
        DIGITAL TRANSFORMATION: HOW TO BEAT 

THE HIGH FAILURE RATE 

 

 

   By 

      NAGESH RAMESH 

   Bachelor of Science in Mechanical Engineering  

Mangalore University 

   Manipal, Karnataka, India 

   2000 

 

   Master of Business Administration in Information 

Systems Management  

  Strayer University 

   Allentown, PA 

   2013 

 

 

   Submitted to the Faculty of the 

   Graduate College of the 

   Oklahoma State University 

   in partial fulfillment of 

   the requirements for 

   the Degree of 

   DOCTOR OF PHILOSOPHY 

   May, 2019  



ii 

   DIGITAL TRANSFORMATION: HOW TO BEAT THE 

HIGH FAILURE RATE 

 

 

   Dissertation Approved: 

 

 

  Dr. Dursun Delen 

 

Dr. Margaret White 

 

Dr. Toby Joplin 

 

Dr. Ramesh Rao 

 



iii 

Acknowledgements reflect the views of the author and are not endorsed by committee members or 

Oklahoma State University. 

ACKNOWLEDGEMENTS 

 

 

I want to first thank my dissertation committee for their valuable guidance, 

encouragement, and feedback throughout the dissertation process. A special thank you to 

my dissertation chair, Dr. Dursun Delen, for the countless hours of time he spent with me 

on improving the overall quality of this dissertation work and for making me a better 

researcher. Additionally, I would like to thank Dr. Scott Johnson for his critical review of 

my initial work and Dr. Toby Joplin for all the coaching I received during my stay at 

OSU’s Spears School of Business.  

 

My dissertation would not be possible without the support of my lovely wife, Shana, 

and boys, Austin and Sachin. I know they have made just as many sacrifices as I have, if 

not more, over the last three years when I have prioritized my Ph.D. work over family 

time. I would also like to thank my parents in India who instilled in me from a very 

young age the values of hard work, education, and never giving up that served me well 

during this program.   

 

Last but not the least, I would like to thank several of my colleagues, leadership, and 

external partners of CSL Behring for their constant encouragement and support during 

my dissertation work.   

 

 

   



iv 

Name: NAGESH RAMESH  
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Title of Study: DIGITAL TRANSFORMATION: HOW TO BEAT THE HIGH 

FAILURE RATE 

 

Major Field: BUSINESS ADMINISTRATION 

 

Abstract: Firms every year spend $1.3 trillion on digital transformation programs to 

improve efficiency because digital leaders outperform their peers in nearly every 

industry. However, digital transformations that are intended to improve efficiency (e.g., 

ERP, CRM, Analytics, etc.) have a high failure rate (up to 90%), resulting in adverse 

impact to firms’ operations and intent to further innovate. While extant research talks 

about the importance of vision, management, and culture as critical success factors, even 

digital transformations within the same firm often fail to achieve similar results. Based on 

Diffusion of Innovation theory and data from three digital transformation programs 

within a firm that achieved vastly different results, I posit five factors as key influencers 

of digital transformation success: a) Innovation Attributes, b) Opinion Leaders, 

c) Diffusion Approach, d) Timing, and e) Duration. I also use machine learning (ML) 

techniques such as leave-one-out-cross-validation (LOOCV) to show the superiority of 

ML over regression to determine feature importance. In addition to contributing to 

theory, this research will help practitioners increase the success rate of future digital 

transformations. 

 

In the first chapter, I introduce the reader to digital transformation, why firms want to 

digitally transform, and the high failure rate these firms face when they embark on digital 

transformation. In the second chapter, I perform a literature review of key digital 

transformation research performed to date and define the underlying theory and the 

factors used in this study. In the third chapter, I describe the research design and its 

appropriateness for studying the research question. In the fourth chapter, I perform 

hypothesis testing with sample data from three studies to test whether the five factors 

significantly influence digital transformation outcome. In the sixth chapter, I use the 

machine learning technique LOOCV to determine feature importance. Finally, in the last 

chapter I describe the key research contributions of this research and future directions.  
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CHAPTER I 
 

 

INTRODUCTION 

 

Situating the Research Problem 

Digital Transformation is the application of digital capabilities to processes, products, and 

assets to improve efficiency, enhance customer value, manage risk, and uncover new 

monetization opportunities (Rizzo, 2017). Today more than ever, incumbent firms in industries 

such as retail, telecom, banking, etc. are being forced to change due to disruption by new and 

innovative competitors (Geissinger, Laurell, & Sandström, 2018). One way to respond to such 

disruption is to digitally transform.  

There are broadly two types of digital transformations, the ones that are performed to achieve 

top line growth by identifying new monetization opportunities (new products, new channels, new 

markets, etc.) and the others to achieve bottom line savings in terms of efficiency improvements 

(process changes, automation, newer technology, etc.). The focus of this study is digital 

transformations that are performed to achieve bottom line savings through efficiency 

improvements. Starbucks’ mobile app reduced 10 seconds from each transaction and 900,000 

hours of customer wait time annually to order coffee.  

Starbucks processed 3 million mobile transactions every week through this app in 2013, 

allowing customers to order and pay faster and in the process serving more customers (Fitzgerald, 

Kruschwitz, Bonnet, & Welch 2014). Another example is Nestle USA’s Enterprise Resource 

Planning (ERP) solution that increased the accuracy of demand planning for its products across
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many of its brands, resulting in making the right products at the right quantity and enabling a $325 

million savings across the enterprise (Glick, 2001; Dieringer, 2004).  

Not all firms are digitally transforming to improve efficiency, and hence we will consider firm 

management statements as a basis for whether a digital transformation was recently performed at the 

firm. Researchers have not yet been able to agree on an exact definition of a successful or failed 

digital transformation. Thus in the context of digital transformations intended to improve bottom line 

savings, we will use feedback from the users, project teams, and executives at the firms to determine 

whether a digital transformation was perceived as a success or a failure.   

An example of a successful digital transformation to improve efficiency would be LG’s 

implementation of a central human resource management system (HRMS) for its 82,000 employees 

in 39 countries. As per Mi Jung Kang, Chief Human Resources Officer for LG, the HRMS system 

helped LG to standardize HR processes across different regions and gain significant cost savings and 

efficiency improvements (Seth, 2018). Another example of a successful digital transformation to 

improve efficiency is Fuze Energy Drink’s ERP implementation, which allowed it to scale rapidly as 

the company went through rapid growth. The digital transformation helped Fuze improve inventory 

management and financial transparency and helped balance its supply and demand during a phase of 

rapid growth (Seth, 2018).  

An example of a failed digital transformation would be Vodafone’s rolling out of its customer 

relationship management (CRM) mobile billing system that resulted in a flood of customer 

complaints ranging from incorrect charges to customers being charged even after they cancelled their 

contracts. This resulted in an investigation by regulators, and Vodafone was fined £4.6M and 

experienced a subsequent £54M loss in sales during the quarter when the system was rolled out 

(Lauchlan, 2016; Kollewe, 2016). Another example of a failed digital transformation is HP’s rollout 

of an order processing and supply chain system that resulted in lost orders and cancellations from 

customers due to delays resulting in a $400M impact on HP (Thibodeau & Tennant, 2004).   
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There are several such examples of firms that have struggled to digitally transform; as de Los 

Reyes (2015) states, the failure rate is 70% or higher when it comes to digital transformation. While 

extant literature talks about how successful firms that have been around for a long time ruthlessly 

transform without worrying about their legacy or core expertise, it does not explain why other firms 

cannot replicate this process, often within the same industry and sometimes with more resources 

(Clemons & Hann, 1999; Johnson, Yip, & Hansmans, 2012).  

While the role of technology (Weber & Monge, 2017; Sheppard, 2017), firm culture (Nag, 

Corley, & Gioia, 2007), equilibrium (Miller, 1992) and management (Hornsby, Kuratko, & Zahra, 

2002; Zook, 2007; Teece, Pisano, & Shuen, 1997) has been studied in extant literature, current 

knowledge has not helped in reducing the 70% or higher failure rate of digital transformations. So the 

research problem that we are looking to solve is how to increase the success rate of digital 

transformations.  

The scope of the problem involves key aspects that can improve digital transformation success. 

Its depth includes different levels of stakeholders (owners and agents) that participate in the 

transformation. Its breadth includes the extent to which the firm intends to transform. It could be one 

or more strategy, such as newer processes, automation, technology upgrades, etc. The length the 

problem to be studied would be through the duration of digital transformation and for the next few 

months thereafter.  

Grounding the Research Problem 

To address journalists’ questions as shown in Table 1, the problem of digital transformation 

success is of importance to managers who are responsible for improving efficiency. A failure of 

transformation may not always result in firm failure, but it usually results in monetary losses and 

harm to the firm’s reputation (Lauchlan, 2016; Kollewe, 2016; Thibodeau & Tennant, 2004). Hence, 

this research problem of improving digital transformation success is not only important to managers 

responsible for efficiency improvements, but also has a broader impact on firm standing with 

customers, regulators, employees, etc.  
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Table 1: Journalists Enquiries Mapped to Research Question 

Journalist & Article 

Description Symptoms 

Diagnosis and Mapped to 

Research Questions 

Boulton (2018). 

Twelve Reasons Why 

Digital Transfor-

mations Fail 

“Leadership of digital transformations is in crisis, 

with CEOs failing to shepherd or back a coherent 

strategy”  

“Digital transformation efforts are coming up short 

in part because digital transformation is as much a 

leadership issue as it is a strategy, technology, 

culture and talent issue.” 

Opinion leaders and innovation 

attributes 

“Resistance to change can grind transformations to 

a halt.” 

Diffusion approach and 

innovation attributes 

“The snail’s pace isn’t helping. Only 4 percent of 

respondents said they realized half of their digital 

investment in under one year, with the majority of 

respondents saying it has taken their company two 

to three years” 

Duration 

“Digital transformations can die a slow death once 

implementation or operational costs eclipse savings 

or revenue growth, tapping a once princely 

budget.” 

Timing 

Sweeney (2018). 

Lessons Learned from 

Failed Digital Trans-

formations 

 

“Many factors, like the economy or product appeal, 

can affect a company’s success with digital 

transformation” 

Innovation attributes and 

timing 

“Digital is a multi-faceted, diffuse approach that 

involves more than just technology.” 

Diffusion approach and 

innovation attributes 

“The appeal of digital and new technology 

shouldn’t consume or overtake existing systems” 

Duration 

“Digital transformation are an ongoing process 

that includes continuous monitoring and 

intervention from digital and non-digital leaders” 

Opinion leaders 

Westerman (2018). 

Why So Many High 

Profile Digital Trans-

formations Fail? 

 

“Digital bets did not pay off quickly enough, or 

richly enough, to counter the drain they represented 

on the rest of the business.” 

“The allure of digital can become all-consuming, 

causing executives to pay too much attention to the 

new and not enough to the old.” 

Duration and timing 

“Economy or the desirability of your products, that 

can affect a company’s success as much or more 

than its digital capabilities” 

“When things are not going so well in the existing 

business, the call of a new business model can 

become more powerful than it should.” 

