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Abstract: Winding models that describe the residual stresses due to winding single layer 

webs at the end of roll-to-roll manufacturing machines began development over 50 years 

ago. These models have been used to reduce or avoid defects that are due to winding. 

Many products that are wound can have considerable thickness. Laminates formed from 

webs are joined to form yet thicker composite webs where the properties of each layer 

provide unique functionality. The winding models developed previously have focused on 

determining membrane stresses in the tangential and axial directions and the radial 

pressure as a function of radius, web material properties and winder operating conditions. 

These models have considered the web to be a thin homogenous layer. While bending 

strains result from any web being wound at a radius of curvature into a roll, these bending 

stains are largest for the thicker homogeneous webs and laminates. Many webs are 

viscoelastic at some level. Creep will result from the bending strains. When the web 

material is unwound and cut into discrete samples some residual curvature will remain. 

This curvature, called curl, is the inability for the web to lie flat at no tension. Curl is an 

undesirable web defect that causes loss of productivity in a subsequent web process. The 

goal of this research is to develop tools by which process engineers can explore and 

mitigate curl in homogenous and laminated webs. Findings and conclusions: laminated 

winding models and predictive models for curl based upon viscoelastic material 

characterization were developed. Tests were performed to confirm the accuracy of these 

models. 
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CHAPTER I 
 

 

INTRODUCTION 

  

Roll-to-roll (R2R) manufacturing processes constitute a large sector of all manufacturing 

conducted today. The materials used in these processes are very long, quite thin, and susceptible to 

damage. R2R manufacturing involves additive processing that is rate dependent. One or more base 

webs must be formed. The web may be coated uniformly or selectively with one or more coatings 

depending on product needs. In some cases the web will be laminated to other webs that may have 

their unique coatings. Finally the web is cut to shape and becomes a product or part of a product. 

The web formation, the coating (s), laminating, etc. all occur in unique process machines due to the 

different rates at which these processes can occur. This requires the web to be stored and historically 

the only available means has been to wind the webs into rolls. 

  Winding is often detrimental to web and product quality. Roll defects are inevitable in the winding 

process, such as roll telescoping, roll blocking, buckling, bulk loss and so on, leading to inestimable 

economic loss. Residual stresses result from winding whose magnitude is dependent on the winding 

equipment, winder operating conditions such as web tension, and web and core material properties. 

Many web defects are caused by the magnitude of these residual stresses and prevention of the 

defects requires a means of determining the stresses. A winding model is a scientific prediction of 

the wound roll residual stresses based on mathematical calculation. 

These are not simple models which would allow the calculation of residual stresses using a closed 
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form expression. It will be shown that these models require accretive solutions which must account for 

material properties that are state dependent on the residual stresses being calculated. There are often 

several thousand web layers in a wound roll and computational means must be employed to solve the 

models which estimate the residual stresses. Hakiel [4] created a popular winding model, which was 

first in the literature to account for all aspects that were needed to accurately predict the residual 

stresses. Based on Hakiel’s concepts, many valuable winding models have been developed. Winding 

models have evolved and matured over time. These models can be placed into the following categories: 

  (1) 1D center winding models which predict radial and tangential residual stresses only as a function 

of radius are at the highest level of maturity. Axial stresses may also be calculated if plane strain 

conditions are assumed. A center winder applies torque to a core and the web layers wind up in spiral 

fashion on the core. These models assume the spiral geometry of the wound layers can be replaced with 

concentric layers. 

  (2) 2D center winding models which predict radial, tangential, axial and axisymmetric shear stresses 

as a function of radius and position across the roll width. These models allow residual stresses to be 

computed that consider variations in web thickness and length across the width. 

  (3) Viscoelastic 1D and 2D models which allow the study of the residual stresses through time as 

affected by the storage environment (temperature, moisture, etc.). 

  (4) Complex finite element models that account for the spiral nature of the layers in the wound roll. 

  The winding models discussed do not treat the bending strains in the web. The total strain in the web 

is a combination of the membrane stresses and strains these models do predict plus the bending strains 

due to winding a layer in at a unique radius into the wound roll. The total strains are important in the 

development of a model to predict web curl. Web curl is the inability of the web to lie in a planar state 

when unwinding or later when cut into a discrete product. This curl can be the result of creep due to the 

total strain through the thickness of homogenous, laminated and coated webs. 
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  Laminating and coating are common R2R manufacturing processes. Often products require multiple 

layers that are joined by some method. Whereas the coating of web materials is common, the coating 

would often be considered non-structural and not affect residual winding stresses. It is not uncommon 

to vapor deposit aluminum on polymer films to provide an enhanced oxygen barrier or conductivity. 

Thus some coatings may add structural reinforcement to the base web depending on the modulus and 

the thickness of the coating in comparison to the modulus and thickness of the base web. In some cases 

webs become joined with other webs in laminating processes and the joined webs are called laminates. 

Laminates are typically strain matched at the site of lamination. Laminated webs that are not strain 

matched will curl when cut into discrete products which is typically undesirable but some products may 

be designed to curl. 

  A familiar example is sheets of label products for use in ink jet or laser printers. The label is commonly 

a polymer film with one surface that has been prepared for printing and the other surface prepared to 

receive an adhesive layer. A second web is prepared which could be a kraft paper with one surface 

coated with a silicone agent. The two webs are laminated together with the silicone coating on the paper 

in contact with the adhesive on the polymer. The laminated web is now wound and stored. When needed 

this roll would then be unwound and transported through a die roller which cuts a needed label size by 

shearing through the polymer layer but not the paper backing. The laminate may be rewound at this 

point or it may go directly into a sheet cutting operation where the continuous web is now cut into 

discrete sheets. Those sheets are packaged and delivered to the consumer who feeds them intro their 

printer. The consumer expects the label surface to accept the toner or ink image desired and then to be 

able to peel the label off of the kraft paper and then affix it to the final surface where the discrete printed 

label is needed. A common failure witnessed by the consumer is curl. If the discrete sheets of labels are 

curled they will not feed and transport properly through the printer. The origin of the curl could have 

been in the wound roll laminated where the sheet of labels was stored for several days or months earlier. 
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  Since elastic and viscoelastic winding models for laminates are nonexistent, prediction and 

elimination of this curl is not possible. Generally speaking, a laminate, can be defined as a body made 

up of bonded layers of thin sheets. From the prospect of mechanics, the advantage of laminated 

materials is a combination of different components, leading to new or unique properties. In different 

processes of laminate production or laminate winding, curl is a major defect. Viscoelastic creep often 

occurs in rolls wound from laminated webs and the residual stresses from winding will have changed 

through time due to creep. Often prior to lamination, the strains in the two or more layers are matched 

or made equal. After lamination an unstressed coupon of laminate should have no curl about a CMD 

axis. If the Poisson ratios of the multiple layers are not equivalent it is possible that curl may arise about 

a CMD axis. 

