

tic matching of the supervised autoencoder features respectively. Previous research

has shown that supervised and unsupervised approaches using deep autoencoders are

able to capture details present in the data. But those research works were performed

for same-domain retrieval. We aim to show that supervision on the autoencoder

can improve the cross-domain retrieval performance by restructuring the features by

providing label information. Though supervised deep autoenocder deals with incom-

pleteness and occlusion to a certain extent this is mainly data driven. Semantic

modeling on the supervised features is capable to offer the next level of abstraction

of ambiguity by forcing the features to cluster to a certain category. In a nutshell,

two-level abstraction is expected to improve 3D model retrieval accuracy by minimiz-

ing incompleteness and view variability present in the real depth images. We plan to

evaluate the effectiveness of our model on two different data domains: NYUD2 real

depth image dataset and ModelNet10 models for ten indoor object categories. The

proposed supervised method outperforms the recent approaches for cross modal 3D

model retrieval based on depth images.
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1.2 Our Contributions

We can summarize our contributions from different points of view stated below:

Objective function: We propose a novel supervised model using a single super-

vised deep autoencoder to address the challenging 3D model retrieval problem based

on depth images with significant occlusion. The proposed supervised single deep au-

toencoder objective function has an exclusive combination of sigmoid cross entropy

loss and softmax loss.

Only one network for both the domains: We demonstrate the idea that

instead of using parallel networks to get features from different domains, transfer

learning is still possible in the case of cross-domain retrieval using only one single

deep network. Also we show the strength of a supervised autoencoder for cross-modal

3D-model retrieval. To bridge the gap between two different domains and bring those

into a single feature space, a single supervised deep autoencoder can effectively learn

a single feature space from raw depth images and rendered 3D models. Bringing

3D models and 2D depth images in the same feature space helps to reduce their

differences. Many researchers have brought 3D and 2D representation in the same

space for successful cross-modal 3D model retrieval. However, in our research, the

assumption is that the hidden layer feature of a deep autoenoder would bring two

different domains in same feature space. In the encoded feature space, we can compare

the similarity of 3D model and depth image in a meaningful way.

Asymmetric structure: We exhibit that an asymmetric deep structure of an

autoencoder leads to a more robust latent space less invariant to small changes in

samples than symmetric ones for cross modal retrieval.

Dealing with ambiguity: We have dealt with the incompleteness and ambi-

guity present in the depth images by adding higher level abstraction in two stages.

Supervising the autoencoder with label information deals with incompleteness and

occlusion present in the data and can be considered as the first stage. In the second
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stage, to downsize ambiguities we derive semantic concepts of the supervised au-

toencoder features by learning a subspace S. We assume that real depth images and

rendered depth images are in the same space facilitating 3D model retrieval based

on real depth images. One other strong advantage of our model is low dimensional

features. Compared to 1000D dimensional features used in [10], 15D or 30D fea-

tures work meaningfully in our model. We use the hidden encode layer features of a

deep autoencoder to compare and retrieve 3D models. Low dimensional features are

inexpensive with respect to time complexity to compare and retrieve 3D models.

Flexibility: Our model is not restricted to an equal number of depth images and

3D models. For retrieval, we can train our model with any number of depth image

and models present in the database. In [12], CM and SCM algorithms are restricted

to have same number of model and depth present in two different domains since they

use canonical correlation analysis(CCA) [12]. Direct usage of images rather than

image features, is another mighty advantage of this work. Compared to handcrafted

features and shallow learning frameworks, the deep structure of an autoencoder can

effectively learn complicated structures from raw depth images, which requires less

domain knowledge. The deep network of our model can handle a huge number of

training depth images. In our network, we have used around fifty nine thousand

images for training compared to other cross domain models [10,12,15].

We address the challenging 3D model retrieval problem based on depth images

with significant occlusion. Our model takes depth images as the direct input rather

than handcrafted features and it is not restricted to an equal number of depth-model

pairs for two different domains. Unlike other cross-domain retrieval approaches, our

model can handle a large number of 3D models present in the database. Compared

to handcrafted features and shallow learning frameworks, the deep structure of an

autoencoder can effectively learn complicated structures from raw depth images. We

outperformed all the state of the art methods using parallel network for cross-modal
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retrieval.

1.3 Proposed Retrieval Algorithms

Single deep unsupervised autoencoder approach (SDA): SDA is an unsu-

pervised approach which is a purely data-driven, the real depth images and rendered

depth images from 3D models make separate clusters because they belong to different

data domains. The loss function for SDA’s unsupervised autoenocder only depends

on reconstruction loss sigmoid cross entropy instead of euclidean loss.

Single supervised deep autoencoder approach (SSDA-1): The proposed

SSDA-1 is a cross-modal retrieval approach for retrieving 3D models given a real

depth image query. SSDA-1 has a classification network to supervise the autoencoder

with label information. Since the supervised approach guides the autoencoder with

label information, real and rendered depths cluster in similar regions as desired for

retrieval. Training the supervised deep autoencoder with two different domains gives

the opportunity to determine a stopping criteria where the real depths are being clas-

sified with a good accuracy. The objective function we propose for single supervised

deep autoencoder model SSDA-1 is a unique combination of sigmoid cross entropy loss

and softmaxwithloss for reconstruction and classification of a supervised autoencoder

respectively.

Single supervised deep autoencoder approach (SSDA-2): The proposed

supervised autoencoder in our SSDA-2 model is not symmetric since it has three en-

coder layers and four decoder layers. In SSDA-2, instead of adding a classification

network with the encoder we have added a classification network after the decoder

to supervise the autoencoder with label information. This supervision indicates how

well the reconstruction is being classified into different categories. To portray the ba-

sic difference between SSDA-1 and SSDA-2 in detail we can say that the classification

network is tightly tied with the reconstruction in SSDA-2. In other words, the rela-
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tionship between reconstruction and classification is straightforward. And in the case

of SSDA-1 we classify the features instead of the reconstruction of the features, which

makes the relationship between classification and reconstruction tricky or indirect.

Single supervised deep asymmetric autoencoder approach (SSDAA):

The proposed asymmetric supervised deep autoencoder (SSDAA) for 3D model re-

trieval is an asymmetric autoencoder having less decoder layers than encoder layers.

We have analyzed the relation between symmetric and asymmetric autoencoder struc-

tures and have shown that asymmetric deep autoencoders lead to more robust embed-

ding and less invariant to small variation of samples. We have compared asymmetric

autoencoder retrieval results with symmetric autoencoder and found that asymmetric

deep autoencoder overcoming the symmetric deep autoencder for improving retrieval

accuracy.

Semantics-enhanced single deep supervised autoencoder (S3DA and

S3DAA): Semantic modeling can help a supervised autoencoder handle the am-

biguity by providing the next-level abstraction. Previous research has shown that in-

creased level of abstraction leads to better image or text retrieval . Semantic modeling

applied over supervised-autoencoder features offers two stages of high level abstrac-

tions. The first abstraction comes from supervised autoencoder. The next abstraction

comes from the semantic modeling of supervised autoencoder features. Supervised

autoencoders restructure the autoencoder features with label information. When we

apply semantic modeling on asymmetric structure SSDAA, we get our new model

S3DAA where AA stands for asymmetric autoencoder. All the proposed approaches

presented in this section are summarized in Table 1.1.
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Proposed models Autoencoder structure Classification layer Semantic modeling

SDA Unsupervised No classification layer Not applied

SSDA-1 Supervised Added to encoder Not applied

SSDA-2 Supervised and asymmetric Added to decoder Not applied

(less encoders than decoders)

SSDAA Supervised and asymmetric Added to decoder Not applied

(more encoders than decoders)

S3DA SSDA-2 Added to decoder Applied

S3DAA SSDAA Added to encoder Applied

Table 1.1: Proposed models.

1.4 Applications

Due to the emergence of low cost depth sensors in recent years, depth image based

3D model retrieval is not an expensive approach for cross-modal retrieval. Rather

it is a more affordable approach than sketch-based 3D model retrieval and RGB-D

image based 3D model retrieval. To scan and rebuild 3D scenes using a 3D CAD

model database has many applications in many areas such as robotics, surveillance,

object detection, interior design and providing user interaction interface facility.

Augmented reality: Augmented reality (AR) is a mixture of reality with virtu-

ality where people are assumed to interact with virtual objects along with real objects

in the real world. Accurately finding the correct position of the virtual object in real

world scene is the key to an effective AR application [16]. Depth image based 3D

model retrieval can help find an object relative to other virtual and physical objects

in a scene.
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Figure 1.3: (a)Augmented reality [17], (b)Product design [18], (c)3D model retrieval

and scene rearrangement [19], (d)Google’s self-driving car uses lidar to create 3D

image of its surroundings [20].

For example, a user can search for a sofa model that is similar to his sofa at home,

and then virtually move the sofa around through augmented reality scene and see

where he can place it. With the rapid growth of mobile devices with 3D sensors,

3D model retrieval and its derived applications can be as accessible and enjoyable as

taking a picture.

Scene modeling: By retrieving the corresponding 3D models for the depth image

objects present in the scene, scene modeling or 3D scene rebuilding can be done. Suc-

cess in scene reconstruction and scene rearrangement depend on 3D model retrieval

performance since 3D models offer high-level structure, complex and finer material

features and critical details of entities. Depth image based 3D model retrieval can

lower the cost of building the 3D model database search engine [21] instead of de-
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pending on sketch-based search engine.

Self driving car: Depth image based 3D model retrieval can help to calculate

the distance between a self-driving car and the obstacle on its path. To understand

the depth and size of the obstacle, retrieved 3D models can be employed as samples

to train any neural network. In creating the surroundings as shown in Figure 1.3(d),

3D model retrieval based on depth image can help.

Product design industry and architecture: Depth image based 3D model

retrieval can help product design industry by efficient and effective generation of

new models based on the existing ones. Thus, it is a major aspect of new product

development. Retrieving full 3D models for furniture can help home decoration and

housekeeping where the user can edit the scene by rearranging furniture. IKEA has

developed a smart phone app to help customers make their own furnishing choice. It

is also possible to render a scene by adding retrieved synthetic objects into existing

scenes which can help architectural designs.

3D model editing, printing and extrapolation: The growing popularity of

depth image based 3D model retrieval explores the opportunity to help 3D content

editing tasks. To handle the challenges of occlusion, object segmentation and pro-

ducing correct perspective for 3D model editing and printing, 3D models retrieved

for coarse depth object can be exploited.
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CHAPTER II

RELATED WORK

The literature of this section discusses broadly different neural network and deep

network autoenocder approaches and retrieval algorithms using deep networks. We

present the related concepts from four aspects: unsupervised-autoencoder approaches,

supervised-autoencoder approaches, pairwise-models for retrieval and semantic model

approaches for retrieval purpose.

2.1 Unsupervised deep-autoencoder approaches

Stacked autoencoders (SAE) are a typical class of deep learning algorithms [22, 23].

Recent 3D shape feature retrieval approaches use unsupervised deep autoencoders to

get 3D shape features [7, 8] for 3D model retrieval.

Figure 2.1: Deep learning representation using autoencoder for 3D shape retrieval [7].

In [7], an unsupervised autoencoder has been used for 3D shape retrieval. The
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3D model is normalized, scaled and projected on to many 2D views and uses autoen-

coder for getting features for every view/2D image. The autoencoder is initialized

by rbm (restricted boltzman machine) as the best performance was observed by this

initialization. Figure 2.1 shows the flow chart of 3D shape representation using an au-

toencoder. First, pose normalization is done to remedy the differences in translation

and scale present in the 3D models. Next, each 3D shape is represented by a set of

depth-buffer images. Finally, all the projections are used to train the autoencoder to

acquire a low-dimensional representation of the depth images and conduct 3D shape

retrieval. The similarity we have with this this work is that they also have projected

3D shapes into 2D space and used an autoencoder for learning features from 2D im-

ages. Our work differs in that we do not normalize the 3D models and our input

images are not complete. We have used noisy, partial and occluded images.

Figure 2.2: 3D model retrieval based on deep autoencoder neural networks [8].

In [8], many views of the same 3D model have been rendered and normalized. In

Figure 2.2 we see that different features of the generated views have been extracted

before passing the views to the deep unsupervised-autoencoder for getting features for

3D model retrieval. In our work, we have not normalized or used different features

of 2D views. Our approach uses direct image as input to the autoencoder. The
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similarity they have with our work is using many rendered views of same 3D model,

and the dissimilarity is they have normalized the images and calculated different kind

of features before passing to the autoencoder.

2.2 Supervised deep-autoencoder approaches

We have discussed supervised autoencoder approaches from the aspects of network

architecture, number of hyper parameters and how the autoencoder is being super-

vised. In Figure 2.3, we have presented some examples of supervised autoencoder

approaches where we have showed the objective function information and how our

objective is different.

Figure 2.3: Example of supervised autoencoder approaches.

A semi-supervised single-layer sparse-autoencoder has been used in [3] for im-

proving the performance of modeling speech recognition. Figure 2.4 shows the flow

chart to calculate cost. The loss function is the weighted sum of sum-square loss

(reconstruction error) and softmax-cross entropy loss (classification error) with one

hyperparameter. In [5], a semi-supervised recursive-autoencoder has been used for

sentence level prediction of sentiment label distributions. The cost function in this
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Figure 2.4: Semi supervised learning with sparse autoencoders in phone classification

[3].

work is the weighted sum of reconstruction error (mean square error), softmax cross

entropy error and a regularization term. The reconstruction error and cross-entropy

error are weighted by one hyperparameter. In [1], the semi-supervised autoencoder

has been used for multi-task learning. From Figure 2.5, we can see the framework

of the model where encoding weights are shared by all the tasks which in turn share

common representation. The loss function of this model is the summation of the sum

square error term for reconstruction, the softmax regression error term weighted by

one hyperparameter, the L2 norm regularization error term and a decay term.
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Figure 2.5: The framework of representation learning via semi-supervised autoencoder

for multi-task learning [1].