Innovation attributes and 

timing 

“Digital is not just a thing that you can you can buy 

and plug into the organization. It is multi-faceted 

and diffuse, and doesn’t just involve technology.” 

Diffusion approach  

“Jeff Immelt — a powerful advocate of the 

company’s digital ambition.” 

Opinion leaders 
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To more closely describe the problem, firms that failed to achieve digital transformation success 

are numerous and have suffered financial losses and reputational damage (Lauchlan, 2016; Kollewe, 

2016; Thibodeau & Tennant, 2004). Digital transformation to improve efficiency as evidenced by 

these examples is not limited to a certain industry, but spans a broad range of industries. On the 

contrary, several firms such as Starbucks, LG, Fuze Energy Drinks, etc. achieved digital 

transformation success resulting in significant efficiency improvements and increased revenues and 

profits. 

Rapidly changing technology threatens firms and industries, putting a squeeze on revenues and 

requiring firms to improve efficiency and lower costs (Abbosh, Nunes, Savic & Moore, 2017; 

Sheppard, 2017). Digitally transforming is one way a firm can compete in this environment 

(Christensen, Bartman, & Van Bever 2016; Carayannis, Sandakis, & Walter 2015; Zook, 2007). 

Leslie (2015) shows that the key to enduring growth is digital transformation. However, achieving 

successful digital transformation remains elusive with 70% or more firms failing in the process (de 

Los Reyes, 2015; Johnson et al., 2012; Clemens & Hann, 1999). Thus, improving digital 

transformation success is an important issue. 

Diagnosing the Research Problem 

The problem of improving digital transformation success is complicated and may not have one 

single answer; a single study may not address it all. However, during the interviews that I conducted 

with respondents in the field who have performed both successful and failed digital transformations, 

certain symptoms were common among the successful digital transformations that seemed to be 

missing in the failed digital transformations. In addition to the right strategy, successful digital 

transformations seemed to also have these five common factors: 1) innovation attributes, 2) opinion 

leaders, 3) diffusion approach, 4) timing, and 5) duration. 

Innovation attributes are characteristics of an innovation, such as: a) relative advantage, 

b) compatibility, c) complexity, d) trialability, and e) observability (Rogers, 1963). Relative 

advantage is how users perceive the innovation in comparison to previous ideas. Compatibility is how 
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users perceive the innovation fits into their present habits and routines. Complexity is users’ 

perceptions on how easy or difficult it is to use the innovation. Trialability is the ability to try the 

innovation before committing to it. Observability is the extent to which the benefits of an innovation 

are visible to future users.  

Opinion leaders are members in a team who have the greatest influence on other team members’ 

adoption of an innovation in the diffusion process of innovation (Cho, Hwang, & Lee, 2012). 

Research studies related to innovation adoption shows that followers adapted three times faster to an 

innovation when their opinion leaders introduced them to it (Hao, Padman, & Telang 2011; Seebauer, 

2015; Brown, Chen, & O’Donell 2017). During interviews, several respondents attributed to opinion 

leaders the success of the digital transformation. Interestingly, a few of the respondents also discussed 

the lack of opinion leaders as a cause for the failure of the digital transformation.  

 The diffusion approach states that innovators (first 2.5% of adopters) and early adopters (13.5%) 

are attracted when communications contain words such as “be the first.” Once the 16% adoption rate 

is achieved, communication style must be switched to say “join the 1000s,” to attract the early 

majority (36%) and the late majority (36%) adopters (Rogers, 1963). When firms practice this style of 

communication, the innovation diffusion is faster (Maloney, 2010). This approach has been shown to 

work in other innovations contexts and to change habits (Lee, Ho, & Wu, 2018; Augustine, 

Glassman, Harmening, Meabon, & Opp, 2015). Few of the respondents attributed the success of their 

digital transformations to pursuing this type of a change management strategy where communications 

were tailored based on leadership and team members’ personalities.  

Timing is when a firm decides to start an innovation (Schoenecker & Cooper, 1998). Research 

studies have shown that timing plays a critical role in success of a strategy in various contexts such as 

- entering a new industry (Whipp, Adam, & Sabelis, 2002); new policy (Granqvist & Gustaffson, 

2016); and new technology (Leng, Lui, Tan, & Pang, 2015; Brueller, Ellis, Segay, & Carmeli, 2015). 

Several respondents raised the issue of timing during interviews and attributed the outcome of digital 

transformation on when the firm decided to pursue it.  
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Duration is the time between the start and end of a digital transformation initiative. In their 

research, Wisse and Sleebos (2016) show a relationship between long duration and fatigue due to 

high levels of uncertainty, demanding work schedules, and significant pressure on team members to 

deliver under pressing circumstances. Other studies show that prolonged fatigue results in poor job 

performance (Feddock, Hoellein, Wilson, Caudill, & Griffith, 2007), burnout (Demerouti, Bakker, & 

Leiter, 2014) and turnover (Levenson, 2017). These are some of the topics brought up by respondents 

as impacting digital transformation success. 

Importance of the Research Problem 

Digital transformation success is important for firms because digital leaders outperform laggards 

in key financial measures. In a study of 344 firms over three years with median revenue of $3.4 

billion, digital leaders outperformed laggards on gross margin, operating margin, and profit margin 

(Bock, Iansiti,& Lakhani, 2017). In another study of 400 companies over two years, Westerman, 

Tannou, Bonnet, Farraris, & McAfee (2012) show that firms that are successful in their digital 

transformations outperform their peers in every industry, which again shows the importance of digital 

transformation success.  

Heller Baird and Gonzalez-Wertz (2011) conclude that in the future success of firms largely 

depends on the degree to which they master digital capabilities and that it is important for firms to 

seamlessly integrate their digital components with physical operations to successfully transform their 

business models (Berman, 2012). However, 84% of companies fail to digitally transform (Rogers, 

2016). Zobell (2018) reported how firms lose $900 billion every year due to digital transformation 

failures. An example is the Waste Management failure of their ERP system, resulting in severe 

disruption to their operations and a lawsuit filed against the software provider (Kanaracus, 2008). 

Another example is the failure of the Vodafone CRM system resulting in incorrect bills being sent to 

customers and in a £4.6M fine and a £54M loss in market share (Lauchlan, 2016).  

In a survey of 450 chief information officers, chief technical officers, and chief digital officers, a 

majority of the respondents agreed on the importance of digital transformation for the future success 
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of their firms, but expressed how 90% of these digital transformations continue to fail (Carey, 2017). 

According to the U.S. Government Accountability Office, the Navy spent about $1B on four pilot 

digital transformation programs but failed in the process (Songini, 2005). Similar issues with digital 

transformation failures affected the rollout of the Affordable Care Act in 2009 when millions of 

people could not enroll online, resulting in a delay in enrolling in health insurance coverage.  

Fitzgerald et al. (2014) hence say that firms routinely invest in technology but too often get 

routine results. So our research problem of how to reduce the high failure rate (70%-90%) in digital 

transformations is important and unaddressed. Despite the existing knowledge of management, 

culture, and vision being key factors influencing digital transformation success, even within the same 

firms sometimes certain digital transformations succeed and others fail. One exception to these 

studies is the meta-analysis by Allen et al. (2017) of 76 studies between 1973-2013 showing diffusion 

of innovation (new policies, programs, and practices), almost half in healthcare settings, investigating 

the latent construct of “inner setting” within organizations. The two most frequently assessed 

constructs were organizational climate and readiness for implementation. Less than half of the articles 

reported influence of firm-level characteristics on diffusion of innovation. 

Our research advances the Allen et al. (2017) meta-analysis finding of an important gap in 

determining why firms continue to fail at certain digital transformation programs and manage to 

succeed at others despite the same management, culture, and vision. I hope to provide important 

insights into the necessary factors for digital transformation programs to consistently succeed.   

Selecting the Research Question 

The part of the problem that merits research attention and focus is the factors that significantly 

increase digital transformation success. Based on respondent interviews, diagnosis of the research 

problem, and literature reviews, the following are the research questions that I plan to investigate. 

  Do innovation attributes significantly influence the degree of success of digital 

transformations? 

 Do opinion leaders significantly influence the degree of success of digital transformations? 
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 Does following a diffusion approach significantly influence the degree of success for digital 

transformations compared to changes in management alone? 

 Does the timing of digital transformation significantly influence the degree of success? 

 Does the duration of digital transformation significantly influence the degree of success? 

The reason I selected these five factors (innovation attributes, opinion leaders, diffusion 

approach, timing, and duration) was that they came up very often during the interviews that I 

conducted with practitioners in the field who have performed multiple successful and failed digital 

transformations. A literature review of extant research also shows that very little research has been 

done on these factors within the context of digital transformations, and even fewer in the specific case 

of digital transformations that are performed to improve efficiency and hence warrant further 

investigation.  

My research question aims to permit and entertain at least two plausible answers as to whether 

innovation attributes, opinion leaders, diffusion approach, timing, and duration significantly influence 

digital transformation success. It is possible that some of these factors may not be significant at all, 

some may be significant and others may not be, some may be less effective than others in determining 

digital transformation success.  

Therefore the answer to my research question solves a key part of the problem from 

managements’ perspective: what are factors that they should focus on to significantly influence digital 

transformation success, specifically in the context of programs that improve efficiency. This should 

substantially improve the situation for managers that are performing digital transformation today by 

providing them specific variables that can significantly increase their success. Additionally, my 

research question also increases knowledge and competence of the managers performing digital 

transformation. 
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CHAPTER II 

 

 

REVIEW OF LITERATURE 

 

Conceiving the Theory 

In my research, I’m using a Model Theoretic perspective where empirical research does not 

confirm or refute a theory but we use it to improve the theory (Harris, Johnson, & Souder, 2013). 

To understand whether I have the right problem, I discussed it with multiple respondents who 

acknowledged the importance of understanding how innovation attributes, opinion leaders, 

diffusion approaches, duration, and timing influence digital transformation success and the need 

for this type of practitioner-focused research. 

One of the respondents was a digital transformation expert who led a large multiyear 

initiative to standardize key business processes in a group of globally dispersed firms that were 

acquired by the parent firm. The initiative was rated to be very successful by the executive 

leadership and was reflected in the stock price of the firm during and after the digital 

transformation. The respondent attributed the success to: 1) how users perceived the innovation 

attributes and compared them to the previous solutions with which they were familiar, 2) the 

presence of a few key opinion leaders who brought their respective followers along, 3) following 

a diffusion approach to attract innovators and early adopters initially who then brought over the 

early majority and late majority of employees, 4) the timing of the initiative when the firm was in 

its growth phase where there was less pressure to produce immediate results, and 5) a specific 

duration with some predefined milestones to show how the digital transformation was progressing 
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Another respondent was also a digital transformation expert who had recently led a large ERP 

program for a newly created firm that was carved out of a large corporation. The digital 

transformation program was not successful; the respondent attributed this to: a) the perception of the 

users that the solution was not flexible and might not be well suited for the firm’s needs, b) a lack of 

opinion leaders within the firm, c) the change management team did not have a coherent plan to 

attract project team members, and d) bad timing since the firm was still in its early stages and did not 

have the structure for such a digital transformation.  