  Curl is a web defect that pervades web process industries regardless if the web is homogenous or is a 

laminate. This research will focus on the development of predicting tools that can assess the level of 

curl in a web. Homogenous webs subjected to combined membrane and bending strains can curl if the 

web is viscoelastic. Elastic webs that are not strain matched will curl after lamination. Laminated 

viscoelastic webs that were strain matched at the laminator will curl when wound and stored.  

  One mission of this research is to predict curl in webs as a means to minimize curl and the associated 

economic loss. A second mission is to explore the residual stresses in laminate due to winding.
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CHAPTER II 
 

 

LITERATURE REVIEW 

 

2.1 General Developments of Winding Models 

2.1.1 Elastic Winding Models-1D 

  Winding behavior can be modeled and winding models have played an important role in the 

control of web quality. A good winding model is able to predict the stress in the wound roll quickly 

and correctly and is the key to the reduction of winding defects and economic losses in industry. 

  Early winding models dated back to the 1960s. Catlow&Walls [1] developed early 1D linear 

winding models for isotropic materials. Here the one dimension means that the stress values are 

only the function of the radial location in the roll. Analytical models were employed for the 

calculation of internal stresses of a wound roll. Winding processes were assumed to a series of 

concentric cylindrical layers and each layer was considered a thick pressure vessel, where the 

tension stress was similar to the tangential stress when the vessel is under internal pressure. Values 

of stresses could easily be summed due to the pressure increment effect.  

  The major limitation of these early winding models was the assumption of isotropic properties. 

In reality, most industrial materials are far from isotropic. Anisotropic commonly exists in webs  
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  In reality, most industrial materials are far from isotropic. Anisotropic commonly exists in webs 

due to the material complexity. Further, the radial modulus is not a constant value and is state 

dependent on stress or strain. Nonetheless these models did capture the accretive behavior of 

winding and showed the approximated stress conditions inside the rolls. 

Pfeiffer [2], in 1966, noted a logarithmic behavior between pressure and strain in a stack of web 

material in compression. Based on that relation Pfeiffer concluded that the radial modulus was state 

dependent and linearly related to the stack pressure: 

𝑃 = 𝐾1(𝑒
𝐾2𝜀𝑟 − 1) → 𝐸𝑟(𝑃) =

𝑑𝑃

𝑑𝜀𝑟
= 𝐾2(𝑃 + 𝐾1) (2.1) 

where Er is the radial Young’s modulus, P is the pressure applied on the stack and 𝜀𝑟 is the strain 

that resulted in the stack. K1 and K2 are parameters that are fitted to the pressure versus strain data 

recorded form a compression test on the stack. Pfeiffer was the first to demonstrate that all wound 

rolls are anisotropic and that their radial modulus was linearly state dependent on pressure or 

nonlinearly dependent on strain (2.1). 

Yagoda [3] produced a non-dimensional 1D winding model using a hypergeometric series. The 

model predicts web tension as a polynomial function of the radius and for the effect of the core of 

the web wound upon.  

Hakiel’s nonlinear model for wound roll [4] is a significant development in the history of 

winding models. This model allows for anisotropic property and a state dependent radial modulus. 

Hakiel approximated the radial modulus using a polynomial function: 

𝐸𝑟(𝑃) = 𝐶1 + 𝐶2𝑃 + 𝐶3𝑃
2 (2.2) 

  C1, C2, and C3 coefficients are fitted to vs strain data in a stack compression test. The slope of the 

pressure over the corresponding strain change would be used to establish discrete values of the 
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radial modulus at varied pressure levels. The coefficients C1, C2 and C3 were varied until the discrete 

modulus values were best fit at all pressure levels. It is more convenient to use expression (2.1) in 

industry as K1 is typically quite small and the dimensionless value of K2 is used to compare the 

state dependent radial modulus of various web materials. Hakiel combined the equilibrium, 

compatibility and orthotropic constitutive relations in polar coordinates to form the following 

second order differential equation: 

𝑟2
𝑑2𝛿𝜎𝑟
𝑑𝑟2

+ 3𝑟
𝑑𝛿𝜎𝑟
𝑑𝑟

− (
𝐸𝜃
𝐸𝑟
− 1) 𝛿𝜎𝑟 = 0 (2.3) 

where, 𝜎𝑟 is the radial stress, 𝐸𝜃 and 𝐸𝑟 are the tangential and radial modulus, respectively. The 

expression is written in terms of incremental radial stresses (𝛿𝜎𝑟), each increment representing the 

addition of the most recent layer. Radial stresses and incremental radial stresses vary with radius. 

After solving equation (2.3), the 𝛿𝜎𝑟  stress increments in each layer are added to the total 𝜎𝑟 stress 

that was already sustained by that layer. The radial modulus is then updated as a function of the 

total radial stress in each layer. 

  In order to solve the second order differential equation, two boundary conditions are needed. The 

outer boundary condition assumes that the tensile stress in the outer layer depends only on the 

winding tension and the radius of the newest outer layer is known. Using an equilibrium expression 

similar to the hoop stress equation for a thin wall pressure vessel, the pressure beneath the outer lap 

can be determined: 

δσr|r=s = −
Tw|r=s
s

 (2.4) 

where, Tw is the winding tension in units of load per unit width and s is the radius of the most recent 

layer added to the outside of the winding roll. The remaining boundary condition is derived from 

the imposed displacement compatibility between the outside of the core and the inside of the first 
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layer. The two surfaces should coincide, because the core and the layer cannot separate from or 

intrude into each other. This is expressed as a derivative boundary condition at the outer surface of 

the core (r=rc): 

[𝑑 (𝛿𝜎𝑟) 𝑑𝑟]|(𝑟=𝑟𝑐) = [(𝐸𝜃 𝐸𝑐 − 1 + 𝜐𝑟𝜃)]𝛿𝜎𝑟/𝑟𝑐|𝑟=𝑟𝑐⁄⁄  (2.5) 

  Where Ec is the core stiffness parameter which is a measure of how the surface of the core deforms 

under pressure. The core stiffness is defined as 𝐸𝑐 =
𝑃

𝜀𝜃
, where P is the external pressure. 