Figure 2.6: The framework of semi-supervised variational autoencoder for text clas-

sification [2].

In [2], the loss function is the summation of objectives for labeled data (variational

autoencoder loss) and unlabeled data(learnable claissifier loss) with an additional

classification loss weighted by one hyper parameter as shown in Figure 2.6. In [24],

a supervised deep autoencoder has been used in facial recognition and the model is

supervised by reconstructing the clean input data from a corrupted version of it. The

objective function is the sum of mean squared error and Kullback-Leibler divergence
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between two distributions (sparsity and clean data; sparsity and corrupted data) with

no hyperparameter. The sparsity mentioned here is usually a constant.

Figure 2.7: The framework for semi-supervised learning of compact document repre-

sentation with deep networks [25].

In [25], text document representation has been learned by a supervised deep au-

toencoder. The autoencoder is supervised by label information. From Figure 2.7, we

see that the model has three stages where the n-th layer provides codes to train the

layer above. The first stage loss function is the weighted sum of softmax cross-entropy

(classification) and negative log-likelihood (Poisson regressor for reconstruction) un-

der the Poisson model whereas the other two loss functions are the summation of

softmax cross entropy and a Gaussian regressor. In our model, the loss function is

the weighted sum of sigmoid cross-entropy and softmax. We have used a supervised

deep autoencoder for the first time for 3D model retrieval and our approach differs

from all the approaches stated in above in terms of objective function, number of

hyper parameters and network structure.
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2.3 Pairwise models for cross-domain retrieval

Recently deep learning has achieved great success in object recognition in computer

vision. In our research, we have used a deep autoencoder which is a typical class of

deep learning algorithms. Normally, cross modal approaches use a pairwise network

model for retrieval but ours is a single model approach where we train both real depth

and rendered depth images using one single network.

Figure 2.8: Pairwise neural network for depth image-based 3D model retrieval [10].

Our research problem is closely related with the pairwise neural network (PNN)

approach [10]. The algorithm is a transfer learning based retrieval approach. In

Figure 2.8 of PNN, a pairwise neural network encoder model has been used for 3D

model retrieval. PNN has used LD-sift [26] for 3D model features and ScSPM for

depth image features [27]. In the PNN approach, model features and depth features

are classified to the same output vector if their category is same. Unlike PNN,

we have employed one single deep autoencoder to train real and rendered depth

images together. Unlike the PNN regression model, our single autoencoder works as

a pure autoenocoder, it reconstructs the inputs and uses the hidden layer features for

retrieval.

In sketch based 3D model retrieval [9], they have used a pairwise Siamese network
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Figure 2.9: Pairwise siamese network model for sketch-based 3D model retrieval [9].

with a specific loss function. Figure 2.9 shows two identical deep networks known as

siamese network have been used for sketch and rendered views. Unlike our model,

they have used just two views to retrieve 3D models based on sktech images, whereas

we have rendered ninety five views for one 3D model. The similarity that we have

with this research is that, 3D models and sketch images are used in the same domain

for cross modal retrieval. They have rendered sketch images from 3D models to

retrieve 3D models. In pairwise relation learning approach [11], parallel autoencoders

have modeled relationship for handwritten digit subtraction. First, using different

autoencoders, features have been extracted. Those features are fed into another deep

network to learn the relational model. Unlike this work, we have not used a two step

process to get features. Ours is a single autoencoder which is used to get features for

both the domains.

In domain invariant feature learning for depth image-based 3D model retrieval [28],

again a pair-wise neural network model has been proposed. From Figure 2.10 we see

that two networks are dedicated for depth image (ScSPM) and 3D model (LD Sift)
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Figure 2.10: Learning domain invariant features using pairwise neural network model

for depth image-based 3D model retrieval [28].

features respectively. The loss function in this pairwise model tries to minimize intra-

class distance while maximizing inter-class variance to generate hand-crafted features

in the hidden layer of each network.

2.4 Semantic models for cross-domain retrieval

Semantic matching is a new approach for cross-modal retrieval. In [12], image based

text or text based image retrieval has been proposed using canonical correlation anal-

ysis (CCA), semantic matching (SM) and semantic correlation matching (SCM). We

have two similarities with this research. First one is the application of semantic

matching on features and second one is the dealing with cross-modal retrieval prob-

lem. However, there are several dissimilarities such as semantic matching is being

applied on two different features (image features and text features) to bring those

in a single feature space. Whereas in our work, we apply semantic matching on the

same domain supervised features of real and rendered depth images.
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Figure 2.11: A new approach to Cross-Modal Multimedia Retrieval [12].

Figure 2.11 describes the semantic matching approach along with CCA. In [12],

we have one other dissimilarity with the retrieval method which is the application of

CCA on semantic matching. CCA restricts the SCM model to an equal number of

training cross domain input pairs.

2.5 Asymmetric and symmetric autoencoder approaches

Autoencoders could be symmetric or asymmetric in its network structure. In the pre-

vious research using autoencoder, symmetry used to be enforced. Perhaps the reason

behind this strict symmetry is for using tied weights between the encoder and de-

coder [29]. The unsupervised autoencoders used in 3D shape retrieval approaches [7,8]

are all symmetric in nature. The semi-supervised and supervised autoencoders used

in speech recognition, text representation, sentiment analysis, sentence level predic-

tion, multitask learning and face recognition [1,3,5,6,24,25] basically have symmetric
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network other than the associated supervision network. Convolutional autoencoers

have convolutional layers in the encoder, deconvolutional layers in the decoder and

pooling-unpooling layers in the deep autoencoder network structure [30]. Recently re-

searchers have been using asymmetric deep autoencoders [31] and upsampling layers

instead of the decoder layers [32] to get rid of artifacts problems seen in convolu-

tional deep autoencoders. Using asymmetry in deep autoencoder structure is a very

current approach where researchers claim that symmetry is a forced restriction and

not a requirement [33–36]. In [33] classification accuracy has been improved by us-

ing asymmetric deep autoencoder. In [34] the encoder is composed of several LSTM

layers while the decoder is a few layers of fully-connected neurons. The particular

structure of deep autoencoder is capable of recognizing detailed patterns to extract

features from educational data. In [35] more robust and effective features have been

learned by the application of asymmetric deep autoencoder.

23



CHAPTER III

DEEP AUTOENCODERS FOR CROSS MODAL RETRIEVAL

3.1 Background

An unsupervised autoencoder is a purely data driven approach for learning features

and clustering the data into different groups. But when the data is incomplete rely-

ing entirely on the data leads to incorrect grouping or extracting improper features.

Supervision on an autoencoder with label information helps us in restructuring the

features into correct groups. To reveal the usefulness of supervised learning over un-

supervised for retrieval, we propose one unsupervised single deep-autoencoder (SDA)

model and two supervised single deep-autoencoder (SSDA-1 and SSDA-2) models.

A cross-modal retrieval approach using a single supervised autoencoder trained by

two different domains(real and rendered depths) can be advantageous in two ways.

First, it provides insight whether two different domains with same category are being

grouped in the same group or not. Second, it gives the opportunity to visualize the

training process for determining a stopping criteria where the real depths are being

classified with a good accuracy. We consider the problem of 3D model retrieval from

a database M = M1,M2, ...,Mn of 3D models for a given query depth image.

The two advantages of the supervised approach have been demonstrated with

examples and experiments in the following subsections of this chapter. The objec-

tive function we propose for single suprevised deep autoencoder models SSDA-1 and

SSDA-2 is a unique combination of sigmoid cross entropy loss and softmaxwithloss

for reconstruction and classification of a supervised autoencoder respectively. Our

supervised models train rendered depth images and real depth images together. Fig-
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Figure 3.1: General (supervised/unsupervised) single autoencoder approaches for 3D

model retrieval.

ure 3.1 shows our general framework for unsupervised and supervised autoencoder

approaches for 3D model retrieval.

Unsupervised feature learning is relatively new and very exciting area in Machine

learning. An autoencoder tries to learn an approximation to the identity function in

an unsupervised way. By unsupervised way we mean only the data is available without

any training labels. An autoencoder reconstructs it’s input. The learning algorithm

of an autoencoder applies backpropagation where the target output is equal to the

input. The encoder part of autoencoder maps the input to a hidden representation:

E= f(Wx+b), where f is a non-linear function. The decoder part tries to map the

hidden representation back to the original input: D=f(W’x+b’). The parameters of

the network are optimized in a way that the reconstruction error is minimized.

In the hidden layers of the autoencoder data is compressed in a way that recon-

struction is possible from the compression. An autoencoder tries to cluster similar

data in same region. It is part of a pre-training regime which helps to learn the

weights and biases rather than randomly initializing them. The feature learning by

an autoencoder can be done in a comprehensive way by altering the hidden layer with

different number of neurons, sparsity, weight decay or corrupted input.
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Figure 3.2: Single Deep Autoencoder (SDA) approach for 3D model retrieval.

3.2 Single deep unsupervised autoencoder model (SDA)

Our single deep unsupervised autoencoder (SDA) model utilizes an unsupervised

autoencoder to extract the depth image features for retrieval. The unsupervised au-

toencoder is entirely data driven and tries to predict the label for the data depending

on it’s data structure even though the data is occluded and incomplete. With an

unsupervised autoencoder the real depths and rendered depth make separate clusters

because those belong to different data domains. Since the supervised approach guides

the autoencoder with label information, real and rendered depths cluster in similar

regions as desired for retrieval. The loss function for SDA’s unsupervised autoencoder

only depends on reconstruction loss sigmoid cross entropy instead of euclidean loss.

SDA model presented in Figure 3.2 describes the research problem.
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Figure 3.3: Deep network architecture for unsupervised autoencoder.

3.2.1 Network architecture for SDA

The deep unsupervised autoencoder in SDA has four encoder layers and four decoder

layers. Therefore, the deep network has a total of eight inner product layers. To pre-

vent overfitting, a dropout layer was used under the fourth encoder layer [37]. Figure

3.3 shows the architecture of our unsupervised network. SDA network autoencoder

consists of encode1(2000), encode2(1000), encode3(500), encode4(30), decode4(500),

decode3(1000), decode2(2000) and decode1(19200) layers. The kernel filter is gaus-

sian type for all the layers. We input rendered 3D model depths and real depths

together to train the autoencoder.

3.2.2 Loss function for SDA

The loss function Eu for the unsupervised autoenocder network is sigmoid cross en-

tropy function and defined as below:

Eu = − 1

N

N∑
n=1

[tn log p̂n + (1− tn) log(1− p̂n)], (3.1)
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where the prediction p̂n is the sigmoid function applied on the last decoder’s inner-

product layer having the same dimension as input, tn is the original input, and N is

the number of training samples.

3.2.3 Optimization and retrieval using SDA

The unsupervised autoencoder model is trained optimizing the reconstruction error

term Eu. Eu is the sigmoid cross entropy loss function and corresponds to loss1 in

Figure 3.3. We have used AdaDelta [38] as an optimization function since it gave

the lowest reconstruction error. After training the network, we dropped the decoder

portion. Using the encoder part of the autoencoder as a deploy network, we get 30D

rendered 3D model features Mu and 30D real test depth image features Du from the

fourth encoder layer. The distance between a model M and a query depth image D is

the distance between the autoencoder feature Mu for the model and the autoencoder

feature Dqu for the depth and defined as below:

Distsda(M,D) = d(Mu, Dqu), (3.2)

where d(.) is the distance between Mu and Dqu . We refer to this type of retrieval as

retrieval by SDA.
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3.3 Single supervised deep autoencoder model (SSDA-1)

Figure 3.4: Supevised autoencoder network with dropout for SSDA-1.

The proposed SSDA-1 is a cross-modal retrieval approach for retrieving 3D models

given a real depth image query. SSDA-1 consists of a single supervised deep autoen-

coder trained by two different domains(real and rendered depths). As a supervised

model during the training of SSDA-1 we can determine a stopping criteria or a suit-

able trained network with which the real depths are being classified with a good

accuracy. The autoencoder in the SSDA-1 model is supervised by a classification net-

work. This network supervises the autoencoder with label information. Since our real

depth objects are incomplete and partial, classification information helps to restruc-

ture the autoencoder features to facilitate the retrieval performance. The objective

function we propose for single suprevised deep autoencoder model SSDA-1 is a unique

combination of sigmoid cross entropy loss and softmaxwithloss for reconstruction and
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classification in a supervised autoencoder respectively. SSDA-1 model presented in

Figure 3.4 describes the research problem.

Figure 3.5: Deep network architecture for supervised autoencoder of SSDA-1.

3.3.1 Network architecture for SSDA-1

The supervised autoencoder has four encoder layers and four decoder layers. In this

network, after the fourth encoder layer we have added two innerproduct layers to

backpropagate the classfication error. Therefore, the network has a total of ten inner

product layers. To prevent overfitting we have added one dropout layer after fourth

encoder layer with fifty percent dropout ratio. Figure 3.5 shows the architecture of

our SSDA-1 network. SSDA-1 network autoencoder consists of enocode1(1000), en-

code2(500), encode3(250), encode4(30), decode4(250), decode3(500), decode2(1000),

decode1(19200), ip1(500) and ip2(5/7/10) layers. We have defined an objective func-

tion for the supervised autoencoder for adding classification information to the au-
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toencoder network.