There were several other respondents that I interviewed during this step of conceiving my theory. 

A majority of the informants thought that the digital transformations of which they were a part were 

unsuccessful, which was consistent with the 84% failure rate of digital transformations (Rogers, 2016; 

de Los Reyes, 2015). This is a good indication that our research has low common method bias. a 

majority of the respondents also focused on innovation attributes, opinion leaders, diffusion 

approaches, duration, and timing as the key factors that may have impacted digital transformation 

success.  

Theoretical Model and Hypotheses 

Diffusion of Innovation Theory (DOIT) indicates that innovations that diffuse thy typically have 

four key characteristics: a) perceived innovation attributes (relative advantage, compatibility, 

simplicity, observability, and trialability); b) communication channels for the innovation to be 

communicated to its wider audience; c) time (when the decision is made to adopt or reject the 

innovation); and d) social system, such as environment, beliefs, societal factors, etc. of the users 

(Rogers, 1963). 

According to Rogers (1963), innovation attributes play a key role in adoption. Relative advantage 

occurs when an innovation is perceived to be superior to what it supersedes. Compatibility is how 

consistent the users perceive the innovation is with their current values, habits, and past experiences. 

Simplicity is the perception of the user of how easy it is to use this innovation. Trialability is the 
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ability of the innovation to be tried out first on a limited basis before committing to its broad use. 

Observability is the ability of the innovation and its results to be noticed and communicated to others.  

 

 

Figure 1: Theoretical Model 

In the Rogers (1964) DOIT, communication channels are the medium used to spread the word for 

the innovations to diffuse. As shown in Figure 2, there are two communication channel models: the 

Hypodermic Needle Model and the Two-Step Flow Model using opinion leaders. In the Hypodermic 

Needle Model, communication from mass media directly reaches the end users. In a Two-Step Flow 

of Communication Model, information flows to the opinion leader who then give the information to 

lesser active members of their group.  

The opinion leader exerts a great deal of influence on his group and is trusted by his followers, so 

there is a higher adoption of information (Katz & Lazarsfeld, 1955). The influence of the opinion 

leader is, however, limited to his group; the opinion leader does not influence followers in other 

groups. An example of this theory in practice might be a political leader who exerts a great deal of 

̶ 
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influence on his followers but whose influence diminishes outside his group. I posit that the existence 

of opinion leaders across different functions within the firm increases the adoption of digital 

transformation by their respective followers, thereby improving digital transformation success.   

In the Diffusion Approach, innovation adoption follows a Bell curve as shown in Figure 3. The 

first 2.5% of users are the innovators; the next 13.5% are called the early adopters followed by early 

majority (34%), late majority (34%); the last 16% are called the laggards. Maloney’s (2010) 16% 

Rule talks about how communications must be tailored for innovations to diffuse. To attract the first 

16%, the adoption messaging should highlight “scarcity” by saying “Be one of the first.” for the next  

68% early majority and late majority), the communication has to be switched to “social proof” by 

saying “Join the 1000s” 

 

 

 

 

 

 

 

 

 

Figure 2: Hypodermic Needle Model (Left) and Two-Step Flow Model (Right) 

Figure 3: Bell Curve for Innovation Adoption (Rogers, 1963) 

Mass Media 

= Isolated Individuals Constituting a Mass 

Two-Step Flow Model 
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According to DOIT, time and social system often explain why a certain innovation was 

successful in one culture and failed in another. While time is when the innovation decision to adopt or 

reject is made, social system is the environment, culture, values, and beliefs of the user that influence 

adoption of an innovation. In our context of the digital transformation, timing of when the firm starts 

its digital transformation (startup phase, growth phase, peak phase, decline phase, and going out of 

business phase) includes key elements of time and social system.  

Another time and social element of DOIT is duration of the digital transformation. Duration is the 

time period between the start and the end of the digital transformation and may be another factor that 

negatively effects innovation adoption. I argue that digital transformations that go on for a long 

duration of time are impacted by factors outside the control of the program, such as economic crises, 

firm-level crises, and fatigue. I will test this during my research by investigating whether duration has 

any impact on the outcome. 

Innovation Attributes 

In a meta-analysis of 75 articles to study the influence of innovation attributes on adoption, 

Tornatzky & Klein (1982) conclude that compatibility, relative advantage, and complexity are the 

greatest influencers out of the five characteristics. A more recent study of adoption of sharing 

economy (Example: Uber, AirBnB, Lyft, etc.) also shows the importance of innovation attributes 

(relative advantage, compatibility, complexity, trialability, and observability) on perceived usefulness 

and ease of use (Min, So, & Jeong, 2018).   

In a pre-test/post-test experimental study at a hospital, a disease management system initially had 

a 33% adoption rate. When DOIT’s innovation attributes were applied to redesigning the system, the 

adoption rate jumped to 100% (Hu et al., 2018). In another meta-analysis of key innovation attributes 

that effect innovation adoption, Arts, Frambach, and Bijmolt (2011) show that while consumers may 

show a desire to adopt to complex innovations that better match their needs, they actually adopt with 

less complexity and higher relative advantages from the previous idea. Also, in two studies to 

evaluate whether personal characteristics and innovation attributes have any effect on innovation 
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adoption, innovation attributes seemed to be the only factors that effected adoption; personal 

characteristics such as race, age, religion, etc. had no effect (Ostlund, 1974).  

In his study, Al-Gahtani (2003) shows that the five attributes of innovation (relative advantage, 

compatibility, complexity, trialability, and observability) explains up to 87% of the innovation rate of 

adoption. Hence, I posit that perceived innovation attributes have a positive effect on the degree of 

success of digital transformation.  

H1: Perceived innovation attributes have a positive effect on the degree of success of the 

digital transformation.  

Opinion Leaders 

Opinion leaders are members of a team who have the greatest influence on other team members’ 

adoption of an innovation in the diffusion process of innovation (Cho et al., 2012). Hao et al. (2011) 

study the adoption of a mobile clinical IT system, similar to a digital transformation, in a healthcare 

setting. Physicians under the influence of an opinion leader were three times more likely to adopt this 

new technology. Researchers also conclude that incentivizing a small number of opinion leaders to 

adopt a new technology is effective in diffusing new technology to their followers.  

In a longitudinal study of adoption of e-bikes and e-scooters, 1,398 e-bikers and 133 e-scooter 

owners were studied for over a year. The researchers noticed that while the influence of opinion 

leaders on peers was small, it was effective when opinion leaders were provided relevant product 

information and other supporting policies (Seebauer, 2015). Using a two-step flow of communication 

theory, Turnbull and Meenaghan (1980) also discuss the notion that opinion leaders can influence 

their followers to adopt a new innovation through diffusion whereby the innovation or a new idea or 

practice spreads through a social system over time.   

Valente and Davis (1999) also show the importance of interpersonal networks and the role of 

opinion leaders with innovation diffusion. They describe how opinion leaders are selected in five 

different ways: a) some individuals select themselves to be peer leaders; b) program staff or project 

teams select the leaders; c) community members recruit participants, not leaders, and they in turn 
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each recruit new participants; d) some selected individuals in a community nominate others to be 

leaders; and e) all community members are invited to nominate opinion leaders.  

Liu, Sidhu, Beacom, and Valente (2017) also show the role of Social Network Theory to explain 

the relationship between opinion leaders and followers considering a high degree of centrality, a high 

degree of closeness,  and high betweenness centrality. Theory of Weak Ties can also be used to 

explain diffusion of innovation through opinion leaders, for example, finding a new job through 

someone with weak ties instead of friends or family (Granovetter, 1983). 

The Brown et al. (2017) research highlights the importance of recognizing and enabling opinion 

leaders whose opinions are sought by their peers. For successful adoption of innovation, since opinion 

leaders influence attitudes and perceptions of other organization members, firms should encourage 

and guide opinion leaders so they can help drive their followers to positive organizational outcomes. 

Hence I posit that opinion leaders within a firm have a significant positive effect on digital 

transformation success.  

H2:  The degree to which opinion leaders within the firm are involved in the digital 

transformation is positively associated with its success. 

Diffusion Approach 

Maloney’s (2011) 16% Rule of innovation diffusion states that innovators (2.5%) and early 

adopters (13.5%) are attracted when communications contain words such as “be the first.” Once the 

16% adoption rate is achieved, communication style must be switched to say “Join the thousands,” to 

attract the early majority (36%) and the late majority (36%) adopters. When firms practice this style 

of communication, the innovation diffusion is faster and firms can cross the chasm (16%) when the 

early majority and late majority adopt the innovation, in this case digital transformation, and make it 

successful.  

Lee et al. (2018) support this in their study of new technologies where the initial communication 

focus was on form and functional newness to attract the innovators and early adopters. Once the 16% 

adoption rate was achieved, the opinion leaders influenced their peers, resulting in faster diffusion of 
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innovation within the firm. Augustine et al. (2015) similarly show the transformation of 596 

universities to a tobacco-free campuses. The adoption of this transformation was consistent with 

Rogers’ (1963) Diffusion of Innovation Theory where innovators and early adopter campuses were 

able to diffuse this transformation and bring the early majority and late majority campuses on board.  

Based on this research, I posit that digital transformations that use two-step adoption messaging 

attracting first the innovators and early adopters within the firm (16%) by saying “Be the first to lead 

the digital transformation” and then switching the communication strategy to attract the early majority 

and late majority (72%) by saying “Join the thousands who have digitally transformed” will have a 

significant positive effect on the degree of success of the digital transformation program.  

H3:  Digital transformations that rely on a diffusion approach are more successful than 

those that rely on change management alone. 

Timing 

Timing in general has not been of major interest in transformation literature until Schoenecker & 

Cooper (1998) showed how timing influences strategic transformation of a firm into new industries 

and a strong first mover advantage increased success. Whipp et al. (2002) then talked about Kairology 

(Greek term for the right time to do something) and its influence on transformation outcome. More 

recently, Granqvist and Gustaffson (2016) show how successful leaders use timing as a key influencer 

to bring about changes in institutions. Leng et al. (2015) in their study of 360 technology firms 

conclude that timing plays an important role in success.  

Gilbert and Birnbaum-More (1996) show that firms can gain competitive advantage by using 

optimal timing to introduce their digital transformations. There are three main aspects to innovation 

timing that ultimately affects innovation success: now, never, or sometime in the future (Mann, 2005; 

Kuckertz & Wagner, 2010). Some digital transformations are time sensitive and must be adopted now 

to realize their benefits, such as e-commerce, EDI, mobility, etc. Some innovations must be adopted 

sometime in the future as the alternative costs would be higher and adversely impact the firm’s 
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competitiveness. These could be digital innovations such as cloud computing, laptop technology, 

virtualization, etc. (Kim, 2011; Low, Chen, & Wu, 2011).  

Finally, some digital transformations may never be adopted given the cost constraints or 

switching challenges, such as ERP, CRM, automation systems, etc. (Mezghani, 2014; Hossain, 2001). 