  Hakiel used the finite difference method to numerically approximate the solution of expression 

(2.3). The differential equation has non constant coefficients due to the radial modulus being unique 

within every layer and numerical solution is required. The process of obtaining the solution is 

similar to the process of adding a new layer. When a layer is added, the incremental stresses are 

computed in each layer and then summed with the previous stresses to obtain the current values. 

The procedure repeats until the final layer is added. 

  There are limitations to Hakiel’s method. First, the roll is assumed to be a collection of concentric 

hoops of web and not a spiral. This assumption made the problem solvable. Kandadai et al. [5] and 

Ren et al. [6] used Abaqus to fully simulate the spiral nature of the web. By modeling the spiral 

form, any slippage between layers will be accompanied by changes in the residual winding stresses. 

If slippage occurs, results from Hakiel’s model cannot predict if that slippage will continue or cease. 

Normal contact forces between layers increase or decrease which affects future slippage. Another 

important limitation is that Hakiel’s model did not consider the tension loss effect, described in [2] 

and proposed by Good model [7], especially when dealing with soft materials (low K2 value). 

Good’s results indicate that the pressures within a wound roll of soft material can be lower than the 

values predicted by Hakiel’s model. Good et al. developed a new outer boundary condition for use 

with equation (2.3): 
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𝛿𝜎𝑟|r=s = −(𝑇𝑤 +
𝑢

𝑠
𝐸𝜃) ℎ/𝑠 (2.6) 

where u is the displacement in the radial position of the current outermost layer. The value of u is 

negative as the addition of a new outer layer subject to tension Tw results in inward deformation. 

Displacement is assumed axisymmetric and effectively decreases the tension in the outer layer 

which in turn results in lower incremental and total pressures in the wound roll. Hakiel’s model did 

not calculate layer deformation. To implement the new boundary condition (2.6) into Hakiel’s 

model required an estimate of the radial deformation u of the outer layer. Furthermore, a prediction 

the radial deformation of a layer that is just being added to the wound roll was required. Good was 

successful in incorporating expression (2.6) into Hakiel’s model and validating the improved model 

through comparison with tested in-roll pressures. 

  These 1D winding models provide a valuable understanding of the state of stress within the wound 

roll, but they all incorporate the assumptions of small linear deformations and strain. These 

assumptions can be unrealistic for tissue and nonwoven webs. These webs have low in-plane and 

radial modulus, and small deformations should not be assumed. Mollamahmutoulu and Good [8] 

developed a 1D winding model based on large deformation theory using the finite element method. 

The results of this new model agree very well with models that account for tension loss. 

Summary: 

1D elastic models which predict stresses only as a function of radius are at the highest level of 

maturity. More and more situations have been considered, such as geometrical nonlinearly, material 

relaxation effects, and so on. These models have become an effective instrument to improve 

industry production, mainly through the reduction of winding defects. However, no 1D models for 

laminate winding have been developed, even for the simplest two-layer laminate. 
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2.1.2 Viscoelastic Winding Models-1D 

Viscoelastic behavior is common in web materials, including laminates. The time-dependent 

stress-strain behavior adds complexity that is not addressed by all winding models.  

Tramposch, in 1965 [9], created the first viscoelastic winding model. He was concerned with 

stress relaxation in rolls of magnetic tape used for data storage. The residual stresses in a roll due 

to winding will decay as a result of viscoelastic behavior. While some relaxation may occur during 

winding, the majority occurs while the wound roll is in storage. The time required to wind a roll is 

insignificant compared to the time rolls spend in storage. Rolls are often wound in periods of a few 

minutes or less whereas they can remain in storage for weeks or months at elevated temperatures 

and uncontrolled humidity. In this early model, the constitutive relationship was established using 

a four-parameter model consisting of 2 springs and 2 dashpots (schematic of 4-paramter material 

in pure shear) . He concluded that the wound roll of homogenous isotropic material will approach 

stress-free conditions when given enough time.  

Later, Tramposch developed a second model that allowed anisotropic relaxation [10]. 

Orthotropic behavior is a very common web anisotropy. Unequal thermal expansion of hub and 

tape body during environmental temperature changes was analyzed. If deformations are large, 

errors can become unacceptable which can be a disadvantage in a model based on linear viscoelastic 

theory 

Lin and Westmann [11], in 1989, developed a viscoelastic winding analysis to model the impact 

of the histories of winding, winding-pause, and winding-pause-unwinding. The winding process is 

viewed as the placement of a sequence of pretensioned layers starting with the hub. The boundary 

conditions are identical to the ones in Hakiel’s 1D model. The expressions for the stress and 

displacement are as follows: 
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𝜎𝑟 = 𝜎0∫
𝜓(𝑡 − 𝜏)

(1 + 𝜐)
(
1

𝑅2
−

1

𝑅𝑖
2)

𝑅𝑜

𝑅𝑖

𝑑𝑅 − 𝜎0𝑙𝑛
𝑅𝑜
𝑅𝑖

 (2.7) 

𝜎𝜃 = 𝜎0 + 𝜎0∫
𝜓(𝑡 − 𝜏)

(1 + 𝜐)
(
1

𝑅2
−

1

𝑅𝑖
2)

𝑅0

𝑟

𝑑𝑅 − 𝜎0𝑙𝑛
𝑅0
𝑅𝑖

 (2.8) 

𝑢 =
𝜎𝑟(1)

𝐸
+ ∫ ∫ {−(1 − 𝜐)𝐽(𝑡 − 𝜏)

𝜎0
𝑅
+∫ [

(1 − 𝜐)

(1 + 𝜐)𝑅2
−
1

𝜉2
]
𝜓(𝜂)𝑑𝐽(𝑡 − 𝜏 − 𝜂)

𝑑(𝑡 − 𝜏 − 𝜂)
𝑑𝜂

𝑡−𝜏

0

}
𝑅𝑜

𝜉

𝑟

1

𝑑𝑅𝑑𝜉 (2.9) 

where 𝜎0 is the initial tension in the tape considered as a constant value, 𝑅𝑖 and 𝑅𝑜 are the inner 

radius and outer radius, E and υ are the Young’s modulus and Poisson’s ratio, and 𝜓(𝑡 − 𝜏) is the 

solution of the Volterra integral equation of the second kind. 