3.3.2 Loss function for SSDA-1

The cost function Es for the supervised autoenocoder network is an weighted sum of

sigmoid cross entropy loss and softmax regression loss and defined as below:

Es = αE1 + βE2, (3.3)

where the reconstruction error term E1 is the sigmoid cross entropy loss function from

the autoencoder and corresponds to loss1 in Figure 3.5 and defined below:

E1 = Eu = − 1

N

N∑
n=1

[tn log p̂n + (1− tn) log(1− p̂n)], (3.4)

where the prediction p̂n is the output from the last decoder layer having the same

dimension as the input, tn is the input and N is the number of training samples.

p̂n = g(w.xn) =
1

(1 + e−w.xn),
(3.5)

where g(z) is the sigmoid function applied on the hidden layer’s (decoder) output, w

are the weights. And the classification loss term E2 is the softmax loss function from

classifier and corresponds to loss2 in Figure 3.5 and defined as below:

E2 = − 1

N

N∑
n=1

log(p̂n,ln), (3.6)

where p̂n,ln is the softmax output of the classifier defined in equation (3.7) below.

In p̂n,ln the subscripts n, ln indicate the nth training sample and the category label

respectively. N is the number of training samples. The hyper-parameters in (3.3), α

and β, control the trade-off between the two costs. To compute the softmax loss, the

softmax is performed first on the hidden units of the layer named ip2 as below:

p̂n,ln =
exp(xn,ln)∑K
k′=1 exp(xn,k′)

, ln ∈ [0, 1, 2, ..., K − 1], (3.7)
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where xn,ln is the score of each neuron computed for nth sample. In our case, we

have ten categories, so in our case K = 10. Then, the multinomial logistic loss (-log

likelihood) is computed on the softmax output as below:

˙. . E2 = − 1

N

N∑
n=1

log
exp(xn,ln)∑K
k′=1 exp(xn,k′)

= − 1

N

N∑
n=1

(xn,ln − log
K∑

k′=1

exp(xn,k′)),

(3.8)

where SoftmaxWithLoss function E2 is the mean over all training examples and is ba-

sically multinomial logistic regression used for predicting a single class of K mutually

exclusive classes.

3.3.3 Optimization and retrieval using SSDA-1

The supervised-autoencoder model is trained optimizing the cost function in equation

3.3. For the 5 and 7-category experiments we use α = 0.8 and β = 0.2. For the 10-

category experiment we set α = 1 and β = 1. The two hyper-parameters α and β are

optimized empirically from the training data. In this supervised case AdaDelta [38]

which is a gradient based optimization method optimizes the cost function. After

training the network, we dropped the decoder portion. In SSDA-1 we define Ms

as 3D model features (rendered depth image features) and Ds as testing real depth

image features. Using the encoder part of the autoencoder as a deploy network, we

get 30D rendered 3D model features Ms and 30D real test depth image features Ds

from the fourth encoder layer. The distance between a model M and a query depth

image D is the distance between the autoencoder feature Ms for the model and the

autoencoder feature Dqs for the depth and defined as below:

Distssda1(M,D) = d(Ms, Dqs), (3.9)

where d(.) is the distance between Ms and Dqs . We refer to this type of retrieval as

retrieval by SSDA-1.
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3.4 Single supervised deep autoencoder model (SSDA-2)

We have proposed two single supervised deep autoencoder models SSDA-1 and SSDA-

2. SSDA-2 has some differences with SSDA-1. Unlike SSDA-1 the supervised autoen-

coder in our SSDA-2 model is not symmetric since it has three encoder layers and

four decoder layers. In SSDA-2, instead of adding a classification network with the

encoder we have added a classification network after the decoder to supervise the

autoencoder with label information. This supervision indicates how well the recon-

struction is being classified into different categories correctly. To portray the basic

difference between SSDA-1 and SSDA-2 in details we can say that the classification

network is tightly tied with the reconstruction in SSDA-2. In other words, the rela-

tionship between reconstruction and classification is straightforward. And in the case

of SSDA-1 we classify the features instead of the reconstruction of the features, which

makes the relationship between classification and reconstruction tricky or indirect.

SSDA-2 has better retrieval accuracy than SSDA-1. The training time is slightly less

in SSDA-2 is because of lower number layer or neuron number than SSDA-1.

3.4.1 Network architecture for SSDA-2

The supervised autoencoder in our SSDA-2 model has three encoder layers and four

decoder layers, one encoder layer less than the previous supervised autoencoder of

SSDA-1. After the fourth decoder layer we have added two innerproduct layers to

backpropagate the classfication error. Therefore, the network has a total of ten in-

ner product layers and a dropout layer after third encoder layer to prevent over-

fitting. SSDA-2 network autoencoder consists of encode1(1000), encode2(500), en-

code4(30), decode4(250), decode3(500), decode2(1000), decode1(19200), ip1(500) and

ip2(5/7/10) layers. Figure 3.7 shows the architecture of our SSDA-2 autoencoder net-

work. We input 3D model depths and real depths together to train the autoencoder.
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Figure 3.6: Supevised autoencoder network with dropout for SSDA-2.

Figure 3.7: Deep network architecture for the supervised autoencoder of SSDA-2.

34



3.4.2 Loss function for SSDA-2

The cost function for the supervised autoencoder in the SSDA-2 model is defined as

below:

Es2 = E1 + E2, (3.10)

where the reconstruction error term E1 is the sigmoid cross entropy loss function from

the autoencoder and corresponds to loss1 in Figure 3.7 and defined in equation 3.4.

The classification loss term E2 is the softmax loss function from the classifier and

corresponds to loss2 in Figure 3.7 and is defined in equation 3.6. Unlike the SSDA-1

model, there is no hyper-parameter in the supervised autoencoder of SSDA-2 model.

3.4.3 Optimization and retrieval using SSDA-2

The cost function in equation 3.10 is optimized using AdaDelta [38]. After training

the network, we dropped the decoder portion. In SSDA-2 we define Ms2 as 3D model

features (rendered depth image features) and Ds2 as testing real depth image features.

Using the encoder part of the autoencoder as a deploy network, we get 30D rendered

3D model features Ms2 and 30D real test depth image features Ds2 from the fourth

encoder layer. The distance between a model M and a query depth image D is the

distance between the autoencoder feature Ms2 for the model and the autoencoder

feature Dqs2 for the depth and defined as below:

Distssda2(M,D) = d(Ms2, Dqs2), (3.11)

where d(.) is the distance between Ms2 and Dqs2 . We refer to this type of retrieval

as retrieval by SSDA-2.
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3.5 Experiments

3.5.1 Experimental setup

We performed 5, 7, and 10 category experiments to show the scalability of the pro-

posed methods. We have chosen python and caffe deep learning framework to train

and test the deep networks. The experiments performed are: experiments on different

learning rates and experiments on adding a dropout layer to prevent overfitting. We

have also shown how to choose the number of training iteration as a stopping criteria.

We have used minibatches of size 80 and 100. The learning rate, which gives a recon-

struction error neither too high nor too low, has been chosen. To prevent overfitting

and extrapolation we have used a dropout layer with 50% dropout ratio. We have

listed our experimental setup in Table 3.1.
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Chosen Framework Caffe, python

Training Networks 1. Unsupervised single deep autoencoder(SDA),

encode1(1000), encode2(500), encode3(250), encode4(30),

decode4(250), decode3(500), decode2(1000) and decode1(19200)

2. Supervised single deep Autoencoder(SSDA-1),

encode1(1000), encode2(500), encode3(250), encode4(30),

decode4(250), decode3(500), decode2(1000), decode1(19200),

ip1(500) and ip2(5/7/10)

3. Supervised single deep Autoencoder(SSDA-2).

encode1(1000), encode2(500), encode4(30),

decode4(250), decode3(500), decode2(1000), decode1(19200),

ip1(500) and ip2(5/7/10)

Validation data Real part of the training data (real depth)

Performance of the Network Retrieval performance measured by 5 well

recognized metrics: NN, FT, ST, DCG and mAP

Experiment type 5, 7 and 10-category experiments

Training experiments Experimented on:

different learning rates and dropout layer

Batch size SDA:100, SSDA-1:100, SSDA-2:80

Stopping criteria SDA: 7000, 10000, 12000 iterations

for 5, 7 and 10 category experiment respectively

SDA-1 and SDA-2: Depends on real training depth

Prevention of over-fitting Dropout layer

Table 3.1: Experimental setup.

Datasets

Our first data domain is real depth image database. We have used NYUD2 data set

[13] which is comprised of RGBD images from a variety of indoor scenes recorded by

Microsoft Kinect. It has 1449 densely labeled pairs of aligned RGB and depth images.

We have only worked with depth images. We have used ground truth segmentation

of NYUD2 depth images to verify our results. The depth images containing any of

37



the ten indoor objects (bathtub, bed, chair, desk, dresser, nightstand, table, toilet,

monitor and sofa) are considered candidate inputs. The input depth image has one

object per image. For 5 categories we have 1260 training depth and 927 testing depth

images and for 10 categories we have 1907 training depth and 1440 testing depth

images. In Figures 3.8 and 3.9, we have given examples of some candidate depth

images from the depth channel of the given given RGB-D image.

Figure 3.8: Example of segmented objects from 3 NYUD2 depth images. A candi-

date input depth image contains one of the ten objects (bathtub, bed, chair, desk,

dresser, monitor, nightstand, sofa, table and toilet). The depth images only have two

candidate depth images each.

Figure 3.9: Example of segmented objects from three NYUD2 depth images. A

candidate input depth image contains one of the ten objects (bathttub, bed, chair,

desk, dresser, monitor, nightstand, sofa, table and toilet). The depth image has five

possible candidate depth images.
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Figure 3.10: The rendered depth images under 95 views of a 3D chair model from

ModelNet10.

Our second database domain is 3D model for which we have used ModelNet10 [14].

In ModelNet10 benchmark, 3D models are organized by common indoor scene objects

with categorization labels. We downloaded 605 3D models belonging to the ten

categories. From one model we have rendered ninety five depth images varying tilt,

scale, orientation and 3D location. We have chosen those parameters based on the

object statistics and observation of NYUD2 [13] training images. An example of

rendered views has been given in Figure 3.10. We have followed the assumption that

most objects are aligned in the direction of gravity as suggested in sliding shapes

[39]. Therefore, we have 28940 rendered depth images for training the 5 category

experiment and 59382 rendered depth images for training the 10 category experiment.

In Table 3.2, we have listed our training and testing depth image list.
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Categories Number of depth images Number of 3D models

(# of training/# of testing)

1. bathtub 65(35/30) 26

2. bed 321(161/160) 37

3. chair 1355(826/529) 113

4. desk 341(176/165) 51

5. dresser 105(62/43) 57

6. monitor 177(78/99) 51

7. nightstand 153(86/67) 41

8. sofa 256(146/110) 90

9. table 502(300/202) 105

10. toilet 72 (37/35) 34

Total 10 categories Total Training depth: 1907 Total Training model:

Total Testing depth: 1440 605*95 =57,475

Table 3.2: NYUD2 and ModelNet10 dataset.

Evaluation criteria

The evaluation metrics used to measure the retrieval accuracy of 3D models in this

research include five standard quantitative statistics which are Nearest Neighbor, First

Tier, Second Tier, Discounted Cumulative Gain and Average Precision. We have

also shown the retrieval performance using 11 point Precision Recall (PR) curves.

These metrics are well recognized metrics in information retrieval field for 3D shape

retrieval performance evaluation [40]. The 3D shape retrieval evaluation procedure is

straightforward. In response to a given set of queries by a user, an algorithm searches

the database of 3D model features and returns an ordered list of 3D models. Since

this list is ordered we call it a ranked list.
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For 3D model retrieval, the idea of a ranked list is very important. The greater

the ranked position of a relevant object the less valuable it is for the user. Since it is

less likely that the user will put time and effort into examining the objects ranked on

the later section of a list. An example of a relevance list is given below:

Rel=<1, 1, 0, 0, 0, 1, 1, 0, 1, 0 . . . . >

where the binary value 1 denotes that the retrieved model is relevant and and

0 denotes irrelevancy. The cumulative gain CG at position n of this list Rel is the

summation of relevance list from position 1 to n.

Nearest Neighbor (NN): NN is the average percentage of the closest K matches

that belong to the same category as the depth image query. Greater percentage of

this measure means better retrieval result where the highest limit of this metric is

100%. In our work, the first position of the cumulative gain vector is taken as NN

measurement which means K=1.

First Tier (FT): FT is the percentage of the closest K matches that belong to

the same category as the depth image query where K depends on how many models

are present in the database which match the query’s class. Greater percentage of this

measure means better retrieval result where the highest limit of this metric is 100%.

Usually for first tier, K = |C| − 1 where C is the number of class members for a

specific class.

Second Tier (ST): ST is the percentage of the closest K matches of 3D models

that belong to the same category as the depth image query where K depends on how

many models are present in the database which match the query’s class. Greater

percentage of this measure means better retrieval result where the highest limit of

this metric is 100%. Usually for second tier, K = 2 ∗ |C| − 1 where C is the number

of class members for a specific class. Second tier is little less stringent than first tier

since K is twice as bigger as second tier.

Discounted Cumulative Gain (DCG): DCG is a metric which progressively
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reduces the importance of the object retrieved as the rank goes higher but this re-

duction is not too sharp or steep. The algorithm of DCG includes the ranked list G.

DCG is defined as follows [41]:

DCGi =


G1, if i = 1,

DCGi−1 + Gi

log2(i)
, otherwise.