Industry adoption of similar innovation also indicates an optimal timing for introducing this digital 

transformation within a firm and improves its odds of success due to the availability of talent in the 

market and vendors with sufficient expertise. In a study of 181 firms on EDI adoption, competitive 

pressure was identified as one of the key factors that influenced innovation adoption (Premkumar, 

Ramamurthy, & Crum, 1997; Crum, Premkumar, & Ramamurthy, 1996; Patterson, Grimm, & Corsi, 

2003).   

Based on this research, I posit that innovation timing has a positive influence on digital 

transformation success with firms that adopt newer innovations at the optimal time being able to 

capture the benefits of such innovation.  

H4:  Innovation timing is positively associated with the success of a digital transformation 

program.  

Duration 

Duration is how long a digital transformation program takes from start to finish. Longer duration 

programs can be impacted by factors that are outside the control of the program, such as economic 

crises, firm-level crises, and fatigue within the team. The Innobarometer® 2009 survey conducted by 

the European Commission shows that firms reduced their investments in innovation after the 2008 

economic crisis (Archibugi et al., 2013a; Filippetti & Archibugi, 2011; Kuznetsov & Simachev, 

2010). In a study of eight Latin American countries between 2008-2009, it was clear that one in four 

firms stopped their ongoing innovation programs due to the economic crisis (Paunov, 2012). These 

studies show that economic crises and other strategic crises can have an adverse impact on longer 

duration innovations such as digital transformation.  
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Extended work hour cultures today are becoming the norm with firms recruiting and reinforcing 

this behavior through their rewards system (Fry & Cohen, 2009). It is likely that digital 

transformation may involve demanding work schedules resulting in a extended work hour culture 

over a long duration of time, often measured in years. In their meta-analysis of several studies, Ng 

and Feldman (2008) show that situational demands have a strong relationship with the extended work 

hour cultures;  the amount of hours worked had a negative relationship with all measures of employee 

well being and work-family conflict variables.  

Studies also show that working extended hours is negatively associated with health, work 

performance, safety, and over-all quality of life (Lamberg, 2004; Worrall & Cooper, 1999). A study 

of interns over a three-month period shows that interns that felt both pressed and tired, were eight 

times more likely to make mistakes and four times more likely to report lack of training. High 

pressure and insufficient sleep over a prolonged duration were associated with poor job performance 

(Feddock et al., 2007).  

Conway, Pompeii, Gimeno, Follis, and Roberts (2017) studied 2,000 participants over 15 years to 

understand what is considered to be long hours and when it impacts employee health. Results of this 

study show that employees who self-report working over 52 hours per week regularly report higher 

health-related issues compared to employees who report working 35-51 hours a week. This is one of 

the very few studies that have shown the relationship between number of hours worked over a long 

duration and the negative effects on employee health.  

Scholars appear to agree that working over 50 hours per week over a prolonged duration of time, 

such as few months or years, is associated with negative health outcomes for employees, resulting in 

increased risk of injuries and health-related issues (Gilbert-Ouimet et al., 2018; Kuroda & Yamamoto, 

2016; Lu et al., 2016).  

Based on this research, I posit that digital transformations that are longer in duration are less 

successful due to fatigue. In other words, duration has a negative effect on digital transformation 

success with longer programs being less successful.  
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H5:  Duration has a negative effect on digital transformation success with longer programs 

being less successful.  
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CHAPTER III 

 

 

METHODOLOGY 

 

Statement of the Research Problem/Question 

The research question that I am attempting to answer is what factors can improve the degree 

of digital transformation success? In my perspective, current research has failed to sufficiently 

address this, resulting in 90% of firms being unable to achieve digital transformation success 

(Carey, 2017). The Action Science approach (Argyris, Putnam, & Smith, 1985; Raelin, 1997) is 

an application of theory directly in the field with scholars and practitioners collaborating and 

acknowledging, rather than rejecting, the role of personal feelings within the research context. 

Based on this approach, I’m investigating factors such as innovation attributes, opinion leaders, 

the diffusion approach, timing; and duration and their impact on the degree of digital 

transformation success. 

Research Design 

This research is based on a variance model and predicts levels of degree of success from 

contemporaneous predictor variables such as innovation attributes, opinion leaders, diffusion 

approach, timing, and duration, as shown in Figure 1. In variance theories, the precursor 

(“cause”) is posited as a necessary and sufficient condition for the outcome (Markus & Robey, 

1988). Variance theories thus posit an invariant relationship between causes and effects when 

certain conditions are met. Our conceptualization of outcomes and precursors also varies from 
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process theory model as our variables can take on a range of values such as 1= strongly agree to 5 = 

strongly disagree versus the process theory model where variables are discrete.   

Data and Sample 

A Qualtrics anonymous survey was emailed to participants of three digital transformation 

programs within the same firm. The reason for studying multiple digital transformation programs 

within the same firm was to keep the firm-level factors constant, including top management, culture, 

and vision. The reason for conducting three studies is to show that the results of the study are 

generalizable across multiple digital transformation programs. This approach is supported in prior 

research on application of diffusion theory in innovation adoption (Ostlund, 1974; Flynn, Goldsmith, 

& Eastman, 1996).   

This sample is appropriate because a) it provides feedback from participants with experience in 

successful and failed digital transformations, and b) it also provides data points from multiple digital 

transformation programs to show reliability of results and findings. Recommended sample size was 

calculated for 95% confidence interval, 5% margin of error, and 50% response distribution.  

As shown in Table 2, the first study was a digital transformation program that was performed to 

standardize business processes across acquired companies spread across the globe to improve 

efficiency. The sponsor, project manager and steering committee members perceived this project to 

be less successful. The program impacted about 3500 employees within the firm and was performed 

over 3 years. Key technologies used in the program were ERP, Data Warehouse, Analytics, etc. The 

recommended sample size was 347.  

As shown in Table 2, the second study was a digital collaboration hub that was implemented in 

various meeting rooms using technology to improve collaboration across a globally dispersed team. 

The sponsor, project manager, and steering committee perceived this program to be successful. The 

program impacted about 220 employees, and the deployment lasted for about a year. The key 

technology used in this digital transformation is Microsoft’s Surface Hub. Recommended sample size 

was 141. 
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Table 2: Study Sample 

Type of Study Firm Study & Purpose 

Perceived 

Outcome 

Duration 

in Years 

Population 

Size 

Recommended 

Sample Size* 

Multiple Respondent 

Questionnaire Survey 

MNC with 21,000 

employees in 30 

countries 

Digital Transformation 

Program to standardize 

processes 

Less Successful 3.0 3,500 347 

  Digital Collaboration Hub to 

improve meeting 

effectiveness 

Successful 1.0 220 141 

  Integrated Business Planning 

to improve demand/supply 

balancing 

Failure 1.5 60 53 
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As shown in Table 2, the third study was an integrated business planning program that was 

implemented to improve demand and supply balancing, inventory optimization across global sites, 

and better strategic planning. The sponsor, project manager, and steering committee perceived this 

program as a failure due to several delays in project go-live and cost overruns. The program impacted 

about 60 employees, and the deployment was initially about a year but was completed in 1.5 years. 

Recommended sample size was 53.  

Survey Instrument 

Participants will respond to a multiple respondent questionnaire survey as shown in Table 3. The 

first series of questions, such as gender and age, help me understand the profile of survey participants. 

Relationship to the program helps me to understand whether the respondent was part of the project 

team that helped deploy this digital transformation, or a user of this digital transformation, or an 

executive that decided to deploy this digital transformation.  

To measure innovation attributes, I use the perceived innovation attributes questions that Ostlund 

(1974) used in his two studies applying Diffusion of Innovation Theory to study whether a consumer 

would adopt or reject a consumer product. In my survey, I’m using a seven-point Likert scale 

(strongly agree to strongly disagree) where I ask participants their perceptions related to five key 

attributes of this digital transformation: 1) relative advantage, 2) compatibility, 3) complexity, 

4) trialability, and 5) observability (Rogers, 1963). 

To measure the presence of opinion leaders, I use the opinion leadership questions that Flynn et 

al. (1996) used in their five studies to measure opinion leadership and in which they concluded that 

the unidimensionality, reliability, and construct and criterion validity of the opinion leadership scale. 

In my survey, I’m using a seven-point Likert scale (strongly agree to strongly disagree) to ask 

respondents whether key leaders were present in this digital transformation program and whether their 

opinions influenced their followers to adopt the digital transformation.  
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To measure whether the program used the diffusion approach for innovation adoption, I use the 

Rogers (1963) adoption questionnaire and Maloney’s (2010) 16% rule. In my survey, I’m using a 

seven-point Likert scale (strongly agree to strongly disagree) to measure whether the respondents 

agree that the digital transformation program was successful in developing a feeling of newness or 

scarcity among the innovators and early adopters through communications, thereby attracting this 

group of users (the first 16% of users) in the early stages of the program.  The survey further studies 

whether the respondents agree that the program was able to attract the early majority and late majority 

of users (the next 68%) by highlighting in their communications social proof that the digital 

transformation worked.  

To measure timing, I ask the respondents to describe the role timing played in the outcome of this 

digital transformation. I measure their responses on a seven-point Likert scale (strongly agree to 

strongly disagree) to understand whether the respondents perceive that this digital transformation was 

performed at the right time from their perspective, whether they perceive that the competitors of the 

firm were also moving towards this type of an innovation (i.e., was it an industry trend), and whether 

timing had a positive influence on the outcome of this digital transformation.  

Additionally, I measure the duration by asking the respondents what if any role the long duration 

of the digital transformation had on the program outcome. I measure their responses on a seven-point 

Likert scale (strongly agree to strongly disagree) to understand whether they perceive that the digital 

transformation program took longer than expected, whether there was fatigue at the team level and 

firm level with resources needed to complete the program, how long it took, and whether factors 

outside the control of the program, such as economic crises, firm-level crises, etc., had an adverse 

impact due to the long duration of the program.  