The developed relationship between stress and time accounted the analysis of a winding-pause. 

Different winding speeds can contribute to undesirable creep and relaxation in linear and isotropic 

materials. However, this model incorporated an assumption that the stress in the outer lap remained 

constant which would appear inconsistent in a viscoelastic development where the stresses in all 

layers could be affected by creep. 

  Qualls and Good developed a realistic orthotropic viscoelastic model of center wound rolls [12]. 

The model incorporates state-dependent radial modulus of the orthotropic material. The 

equilibrium equations in cylindrical coordinates are: 

Equilibrium: 𝑟
𝜕𝜎𝑟

𝜕𝑟
+ 𝜎𝑟 − 𝜎𝜃 = 0 (2.10) 

Compatibility: 𝑟
𝜕𝜀𝑟

𝜕𝑟
+ 𝜀𝑟 − 𝜀𝜃 = 0 (2.11) 

Strain-Displacement: 𝜀𝑟 =
𝜕𝑢

𝜕𝑟
  𝜀𝜃 =

𝑢

𝑟
 (2.12) 

Viscoelastic Constitution: 𝜀𝑟 = ∫ [𝐽𝑟
𝑡

0
(𝑡 − 𝑡′)

𝜕𝜎𝑟

𝜕𝑡′
+ 𝐽𝑟𝜃(𝑡 − 𝑡

′)
𝜕𝜎𝜃

𝜕𝑡′
]𝑑𝑡′ (2.13) 

𝜀𝜃 = ∫ [𝐽𝜃

𝑡

0

(𝑡 − 𝑡′)
𝜕𝜎𝜃
𝜕𝑡′

+ 𝐽𝜃𝑟(𝑡 − 𝑡
′)
𝜕𝜎𝑟
𝜕𝑡′

]𝑑𝑡′ (2.14) 



12 
 

where 𝐽𝑟(𝑡) is the radial creep function and 𝐽𝜃(𝑡) is the circumferential creep function. The 𝐽𝑟𝜃(𝑡) 

creep function couples circumferential stress (𝜎𝜃)  and radial strain (𝜀𝑟) . Similarly the 𝐽𝜃𝑟(𝑡) 

couples radial stress (𝜎𝑟) and circumferential strain (𝜀𝜃). Using the equilibrium equation (2.10), 

the viscoelastic constitutive expressions (2.13, 2.14) and the compatibility equation (2.11), a second 

order differential equation can be written which governs how the radial stress in wound roll can 

vary as a function of the creep functions and time: 

2
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   


 

(2.15) 

  Qualls and Good used central difference approximations to simplify the equation above. The outer 

boundary condition was derived from the assumption that the strain in the outer layer is constant 

and equal to the winding stress multiplied by circumferential creep function at time zero. Replacing 

the circumferential strain with its definition, the outer boundary condition can be expressed as: 

𝑇𝑤𝐽𝜃(0) = ∫ [𝐽𝜃(𝑡 − 𝑡
′)
𝜕𝜎𝜃
𝜕𝑡′

+ 𝐽𝜃𝑟(𝑡 − 𝑡
′)
𝜕𝜎𝜃
𝜕𝑡′

]
𝑡

0

 𝑑𝑡′ (2.16) 

where, 𝑇𝑤 is the winding tension. Considering the continuity of displacement at the core, the inner 

boundary condition can be showed to be: 

(𝜎𝑟)𝑗

𝐸𝑐
= (𝜀𝜃)𝑗 (2.17) 

where the j subscript refers to the current time. Finite difference approximations of the derivatives 

were taken in equations (2.15) and (2.16) resulting in sets of algebraic equations that were solved 

through time. The model successfully predicted the transient stress profiles of orthotropic 

viscoelastic materials with state-dependent radial modulus. Temperature changes directly influence 

the creep functions in polymeric materials. Qualls also formed and validated thermoviscoelastic 
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winding models. Winding tests were conducted at room temperature and stored at elevated 

temperatures on a low density polyethylene web to verify these models. 

Summary: 

Dealing with viscoelastic effects is not an easy problem in web winding. Selecting boundary 

conditions, simplification and approximation methods were necessary to reach the solution of the 

equations. Previous research of viscoelastic winding is mature and existing models are capable of 

analyzing the influence of creep in homogeneous webs stored in roll form. However, laminated 

webs have not been treated to date. 

2.1.3 Winding Defects 

  The mission of winding models is to predict the residual stresses in rolls that resulted from 

winding. Knowledge of these residual stresses is then used to predict and mitigate damage of the 

web in the roll. This damage has been identified qualitatively by categorizing the damage as various 

types of wound roll defects.  

  Roisum and Frye [13][14][15][16] and Smith [17] qualitatively described multiple web defects, 

mainly in paper rolls, as well as the in shape and causes. 

(1) Blocking 

  Blocking is a defect where layers in a roll stick together too aggressively. This is directly related 

to pressure. If the pressure between different layers is too high, the web can stick or bond to the 

next layer, and thus it is hard to unwind the web. The only practical method to determine the 

pressure that indicates blocking is to perform a compression test on a stack of web material at 

successively higher pressures until sticking between the layers is noted. It is likely the blocking 

pressure will be affected by temperature and moisture. Winding models can be used to develop 

winding tensions and nip loads that will prevent all internal pressures in the wound roll to be less 
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than the blocking pressure and thus prevent the defect. Good pointed out that thermal and 

viscoelastic winding models may be required to determine the maximum pressures that should be 

less than the blocking pressure. Laminates being wound will have dissimilar surfaces in contact as 

the inside of the current layer will interface with the outer surface of the layer beneath due to the 

spiral nature of the wound rolls. Laminate webs will block just as single layer webs, although the 

pressure at which blocking will occur will be unique for every single layer and laminate web. 

(2) Slippage 

  The occurrence of slippage might cause cinching, some types of telescoping, abrasion, and so on. 

The consequence of slippage is usually the loss of tension control. In many cases, a parameter 

named the torque carrying capacity can help predict slippage. Simply speaking, the torque carrying 

capacity is a critical value, which is the torque that can be applied to either a winding or unwinding 

roll just prior to slippage occurring.  