(3.12)

The final DCG is divided by the maximum possible DCG defined as below:

DCG =
DCGk

1 +
∑|C|

j=2
1

log2(i)

(3.13)

where k is the number of 3D models present in the database. The usual convention

is to look at the normalized DCG in which DCG value is scaled down by the average

over all algorithms.

Mean Average Precision (mAP): Average precision (AP) is the average of

precision scores at the rank of a relevant object retrieved. This measure uses a

ranked list and changes its value at a rank where the object is relevant. In a ranked

list where relevant objects are retrieved at the rank of 1, 2, 4, 7, 10; the AP at each

rank of the ranked list would be 1, 1, 0.75, 0.57, 0.50. The average precision (AP)

function is a monotonous decreasing function. Mean average precision is the mean of

AP over all the queries.

Precision-Recall (PR) curves: Precision is the ratio of retrieved-relevant ob-

jects to all the retrieved objects. And Recall is the ratio of retrieved-relevant objects

to all the relevant objects. If A is the set of all the relevant objects and B is the set

of all the retrieved objects then Precision = (A ∩ B)/B and Recall = (A ∩ B)/A.

We have visualized our retrieval performance using 11-point precision-recall curve.

Precision-recall curves are the relation between precision and recall for all depth im-

age queries indicating retrieval performance. The interpolated average of precision at

different recall levels (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) are calculated

for an 11-point PR curve. For 11-point PR curve interpolated average of precision
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at different recall levels of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 are

calculated. Recall is plotted on the x-axis and precision is plotted on the y-axis.

Training supervised and unsupervised deep autoencoders

In this section we discuss training the unsupervised autoencoder in SDA, the super-

vised autoencoder in SSDA-1, and the supervised autoencoder in SSDA-2 for five,

seven, and ten categories. We also show the experiments to choose the appropriate

learning rate. The learning rate we have chosen in unsupervised section has also

been used in supervised section. This is because, in supervised autoencoder model,

the autoencoder part plays the major role. We do not interrupt the autoencoder

reconstruction and have chosen the same learning rate for unsupervised and super-

vised model for 3D model retrieval. Additionally we discuss the with-dropout and

without-dropout comparisons for the autoencoder networks.
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Training experiments with different learning rates

Figure 3.11: Learning rate experiment for unsupervised autoencoder for 5 categories.

In Figure 3.11, the experiment of choosing the learning rate for unsupervised deep

autoencoder for five categories has been shown. We have chosen a learning rate of

0.01 because in this case, the learning is not too slow or too fast. Also, training error

is not too low which is good for preventing overfitting.
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Figure 3.12: Learning rate experiment for unsupervised autoencoder for 10 categories.

In Figure 3.12, the experiment of choosing the learning rate for unsupervised

autoencoder for ten categories has been shown. Like the five category experiment, we

have chosen a learning rate of 0.01 because in this case, the learning rate is not too

slow or too fast. Also, the training error is not too low which is good for preventing

overfitting. This learning rate was used for the seven category experiment as well.
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Training experiments with dropout layer

Figure 3.13: Dropout layer experiment for unsupervised autoencoder for 5 categories.

In Figure 3.13, we have shown the effect of adding a dropout layer. The experiment

shows adding a dropout layer increases the error. We see that loss rate is higher in a

with-dropout deep autoencoder network. We have added one dropout layer with 50%

dropout ratio. Adding more than one dropout layer drops important information for

retrieval. For SSDA-1 and SSDA-2 we choose the learning rate and dropout layer to

be the same as SDA.
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Figure 3.14: Dropout layer experiment for unsupervised autoencoder for 10 categories.

In Figure 3.14, we have shown the effect of adding a dropout layer. We see that

loss rate is higher in a with-dropout deep autoencoder network. We have added one

dropout layer with 50% dropout ratio. Adding more than one dropout layer drops

important information for retrieval. For SSDA-1 and SSDA-2, we choose the learning

rate and dropout layer to be the same as SDA.
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Training unsupervised autoencoder

Figure 3.15: Training unsupervised autoencoder for 5 categories.

In Figure 3.15(a), we have shown the pattern of sigmoid cross entropy loss for 14000

iterations for a 5-category experiment. We see the error is decreasing which is an

indication that loss function has been able to decrease error over iterations and be-

comes stable. In Figure 3.15(b), the red line shows the training loss for both real and

rendered depth images and the blue line shows the training loss for only real depth

images.

Figure 3.16: Training unsupervised autoencoder for 7 categories.

In Figure 3.16(a), we have shown the plot of sigmoid cross entropy loss for 16000
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iterations for a 7-category experiment. We see the error is decreasing which is an indi-

cation that loss function has been able to decrease error over iterations and becomes

stable and not decrease further. In Figure 3.16(b), the red line shows the training loss

for both real and rendered depth images and the blue line shows only the training

loss for real depth images.

Figure 3.17: Training unsupervised autoencoder for 10 categories.

In Figure 3.17(a), we have shown the plot of sigmoid cross entropy loss for 18000

iterations for a 10-category experiment. We see the error is decreasing which is

an indication that loss function has been able to decrease error over iterations and

becomes stable and not decrease further. In Figure 3.17(b), the red line shows the

training loss for both real and rendered depth images and the blue line only shows

the training loss for real depth images.
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Training supervised (SSDA-1) autoencoder

Figure 3.18: Training supervised autoencoder (SSDA-1) for 5 categories.

In Figure 3.18, we have shown the training of the supervised deep autoencoder in

SSDA-1 for 5 categories. The supervised autoencoder has two loss terms, reconstruc-

tion loss and classification loss shown in Figure 3.18(a) and (c) respectively. In the

training experiment we have also included classification accuracy presented in Figure

3.18(d) to see how well the features are being classified in a category. The classifi-

cation accuracy is an indicator of how well the features being clustered into correct

regions in order to retrieve a model from that region. In Figure 3.18(d), we observe

the accuracy of real depth images separately so that we can infer on which iteration

the real training depth images are being classified with an adequate accuracy. This
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is an advantage because we can choose an appropriate iteration where the accuracy

is neither too high nor too low. Avoiding an iteration with overly high accuracy can

avoid overfitting and avoiding an iteration with extremely low accuracy can avoid

underfitting.

Figure 3.19: Training supervised autoencoder (SSDA-1) for 7 categories.

In Figure 3.19, we have shown the training of a supervised autoencoder for 7

categories. The supervised autoencoder has two loss terms, reconstruction loss and

classification loss shown in Figure 3.19(a) and (c) respectively. In the training ex-

periment we have also included classification accuracy presented in Figure 3.19(d) to

see well the features are being classified in a category. The classification accuracy

is an indicator of how well the features being clustered into correct regions in order
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to retrieve a model from that region. In Figure 3.19(d), we observe the accuracy of

real depth image separately so that we can infer on which iteration the real training

depth images are being classified with an adequate accuracy. This is an advantage

because we can choose an appropriate iteration where the accuracy is neither to high

nor too low. Avoiding an iteration with overly high accuracy can avoid overfitting

and avoiding an iteration with extremely low accuracy can avoid underfitting.

Figure 3.20: Training supervised autoencoder (SSDA-1) for 10 categories.

In Figure 3.20, we have shown the training of a supervised autoencoder for 10

categories. The supervised autoencoder has two loss terms, reconstruction loss and

classification loss shown in Figure 3.20(a) and (c) respectively. In the training ex-

periment we have also included classification accuracy presented in Figure 3.20(d) to
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see how well the features are being classified in a specific category. The classification

accuracy is an indicator of how well the features being clustered into different correct

regions in order to retrieve a model from that region. In Figure 3.20(d), we observe

the accuracy of real depth image separately so that we can infer on which iteration

the real training depth images are being classified with an adequate accuracy. This is

an advantage because we can choose an appropriate iteration where the accuracy is

neither to high nor too low. Avoiding an iteration with too high accuracy can avoid

overfitting and avoiding an iteration with too low accuracy can avoid underfitting.

Training supervised (SSDA-2) autoencoder

Figure 3.21: Training supervised autoencoder (SSDA-2) for 5 categories.
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In Figure 3.21, we have shown the training of a supervised autoencoder in SSDA-2

for 5 categories. The supervised autoencoder has two loss terms, reconstruction loss

and classification loss shown in Figure 3.21(a) and (c) respectively. In the training

experiment we have also included classification accuracy presented in Figure 3.21(d)

to see how well the features are being classified in a category. The classification

accuracy is an indicator of how well the features being clustered into different correct

regions in order to retrieve a model from that region. In Figure 3.21(d), we observe

the accuracy of real depth image separately so that we can infer on which iteration

the real training depth images are being classified with an adequate accuracy. This

is an advantage because we can choose an appropriate iteration where the accuracy

is neither to high nor too low. Avoiding an iteration with overly high accuracy can

avoid overfitting and avoiding an iteration with extremely low accuracy can avoid

underfitting.
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Figure 3.22: Training supervised autoencoder (SSDA-2) for 7 categories.

In Figure 3.22, we have shown the training of a supervised autoencoder for 7

categories. The supervised autoencoder has two loss terms, reconstruction loss and

classification loss shown in Figure 3.22(a) and (c) respectively. In the training ex-

periment we have also included classification accuracy presented in Figure 3.22(d)

to see how the features are doing in being classified into a specific category. The

classification accuracy is an indicator of how well the features being clustered into

different correct regions in order to retrieve a model from that region. In Figure

3.22(d), we observe the accuracy of real depth image separately so that we can see on

which iteration the real training depth images are being classified with an adequate

accuracy. This is an advantage because we can choose an appropriate iteration where
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the accuracy is neither to high nor too low. Avoiding an iteration with too high

accuracy can avoid overfitting and avoiding an iteration with too low accuracy can

avoid underfitting.

Figure 3.23: Training supervised autoencoder (SSDA-2) for 10 categories.

In Figure 3.23, we have shown the training of a supervised autoencoder for 10

categories. The supervised autoencoder has two loss terms, reconstruction loss and

classification loss shown in Figure 3.23(a) and (c) respectively. In the training exper-

iment we have also included classification accuracy presented in Figure 3.23(d) to see

how well the features are being classified in a category. The classification accuracy is

an indicator of how well the features being clustered into different correct regions in

order to retrieve a model from that region. In Figure 3.23(d), we observe the accuracy
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of real depth image separately so that we can infer on which iteration the real training

depth images are being classified with an adequate accuracy. This is an advantage

because we can choose an appropriate iteration where the accuracy is neither to high

nor too low. Avoiding an iteration with overly high accuracy can avoid overfitting

and avoiding an iteration with extremely low accuracy can avoid underfitting.

3.5.2 Performance comparison

NN FT ST DCG AP

5 categories

PNN [10] 0.1974 0.3533 0.5529 0.6754 0.3798

SDA [42] 0.5631 0.4877 0.6963 0.8927 0.5351

SSDA-1 [42] 0.6084 0.5250 0.6769 0.8937 0.5811

SSDA-2 0.6160 0.5274 0.6719 0.8972 0.5811

7 categories

PNN [10] 0.0659 0.1843 0.3400 0.5947 0.2255

SDA [42] 0.4995 0.3746 0.5586 0.8532 0.4194

SSDA-1 [42] 0.5178 0.3919 0.5683 0.8576 0.4273

SSDA-2 0.5178 0.3936 0.5815 0.8583 0.4287

10 categories

PNN [10] 0.0729 0.1115 0.2326 0.5517 0.1373

SDA [42] 0.3472 0.2429 0.4090 0.8089 0.2606

SSDA-1 [42] 0.3535 0.2557 0.4221 0.8133 0.2734

SDA-2 0.3986 0.2624 0.4265 0.8172 0.2796

Table 3.3: Performance metrics comparison of depth-image based 3D model retrieval

on the NYU Depth V2 dataset and the ModelNet10 benchmark.
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We have compared our results with the PNN approach [10] and the supervised au-

toencoder approach [42]. These approaches represent the most recent approaches

for depth image based 3D model retrieval. The experimental results are reported in

Table 3.3. The table suggests that supervised models perform better than the un-

supervised model. But if the number of categories are increased, supervised models

perform similar to the unsupervised ones due to ambiguity and uncertainty coming

from increased number of model categories.

Figure 3.24: PR curve for 5 category experiment.
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Figure 3.25: PR curve for 7 category experiment.

Figure 3.26: PR Curve for 10 category experiment.

PR curves in Figures 3.24 and 3.26 show that the single autoencoder PR curves
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are higher than PNN for the 5, 7 and 10-categories experiments. Figure 3.25 and 3.26

show that SDA and SSDA-1 performances are similar since the supervision is not

effective for training almost 60,000 depth images. The supervised approach SSDA-2

performs better than the other supervised approach SSDA-1. In other words, the su-

pervision in SSDA-2 is more effective than SSDA-1 when more ambiguity is added to

the data. The training time is less in SSDA-2 is because of the lower number parame-

ters. Also SSDA-2 retrieval accuracy is slightly better than SSDA-1 using the nearest

neigbor (NN) metric. Our experimental results suggest that supervised approaches

are better than the unsupervised approach and the unsupervised approach performs

better than PNN. We have trained with 59382 depth images for 10 categories, 37144

depth images for 7 categories and 28240 depth images for 5 categories which is around

95 times greater than PNN.

3.5.3 Retrieval results

In this section some retrieval examples of the supervised approach(SSDA-1) and the

unsupervised approach (SDA) have been shown. We have shown the first ten retrieved

3D models in the Figures 3.27 to 3.32. In those figures, the second and the third rows

show the depth images retrieved by unsupervised model and the corresponding 3D

models respectively; the fourth and the fifth rows show the depth images retrieved

by supervised model and the corresponding 3D models respectively.