Finally, I measure the dependent variable degree of success, also using a seven-point Likert scale 

(extremely successful to extremely unsuccessful) where the respondents were asked whether they 

perceive the digital transformation program to be successful or unsuccessful. 
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Table 3. Survey Instrument 

Variable Scale  Question 

Gender 

 (Select one) 

Not applicable Gender 

o Male 

o Female 

Age 

(Select one) 

Not applicable Age 

o 21-30 

o 31-40 

o 41-50 

o 51-60 

o 61 and above 

Relationship to the program  

(Select one) 

Not applicable Relationship to the program 

o User 

o Project team 

o Executive 

Attributes of this innovation  

(7-point Likert, strongly agree to 

strongly disagree) 

Perceived innovation 

attributes (Ostlund, 1974) 

o This innovation was perceived to be superior to what it superseded 

o This innovation was perceived as consistent with existing values, habits and past 

experiences of the potential adopter 

o This innovation was difficult to understand and use 

o This innovation was available for trial before it was broadly used 

o The results of this innovation were apparent and possible to communicate to others 

Presence of opinion leaders  

(7-point Likert, strongly agree to 

strongly disagree) 

Flynn’s opinion leadership 

(Flynn et al., 1996) 

o The program had key leaders whose opinions influenced others 

o The program had key leaders who other people came to for advice 

o These key leaders were able to persuade their followers 

o The followers repeated to other people things that their key leaders told them 

o There were key leaders that influenced their followers across every major function 

Diffusion approach for 

innovation adoption  

(7-point Likert, strongly agree to 

strongly disagree) 

Rogers adoption 

questionnaire (Rogers, 

1963; Maloney, 2010) 

o At the start of the program, the communication targeted innovators/early adopters by 

using terms, such as “Be one of the first, be part of the transformation, etc.” 

o The program attracted the innovators/early adopters at the start of the program by 

triggering the feeling of “newness/scarcity” 

o After attracting the innovators/early adopters, the communication was switched to 

attract others by using terms, such as “Join the many, Be part of the success, etc.” 

o The program was able to attract majority of the other users by showing “social proof” 

Timing  

(7-point Likert with strongly 

agree to strongly disagree) 

Not applicable o Timing of this program was right 

o Our competitors are moving towards such innovations as well 

o Timing had a positive effect on performance 
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Duration  

(7-point Likert with strongly 

agree to strongly disagree) 

Not applicable o This program took longer than expected 

o There was fatigue across the firm with how long the program took 

o Other factors started adversely influencing this program due to the long duration 

Program outcome  

(7-point Likert with extremely 

successful to extremely 

unsuccessful) 

Not applicable o How would you rate the success of this program? 

* Recommended sample size calculated for 95% confidence level, 5% margin of error and 50% response distribution 
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CHAPTER IV 

 

 

FINDINGS 

 

Study Response 

Table 4 shows the study responses. All three studies achieve statistically recommended 

sample size for a 95% confidence interval, 5% margin of error, and a 50% response distribution. 

The Digital Transformation program had a 12% response rate with 425 respondents (N = 425); 

the Digital Collaboration Hub program had a 68% response rate with 150 respondents (N = 150); 

and the Integrated Business Planning program had an 88% response rate with 53 respondents 

(N = 53).  

Descriptive Statistics 

As shown in Table 5, in the Digital Transformation program (N = 425), 292 (69%) 

respondents were male and 135 (31%) were female. The age of the respondents was normally 

distributed with a majority of them between 31-60 years old; 240 (56%) of the respondents were 

users, 118 (28%) project team, and 67 (16%) executives. The µ value of the degree of success for 

this program was 3.14 and the standard deviation (SD) was 1.68. While the project sponsor and 

managers perceived that this digital transformation program was less successful, the survey data 

showed that this project was a failure.
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Table 4: Study Response 

Type of Study Firm Study & Purpose 

Perceived 

Outcome 

Duration 

in Years 

Population 

Size 

Recommended 

Sample Size* 

Sample 

Size (N) 

Response 

Rate 

Multiple 

Respondent 

Questionnaire 

Survey 

MNC with 

21,000 

employees in 

30 countries 

Digital Transformation 

Program to standardize 

processes 

Less 

Successful 

3.0 3,500 347 425 12% 

Digital Collaboration Hub to 

improve meeting effectiveness 

Successful 1.0 220 141 150 68% 

Integrated Business Planning 

to improve demand/supply 

balancing 

Failure 1.5 60 53 53 88% 

* Recommended sample size calculated for 95% confidence level, 5% margin of error and 50% response distribution 
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Table 5: Descriptive Statistics 

 

Digital Transformation 

(N = 425) 

Digital Collaboration 

Hub 

(N = 150) 

Integrated Business 

Planning (N = 53) 

Variable Value Count Percent Count Percent Count Percent 

Gender 
Male 292 69 98 65 37 70 

Female 133 31 52 35 16 30 

Age 

21-30 46 11 12 8 4 8 

31-40 109 25 41 27 19 36 

41-50 145 34 47 31 15 28 

51-60 105 25 41 27 14 26 

61-above 20 5 9 7 1 2 

Relationship to 

Program 

User 240 56 91 61 31 58 

Project Team 118 28 49 33 12 23 

Executive 67 16 10 6 10 19 

Degree of Success  

µ 3.14 2.27 3.11 

SD 1.68 1.27 1.41 

 Failure Success Failure 

Distribution Normal 
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As shown in Table 5, the Digital Collaboration Hub program (N = 150) was 98 (65%) male and 

52 (35%) female. The majority of the respondents again were between 31-60 years old; 91 (59%) of 

the respondents were users, 49 (33%) project team, and 10 (6%) were key users. The µ value of the 

degree of success for this program was 2.27, and SD was 1.27. The project sponsor and managers 

perceived that this digital transformation program was successful, and the survey data supported that.  

The Integrated Business Planning program (N = 53) was 37 (70%) male and 16 (30%) female. 

The majority of the respondents were again between 31-60 years old; 31 (58%) of the respondents 

were users, 12 (23%) project team, and 10 (19%) key executives. The µ value of the degree of 

success for this program was 3.11, and SD was 1.41. The project sponsor and managers perceived 

that this digital transformation program was a failure, and the survey data supported that.  

Test of Reliability 

Item reliability indicates how consistently a set of instruments measures an overall response, and 

Cronbach’s Alpha is one measure of reliability (Cronbach, 1951). For analysis of reliability, we used 

Cronbach’s Alpha as a measure for construct reliability. As per Nunnally (1978), the nearer the value 

of Cronbach’s alpha is to 1, the more reliable are the results. A value of Cronbach’s alpha around 0.6 

in general should be acceptable, and greater than 0.8 shows good reliability of questions measuring 

the construct that they are looking to measure (Moss et al., 1998a).   

From Table 6, Cronbach’s Alpha scores are above 0.6 for innovation attributes, opinion 

leadership, diffusion approach, timing, and duration and hence are acceptable (Moss et al., 1998a).  

The scores of 0.6 or above across all three studies implies that the scales have good reliability and can 

be used in future studies to measure these variables in the context of digital transformation. 

Correlation Analysis of Variables 

Table 7 includes the Pearson correlations between the variables. Since each construct was 

measured by multiple questions, the average score of these items was taken and this score was then 

used for correlation and regression analysis (Wang & Benbasat, 2007). According to Field (2005), 

correlation coefficients should not go beyond 0.8 to avoid multicollinearity. Since the highest 
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Table 6: Item Reliability 

 Digital 

Transformation 

(N = 425) 

Digital 

Collaboration Hub 

(N = 150) 

Integrated 

Business 

Planning (N = 53) 

Independent Variables Scale No. of Items Cronbach Alpha Cronbach Alpha Cronbach Alpha 

Innovation Attributes Ostlund, (1974) 5 0.80 0.73 0.62 

Opinion Leadership Flynn’s Opinion 

Leadership Scale (1996) 

5 0.88 0.94 0.69 

Diffusion Approach Rogers Adoption 

Questionnaire (1962) 

4 0.87 0.89 0.91 

Timing — 3 0.75 0.76 0.67 

Duration — 3 0.78 0.90 0.79 
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Table 7: Pearson Correlations of Variables 

 µ SD 1 2 3 4 5 6 

Digital Transformation (N = 425) 

Innovation Attributes (1) 3.79 1.38 1.00      

Opinion Leadership (2) 3.04 1.13 0.62 1.00     

Diffusion Approach (3) 3.66 1.33 0.62 0.57 1.00    

Timing (4) 3.61 1.35 0.69 0.55 0.56 1.00   

Duration (5) 3.61 1.37 -0.31 -0.28 -0.23 -0.36 1.00  

Degree of Success (6) 3.14 1.68 0.75 0.60 0.56 0.74 -0.35 1.00 

Digital Collaboration Hub (N=150) 

Innovation Attributes (1) 2.46 0.95 1.00      

Opinion Leadership (2) 3.33 1.29 0.43 1.00     

Diffusion Approach (3) 3.44 1.26 0.54 0.70 1.00    

Timing (4) 2.67 1.08 0.59 0.43 0.55 1.00   

Duration (5) 4.25 1.35 -0.19 -0.03 -0.08 -0.04 1.00  

Degree of Success (6) 2.27 1.27 0.58 0.31 0.46 0.52 -0.20 1.00 

Integrated Business Planning (N = 53) 

Innovation Attributes (1) 3.12 0.98 1.00      

Opinion Leadership (2) 2.75 1.00 0.55 1.00     

Diffusion Approach (3) 3.46 1.35 0.52 0.60 1.00    

Timing (4) 3.39 1.28 0.66 0.54 0.57 1.00   

Duration (5) 2.56 1.15 -0.20 -0.05 -0.18 -0.26 1.00  

Degree of Success (6) 3.11 1.41 0.54 0.58 0.48 0.67 -0.29 1.00 
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correlation coefficient is 0.75 between innovation attributes and degree of success, which is still less 

than 0.8, there is no multicollinearity problem in our research. 

For innovation attributes, in Study 1 (N = 425), the µ was 3.79 and SD was 1.38. However, in 

Study 2 (N = 150), the µ was 2.46 and SD was 0.95. Similarly, in Study 3 (N = 53), the µ was 3.12 

and SD was 0.98. What we can conclude from these is that in Study 1 and Study 3, respondents on 

average somewhat agreed or neither agreed/disagreed that these digital transformations attributes: a) 

were relatively advantageous over the previous option, b) were compatible with the users’ habits, c) 

were simple to use, d) benefits were observable, and e) were available on trial. However, in Study 2 

the respondents on average agreed to all.  

For the opinion leadership, in Study 1, the µ was 3.04 and SD was 1.13. However, in Study 2, the 

µ was 3.33 and SD was 1.29. Similarly, in Study 3, the µ was 2.75 and SD was 1.00. What we can 

conclude from these is that in Study 1 and Study 3 where opinion leaders were utilized, the 

respondents on average agreed or somewhat agreed that the program had opinion leaders who 

influenced their followers. Study 2 did not use the opinion leaders but used the Hypodermic Needle 

model of direct communication (Rogers, 1962). Hence the respondents somewhat agreed that the 

program had opinion leaders that influenced their followers.   

For diffusion approach, in Study 1, the µ was 3.66 and SD was 1.33. However, in Study 2, the µ 

was 3.44 and SD was 1.26. Similarly, in Study 3, the µ was 3.46 and SD was 1.35. What we can 

conclude from these is that the respondents somewhat agreed or neither agreed or disagreed that the 

diffusion approach of innovation adoption was used where innovators and early adopters (first 16%) 

were initially attracted to the program by stimulating a sense of scarcity and the early majority and 

late majority (next 68% of users) were attracted to the program by demonstrating social proof.  

For innovation timing, in Study 1, the µ was 3.61 and SD was 1.35. However, in Study 2, the µ 

was 2.67 and SD was 1.08. Similarly, in Study 3, the µ was 3.39 and SD was 1.28. We can conclude 

from these that the respondents somewhat agreed or neither agreed or disagreed that the digital 
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transformation was implemented at the right time and other firms in the industry were also pursuing 

similar digital transformations.  

For duration, in Study 1, the µ was 3.61 and SD was 1.37. We can conclude from this that the 

respondents on average somewhat agreed that the duration of this digital transformation was too long 

and other factors outside the control of the program started impact it. However, in Study 2, the µ was 

4.25 and SD was 1.35. Thus on average the respondents somewhat disagreed that the duration of the 

digital transformation was too long. This is understandable since this program was about one year. 