Good, in his book [18], shows based on equilibrium it would appear impossible to wind low 

coefficient of friction materials with a center winder (𝜇 < 1/2𝜋). He estimated the torque capacity 

with the following expression: 

𝑇𝑐𝑎𝑝 = 2𝜋𝜇𝑤/𝑤𝑃𝑟
2𝑊 (2.18) 

where, P is the radial pressure at the radius r and 𝜇𝑤/𝑤 is the friction coefficient between two layers 

of the web. It is assumed that either elastic or viscoelastic winding models have been used to 

determine how the internal pressure P varies with wound roll radius. Slippage in laminate rolls can 

be predicted with similar expressions providing the laminate winding models are developed. 
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(3) Curl 

  Curl is a common distortion shape in web materials, although most industry prefers the perfect 

flat web. Many reasons may induce the curl of web: (1) the core-set curl, especially for long storage 

time of web and (2) strain not matched for laminate web, etc. Our research mainly focuses on the 

viscoelastic curl for long storage time. 

  In an early patent, Schrader et al. [19] found that heat-tempered films have a core-set curling 

tendency, and they also pointed out some methods to reduce this. Some other patents also talked 

about reasons for the existence of core-set curl [20][21]. The reason to describe this effect is related 

to the rheological behavior of materials. 

  It is well known that, when a flat film is bent to some fixed curvature, held in this state for some 

time, and then released, the curvature is usually observed to drop instantaneously to some finite 

value and then decrease with time. J. Greener [22] developed a theoretical expression to predict the 

curl, and verified it experimentally.  

  The model predicts the values of bending recovery BR. The MD curl in winding process is similar 

to the bending recovery effect. BR is then defined to represent the recovery of curvature. 

𝐵𝑅 =
𝑅

𝜌
 (2.19) 

where R is the radius of the core or position in the roll where the web is wound , and ρ is the radius 

of curvature of the web. Many factors may influence the curl, including the radius of core or roll, 

the thickness of the web, viscoelastic properties of the web, the length of storage time, environment, 

winding stresses, etc. If the web is flat, BR should be 0 while BR is equal to 1 if the web is totally 

viscoelastic. 

  Euler bending theory dictates: 
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𝑀𝑏 =
𝐷

𝜌
 (2.20) 

where 𝑀𝑏 is the bending moment per unit width and D is the bending rigidity of the film also per 

unit width: 

𝐷 =
𝐸𝐼

(1 − 𝜐2)
=

𝐸ℎ3

12(1 − 𝜐2)
 (2.21) 

where E is the Young’s modulus, I is the moment of inertia of the film per unit width, h is the web 

thickness and υ is the Poisson’s ratio. The Euler bending strains ε are [23]: 

𝜀 =
𝑦

𝑅
 (2.22) 

where y is the coordinate normal to the web with an origin at the mid-plane. It is possible that 

frictional forces on the inner surface of the web could shift the origin of this y coordinate toward 

the inner surface of the web. If there were no slippage at all, the origin would be at the inner surface 

and all the bending strains would be elongating tensile strains. 

  Linear viscoelasticity can be applied here: 

𝜎(𝑡) = ∫ 𝐸(𝑡 − 𝜍)𝜀(𝜍)𝑑𝜉
𝑡

0

 (2.23) 

where 𝜎(𝑡) is the stress, E(t) is the relaxation modulus, t and 𝜍 are the real time and a dummy time, 

respectively. When a viscoelastic film is wound on a rigid cylinder subject to tension, the strain 

distribution remains the same, and the bending stresses will begin to relax: 

𝜎(𝑦, 𝑡) =
𝑦

𝑅

𝐸(𝑡)

(1 − 𝜐2)
 (2.24) 
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  The relaxation processes in the tensile and compressive zones are expected to be dissimilar, which 

complexities the problem [24]. Sometimes the compressive stresses relax substantially slower than 

tensile stresses. 𝐸𝑡𝑒𝑛 is the relaxation modulus in tension while 𝐸𝑐𝑜𝑚 is the relaxation modulus in 

compression. 

  As the web is removed form the core at 𝑡 = 𝑡𝑟, the curvature will change as follows: 

1

𝑅
−
1

𝜌
=
𝑀𝑏(𝑡𝑟)

𝐷
 (2.25) 

𝑀𝑏(𝑡𝑟) =
1

(1 − 𝜐2)
[∫ 𝐸𝑐𝑜𝑚(𝑡𝑟)

𝑦2

𝑅
𝑑𝑦

0

−𝐻
2⁄

+∫ 𝐸𝑡𝑒𝑛(𝑡𝑟)
𝑦2

𝑅
𝑑𝑦

𝐻
2⁄

0

 
(2.26) 

  This can be integrated to obtain the final results for the bending recovery: 

𝐵𝑅 =
𝑅

𝜌
= [1 −

𝐸𝑡𝑒𝑛(𝑡𝑟) + 𝐸𝑐𝑜𝑚(𝑡𝑟)

2𝐸0
] (2.27) 

  𝐸0 is the initial Young’s modulus, which means that the Young’s modulus when the time is 0. We 

used the uniaxial tensile test at a certain strain rate to represent this. The bending recovery can be 

related to time and viscoelastic properties rather than the tension or the radius of core. Measurement 

of the compressive relaxation is difficult, and thus we need to analyze two extreme situations first. 

  When the compressive stresses relax substantially slower than tensile stresses, and thus 

𝐸𝑐𝑜𝑚(𝑡𝑟) = 𝐸0. 

𝐵𝑅1 =
1

2
[1 −

𝐸𝑡𝑒𝑛(𝑡𝑟)

𝐸0
] (2.28) 

  When the relaxation of the stresses are independent of the sign of the stress, 𝐸𝑐𝑜𝑚(𝑡𝑟) = 𝐸𝑡𝑒𝑛(𝑡𝑟). 

𝐵𝑅2 = [1 −
𝐸𝑡𝑒𝑛(𝑡𝑟)

𝐸0
] (2.29) 
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  When the compressive stresses relax substantially slower than tensile stresses, it can be treated 

simply by a constant shift factor to slow the relaxation for the compressive state. 

 

The horizontal axis is BR as in equations  (2.28) and (2.29). Solid line is equation (2.28) while dashed line 

is equation (2.29). (*) CA, 21°C, (□) CA, 38°C, (×) PET, 21°C, (∘) PET, 38°C, (◊) MXD, 21°C, (∇) PP, 

21°C. 