In Figure 3.27, we see that SDA has given better performance than SSDA-1 by

retrieving relevant 3D models. SDA has retrieved four bathtub models among the first

ten retrieved models. On the other hand, SSDA-1 has retrieved only three bathtub

models. SDA has retrieved bathtub models on the third, fifth, ninth and tenth ranked

positions. And SSDA-1 has retrieved bathtub models on the first, second and eighth

ranked positions. One other thing, we observe from this retrieval is that the bed

models retrieved by SSDA-1 have more shape similarity to the segmented bathtub
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Figure 3.27: Retrieval example: bathtub.

from the depth image than SDA. We can also observe that the rank positions are

higher in SSDA-1 since bathtubs are retrieved in the first two positions by SSDA-1.

Figure 3.28: Retrieval example: bed.

In Figure 3.28, we see that SSDA-1 has given better performance than SDA by

retrieving relevant 3D models. SSDA-1 has retrieved four bed models among the
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first ten retrieved models. On the other hand, SDA has retrieved no bed models at

all among the first ten retrieved models. SSDA-1 has retrieved bed models on the

first, third, fourth and fifth ranked positions. One other thing, we observe from this

retrieval is that the bed models retrieved by SSDA-1 have more shape similarity to

the segmented bed from the depth image than SDA.

Figure 3.29: Retrieval example: desk.

In Figure 3.29, we see that SDA has given better performance than SSDA-1 by

retrieving relevant 3D models. SDA has retrieved four desk models among the first

ten retrieved models. On the other hand, SSDA-1 has retrieved only two desk models.

SDA has retrieved desk models on the first, second, sixth and seventh ranked posi-

tions. And SSDA-1 has retrieved desk models on the first and tenth ranked positions.

We observe from this retrieval is that the desk models retrieved by SDA have more

shape similarity to the segmented desk from the depth image than SSDA-1.
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Figure 3.30: Retrieval example: dresser.

In Figure 3.30, we see that SSDA-1 has given better performance than SDA re-

trieving relevant 3D models. SSDA-1 has retrieved seven dresser models among the

first ten retrieved models. On the other hand, SDA has retrieved only four dresser

models. SSDA-1 has retrieved dresser models on the first, second, fourth, fifth, eighth,

ninth and tenth ranked positions. And SDA has retrieved dresser models on the first,

sixth, seventh and eighth ranked positions. One other thing, we observe from this

retrieval is that the dresser models retrieved by SSDA-1 have more shape similarity

to the segmented dresser from the depth image than SDA. We can also observe that

the rank positions are higher in SSDA-1 since dressers are retrieved on the first two

positions by SSDA-1.
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Figure 3.31: Retrieval example: chair.

In Figure 3.31, we see that both SDA and SSDA-1 has given better performance

by retrieving relevant 3D models. SDA and SSDA-1 has retrieved ten chair models

among the first ten retrieved models. We observe from this retrieval is that the chair

models retrieved by SDA has more shape similarity to the segmented chair from the

depth image than SSDA-1.
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Figure 3.32: Retrieval example: dresser.

In Figure 3.32, we see that SSDA-1 has given better performance than SDA re-

trieving relevant 3D models. SSDA-1 has retrieved eight dresser models among the

first ten retrieved models. On the other hand, SDA has retrieved only three dresser

models. SSDA-1 has retrieved dresser models on the first, second, third, fourth, sixth,

seventh, ninth and tenth ranked positions. And SDA has retrieved dresser models on

the third, sixth and tenth ranked positions. One other thing, we observe from this

retrieval is that the dresser models retrieved by SSDA-1 have more shape similarity

to the segmented dresser from the depth image than SDA. We can also observe that

the rank positions are higher in SSDA-1 since dressers are retrieved on the first four

positions by SSDA-1.

3.5.4 Analysis and discussion

1. Computational cost

The training time is measured on a PC with 1.2GHz CPU and GTX 750 GPU. We

do not preprocess features from image. The training time is proportional to the num-

65



ber of training iterations. We train with both NYUD2 depth images and rendered

3D model depth images in the same network. Training the supervised autoencoder

in SSDA-1 takes approximately 16 minutes for 7000 iterations for 28940 depth im-

ages (5 categories) and 18.2 minutes for 7000 iterations for 59382 depth images (10

categories). Training the supervised autoencoder in SSDA-2 takes approximately 15

minutes for 7000 iterations for 28940 depth images (5 categories) and 18.1 minutes

for 7000 iterations for 59382 depth images (10 categories).

2. Feature space comparison

Figure 3.33: Feature space visualization: 3D PCA on 30D SDA (unsupervised) feature

and 30D SSDA (supervised) feature.

We have applied 3D PCA on 30D autoencoder features for visualizing autoencoder

features in a low dimensional space. In Figure 3.33, the first row shows 5 clusters for

5 objects. We see that the clusters are not well separated, the clusters are overlapped

because of object similarity and incompleteness. For visualization clarity we have
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displayed 2 clusters at a time. In Figure 3.33, we see that dresser and chair make two

different clusters with a little overlap. Bathtub and bed clusters overlap badly but

SSDA-1 (supervised model) shows a little better performance than SDA. Again in

Figure 3.33, we see that dresser and bathtub clusters overlap more than dresser and

chair clusters. Chair and desk clusters have overlapped more in SDA than SSDA-1.

3. Advantage of supervised autoencoder over unsupervised

An autoencoder is a type of neural network that works on the data in an unsupervised

manner. It can cluster the data into groups based on the data coding specially when

the data is available without any labels. In our research, we deal with real depth

images from indoor scenes which suffer noise, incompleteness and occlusion. Relying

entirely on incomplete and occluded data to extract feature by an unsupervised au-

toencoder leads to incorrect grouping or improper features. Moreover we train our

autoencoder with mix-domain data. Which means we train our autoencoder with real

and rendered depth images together. An autoencoder working on mixed data has a

tendency to group real and rendered depth images with the same label in different

clusters which is undesirable for effective retrieval. In our proposed models we su-

pervise an autoencoder with label information. For a cross-modal retrieval approach

using a single supervised autoencoder trained by mixed domains(real and rendered

depths) can favor the retrieval in two ways. First, it provides insight whether two dif-

ferent domains with same category are being clustered in the same group or not. And

second, it yields the opportunity to visualize the training process for determining a

stopping criteria. Determining a stopping criteria means deciding an iteration having

a good real depth image accuracy. These two advantages have been demonstrated

with examples and experiments in the following two subsections.

In a nutshell, our proposed supervised autoencoder depends mostly on the data

where we rely on reconstruction and reconstruction aware clasification to deal with
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ambiguity and complexity present in real and rendered depth images..

4. Determining stopping criteria from supervised autoencoder

Training a supervised autoencoder gives us the facility to see how real training depth

features or reconstructions are being classified into appropriate categories. Since

we can see the real depth accuracy, we can determine a stopping criteria. We can

determine a point from the training where real depth images of the training data are

being classified with a proper accuracy. This is not possible for unsupervised approach

since we do not classify the features so we cannot determine a good stopping criteria

with good accuracy of real depth. This concept is further demonstrated in Figure

3.34.

Figure 3.34: Effect of supervision in cross modal retrieval: determining stopping

criteria for autoencoder training based on an adequate accuracy. From supervised

training presented in (b), we can choose trained network parameters at a certain

iteration point (such as 3000 or 6000) based on real training depth accuracy.

In the training experiment we have included classification accuracy presented in

Figure 3.34 to see how the features are being classified into a specific category. The
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classification accuracy is an indicator of how well the features are being clustered into

different regions in order to retrieve a model from that region.

In Figure 3.34(b), we observe the accuracy of real depth image separately so that

we can see on which iteration the real training depth images are being classified with

an adequate accuracy. This is an advantage because we can choose an appropriate

iteration where the accuracy is neither too high nor too low. Avoiding an iteration

with overly high accuracy can avoid overfitting and avoiding an iteration with ex-

tremely low accuracy can avoid underfitting. In Figure 3.34(a) we observe that the

unsupervised deep autoencoder is not suitable to pick a good training point. In Figure

3.34(b), we show that we can choose an iteration of 3000 or 6000 as a stopping criteria

since real training depth images are being classified with an adequate accuracy and

in this way we can also avoid overfitting to the training data.

5. SSDA-2 vs SSDA-1

We have proposed one unsupervised deep autoencoder model SDA and two single

supervised deep autoencoder models SSDA-1 and SSDA-2. Unlike SSDA-1, the su-

pervised autoencoder in our SSDA-2 model is not symmetric since it has three encoder

layers and four decoder layers. The differences are listed in the Table 3.4. In addition

SSDA-2, instead of adding a classification network with the encoder we have added a

classification network after the decoder to supervise the autoencoder with label infor-

mation. This supervision indicates how well the reconstruction is being classified into

different categories. After the fourth decoder layer we have added two innerproduct

layers to backpropagate the classfication error. Therefore, the network has a total

of ten inner product layers and a dropout layer after third encoder layer to prevent

overfitting.
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Categories SSDA-1 SSDA-2

1. Symmetry Symmetric Non-symmetric

2. Classification layer Classifies encoder features Classifies decoder reconstruction

3. Network Architecture 1000-500-250-30- 1000-500-30-

250-500-1000- 250-500-1000-

19200-1000-500-10 19200-1000-500-10

4. Parameters 24240 23990

5. Training time for 7000 iteration 16 minutes 15 minutes

(28940 depth images for 5-category experiments)

6. Training time for 7000 iterations 18.2 minutes 18.1 minutes

(59382 depth images for 10-category experiments)

7. Total layers without dropout layer 10 9

8. 5-category retrieval result NN-0.6084 NN-0.6160

10. 10-category retrieval result NN-0.3535 NN-0.3986

Table 3.4: SSDA-1 vs SSDA-2.

To portray the basic difference between SSDA-1 and SSDA-2 in detail we can say

that the classification network is tightly tied with reconstruction in SSDA-2. In other

words, the relationship between reconstruction and classification is straightforward.

In case of SSDA-1, we classify the features instead of the reconstruction of the fea-

tures, which makes the relationship between classification and reconstruction tricky

or indirect.
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Figure 3.35: Classification loss (Softmax loss), SSDA-1 vs SSDA-2.

In case of SSDA-1, classification is directly based on the features without involv-

ing the reconstruction results, while SSDA-2 is proposed to allow the classification

network to be more closely associated with the reconstruction. In other words, clas-

sification in SSDA-2 is based on the reconstruction results of autoencoder features.

Compared with SSDA-1, the relationship between reconstruction and classification

is more balanced and integrated in SSDA-2 for joint optimization. SSDA-2 has two

advantages over SSDA-1: one is less training time and the other is improved retrieval

accuracy. The training time is less in SSDA-2 because of less parameters. Also the

classification loss is less in SSDA-2 than SSDA-1 shown in Figure 3.35. The cost func-

tion of SSDA-2 is the same as that in SSDA-1 defined in equation 3.3 and optimized

using the same optimizing function.
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6. Pairwise vs non-pairwise models

Usually cross-modal retrieval methods involve training two different domains with

a parallel or paired network structure [7, 9–11]. The assumption of training two

different supervised networks facilitating the transfer matching between two different

domains leads to a conjecture. We address the pairwise models for cross-domain

retrieval as a conjecture because this is an assumption or speculation without enough

experimental proof or validation. In this research we show that training one single

deep autoencoder with rendered and real depth images together is more efficient to

bring cross domains in single feature space. We also show that a supervised deep

autoencoder is a better approach for cross modal retrieval than an unsupervised

autoencoder. Our model is not restricted to an equal number of depth images and 3D

models. On the contrary, in [12], correlation modeling (CM) and semantic correlation

modeling (SCM) algorithms are restricted to have the same number of 3D models

and depth images due to the dimension requirement of canonical correlation analysis

(CCA). Our model takes depth images as the direct input rather than handcrafted

features. The deep structure of an autoencoder can effectively learn complicated

structures from raw depth images and requires less domain knowledge.
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5-category experiment Testing data retrieval accuracy (NN)

Training: real and rendered depth (SSDA-1) [42] 0.6084

Training: real and rendered depth (SSDA-2) 0.6160

Training: real and rendered depth(#630) (SSDA-2) 0.6030

Training: rendered depth only (SSDA-2) 0.5976

7-category experiment NN

Training: real and rendered depth (SSDA-1) [42] 0.5178

Training: real and rendered depth (SSDA-2) 0.5178

Training: real and rendered depth(#712) (SSDA-2) 0.4785

Training: rendered depth only (SSDA-2) 0.4822

10-category experiment NN

Training: real and rendered depth (SSDA-1) [42] 0.3535

Training: real and rendered depth (SSDA-2) 0.3986

Training: real and rendered depth(#954) (SSDA-2) 0.3132

Training: rendered depth only (SSDA-2) 0.1611

Table 3.5: Performance comparison between training with and without real depth

images. Nearest neighbor metric comparison of depth-image based 3D model retrieval

on the NYU Depth V2 dataset and the ModelNet10 becnhmark.

The experimental results in Table 3.5 supports our assumption of single network

retrieval strategy. Introducing real depth images in the training data is an efficient

way to have the same features for same classes for two different domains such as real

depth image domain and rendered depth image domain. Figure 4.1 will help to get

the idea of this assumption. Table 3.5 indicates that training rendered and real depth

images together shapes the feature in a way that bridges the gap between the real

data and rendered data. The retrieval result using the nearest neighbor (NN) metric

with real depth data shows better performance than without real depth data. This

better result is also an additional advantage besides the advantage of less training

time. Training a single network is obviously less expensive than dual network. The
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metric nearest neighbor is an indicator of whether the model is able to pick a model

with correct label in the first ranked position.