Similarly, in Study 3, the µ was 2.56 and SD was 1.15. Thus the respondents agreed that the duration 

of the digital transformation was too long. This program was originally intended to take one year but 

it went longer than expected.  

For the outcome variable degree of success, the µ in Study 1, was 3.41 and SD was 1.68. The 

respondents on average felt that the program was slightly successful. However, in Study 2, the µ was 

2.27 and SD was 1.275. On average the respondents felt that the program was moderately successful. 

In Study 3, the µ was 3.11 and SD was 1.41. What we can conclude from that is on average the 

respondents felt that the program was slightly successful.  

Regression Modeling 

Because Multiple Regression (MR) can be used to analyze the relationship between a single 

dependent variable and several independent variables (Hair, Anderson, Tatham, & Black, 1998), I use 

MR analysis to measure the effects of innovation attributes, opinion leadership, diffusion approach, 

timing, and duration on the outcome, degree of success of a digital transformation,. A MR model is 

also considered to be valid when the following assumptions are fulfilled: 1) linearity of the 

relationship between dependent and independent variables; 2) constant variance of the error term, i.e., 

homoscedasticity; 3) independence of the error terms; 4) normality of the error term distribution and 

individual variables; and 5) the predictor variables are not correlated among themselves, i.e., 

multicollinearity (Churchill, 1995).
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Table 8: Multiple Regression Summaries 

 Digital Transformation 

(N = 425) 

Digital Collaboration Hub 

(N = 150) 

Integrated Business Planning  

(N = 53) 

Est. Std. β t Ratio Sig. (p) VIF Est. Std. β t Ratio Sig. (p) VIF Est. Std. β t Ratio Sig. (p) VIF 

Innovation 

Attributes (H1) 
0.46 0.38 8.60 <.0001 2.49 0.47 0.35 4.13 <.0001 1.77 0.10 0.07 0.52 0.607 1.98 

Opinion 

Leadership (H2) 
0.18 0.12 3.13 0.0019 1.84 -0.06 -0.06 -0.70 0.4854 1.96 0.43 0.31 2.31 0.025 1.86 

Diffusion 

Approach  (H3) 

0.06 0.05 1.21 0.2265 1.83 0.17 0.17 1.68 0.09 2.40 -0.03 -0.03 -0.20 0.845 1.86 

Timing (H4) 0.44 0.36 8.64 <.0001 2.16 0.28 0.24 2.87 0.0048 1.75 0.47 0.43 3.03 0.004 2.13 

Duration (H5) -0.07 -0.06 -1.92 0.0557 1.16 -0.10 -0.11 -1.69 0.09 1.05 -0.19 -0.15 -1.49 0.143 1.09 

R2 0.6681 0.4086 0.5437 

Adjusted R2 0.6641 0.3881 0.4951 

Sig F <.0001 <.0001 <.0001 

RMSE 0.9739 0.9964 1.0015 

p-value is significant at the 0.05 level for items that are bolded 
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Overall Model Fit   

A well-fitting regression model results in predicted values close to the observed data values. To 

evaluate model fit, I use three statistics that are used in Ordinary Least Squares (OLS) regression: R2, 

(or Adjusted R2), Overall F-test, and Root Mean Square Error (RMSE) (Hair et al., 2010, p. 186).  

R2 is a statistical measure of how close the data are to the fitted regression line. Adjusted R2 is a 

modified version of R2 that has been adjusted for the number of predictors in the model. The adjusted 

R2 increases only if the new term improves the model more than what would be expected by chance 

and decreases if the new term does not improve the model more than what would be expected by 

chance.  

The F-test for overall significance indicates whether the linear regression model provides a better 

fit to the data than a model that contains no independent variables. The F-test for overall significance 

has the following two hypotheses: 1) the null hypothesis states that the model with no independent 

variables fits the data as well as the current model, and 2) the alternative hypothesis states that the 

current model fits the data better than the intercept-only model.  

RMSE is the square root of the variance of the residuals and indicates how close the observed 

data points are to the model’s predicted values. RMSE is the most important criterion for fit if the 

main purpose of the model is prediction. The parameter estimates report summarizes the effect of 

each predictor and provides five important items: 1) estimate, 2) standardized β, 3) t-ratio, 4) 

significance (p-value), and 5) variance inflation factor (VIF). Estimate gives the parameter estimates 

for each item and estimates the model coefficients. Standardized β shows parameter estimates for a 

regression model where all of the terms have been standardized to a mean of 0 and variance of 1. t-

ratio tests whether the true value of the parameter is zero. The t-ratio is the ratio of the estimate to its 

standard error. p-value indicates the significance for the test that the true parameter value is zero, 

against the two-sided alternative that it is not. VIF shows the variance inflation factor for each item in 

the model. High VIFs indicate a collinearity issue among the terms in the model (Multicollinearity, 

2018).  
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Digital Transformation Program (N = 425). The overall model is significant at the 5% level with 

a Sig F of <0.0001. Such a small p-value is considered evidence that there is at least one significant 

effect in the model. The R2 value of 66.81% (and Adjusted R2 of 66.41%) indicates that the model 

explains a large amount of the variance. The RMSE of 0.9 indicates a good fit.  

Digital Collaboration Hub Program (N = 150). The overall model is significant at the 5% level 

with a Sig F of <0.0001. Such a small p-value is considered evidence that there is at least one 

significant effect in the model. The R2 value of 40.86% (and Adjusted R2 of 38.81%) indicates that 

the model explains a large amount of the variance. The difference between the R2 and Adjusted R2 is 

2.05% in this study (N = 150) in comparison to Study 1 (N = 425) where the difference is 0.40%. This 

difference is because of the smaller sample size (N). In general, as sample size increases, the 

difference between R2 and Adjusted R2 approaches zero because R2 becomes less biased and the 

standard error of Adjusted R2 gets smaller approaching zero in the limit. The RMSE of 0.9 indicates a 

good fit.  

Integrated Business Planning Program (N = 53). The overall model is significant at the 5% level 

with a Sig F of <0.0001. Such a small p-value is considered evidence that there is at least one 

significant effect in the model. The R2 value of 54.37% (and Adjusted R2 of 49.51%) indicates that 

the model explains a large amount of the variance. The difference between R2 and Adjusted R2 in this 

model is 4.86% in this study (N = 53) in comparison to Study 1 (N = 425) where the difference is 

0.40% and Study 2 (N = 150) where the difference is 2.05%. The RMSE of 1.0 indicates a good fit.  

Hypotheses Testing 

H1:  Perceived innovation attributes have a positive effect on the degree of success of a 

digital transformation program. 

Digital Transformation Program (N = 425). I reject the null hypothesis because innovation 

attributes had a significant positive effect on the degree of success in this dataset. For a unit increase 

in innovation attributes, the degree of success increased by 46%.  The VIF of 2.49 is less than 4.0, 

hence there is no problems of multicollinearity (Harris, Fotheringham, & Juggins, 2010).  
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Digital Collaboration Hub Program (N = 150). I reject the null hypothesis because innovation 

attributes had a significant positive effect on the degree of success in this dataset. For a unit increase 

in innovation attributes, the degree of success increased by 47%. The variance inflation factor (VIF) 

of 1.77 is less than 4.0, hence there is no problems of multicollinearity (Harris et al., 2010).  

Integrated Business Planning Program (N = 53). I fail to reject the null hypothesis. Innovation 

attributes did not have a significant positive effect on the degree of success in this dataset. In this 

study, several of the respondents mentioned that the key technology used in this program was not 

significantly better than the option that was currently available to them, and hence they did not feel 

that the innovation attributes significantly influenced the outcome.   

Our findings are supported in prior research papers of innovation adoptions where innovation 

attributes were the strongest predictors of success (Tornatzky & Klein, 1982; Al-Gahtani, 2003; Arts 

et al., 2011; Min et al., 2018). In both studies where innovation attributes were significant, they were 

one of the strongest predictors of degree of success.  

H2:  The degree to which opinion leaders within the firm are involved in the digital 

transformation is positively associated with the success of the digital transformation. 

Digital Transformation Program (N = 425). I reject the null hypothesis. Opinion leadership had a 

significant positive effect on the degree of success in this dataset. For a unit increase in opinion 

leadership, the degree of success increased by 18%. The standardized βvalue of 0.12 shows that the 

effect is not as strong as 0.38 for innovation attributes or 0.36 for timing. While opinion leaders’ 

positive effects on degree of success was significant, it was still about one-third less strong than 

innovation attributes or timing. The VIF of 1.84 is less than 4.0, hence there is no problems of 

multicollinearity (Harris et al., 2010). 

Digital Collaboration Hub Program (N = 150). I fail to reject the null hypothesis. Opinion 

leadership did not have a significant positive influence on the degree of success in this dataset 

because this program did not utilize opinion leaders to diffuse innovation but rather used the 
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Hypodermic Needle Model of communication where mass communication about the innovation is 

sent directly to users (Rogers, 1963).   

Integrated Business Planning Program (N = 53). I reject the null hypothesis. Opinion leadership 

had a significant positive effect on the degree of success in this dataset. For a unit increase in opinion 

leadership, the degree of success increased by 43%. The standardized β value of 0.31 shows that the 

effect is not as strong as 0.43 for timing, but it is still significant. The VIF of 1.86 is less than 4.0, 

hence there is no problems of multicollinearity (Harris et al., 2010). 

These findings are consistent with prior studies of innovation diffusion where opinion leaders, if 

utilized, had a significant influence on innovation adoption influencing their followers to adopt the 

innovation (Cho et al., 2012; Seebauer, 2015; Turnbull & Meenaghan, 1980; Valente & Davis, 1999; 

Liu et al., 2017; Granovetter, 1983; Brown et al., 2017). In the Digital Transformation program (N = 

425) and Integrated Business Planning (N = 53), where the opinion leaders were identified, these 

opinion leaders seemed to have a significant influence on degree of success. While the effects were 

still not as strong as innovation attributes or timing, it was nevertheless significant, which supports 

our hypothesis that when opinion leaders are utilized in digital transformation programs, they have a 

significant positive effect on the degree of success.  

However, in the Digital Collaboration Hub (N = 150,) program respondents were not familiar 

with opinion leaders or the role they played in diffusing this innovation since they directly received 

mass media and direct communications about the benefits of using the Surface Hub technology to 

improve meeting effectiveness and collaboration and to avoid travel costs to attend meetings in 

person. This type of communication is also called the Hypodermic Needle Model (Rogers, 1963. My 

findings are supported in other studies similar to the Digital Collaboration Hub, where simple 

innovations that are easy to observe and try outs are adopted through direct communication with the 

user (Risselada, 2014; O’Cass & Fenech, 2003; Mattila, Karjaluoto, & Pento, 2003; Lu, Yu, Liu, & 

Yao, 2003).   
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H3:  Digital transformations that rely on a diffusion approach are more successful than 

those that rely on change management alone. 