Fig. 2.1 Instantaneous Recovery vs. Relaxed Modulus [22] 

  Equation (2.28) assumes that no relaxation happened for the compressive state. When 1-Eten(tr)/E0 

is small, all the data are quite close to equation (2.29). Fig. 2.1 shows that the dissimilar relaxation 

exists and thus it is necessary to consider this in our future curl analysis.  

  Later J. Greener developed long storage time analysis for the aging effect of polymer materials 

[25]. Aging effect may significantly influence core-set curl in polymeric film unless the storage 

time is relatively short compared with the time the web age. Kidane [26] presented a 2D curl model 

that was based on laminate theory in 2009.  

  In order to solve the curl problems, measurement of the curl is necessary [27]. Swanson developed 

a curl measurement instrument called the Kappa Gauge [28]. This new Curl Gauge is in the units 

of 1/m (the inverse of the radius of curvature). The Kappa Gauge has 6 different sample lengths. 
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The minimum length is 50mm, while the maximum value 250mm. It is used to quantify the curl 

radius, such as core set curl, lamination curl, thermally induced curl and so on. 

Summary 

  Curl defects are common in both single layer webs and laminate webs. The viscoelasticity of web 

materials induces the curl. It is necessary to further develop existing winding models to predict and 

mitigate the curl problem. 

2.2 Research Objectives 

  Substantial research has been conducted and reported regarding the winding of webs. Even though 

laminating and coating webs are common web processes, no instances were found regarding 

winding elastic or viscoelastic models for laminated or composite webs. All entries in the literature 

focus on orthotropic single layer homogenous webs. Yet laminated webs and coated webs are 

produced commonly in industry to satisfy product requirements. Furthermore many of the 

developed models ignore bending strains and stresses and assume constant stresses through the 

depth of a wound layer. In addition the treatment of MD curl due to storage of webs in wound rolls 

is not sufficient. While MD curl of laminates has received some attention, MD curl of wound 

laminates has received no treatment. The following research objectives are proposed to fill the gaps 

discovered in the literature and meet the needs of the industry: 

1. Development of an elastic 1D model for winding laminates or webs with substantial coatings: 

1D models are useful for narrow webs where potential thickness variations are small. These models 

should be developed to improve the quality of wound rolls of laminated and coated webs by 

optimizing the winder operating conditions and the resulting wound roll residual stresses. 

Knowledge of these stresses can be used to prevent defects due to blocking, slippage and buckling. 

The new models will be verified in the laboratory using methods used for early winding models. 
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2. To use any winding code requires an investment of time to measure the needed input properties. 

Creep functions from creep tests are used as the direct input in Winder 6.3. These tests require long 

time to get characterization for the time period of modeling. Such models will be more useful if we 

characterize the viscoelastic material in short time by building a master curve by conducting creep 

or stress relaxation tests at elevated temperatures. If this is possible this will reduce the time 

investment to determine the input. 

3. Control web winding defects: Curl appears in single layer or laminate webs and has received 

minimal attention in the literature. A curiosity regarding web rolls would be if the curl can be 

controlled or modified. The web would creep in long storage time. At the time the roll was unwound 

how has the curl been affected? Is there an optimal time to unwind the roll to minimize curl? The 

third research objective aims at finding answers to these questions. 

2.3 Organization 

  Chapter 3 will focus on the development a 1D orthotropic winding model. That model will be 

expanded in chapter 4 to encompass the winding of laminates. Lamination curl due to strain not 

match will also be discussed in this chapter. Chapter 5 examines how viscoelasticity is 

characterized for webs and chapter 6 talks how viscoelasticity contributes to curl. Chapter 7 distills 

the research into conclusions and discusses the future research. 
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CHAPTER III 
 

 

DEVELOPMENT OF 1D ELASTIC WINDING MODELS 

 

3.1 A 1-D Single Layer Orthotropic Model 

We will use the elastic constitutive equations and the assumption of plain strain to develop a pre-

stress model of an orthotropic single layer. The following development is very similar to that 

employed by Mollamahmutoglu and Good [37]. The elastic constitutive equations in cylindrical 

coordinates: 

[

𝜀𝑟
𝜀𝜃
𝜀𝑧
] =

[
 
 
 
 
 
 
1

𝐸𝑟
−
𝜈𝜃𝑟
𝐸𝜃

−
𝜈𝑧𝑟
𝐸𝑧

−
𝜈𝜃𝑟
𝐸𝜃

1

𝐸𝜃
−
𝜈𝑧𝜃
𝐸𝑧

−
𝜈𝑧𝑟
𝐸𝑧

−
𝜈𝑧𝜃
𝐸𝑧

1

𝐸𝑟 ]
 
 
 
 
 
 

[

𝜎𝑟
𝜎𝜃
𝜎𝑧
] (3.1) 

where, the subscript r, θ and z shows the directions of radial, tangential and axials directions, 

respectively. ε is the strain while σ is the stress. E and υ are Young’s modulus and Poisson ratios. 

In the lab setting, 𝜐𝜃𝑟 and 𝜐𝑧𝑟 are easier to measure than νrθ and νrz for webs Maxwell’s reciprocal 

theorem was used to eliminate those Poisson ratios that were more difficult to measure. 

  Generally speaking, the length of webs is much larger than the other two dimensions (width and 

thickness). Before entering a winder, the web in the upstream span has already contracted in the 

CMD direction due to the Poisson effect. If the plane strain assumption is valid the contracted 
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web width will remain the same as the web enters the winder. This means that the relative z or w 

deformation as the web transits from the entering span to the winder to outer surface of the winding 

roll is zero. 