In this work, we have proposed an unsupervised and a novel supervised model

for cross-modal 3D model retrieval using a deep autoencoder from depth images. We

have shown the strength of supervision on autoencoder by doing classification aware

reconstruction. We have studied the retrieval of ten indoor objects (bathtub, bed,

chair, desk, dresser, night stand, table, toilet, monitor and sofa). The synthetic and

real depth images are used together to train our models whereas all the existing 3D

model retrieval approaches use a pairwise network or a separate network to train each

domain. We demonstrate that training together increases the possibility to bring two

different domains in a single feature space. We have shown the effectiveness of our

models on NYUD2 depth image dataset and ModelNet10.

74



CHAPTER IV

ASYMMETRIC SUPERVISED DEEP AUTOENCODERS

4.1 Background

In a deep autoencoder the features of data such as edges, contour and patterns are

learned layer by layer . The deeper layers learn more complex and high-order features.

Also by altering the hidden layers of a deep autoencoder with different number of

neurons, sparsity, weight decay or corrupted input might reveal interesting structures

present in the data. Again a supervised deep autoencoder can restructure features by

providing label information when the data are incomplete or occluded [42]. Super-

vised and semi-supervised autoencoders have been used in face recognition, speech

recognition, sentiment analysis, text classification, phone classification, multi-task

learning and many other areas [1–8].

Having an equal number of encoders and decoders before and after the central em-

bedding layer in a deep autoencoder is not necessarily required, rather it relates more

to greedy training of stacked autoencoders since the encoders and decoders used to

be built by nesting one into the other making the symmetric structure inevitable. Re-

searchers have shown that an asymmetric structure leads to more robust latent space

representation and invariant to small changes in samples [33–36].We have proposed

a unique supervised deep asymmetric autoencoder for 3D model retrieval based on

depth images for the first time. We demonstrate the fact that it might be prudent to

develop a less complex decoder than the encoder to bridge the domain gap in a single

embedding. Our work also shows that asymmetric deep autoencoder for the 3D model

retrieval problem outperforms symmetric deep autoencoder by overcoming negative
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Figure 4.1: Effect of supervision: supervised autoencoder groups real and rendered

depths of same category in the same region.

impacts of symmetrical architecture which are not useful for transfer learning.

4.2 Single supervised deep asymmetric autoencoder(SSDAA)

4.2.1 Supervised structure

Autoencoder is a widely used unsupervised data driven approach to find a latent

lower dimensional space of data. But relying entirely on occluded and incomplete data

leads to incorrect grouping or improper features. A supervised autoencoder with label

information tends to correctly restructure the features into correct groups. In a cross-

modal retrieval approach using an asymmetric single supervised autoencoder trained

by mixed datasets (real and rendered depths) can be advantageous in two ways. First

it provides insight as to whether two different domains with the same category are

being flocked in the same group or not. Second it allows us to determine a stopping

criteria where the real depth images are being classified with good accuracy. To

reveal the usefulness of supervised learning over unsupervised for retrieval, we show

the example of Figure 4.1. The effect of supervision in cross modal retrieval could

be stated as: real and rendered depths tend to cluster separately in the unsupervised

approach whereas supervised autoencoder groups real and rendered depths of same
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category in the same region.

We have proposed a supervised single deep asymmetric autoencoder approach for

retrieval SSDAA. In the case of SSDA-1 [42], classification is directly based on the

features without involving the reconstruction results, while SSDAA is proposed to

allow the classification network to be more closely associated with the reconstruction.

In SSDAA, instead of adding a classification network with the encoder, we have

added a classification network after the decoder to supervise the autoencoder with

label information. The proposed SSDAA is not symmetric since it has less decoder

layers than encoder layers. SSDAA has two advantages over SSDA-1 [42], less training

time and improved retrieval accuracy.

4.2.2 Asymmetric structure

This chapter introduces asymmetric supervised deep autoencoder for 3D model re-

trieval purpose based on depth images. Resesarches have shown that asymmetric

deep autoencoders lead to more robust embedding and invariant to small variation of

samples [34,35]. All the previous research in the area of 3D model retrieval employed

symmetric deep autoencoders that had an equal number of encoders and decoders.

We have compared asymmetric autoencoder retrieval results with symmetric autoen-

coder and found that asymmetric deep autoencoder overcoming the symmetric deep

autoencder for improving retrieval accuracy depicted in the result section. Our su-

pervised single deep asymmetric autoencoder has three encoders and two decoders.

Reducing the number of decoder layers reduces the number of parameters (network

weights) to learn [33] which eventually leads to reduced over-fitting. Improving gen-

eralizability and classification accuracy are also the outcome of reduced number of

parameters. One more advantage of the asymmetry is that each decoder layer is

subjected to add reconstruction loss to the network. So reducing the number of de-

coder layers helps to minimize the loss which can be easily verified by comparing
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reconstruction error between symmetric and asymmetric autoencoder [33].

Figure 4.2: Deep network architecture, (a) Supervised symmetric autoencoder SSDA-

1 [42], (b)Supervised asymmetric autoencoder SSDAA network: enocode1(1000), en-

code2(500), encode3(30), decode2(500), decode1(19200), ip1(500) and ip2(5/7/10).

4.2.3 Network structure and loss function

The proposed SSDAA has a classification network to supervise the autoencoder with

label information. The network architecture of these supervised autoencoders has

been given in Figure 4.2. The first part of the loss function coming from the unsu-

pervised branch of the network is given below:

Euasym = − 1

N

N∑
n=1

[tn log p̂n + (1− tn) log(1− p̂n)], (4.1)
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where the prediction p̂n is the sigmoid function applied at the last decoder inner-

product layer that has the same dimension as the input, tn is the original input, and

N is the number of training samples. The reconstruction error Euasym is the sigmoid

cross entropy loss function which corresponds to loss1 in Figure 4.2(b).

The total objective function we propose for single suprevised deep asymmetric

autoencoder model SSDAA is a unique combination of sigmoid cross entropy loss

and softmaxwithloss for the reconstruction and the classification respectively and is

defined as below:

ESasym = αEuasym + βEcasym, (4.2)

where the reconstruction error term Euasym is the sigmoid cross entropy loss function

from the autoencoder and corresponds to loss1 in Figure 4.2(b) and is defined in

(4.1). The hyper-parameters in (4.2), α and β, control the trade-off between the two

costs. The classification loss term Ecasym is the softmax loss function from classifier

and corresponds to loss2 in Figure 4.2(b) and is defined as below:

Ecasym = − 1

N

N∑
n=1

log(p̂n,ln), (4.3)

where p̂n,ln is the softmax output of the classifier defined in equation (3.7). In p̂n,ln the

subscripts n, ln indicate the nth training sample and the category label respectively.

N is the number of training samples. Ecasym is the mean over all training examples

and is basically multinomial logistic regression used for predicting a single class of K

mutually exclusive classes. After training the network using AdaDelta [38], we got

30D features (encoder output) Mas for rendered 3D model depth images and 30D

Das for test depth images. The distance between a model M and a query depth

image D is the distance between the autoencoder feature Mas for the model and the

autoencoder feature Dqas for the depth and defined as below:

Distssdaa(M,D) = d(Mas, Dqas), (4.4)

79



where d(.) is the distance between Mas and Dqas where ’as’ means asymmetric super-

vised autoencoder. We refer to this type of retrieval as retrieval by SSDAA.

4.3 Experiments

4.3.1 Experimental setup

Datasets

We have used ground truth segmentation to create multiple depth images each of

which has one a specific object from the NYUD2 data set [13]. Totally, we created

3347 depth images that are split into 1907 for training and 1440 for testing. The

depth images containing any one of the ten indoor objects (bathtub, bed, chair, desk,

dresser, nightstand, table, toilet, monitor and sofa) are considered as our candidate

image. From the ModelNet10 benchmark [14], we obtained 605 3D models belonging

to the ten categories, and generated around 57475 rendered depth images as suggested

in sliding shapes [39]. An example of rendered synthetic images under different views

is given in Figure 3.10. We have chosen those views based on the object statistics

and observation of training images in NYUD2 [13].

Evaluation criteria

Our evaluation of retrieval performance includes 5 well recognized retrieval metrics

(NN, FT, ST, DCG and mAP) having a maximum of 100% and a 11-point precision-

recall curve. Nearest Neighbor (NN) is the average percentage of the closest K

matches that belong to the same category as the depth image query. First tier (FT)

and Second tier (ST) are the percentages of the closest K matches that belong to

the category of the depth image query. K depends on how many models (M) are

present in the database for a particular category. In our experiments, K = 1 for NN,

K = M − 1 for FT and K = 2∗ (M − 1) for ST. Discounted Cumulative Gain (DCG)
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is a metric which progressively reduces the importance of the object retrieved as the

rank goes higher. Mean Average Precision (mAP) uses ranked list and changes its

value at a rank where the object is relevant [40].

4.3.2 Performance comparison

NN FT ST DCG AP

5 categories

PNN [10] 0.1974 0.3533 0.5529 0.6754 0.3798

SDA [42] 0.5631 0.4877 0.6963 0.8927 0.5351

SSDA-1 [42] 0.6084 0.5250 0.6769 0.8937 0.5811

SSDAA 0.6343 0.5387 0.6798 0.8967 0.5960

7 categories

PNN [10] 0.0659 0.1843 0.3400 0.5947 0.2255

SDA [42] 0.4995 0.3746 0.5586 0.8532 0.4194

SSDA-1 [42] 0.5178 0.3919 0.5683 0.8576 0.4273

SSDAA 0.5453 0.4035 0.5729 0.8601 0.4411

10 categories

PNN [10] 0.0729 0.1115 0.2326 0.5517 0.1373

SDA [42] 0.3472 0.2429 0.4090 0.8089 0.2606

SSDA-1 [42] 0.3535 0.2557 0.4221 0.8133 0.2734

SSDAA 0.3618 0.2759 0.4526 0.8192 0.2998

Table 4.1: Performance metrics comparison of depth-image based 3D model retrieval

on the NYU Depth V2 dataset and the ModelNet10 benchmark.

The retrieval results using asymmetric autoencoder approach SSDAA is presented

in Table 4.1 using five well known metrics. We have compared our results with the

PNN approach [10] and the unsupervised and supervised autoencoder approaches [42]

referred to as SDA and SSDA-1 respectively.
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Figure 4.3: PR curve for 5-category experiment.

Precision-recall (PR) curve performance comparison for 3D model re-

trieval

We have reported the comparison using PR-curves in Figures 4.3, 4.4 and 4.5 which

show the results of 5, 7 and 10-category experiments respectively. The 10-category

PR-curve shown in Figure 4.5 suggests that SDA and SSDA-1 are similar in perfor-

mance, SSDAA performs the best, which means the supervision in SSDAA is more

effective than that in SSDA to deal with more categories. This is mainly owing to

the reconstruction-aware classification involved in training. Moreover, the training

time is less in SSDAA because of less parameters. We have trained 59382 training

depth images for 10 categories, 37144 depth images for 7 categories and 28240 depth

images for 5 categories which are around 95 times greater than the depth images used

in PNN that also involves LD-sift features extracted from 3D models for training.
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Figure 4.4: PR curve for 7-category experiment.

Figure 4.5: PR curve for 10-category experiment.
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4.3.3 Retrieval results

Figure 4.6: Retrieval example: bed.

Figure 4.7: Retrieval example: dresser.
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In Figure 4.6 shows that asymmetric approach SSDAA has retrieved three bed models

in the first, second and third positions. Though symmetric approach SSDA-1 has

retrieved six bed models in the first ten retrieved models yet asymmetric approach

SSDAA has retrieved the beds models in higher ranks than SSDA-1. Again in Figure

4.7 asymmetric approach SSDAA has retrieved five dresser models whereas symmetric

approach has retrieved only three dresser models in the first seven retrieved models.

4.3.4 Analysis and discussion

1. Computational cost

The training time is measured on a PC with 1.2GHz CPU and GTX 750 GPU.

Training SSDAA takes approximately 15 minutes for 7000 iterations for 28940 depth

images (5 categories) and 18.1 minutes for 7000 iterations on 59382 depth images (10

categories). We added one dropout layer with 50% dropout ratio to reduce overfitting.

For the 5, 7, and 10-category experiment we use α = 1 and β = 1.

2. Relation between encoder-decoder layers

In this section we have analyzed relation between the number of encoder-decoder

layers. We have compared different number of encoder and decoder combinations for

3D model retrieval. The symmetric-asymmetric autoencoder comparisons for 5, 7,

and 10 category experiments have been discussed in this section.
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Figure 4.8: Retrieval results in mAP for different number of encoder-decoder autoen-

coder structure.

Figure 4.9: Retrieval results in NN for different number of encoder-decoder autoen-

coder structure.

In Figures 4.8 and 4.9, if we observe the symmetric encoder-decoder combinations

such as 2-2(blue point), 3-3 (orange point), 4-4 (ash point), and 5-5 (yellow point),

none of those is the highest point. In other words, none of the symmetric autoencoder

structures indicates the best retrieval result using the metrics mAP and NN. Rather
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having two decoders and three encoders gives the best retrieval results using mAP

and NN. This scenario indicates that having an asymmetric autoencoder with less

decoder layers than encoder layers is a good option for cross modal retrieval.

Figure 4.10: Retrieval results in mAP for different number of encoder-decoder au-

toencoder structure.

Figure 4.11: Retrieval results in NN for different number of encoder-decoder autoen-

coder structure.