Digital Transformation Program (N = 425). I fail to reject the null hypothesis. The diffusion 

approach did not have a significant positive influence on the degree of success of a digital 

transformation program in this data sample. The p-value was greater than 5% (p = 22.65%) and was 

not significant.  

Digital Collaboration Hub Program (N = 150). I fail to reject the null hypothesis. The diffusion 

approach did not have a significant positive influence on the degree of success of a digital 

transformation program in this data sample. The p-value was greater than 5% (p = 9%) and was not 

significant. 

Integrated Business Planning Program (N = 53). I fail to reject the null hypothesis. The diffusion 

approach did not have a significant positive influence on the degree of success of a digital 

transformation program in this data sample. The p-value was greater than 5% (p = 8.45%) and was 

not significant. 

These findings are supported in the MacVaugh & Schiavone (2010) literature review and 

historical case analysis of diffusion of innovation papers to show the limitations with the diffusion 

approach of innovation adoption. The authors recommended that “conditions” and “domain” play a 

more important role in innovation adoption than the diffusion approach. If the switching costs are 

high (“conditions”) and the individual, community, or market/industry (“domain”) allows avoiding 

the innovation, the diffusion approach to innovation adoption is not effective. An example of this was 

noticed in the Digital Transformation Program (N = 425) where certain users were provided an 

exception to continue using the old user interface (UI) as they perceived that using the new UI would 

slow them down since they were not still experts at using it. This was in spite of the knowledge that 

the old UI would not exist after some time and they would eventually have to switch to the new UI. 

Since these functions already had severe throughput challenges (“conditions”) and could potentially 

cause firm-level disruption (“domain”), the firm leadership had to make an exception as they were 
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fearful of the impact on operations (“conditions”). This highlights how the conditions and domain can 

be limiting factors for the diffusion approach to be successful.   

Similarly, the Lyytinen & Damsgaard (2001) study on Electronic Data Interchange (EDI) 

adoption by firms also supports our finding that a diffusion approach may not be effective in adoption 

of all complex and networked IT solutions since some innovations are “learning intensive” and are 

dependent on the “network.” This was clear in the Digital Collaboration Hub (N = 150) where a large 

group of users avoided training programs to familiarize themselves with the Surface Hub technology, 

saying that they were busy and short of time already or felt overwhelmed that they had to now learn 

another new technology (“learning intensive”). Since this innovation was optional and not mandatory 

for use as part of their jobs (“network”), the firm did not enforce a strict policy that all users had to 

attend training. The users could still do their jobs without using this innovation. Hence the diffusion 

approach in this case did not succeed as the “learning intensiveness” and “network” factors limited 

the diffusion approach from being successful. 

H4:  Innovation timing is positively associated with the success of a digital transformation 

program. 

Digital Transformation Program (N = 425). I reject the null hypothesis. Innovation timing had a 

significant positive influence on the degree of success of the digital transformation program in this 

dataset. For a unit increase in innovation timing, the degree of success of digital transformation went 

up by 44%. The VIF of 2.16 is less than 4.0, hence there is no problems of multicollinearity (Harris et 

al., 2010). 

Digital Collaboration Hub Program (N = 150). I reject the null hypothesis. Innovation timing 

had a significant positive influence on the degree of success of the digital transformation program in 

this data sample. For a unit increase in innovation timing, the degree of success of digital 

transformation went up by 28%. The VIF of 1.75 is less than 4.0, hence there is no problems of 

multicollinearity (Harris et al., 2010). 
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Integrated Business Planning Program (N = 53.: I reject the null hypothesis. Innovation timing 

had a significant positive influence on the degree of success of the digital transformation program in 

this data sample. For a unit increase in innovation timing, the degree of success of digital 

transformation went up by 47%. The VIF of 2.13 is less than 4.0, hence there is no problems of 

multicollinearity (Harris et al., 2010). The standardized β of 0.43 is stronger than opinion leader 0.31, 

showing that timing was the strongest predictor of outcome.  

These findings are consistent with prior studies of innovation adoption where the optimal timing 

to introduce an innovation was very important for its successful adoption (Gilbert & Birnbaum-More, 

1996; Mann, 2005; Kuckertz & Wagner, 2010; Kim, 2011; Low et al., 2011; Mezghani, 2014; 

Hossain, 2001; Premkumar et al., 1997; Crum et al., 1996; Patterson et al., 2003). In both studies, the 

digital transformation program (N = 425) and the digital collaboration hub program (N = 150), 

respondents felt that the timing of this program was right, competitors of the firm were also moving 

towards this type of innovation, and the timing of this innovation had a positive effect on the degree 

of success.  

H5:  Duration has a negative effect on digital transformation success with longer programs 

being less successful.   

Digital Transformation Program (N = 425). I fail to reject the null hypothesis. Duration did not 

have a significant negative influence on the degree of success in this dataset at the 5% level; but at the 

10% level (or 90% confidence interval), it was significant and, as hypothesized, had a negative effect 

on degree of success. For a unit increase in duration, the degree of success decreased by 7%.  The 

VIF of 1.16 is less than 4.0, hence there is no problems of multicollinearity (Harris et al., 2010). 

Digital Collaboration Hub Program (N = 150). I fail to reject the null hypothesis. Duration did 

not have a significant negative influence on the degree of success in this dataset because this program 

was about one year in comparison to the digital transformation program (N = 425) that was three 

years. Duration did not have a significant negative influence on the degree of success in this dataset at 

the 5% level; but at the 10% level (or 90% confidence interval), it was significant and, as 
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hypothesized, had a negative effect on degree of success. For a unit increase in duration, the degree of 

success decreased by 10%. The VIF of 1.05 is less than 4.0, hence there is no problems of 

multicollinearity (Harris et al., 2010). 

Integrated Business Planning Program (N = 53. I fail to reject the null hypothesis. Duration did 

not have a significant negative influence on the degree of success in this dataset because this program 

was about a year and one-half in comparison to the digital transformation program (N = 425) that was 

three years. 

These findings are consistent with prior studies where innovations with longer durations were 

adversely impacted by factors that were outside the control of the program, such as economy and 

firm-level factors (Archibugi et al., 2013b; Filippetti & Archibugi, 2011; Kuznetsov & Simachev, 

2010; Paunov, 2012) and fatigue at the team-level resulting in burnout and turnover (Fry & Cohen, 

2009; Ng & Feldman, 2008; Lamberg, 2004; Worrall & Cooper, 1999; Feddock et al., 2007; Estryn-

Béhar  et al., 2007; Gilbert-Ouimet et al., 2018; Kuroda & Yamamoto, 2016; Lo et al., 2016).  
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CHAPTER V 

 

 

MACHINE LEARNING 

 

Introduction to Machine Learning  

Machine learning (ML) is a part of artificial intelligence that uses statistical theories to build 

mathematical models to enable accurate predictions or inferences from a dataset. ML is also often 

referred to as “statistical learning,” “computational learning,” and “pattern recognition” 

(Alexander, 2013). Application of ML methods to large databases is called “data mining.” The 

aim of data mining can be prediction of future events, knowledge discovery of patterns, and 

trends and outlier detection for fraud and churning (Alpaydin, 2009). 

There are primarily three major ML types: supervised learning, unsupervised learning, and 

reinforcement learning. Supervised learning is when a model is trained on an existing dataset 

(often referred to as a training dataset) to learn how independent variables influence a certain 

outcome (dependent variable). Once the model is trained, it can use these learnings to predict 

outcomes in future datasets. Applications of supervised learning methods are in predicting 

customer churn, sentiment analysis, etc. Commonly used supervised learning techniques are 

Regression (linear or polynomial), Decision Tree, Random Forest, and Classification methods 

(KNN, Trees, Logistic Regression, Naïve Bayes, and Support Vector Machines).  

Unsupervised learning is when a model is provided a dataset and it finds patterns and 

relationships to create clusters and associations. Commonly used unsupervised learning methods 

for clustering are SVD, PCA and K-means and for association are Apriori and FP-Growth. 
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Common applications of the unsupervised ML method are in shopping basket recommendations 

(customer who bought X also bought Y and Z in e-commerce transactions). Reinforcement learning is 

when a person actively interacts with the model and the model learns from these interactions and 

predicts future decisions. A common application of this method is in Netflix movie recommendations 

and social media feeds sent to users based on prior clicks, online activity, and user likes.  

Complementary Role of Machine Learning 

ML techniques can be used to complement theoretical, explanatory research studies by 

developing new statistical procedures that provide improved performance measures or hypothesis 

testing with lower type-1 error (rejection of a true null hypothesis) and higher power and resampling 

procedures that lead to better estimations (Alpaydin, 2011). Also, under conditions of moderate 

nonlinearity, regression has shown sub-par performance, whereas Decision Tree-type ML techniques 

provide substantially better bias reduction and more consistent 95% confidence interval coverage 

(Lee, Lessler, & Stuart, 2010).  

Feature Importance 

Feature (variable) importance is a post-prediction model development effort where we build a 

prediction model for one or more of the model types; and, using the prediction model and “leave-one-

out” method, we assess the relative contributions of the independent variables. The main purpose of 

performing “feature importance” is to measure a variable’s importance by calculating the increase of 

the model’s prediction error after permuting the variable. A variable is important if permuting its 

values increases the model error, because the model relied on the variable for its prediction. A 

variable is “unimportant” if permuting its value does not result in a change of model error because the 

model ignored the variable during prediction (Breiman, 2001; Fisher, Rudin, & Dominici, 2018).  

Leave-one-out is a cross-validation technique. Cross-validation is a technique used to protect 

against overfitting in a predictive model when datasets are small. In cross-validation, the data is 

partitioned into a fixed number of folds (K), the analysis is run on each fold, and then the average 

overall error is estimated. Leave-one-out cross-validation (LOOCV) is a K-fold cross-validation 
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where K = N (the number of data points in the set). The function approximator in this case is trained 

on all the data N separate times except for one point and a prediction is made for that point. The 

primary purpose of cross-validation is to check how well a model generalizes to new data. The 

LOOCV estimates are obtained by averaging the N scores obtained for the different repetitions.  

Figure 4: Leave-One-Out Cross-Validation (LOOCV) 

LOOCV Decision Tree Technique 

In this section, I use a LOOCV approach in combination with Decision Tree to measure feature 

importance and check how well my model generalizes to new data. A Decision Tree algorithm is a 

ML technique where a top-down tree is built starting with a root node and partitioning data into 

subsets that contain nodes with similar values. There are three major reasons why I selected a 

Decision Tree algorithm over others. 1) Decision Trees implicitly perform variable screening and 

feature selection. As I input the data into the Decision Tree, the top few nodes on which the tree is 

split are essentially the most important variables, and this feature selection is done automatically 

(Sugumaran, Muralidharan, & Ramachandran, 2007). 2) Other ML methods such as Naïve Bayes, 

Maximum Entropy Classification, and Support Vector Machines have shown to perform poorly on 

sentiment classification (Pang, Lee, & Vaithyanathan, 2002). 3) Decision Trees are not black box 

algorithms like Support Vector Machines, Neural Networks, etc. and are easy to visualize and 

explain.  