𝜀𝑧 =
𝜕𝑤

𝜕𝑧
= 0 = −

𝑣𝑧𝑟
𝐸𝑧
𝜎𝑟 −

𝑣𝑧𝜃
𝐸𝑧

𝜎𝜃 +
𝜎𝑧
𝐸𝑧
 𝑜𝑟 𝜎𝑧 = 𝑣𝑧𝑟𝜎𝑟 + 𝑣𝑧𝜃𝜎𝜃 (3.2) 

Substituting (3.2) into (3.1) yields:  

{𝜀} =

[
 
 
 
 (

1

𝐸𝑟
−
𝜐𝑧𝑟
2

𝐸𝑧
) (−

𝜐𝜃𝑟
𝐸𝜃

−
𝜐𝑧𝑟𝜐𝑧𝜃
𝐸𝑧

)

(−
𝜐𝜃𝑟
𝐸𝜃

−
𝜐𝑧𝑟𝜐𝑧𝜃
𝐸𝑧

) (
1

𝐸𝜃
−
𝜐𝑧𝜃
2

𝐸𝑧
)

]
 
 
 
 

[
𝜎𝑟
𝜎𝜃
] = [𝐷]−1{𝜎} (3.3) 

On inversion, the D matrix can be obtained:  

[𝐷] =
𝐸𝜃
𝐷𝐸𝑁

𝐷22 = −𝐸𝜃(𝐸𝑧 − 𝐸𝑟𝜈𝑧𝑟
2 ) [

𝐸𝑟(𝐸𝜃𝜈𝑧𝜃
2 − 𝐸𝑧) −𝐸𝑟(𝐸𝜃𝜈𝑧𝑟𝜈𝑧𝜃 + 𝐸𝑧𝜈𝜃𝑟)

−𝐸𝑟(𝐸𝜃𝜈𝑧𝑟𝜈𝑧𝜃 + 𝐸𝑧𝜈𝜃𝑟) −𝐸𝜃(−𝐸𝑟𝜈𝑧𝑟
2 + 𝐸𝑧)

] (3.4) 

Where, 

𝐷𝐸𝑁 = 𝐸𝑧(𝐸𝑟𝜐𝜃𝑟
2 − 𝐸𝜃) + 𝐸𝜃(𝐸𝜃𝜐𝑧𝜃

2 + 𝐸𝑟𝜐𝑧𝑟(𝜐𝑧𝑟 + 2𝜐𝑧𝜃𝜐𝜃𝑟)) (3.5) 

Note that, the D matrix must be positive definite to ensure that the system of finite element that 

will be developed can be solved. The following set of rules (3.6) must be satisfied to ensure the [D] 

matrix is positive definite: 

𝐸𝑟 , 𝐸𝜃 , 𝐸𝑧 > 0 

|𝜈𝑧𝜃| < √
𝐸𝑟
𝐸𝜃
, |𝜈𝑟𝑧| < √

𝐸𝑟
𝐸𝑧
, |𝜈𝜃𝑧| < √

𝐸𝜃
𝐸𝑧

 

1 − 𝜐𝑟𝜃𝜐𝜃𝑟 − 𝜐𝜃𝑧𝜐𝑧𝜃 − 𝜐𝑧𝑟𝜐𝑟𝑧 − 2𝜐𝜃𝑟𝜐𝑧𝜃𝜐𝑟𝑧 > 0 

(3.6) 
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As noted Pfeiffer and Hakiel found the radial modulus to be state dependent on stack pressure 

which varies throughout the roll. Thus the inequalities involving Poisson’s ratios and Young’s 

modulus, specially 𝐸𝑟, need to be true for the range of 𝐸𝑟 found in a roll.  

A two-node axisymmetric element is shown in Fig. 3.1. The element space is defined by two 

nodes having radial positions ri and rj and radial displacements ui and uj 

  The development begins with the selection of 1D shape functions in the natural coordinate ξ 

shown in the master element in Fig. 3.1: 

𝑁1 =
1 − 𝜉

2
  𝑁2 =

1 + 𝜉

2
 (3.7) 

 

Fig. 3.1 1D Axisymmetric Finite Element Model of Wound Roll 

  These shape functions will be used in an isoparametric formulation to interpolate the radial 

locations (r) and the radial deformations (u) within the 1D axisymmetric finite element: 

𝑟 = [𝑁𝑖 𝑁𝑗] {
𝑟𝑖
𝑟𝑗
} (3.8) 
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𝑢 = [𝑁𝑖 𝑁𝑗] {
𝑢𝑖
𝑢𝑗
} (3.9) 

  Equation (3.8) can be rearranged to produce a coordinate map equation relating the ξ and r 

coordinates. Note that 𝑟𝑗-𝑟𝑖 is the undeformed web thickness h: 

𝜉 =
2𝑟 − (𝑟𝑖 + 𝑟𝑗)

𝑟𝑗 − 𝑟𝑖
=
2𝑟 − (𝑟𝑖 + 𝑟𝑗)

ℎ
 (3.10) 

  With the deformations (3.9) known the strains can be determined. The radial strain is: 

𝜀𝑟 =
𝑑𝑢

𝑑𝑟
=
𝑑𝑢

𝑑𝜉

𝑑𝜉

𝑑𝑟
= [−

1

ℎ

1

ℎ
] {
𝑢𝑖
𝑢𝑗
} (3.11) 

  For purposes of stiffness development the tangential strain will be determined at the centroid of 

the finite element where 𝑟̅ =
𝑟𝑖+𝑟𝑗

2
: 

𝜀𝜃 =
𝑢

𝑟
= [

𝑁𝑖
𝑟

𝑁𝑗

𝑟
] {
𝑢𝑖
𝑢𝑗
} = [

1

2𝑟̅

1

2𝑟̅
] {
𝑢𝑖
𝑢𝑗
} (3.12) 

𝜀𝑧 = 𝛾𝑟𝑧 = 0 (Plane Strain Assumption) (3.13) 

  The non-zero strains are thus: 

{
𝜀𝑟
𝜀𝜃
} = [

−
1

ℎ

1

ℎ
1

2𝑟̅

1

2𝑟̅

] {
𝑢𝑖
𝑢𝑗
} = [𝐵̅]{𝑢} (3.14) 

  The concept of pre-stress (𝜎0) and pre-strain (𝜀0) is often used in finite element derivations to 

accommodate thermal stress and strain. This concept will be employed here to introduce the MD 

stress in the web due to web tension in the winder tension zone. The strain energy in a finite element 

(U) is: 
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𝑈𝑒 =
1

2
∫ ∫{𝜎}𝑇{𝜀}𝑟 𝑑𝐴 𝑑𝜃

𝐴

2𝜋

0

−∫ ∫{𝜎}𝑇{𝜀𝑜}𝑟 𝑑𝐴 𝑑𝜃

𝐴

2𝜋

0

 (3.15) 

  Substituting the developed representations for stress and stain yields: 