For the 7-category experiments shown in Figures 4.10 and 4.11, we again see that

none of the symmetric encoder-decoder combinations such as 2-2(blue point), 3-3
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(orange point), 4-4 (ash point), and 5-5 (yellow point) is the highest point. The

points mentioned are symmetric structures and do not have the best retrieval using

the metrics mAP and NN. A supervised autoencoder structure having two decoders

and three encoders gives the best retrieval results using mAP and NN. This scenario

also is an indicator to asymmetric structure being a good option for cross modal

retrieval.

Figure 4.12: Retrieval results in mAP for different number of encoder-decoder au-

toencoder structure.

We see the same scenario for 10-category experiments shown in Figures 4.12 and

4.13 as we saw for 5 and 7-category experiments. None of the symmetric autoencoder

structure has the highest retrieval result. An autoencoder having two decoders and

three encoders gives the best retrieval result using mAP. In the case of NN having

four encoders and two decoders gives the best result which indicates that having less

decoder layers than encoder is the best asymmetric structure for our cross modal

retrieval. One other observation is very clear from all the 5,7 and 10 category exper-

iments that having an autoencoder with no decoder (encoder as classifier only) layer

is not capable of better cross modal retrieval.
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Figure 4.13: Retrieval results in NN for different number of encoder-decoder autoen-

coder structure.

In this chapter, we have proposed a new asymmetric supervised deep autoencoder

by investigating the relation between the number of encoders and decoders. We claim

that asymmetric structure of a supervised deep autoencoder learns more robust and

effective unified embedding to bridge the gap between cross-domains if those different

domains are trained together. We have compared supervised asymmetric and super-

vised asymmetric structure of a deep autoencoder for depth image based 3D model

retrieval and shown that asymmetric structure leads to stabler features to improve

3D model retrieval accuracy. Our proposed supervised structure combines both the

reconstruction loss and the reconstruction-aware classification loss in a unique way

for the abstraction of incompleteness, ambiguity, occlusion and noise present in the

mixed domain data. We performed 5, 7 and 10-category experiments to show the

scalability of our algorithm. We present empirical results of the effectiveness of our

models on NYUD2 depth image dataset and ModelNet10 that outperforms recent 3D

model retrieval methods.
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CHAPTER V

SEMANTICS-ENHANCED AUTOENCODERS

5.1 Background

In this chapter, we propose a new supervised deep autoencoder approach followed by

semantic modeling to retrieve 3D shapes based on depth images named Semantics-

enhanced single deep supervised autoencoder approach (S3DA). The key novelty of

this approach is the two-fold abstraction of incompleteness and ambiguity present in

the real depth images by the supervised autoencoder and semantic matching of the

supervised autoencoder features respectively. As the first step of this approach we

investigate both supervised and unsupervised approaches using an autoencoder to

show that supervision on the autoencoder can capture details present in the data and

restructure the features to improve the retrieval performance. Semantic modeling

on the supervised features offers the next level of abstraction of ambiguity of the

depth images. Concisely, by providing abstraction in two steps we can minimize

incompleteness and view variability present in the real depth images and improve 3D

model retrieval accuracy.

Semantic modeling can help supervised autoencoders to handle ambiguity by pro-

viding next-level abstraction. Previous research has shown that increased level of

abstraction leads to better image or text retrieval [12, 43]. In our approach, the first

abstraction comes from the supervised autoencoder. The next abstraction comes from

the semantic modeling of supervised autoencoder features. A supervised autoencoder

restructures the autoencoder features with label information. However, if we add

more categories of objects then we see that a supervised autoencoder does not have
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much performance difference with an unsupervised autoencoder because of increased

ambiguity added by more object classes. Figure 5.1 narrates the general framework

for our S3DA model.

Figure 5.1: Semantics-enhanced supervised deep autoencoder model (S3DA) for 3D

model retrieval.

Semantic modeling is a fundamental technique used in computer vision used to

identify and asociate semantically realted information. For cross-modal retrieval it

can bring two different modalities in a subspace where those modalities have natural

correspondence. In [12], a subspace of semantic concepts was learned using multi-

class logistic regression. In this work, semantic matching was used for image based

text retrieval. They have also proposed an effective combination of CCA and seman-

tic matching named semantic correlation matching for cross-modal retrieval. In [43],

increased level of abstraction by the use of a semantic space has shown better perfor-

mance for feature based image retrieval. In our work we have combined a supervised

deep autoencoder and semantic modeling by learning a database of semantic concepts

based on supervised autoencoder features. The semantic concepts consist of different
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indoor object classes such as bed, bathtub, chair, dresser.

5.2 Semantics-enhanced single deep supervised autoencoder (S3DA)

5.2.1 Building the semantic space

A semantic space consists of semantic concepts. Building a vocabulary V = {v1, ..., vk}

of semantic concepts for real depth and rendered depth image spaces manages to

have a natural correspondence between those domains. The semantic concepts vi in

a database can be grouped in a way that a single depth object is grouped under

”Bathtub” or ”Bed”. To learn the vocabulary V we learn two mappings LD and

LM . LD maps a real depth image D ∈ Ds2 into a vector of posterior probabilities

PV |D(vi|D), i ∈ {1, ..., K} in the space SD with respect to each of the classes in V and

LM maps a rendered depth image M ∈ Ms2 into a vector of posterior probabilities

PV |M(vi|M), i ∈ {1, ..., K} in the space SM with respect to each of the classes in V .

The space SD consisting of PV |D and the space SM consisting of PV |D are referred to

be the same semantic space S. The mappings LD and LM are defined below:

LD : Ds2 → SD

LM : Ms2 → SM

We learn the posterior probabilities PV |M and PV |D through multi-class logistic

regression which ends up being a linear classifier with a probabilistic interpretation.

The posterior probability for class i is defined as below:

PV |X(i|x;w) =
1

Z(x,W )
exp(wT

i x), (5.1)

where Z(x,W ) =
∑K

j=1 exp(wT
j x

i) is a normalization constant, V is the object cat-

egory, X is the feature vectors for real depth images or rendered depth images, and

W = {w1, ..., wk}, with wi a vector of parameters for class i.
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The following cost function is minimized to find the weights in multinomial logistic

regression:

J(w) = − 1

m
[

m∑
i=1

K∑
k=1

1{V (i) = k}log exp(wT
k x

i)∑K
j=1 exp(wT

j x
i)

], (5.2)

where m is the number of training samples and
∑K

j=1 exp(wT
j x

i) = Z(x,w) is the

normalization constant summed over all the categories. From softmax regression we

have that

PV |X(i|x;w) =
1

Z(x,W )
exp(wT

i x) =
exp(wT

i x)∑K
j=1 exp(wT

j x
i)
, (5.3)

where there is no known closed form solution to estimate the parameters that minimize

the cost function J(w) analytically and thus we need to use an iterative optimization

algorithm such as gradient descent. The iterative algorithm requires us taking the

partial derivative of the cost function which is equal to:

Ow(k)J(w) = − 1

m

m∑
i=1

[x(i)(1{V (i) = k} − PV |X(i = k|x(i);w))]. (5.4)

where Ow(k)J(w) is itself a vector, so that its j-th element is ∂J(w)
∂wlk

the partial derivative

J(w) with respect to the j-th element of w(k).
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5.2.2 Retrieval using the semantic space

Figure 5.2: Semantics space S consisting of SM and SD.

The supervised-autoencoder features Ms2 and Ds2 though supervised still have no

obvious image interpretation due to incompleteness of the image objects. Semantic

modeling of supervised autoencoder features has two advantages. The first advan-

tage is that the semantic features in SM and SD are semantic concept probabilities

(e.g. the probability that the depth image object belongs to the “Bed” or “Bathtub”

categories) providing higher level abstraction for ambiguities present in the occluded

depth images. The other advantage is that the semantic spaces SM and SD are isomor-

phic. The isomorphic space SM consists of posterior probability vectors ΠM = PV |M
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and SD consists of posterior probability vectors ΠD = PV |D. The spaces SM and SD

can be assumed as a single seamless semantic space S, i.e. SD = SM , illustrated in

Figure 5.2. Given a query real depth image D represented by a probability vector

ΠDq ∈ SD, our retrieval process finds the best matched rendered 3D model depth

image M represented by a probability vector ΠM ∈ SM having the lowest distance d

defined below:

Distsm(M,D) = d(ΠM ,ΠDq), (5.5)

where d(.) is the distance between ΠM and ΠD . We refer to this type of retrieval as

S3DA where S3 means supervised single semantic modeling of features.

5.3 Experiments

5.3.1 Experimental setup

Datasets

We have used the same datasets of the NYUD2 data set [13] and ModelNet10 bench-

mark [14] as we described in chapter 3 and chapter 4. Totally, we created 3347 depth

images that are split into 1907 for training and 1440 for testing of ten indoor objects

(bathtub, bed, chair, desk, dresser, nightstand, table, toilet, monitor and sofa) and

605 3D models belonging to the ten categories. From those 605 models we generated

around 57475 rendered depth images as suggested in sliding shapes [39].

Evaluation criteria

Our evaluation of retrieval performance includes 5 well recognized retrieval metrics

(NN, FT, ST, DCG and mAP) having a maximum of 100% and a 11-point precision-

recall curve. The definition and scope of these metrics have been described twice in

chapter 3 and chapter 4.
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5.3.2 Performance comparison

NN FT ST DCG AP

5 categories

PNN 0.1974 0.3533 0.5529 0.6754 0.3798

SDA [42] 0.5631 0.4877 0.6963 0.8927 0.5351

SSDA-1 [42] 0.6084 0.5250 0.6769 0.8937 0.5811

SSDA-2 0.6160 0.5274 0.6719 0.8972 0.5811

SSDAA 0.6343 0.5387 0.6798 0.8967 0.5960

S3DAA 0.6375 0.5601 0.6782 0.9011 0.6154

S3DA 0.6893 0.5632 0.6792 0.9005 0.6138

7 categories

PNN 0.0659 0.1843 0.3400 0.5947 0.2255

SDA 0.4995 0.3746 0.5586 0.8532 0.4194

SSDA-1 0.5178 0.3919 0.5683 0.8576 0.4273

SSDA-2 0.5178 0.3936 0.5815 0.8583 0.4287

SSDAA 0.5453 0.4035 0.5729 0.8601 0.4411

S3DAA 0.5727 0.4357 0.5719 0.8635 0.4758

S3DA 0.5746 0.4259 0.5700 0.8622 0.4669

10 categories

PNN 0.0729 0.1115 0.2326 0.5517 0.1373

SDA 0.3472 0.2429 0.4090 0.8089 0.2606

SSDA-1 0.3535 0.2557 0.4221 0.8133 0.2734

SSDA-2 0.3986 0.2624 0.4265 0.8172 0.2796

SSDAA 0.3618 0.2759 0.4526 0.8192 0.2998

S3DAA 0.4188 0.2976 0.4647 0.8240 0.3230

S3DA 0.4326 0.2925 0.4588 0.8223 0.3151

Table 5.1: Performance metrics comparison of depth-image based 3D model retrieval

on the NYU Depth V2 dataset and the ModelNet10 becnhmark.

We have compared our results with the PNN approach [10] and the supervised au-

toencoder approach [42]. These approaches represent the most recent approaches
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for depth image based 3D model retrieval. The experimental results are reported

in Table 5.1 for 5, 7 and 10 categories. The experimental results show that S3DA

approach performs the best among PNN, SDA, SSDA-1 and SSDA-2. The Table 5.1

suggests that supervised models perform better than the unsupervised model. But

if the number of categories are increased supervised models perform similar to the

unsupervised ones due to ambiguity and uncertainty coming from increased number

of model categories. From Table 5.1 we can see that SSDA-2 performs better than

SSDA-1. Again we see that the asymmetric supervised deep autoencoder approach

performs the best among all other supervised deep autoencoder approaches. S3DA

improves the retrieval result of SSDA-2 and S3DAA improves the retrieval result of

SSDAA. Overall we can say that the semantic modeling over supervised autoencoder

approaches S3DA (applied over SSDA-2) and S3DAA(applied over SSDAA) are the

best performing approaches.

Figure 5.3: PR curve for 5-category experiment.
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Figure 5.4: PR curve for 7-category experiment.

Figure 5.5: PR curve for 10-category experiment.

PR curves in Figures 5.3, 5.4 and 5.5 for 5, 7 and 10 category experiments show
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that S3DA and S3DAA approaches perform the highest among PNN, SDA, SSDA-1

and SSDA-2. Figure 5.4 and 5.5 show that SDA and SSDA-1 performances are similar

since the supervision is not effective for training almost 60,000 depth images. But

the supervised approach SSDA-2 performs better than the other supervised approach

SSDA-1, which means the supervision in SSDA-2 is more effective than SSDA-1 when

more ambiguity is added to the data. Also SSDA-2 retrieval accuracy is slightly better

than SSDA-1. Again the asymmetric approach SSDAA performs better than SSDA-2.

Our PR curves suggest that S3DA performs better than the supervised approaches,

supervised approaches are better than the unsupervised approach and unsupervised

approach performs better than PNN. The proposed S3DAA performs the slightly

better than S3DA. Overall we can say that the semantic model over supervised deep

autoencoder approaches S3DA and S3DAA perform the best among all the proposed

methods. We have used 59382 depth images for 10 categories, 37144 depth images

for 7 categories and 28240 depth images for 5 categories which is around 95 times

greater than PNN.