I used the KNIME 3.5.3 Advanced Analytics platform to perform ML. I coded my outcome 

variable as S (success) when Likert value was 1 (extremely successful), 2 (moderately successful), 
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and 3 (slightly successful).  I coded it as F (failure) when Likert values were 4 (neither successful nor 

unsuccessful), 5 (slightly unsuccessful), 6 (moderately unsuccessful) and 7 (extremely unsuccessful).  

Digital Transformation Program (N = 425). As shown in Figure 5, I perform cross-validation 

iterations. Partitions were then sampled randomly from the input table. The Training data had 383 

records, and Testing data had 42 records. I then passed the Training data into a Decision Tree Learner 

where I used the Gini index, which is a binary decision tree with each node having only two children. 

As shown in Figure 6, the Decision Tree ML model proposed that timing was the most important 

variable, followed by innovation attributes and opinion leadership. Table 9 compares the outputs 

from the MR and ML models. While the standardized β values of innovation attributes (0.38) and 

timing (0.36) are fairly close and the p-value is <.0001, ML identified timing as the most important 

variable in this dataset, showing the superior accuracy of ML over MR in identifying variable 

importance. 

 

 

Figure 5: LOOCV Process for Feature Importance 
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Figure 6: Importance of Variables in Digital Transformation Program 

Table 9: MR Versus ML for Variable Importance in Digital Transformation Program 

Digital Transformation 

Program (N = 425) 

Multiple Regression 

(MR) 

Machine 

Learning (ML) 

 p-value Std. β 

Variable 

Importance 

Variable 

Importance 

Innovation Attributes <.0001 0.38 1 2 

Timing <.0001 0.36 2 1 

Opinion Leadership 0.0019 0.12 3 3 

Duration 0.0557 -0.06 4 4 

Diffusion Approach 0.2265 0.05 5 5 

 

Digital Collaboration Hub (N = 150). As shown in Figure 5, I perform cross-validation iterations. 

Partitions were then sampled randomly from the input table. The Training data had 135 records and 

Testing data had 15 records. I then passed the Training data into a Decision Tree Learner where I 

used the Gini index, which is a binary Decision Tree with each node having only two children. As 

shown in Figure 7, the Decision Tree ML model proposed that innovation attribute was the most 

important variable, followed by timing and diffusion approach. Table 10 compares the outputs from 

MR and ML models. Both models had similar results for variable importance in this dataset.  
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Figure 7: Importance of Variables in Digital Collaboration Hub 

Table 10: MR Versus ML for Variable Importance in Digital Collaboration Hub 

Digital Collaboration 

Hub (N = 150) 

Multiple Regression 

(MR) 

Machine 

Learning (ML) 

 p-value Std. β 

Variable 

Importance 

Variable 

Importance 

Innovation attributes <.0001 0.35 1 1 

Timing <.0048 0.24 2 2 

Diffusion approach 0.0900 0.17 3 3 

Opinion leadership 0.4854 -0.06 4 4 

Duration 0.0900 -0.10 5 5 

 

Integrated Business Planning (N = 53). As shown in Figure 8, I perform cross-validation 

iterations. Partitions were then sampled randomly from the input table. The Training data had 48 

records and Testing data had 5 records. I then passed the Training data into a Decision Tree Learner 

where I used the Gini index, which is a binary decision tree with each node having only two children. 

As shown in Figure 8, the Decision Tree ML model proposed that opinion leadership was the most 

important variable, followed by timing and innovation attributes in this dataset. Table 11 compares 
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the outputs from MR and ML models. ML again was more previse in identifying the most important 

variable in comparison to the MR model. 

 

 

Figure 8: Importance of Variables in Integrated Business Planning  

Table 11: MR Versus ML for Variable Importance in Integrated Business Planning 

Integrated Business 

Planning ( N = 53) 

Multiple Regression 

(MR) 

Machine 

Learning (ML) 

 p-value Std. β 

Variable 

Importance 

Variable 

Importance 

Timing 0.004 0.43 1 2 

Opinion leadership 0.025 0.31 2 1 

Innovation attributes 0.607 0.07 3 3 

Duration 0.143 -0.15 4 4 

Diffusion approach 0.845 -0.03 5 5 

 

Summary 

In summary, ML techniques such as Decision Tree fared better than classical MR techniques to 

identify variable importance in the three studies that I performed. This is consistent with the Tso & 

Yau (2007) study where the authors compared regression analysis and Decision Tree and concluded 

that the Decision Tree ML technique was superior to regression in identifying variable importance. 
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Other studies have also employed the Decision Tree ML technique for measuring variable 

importance, thereby supporting my approach and findings (de Oña, de Oña, & Calvo, 2012; Yu, 

Haghighat, Fung, & Yoshino,  2010; D’Heygere, Goethals, & De Pauw, 2003).  

 

 



53 

CHAPTER VI 

 

 

CONCLUSION 

 

Research Summary 

Digital transformation is one of today’s keys to firm success. Digital leaders embracing the 

potential of cutting edge technologies such as automation, artificial intelligence, big data, etc. to 

increase efficiency, reduce risk, and improve customer experience will outperform their peers in 

every industry (Bock et al., 2017; Westerman et al., 2012). To become digital leaders, firms will 

have to successfully execute the integration of digital and physical components and transform 

their business models (Berman, 2012).  

However, 84% of companies fail at digital transformation with significant disruption to their 

business operations and unwillingness to innovate in the future (Rogers, 2016). This year alone, 

firms are expected to invest $1.3 trillion in some form of digital transformations. But more than 

70% of them will not meet their objectives, resulting in $900 billion of scarce resources being 

squandered away at a shocking scale (Zobell, 2018).  

Based on the Engaged Scholarship approach (Van de Ven, 2007) and the Diffusion of 

Innovation Theory (Rogers, 1963), I investigated the impact of the study variables in three 

separate digital transformation programs for a multinational firm to find out whether my findings 

are reliable across multiple programs and whether the results are generalizable. The overall model 

in all three studies were significant at the 5% level (p < 0.0001), and the model fit statistics 
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were good, showing that the model fit the data well and there were at least one or more variables that 

significantly influenced the digital transformation outcome.  

Research Contributions 

While current research has been focused on firm culture, management, and vision, it has not 

provided actionable intelligence to practitioners in the field performing digital transformation on how 

to improve success in their programs. This has resulted in a high failure rate and disruption of firm 

performance. This research fills that gap in knowledge by investigating new variables on the outcome 

of a digital transformation: a) innovation attributes, b) opinion leadership, c) diffusion approach, 

d) timing, and e) duration.  

 Research Contribution# 1: In all three studies, timing of the digital transformation was one of 

the strongest predictors of digital transformation success, irrespective of the size of the 

program. The key research contribution here is that firms embarking on a digital 

transformation should pick “optimal timing” when they should pursue a certain digital 

capability by looking closely to what competitors are doing and the relevance to the industry. 

Innovation timing decision is most likely the strongest predictor of the success of a digital 

transformation program. 

 Research Contribution# 2: Attributes of the key technology used in the digital transformation 

was the next strongest influencer of digital transformation outcome. The key research 

contribution here is that for a digital transformation to be successfully adopted, it is important 

that the key technology: a) has relative advantage over its predecessor, b) is simple to use and 

does not require intensive learning, c) is compatible with the users’ current habits, d) the 

benefits of using it are easily observable to adopters, and e) it can be used on a trial basis 

before committing to it permanently. It is important that the managers who are responsible for 

selection of the key technology keep these specific factors in mind as they review the various 

technology options in front of them and select a key technology to be used for the digital 

transformation.  
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 Research Contribution# 3: Opinion leaders had a significant positive effect on digital 

transformation outcomes where they were utilized. The key research contribution here is that 

as firms launch their digital transformation programs, it is very important to identify key 

opinion leaders across various functions within the firm; invest in the training and 

development of these opinion leaders; and provide them the necessary resources, forums, and 

opportunities to influence their followers.  

 Research Contribution# 4: Surprisingly, diffusion approach did not significantly influence 

digital transformation program outcomes in all the three studies. The key research 

contribution here is that a diffusion approach of attracting innovators and early adopters (the 

first 16%) by stimulating “scarcity” in communications and later switching communication 

style to “social proof” to attract the early majority and late majority (next 68%) may have 

worked in the context of other innovation adoptions but has little to no significant influence 

in the context of digital transformations. Managers responsible for digital transformation 

should continue with existing change management best practices.  

 Research Contribution# 5: Interestingly, duration did not significantly influence digital 

transformation outcome in all three studies at the 5% level; but at the 10% level, it had a 

negative effect on the outcome of the digital transformation as hypothesized. The key 

research contribution here is that as firms launch the program, they should keep in mind that 

they should not to make these programs so long that other factors outside the control of the 

program (e.g., economic, firm-level, etc.) start to adversely impact the outcome. Longer 

programs also adversely impact the team member fatigue and result in burnout and turnover.  

 Research Contribution# 6: While regression techniques avoid overfitting the data, they 

perform poorly in capturing complex patterns or moderately nonlinear relationships. This can 

be overcome by a LOOCV type of ML technique that can learn complex patterns and is fairly 

robust to outliers. In the context of identifying feature importance, it is clear that LOOCV ML 
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techniques fared better than regression techniques and hence is valuable in accurately 

identifying feature importance.  

To summarize, to the best of my knowledge this is the first time that innovation attributes, 

opinion leaders, diffusion approach, timing, and duration have been studied in the context of 

improving success in digital transformations intended to improve efficiency. Prior studies have not 

empirically tested these variables in multiple studies holding firm-level factors, such as culture, 

management and vision, constant and showing reliability and validity of the results across multiple 

digital transformation programs of different sizes.   

In addition to contributing to the Diffusion of Innovation theory by applying it in the context of 

digital transformations, this research has also developed validated scales for innovation attributes, 

opinion leaders, diffusion approach, timing, and duration in the context of digital transformations 

with good item reliability (Cronbach’s alpha > 0.6) across multiple studies. Future researchers can use 

these scales for their research in digital transformations. In addition to contributing to theory, this 

research also provides practitioners with actionable intelligence that they can apply in their current 

digital transformations to reduce the high failure rate.  

Research Limitations 

As with any empirical study, this research has certain limitations. The scales used to measure the 

variables were in the context of innovation adoption and had to be customized for digital 

transformations. While we achieved recommended sample size required for making statistical 

inferences, we were limited in one of our studies (N = 425) with a low response rate of 12%. While 

they achieved the recommended sample size, Two of our studies (N = 150 and N = 53) had relatively 

smaller total numbers of participants. Survey research by design has some common method bias, and 

this research is no different.  

Future Directions 

This research of factors influencing digital transformation success was based on the Diffusion of 

Innovation theory (Rogers, 1963) and focused on how innovations are adopted by users. Future 
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research can explore other theories that are specific to adoption of information systems (IS) such as 

Technology Acceptance Model (TAM), which is an IS theory that models how users come to accept 

and use technology (Davis, 1989). It would be interesting to conduct this research in another firm to 

see whether the results can be replicated and also in studies with larger sample sizes.  
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