5.3.3 Retrieval results

In this section, we have shown some examples of the first ten retrieved 3D models

by SSDA-2 and S3DA. In those figures, the first row shows the depth object we

are interested to retrieve 3D models for. The second and third rows outlined in

green belong to S3DA retrieval. The second row displays what the S3DA model has

retrieved and the third row displays the corresponding 3D models. The fourth and

fifth rows outlined in blue belong to SSDA-2 retrieval. The fourth row displays what

the SSDA-2 model has retrieved and the fifth row displays the corresponding 3D

models.
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Figure 5.6: Retrieval example: bed (first ten retrieved bed models).

In Figure 5.6, we see that S3DA has given better performance than SSDA-2 by

retrieving relevant 3D models. S3DA has retrieved six bed models among the first ten

retrieved models. On the other hand, SSDA-2 has retrieved only three bed models.

S3DA has retrieved bed models on the first, second, third, sixth and eighth ranked

positions. And SSDA-2 has retrieved bed models on the first, fifth and seventh

ranked positions. One other thing we observe from this retrieval is that the bed

models retrieved by S3DA have more shape similarity to the segmented bed from the

depth image than SSDA-2.
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Figure 5.7: Retrieval example: chair (first ten retrieved chair models).

In Figures 5.7 we see the first ten retrieved 3D models for a partial chair. Both

S3DA and SSDA-2 have performed well and have retrieved a lot of 3D chair models.

Though the information for the chair is partial and very small, we still see that both

the supervised models have not confused the partial chair with other categories.

In Figure 5.8, SSDA-2 has confused dresser with bathtub and bed mostly and

S3DA has confused dresser with chair. The reason for this bad performance could

be the ambiguity present in the dresser due to occlusion. In this case of dresser

retrieval, SSDA-2 has given comparably better performance than S3DA by retrieving

two dressers in the second and third rank positions. S3DA has retrieved only one

dresser and the rank of position of that dresser model is eighth.

In Figure 5.9, we see that S3DA has given better performance than SSDA-2 by

retrieving relevant 3D models. S3DA has retrieved five sofa models among the first

ten retrieved models. On the other hand, SSDA-2 has retrieved only two sofa models.

S3DA has retrieved sofa on the second, fifth, sixth, seventh and tenth ranked positions

and SSDA-2 has retrieved sofa on the third and fifth positions. One other thing, we
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Figure 5.8: Retrieval example: dresser(first ten retrieved dresser models).

Figure 5.9: Retrieval example: sofa (first ten retrieved sofa models).
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Figure 5.10: Retrieval example: dresser (first ten retrieved dresser models).

observe from this retrieval is that the sofa models retrieved by S3DA have more shape

similarity to the segmented bed from the depth image than SSDA-2.

In Figure 5.10 we see that SSDA-2 has confused dresser with chair mostly and

S3DA has confused dresser with chair. The reason for this bad performance could be

the ambiguity present in the dresser due to occlusion. In this case of dresser retrieval,

SSDA-2 has given comparably better performance than S3DA by retrieving three

dressers on the fifth, sixth and seventh rank positions. S3DA has retrieved only one

dresser and the rank of position of that dresser model is eighth. One other thing, we

observe from this retrieval is that the dresser models retrieved by SSDA-2 have more

shape similarity to the segmented dresser from the depth image than S3DA.

Figure 5.11 is basically a failure case by SSDA-2 and S3DA models. Both the

approaches have confused monitor with chair mostly. The reason for this bad perfor-

mance could be the ambiguity present in the monitor due to shape similarity between

the upper part of a chair and a monitor. In this case of monitor retrieval, SSDA-2

has given comparably better performance than S3DA by retrieving two monitors on
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Figure 5.11: Retrieval example: monitor (first ten retrieved monitor models).

the second, and fourth rank positions. S3DA has retrieved only one monitor and the

rank of position of that monitor model is fourth. One other thing, we observe from

this retrieval is that the models retrieved by S3DA have more shape similarity to the

segmented monitor from the depth image than SSDA-2.

In Figure 5.12, we see that both S3DA and SSDA-2 have given similar perfor-

mance. S3DA has retrieved three sofa models among the first ten retrieved models.

On the other hand, SSDA-2 has also retrieved three sofa models. S3DA has retrieved

sofa models on the eighth, ninth and tenth ranked positions and SSDA-2 has re-

trieved sofa models on the fifth, seventh and eighth positions. Though SSDA-2 has

performed better than S3DA rankwise, we observe from this retrieval that the sofa

models retrieved by S3DA have more shape similarity to the segmented bed from the

depth image than SSDA-2.

In Figure 5.13 we see that the retrieval case is a failure for S3DA model. SSDA-2

has retrieved a lot of correct dresser models on the first ten retrievals. SSDA-2 has

confused dresser mostly with chair. In this case of dresser retrieval, SSDA-2 has given

comparably better performance than S3DA by retrieving five dressers on the second,
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Figure 5.12: Retrieval example: sofa (first ten retrieved sofa models).

Figure 5.13: Retrieval example: dresser (first ten retrieved dresser models).
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Figure 5.14: Retrieval example: bathtub (first ten retrieved bathtub models).

thrid, fourth, sixth and tenth rank positions. S3DA has retrieved no dresser model

at all.

In Figure 5.14, we see that both S3DA and SSDA-2 have not performed very

well yet S3DA has given better performance than SSDA-2 comparably by retrieving

relevant 3D models. S3DA has retrieved three bathtub models among the first ten

retrieved models. On the other hand, SSDA-2 has retrieved only one bathtub model.

S3DA has retrieved bathtub models on the fifth, sixth and eighth ranked positions

and SSDA-2 has retrieved bathtub models on the eighth position only. One other

thing, we observe from this retrieval is that the bathtub models retrieved by S3DA

have more shape similarity to the segmented bathtub from the depth image than

SSDA-2.
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5.3.4 Analysis and discussion

1. Computational cost

The training time is measured on a PC with 1.2GHz CPU and GTX 750 GPU. We

have applied semantic modeling on SSDA-2 and SSDAA. So the training time of S3DA

and S3DAA involve the training time of SSDA-2 and SSDAA. SSDAA training time

is less than SSDA-2 because of less parameters. So evidently the total training time

of S3DAA is less than S3DA. We chose the learning rate of 0.01 to avoid overfitting

with 50% dropout ratio that further reduces the risk of overfitting.

2. Feature space comparison

Figure 5.15: Feature space visualization for 5 category: 3D PCA on 30D SSDA-2

feature and 30D S3DA feature. The SVM classification accuracy for 3D features of

S3DA is 46% and 39% for SSDA-2, around 1.18 times greater than SSDA-2.
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Figure 5.16: Feature space visualization for 7 category experiment: 3D PCA on 30D

SSDA-2 feature and 30D S3DA feature.

Figure 5.17: Feature space visualization for 10 category experiment: 3D PCA on 30D

SSDA-2 feature and 30D S3DA feature.

To visualize the supervised and semantics-enhanced supervised autoencoder features

in a low dimensional space, we have applied 3D PCA on 30D autoencoder features.

In the Figures 5.15, 5.16 and 5.17 we show the low dimensional feature comparison

between supervised (SSDA-2) and semantic enhanced supervised autoencoder (S3DA)

for 5, 7 and 10 categories respectively. From the figures we observe that S3DA features

space is pointier than SSDA-2. In S3DA every corner is roughly dedicated for an
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object category. Obviously S3DA feature space has feature overlaps due to shape

similarity among different object categories yet S3DA feature space has less overlap

than SSDA-2. We see that the feature space overlap increases from five category

feature space to seven category features space and seven category feature space to

ten category feature space. Improvement in retrieval accuracy in S3DA suggest that

this sharp corner feature space is a better criteria for 3D model retrieval.

Figure 5.18: Pairwise feature space comparison: 3D PCA of 30D S3DA features are

sharper than SSDA-2 feature which indicates less overlap.
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Figure 5.19: Pairwise feature space comparison.

In Figure 5.18(a)-(c), we show the clusters for desk-chair, sofa-toilet and dresser-

chair pair comparisons between supervised (SSDA-2) and supervised-SM (S3DA). In

Figure 5.19(a)-(c), we show the clusters for bathtub-bed, bathtub-dresser and desk-

monitor. In Figure 5.18(a)-(c), the sharper nature of the S3DA feature space suggests

less overlap whereas the SSDA-2 feature space overlap more for desk-chair, sofa-toilet

and dresser-chair pairs. In Figure 5.19(a), bathtub and bed clusters overlap badly

for both the cases. In Figure 5.19(b), S3DA feature space is slightly sharper than

S3DA for the bathtub-dresser pair. In Figure 5.19(c), S3DA desk-monitor feature

space suggests better pairing than SSDA-2 since in S3DA feature space the lower

part is mostly monitor dominated and upper left part is mostly desk dominated. For

SSDA-2, the desk-monitor feature space is more ambiguous than S3DA.

3. Advantage of semantic modeling over supervised autoencoder

To visualize the supervised autoencoder and semantics-enhanced supervised autoen-

coder features in a low dimensional space, we have applied 3D PCA for dimensionality
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reduction of 30D autoencoder features. To compare SSDA-2 and S3DA, we visual-

ize their respective features in the case of 5, 7 and 10 categories. To verify cluster

separability among different categories, we apply a simple SVM method for PCA

classification. The higher the classification accuracy, the lower the cluster overlap.

In Figure 5.20, we show the low dimensional feature comparison between super-

vised (SSDA-2) and semantic enhanced supervised autoencoder (S3DA) approaches.

Obviously both of the cases have overlaps present in the clusters for different cat-

egories due to object similarity and incompleteness. But the SVM classification

accuracy using 3D PCA of S3DA is 1.18 times greater than 3D PCA of SSDA-2.

For visualization clarity we have displayed two clusters at a time. In Figure 5.21, we

show the clusters for desk-chair, sofa-toilet and dresser-chair pair comparisons. S3DA

clusters seem to form a well defined sharper cluster which suggest less overlap region

between two pairs.

Figure 5.20: Feature space visualization for 5, 7 and 10 category experiment: 3D PCA

on 30D SSDA-2 feature and 30D S3DA feature. The SVM classification accuracy for

3D features of S3DA is around 1.18, 1.14 and 1.12 times greater than SSDA-2 for 5,

7 and 10 category clusters respectively.
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Figure 5.21: Pairwise feature space comparison: 3D PCA of 30D S3DA feature are

sharper than SSDA-2 feature which suggests less overlap.

In conclusion of the retrieval by semantics-enhanced supervised deep autoencoder

(S3DA) approach, we can say that adding semantic modeling on top of supervised

autoencoder SSDA-2 features, we can obviously achieve better retrieval performance.

At the same time, some examples presented above suggest that the supervised au-

toencoder approach alone has some advantages for successful retrieval.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

In this research we dealt with a cross-modal retrieval problem of depth image based 3D

model retrieval. Depth image based 3D model retrieval has the challenges of occlusion,

noise, and view variability present in depth data. A huge amount of ambiguity exists

due to shape similarity among different objects. All the existing 3D model retrieval

approaches use a pairwise network or separate network to train each domain. We

argue that using single deep network is convenient than pairwise networks since this

process is computationally inexpensive. The synthetic and real depth images are

trained together in our models which increases the possibility to bring two different

domains in a single feature space. We have proposed an unsupervised and three

novel supervised models for cross-modal 3D model retrieval using one single deep

autoencoder. In the proposed supervised deep autoencoder models we have shown the

strength of supervision on autoencoder by doing classification aware reconstruction.

We have studied the retrieval of ten indoor objects (bathtub, bed, chair, desk, dresser,

night stand, table, toilet, monitor and sofa). We also argue that generating different

views increases the possibility of successful retrieval. Compared to 1000D dimensional

features, 30D features work meaningfully in our models which is a significantly faster

retrieval approach. The overhead of computing features is decreased in our models

since each domain since we work with depth images directly.
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6.1 Deep autoencoder structures

We investigate both supervised and unsupervised approaches using an autoencoder

to show that supervision on the autoencoder can capture details present in the data

and restructure the features to improve the retrieval performance. We also propose

an asymmetric supervised deep autoencoder by investigating the relation between the

number of encoders and decoders. We claim that asymmetric structure of a super-

vised deep autoencoder learns more robust and effective unified embedding to bridge

the gap between cross-domains if those different domains are trained together. We

have compared supervised symmetric and supervised asymmetric structure of a deep

autoencoder for depth image based 3D model retrieval and shown that asymmetric

structure leads to stabler features to improve 3D model retrieval accuracy.

6.2 Semantic modeling of autoencoder features

Semantic modeling on the supervised features offers the next level of abstraction of

ambiguity of the depth images in our research. In a nutshell, two-level abstraction

improves 3D model retrieval accuracy by minimizing incompleteness and view vari-

ability present in the real depth images. Retrieving 3D model based on depth images

can be considered a transfer learning approach since real depth and rendered depth

have different depth quality. We performed 5, 7 and 10-category experiments to show

the scalability of our algorithms. We have measured the effectiveness of our model

on NYUD2 depth image dataset and ModelNet10 3D models of the same category.

We outperformed all the state of the art methods for cross-modal retrieval. The

proposed supervised method outperforms the recent approaches for cross modal 3D

model retrieval based on depth images.
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6.3 Future work

The future plan of this research would be proposing a new model combining the ad-

vantages of the proposed supervised deep autoencoders and semantic modeling for

retrieval. Having an autoencoder for each object category could be another potential

model for retrieval. A novel future work would be proposing a deep autoencoder

having two different encoders in a deep autoencoder to evaluate two different dimen-

sional features, the encoder providing lower dimensional feature such as two or three

dimensional feature space will be used to increase inter object cluster difference to

handle ambiguity more precisely.
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