𝑈𝑒 =
2𝜋

2
{𝑞}𝑇 ∫{𝐵̅}𝑇[𝐷]

𝐴

{𝐵̅}𝑟̅ 𝑑𝐴{𝑞} − 2𝜋{𝑞}𝑇 ∫{𝐵̅}𝑇[𝐷]

𝐴

{𝜀𝑜}𝑟̅ 𝑑𝐴 (3.16) 

  The element stiffness matrix [𝐾𝑒] is integral to the 1st term in equation (3.16) and the 2nd term is 

a statement of work potential involving deformations and equivalent forces {𝑓𝑒} at nodes: 

𝑈𝑒 =
1

2
{𝑞}𝑇[𝐾𝑒]{𝑞} − {𝑞}

𝑇{𝑓𝑒} (3.17) 

[𝐾𝑒] = 2𝜋 ∫{𝐵̅}
𝑇[𝐷]

𝐴

{𝐵̅}𝑟̅ 𝑑𝐴 = 2𝜋𝑟̅𝐴𝑒{𝐵̅}
𝑇[𝐷]{𝐵̅} = 2𝜋𝑟̅ℎ𝑊{𝐵̅}𝑇[𝐷]{𝐵̅} 

(3.18) 

where W is the web width. Substituting equations (3.14) and (3.4) into (3.18) yields: 

[𝐾𝑒] = [

𝜋𝑊

2
(
4𝑟̅

ℎ
𝐷11 +

ℎ

𝑟̅
𝐷22 − 4𝐷12) 𝑟𝑊 (

ℎ

2𝑟̅
𝐷22 −

2𝑟̅

ℎ
𝐷11)

𝜋𝑊 (
ℎ

2𝑟̅
𝐷22 −

2𝑟̅

ℎ
𝐷11)

𝜋𝑊

2
(
4𝑟̅

ℎ
𝐷11 +

ℎ

𝑟̅
𝐷22 − 4𝐷12)

]

= [
𝑘11 𝑘12
𝑘21 𝑘22

] 

(3.19) 

  The force vector {fe} is integral to the 2nd term in equation (3.18): 

𝑓𝑒 = 2𝜋 ∫{𝐵̅}
𝑇[𝐷]

𝐴

{𝜀𝑜}𝑟̅ 𝑑𝐴 = 2𝜋𝑟̅ℎ𝑊{𝐵̅}
𝑇[𝐷]{𝜀𝑜} = 2𝜋𝑟̅ℎ𝑊{𝐵̅}𝑇{𝜎𝑜} (3.20) 

  Substituting equation (3.14) into (3.20) yields: 
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{𝑓𝑒} = 2𝜋𝑟̅ℎ𝑊{

𝜎𝜃
2𝑟̅
−
𝜎𝑟
ℎ

𝜎𝜃
2𝑟̅
+
𝜎𝑟
ℎ

}

0

 (3.21) 

  The only pre-stress in the outer layer is the tangential stress (𝜎𝜃) which is equivalent to the web 

stress due to web tension (Tw) and there is no radial pre-stress component (𝜎𝑟). Also a tensile (𝜎𝜃) 

stress in the outer lap would produce forces in a positive r direction at nodes i and j that would 

result in a negative contact pressure between the outer layer and the layer beneath. Thus a negative 

value of web stress is substituted into equation (3.21) and the force vector reduces to: 

{𝑓𝑒} = −𝜋ℎ𝑊𝑇𝑤 {
1
1
} (3.22) 

  The winding tension (Tw) in equation (3.22) can take any form as a function of wound roll radius 

chosen. With a developed stiffness matrix and force vector the development of the finite element 

formulation is nearly complete. The stiffness matrix (3.19) can be used recursively to develop 

element stiffness matrices for the core and for the layers of web material added to the core. An 

example is shown in equation (3.23) in which the changes in deformation (ui) are being sought as 

a result of accreting the third web layer. Note the core is being crudely modeled here with 2 

axisymmetric elements, in most cases 5 core layers has been found sufficient to model the core 

accurately. Each web layer is modeled with 1 axisymmetric element, also found to be sufficient to 

achieve convergence of results. 

11 1 12 1
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 
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   
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   
   
  
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 

w wh WT

 
 
 
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 
 
 
 
  

 

(3.23) 
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  The assembly of the stiffness matrices begins with assembling all the core matrices. Several 

elements should be used to model the core which is usually considerably thicker than the web. 

Since the finite element will allow at best constant values of stress within the domain of the element 

(𝜎 = 𝐷𝐵̅𝑢), several elements are needed to properly characterize the mechanical behavior of the 

core. The accretive solution begins with one web layer being added to the core. Note that one web 

and two web layer solutions had to precede that shown in equation (3.23) such that the Dij terms in 

(3.4) were known for the web layers that depend on the state dependent radial modulus that varies 

with pressure. The changes in deformation that result from solving the independent set of equations 

such as those shown in equation (3.23) can then be used to determine the increments in stress within 

each element due to the addition of the most recent layer. Such a computation is shown here for 

element W2: 

    4

2 2 2
5

r

W W W

u
D B

u

 


 

   
      

     
(3.24) 

  Equation (3.2) can then be used to determine the change in axial stress (z) in element W2: 

𝛿𝜎𝑧 = 𝑣𝑧𝑟𝛿𝜎𝑟 + 𝑣𝑧𝜃𝛿𝜎𝜃 (3.25) 

  Changes in stresses would be calculated for each element of the core and for all layers in the 

wound roll. The total stresses in a particular layer are determined by summing all the changes in 

stress in that layer from the point when that layer was added until the most recent layer n was 

accreted on the wound roll. For layer W2: 

 

2
2

2 2
2

2

2
2

n

ri W
i

rn

wW i W
i

z Wn

zi W
i

T 





  











 
 
   
   

     
   

  
 
 







 (3.26) 
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  The total pressure in layer W2 is now known (P=-r) and can be used to update the radial modulus 

(Er) using equation (2.1) for this element. The stiffness matrix for element W2 can then be updated 

using equation (3.19). These calculations in equation (3.26) are repeated for all n layers in the 

wound roll. Then a new set of equations similar to those shown in (3.23) is formed to solve for the 

differential displacements throughout the wound roll due to the addition of the n+1 layer. The 

differential displacements for each node can be summed to determine the total deformation of each 

node due to all the layers added outside of a given node. Equations similar to (3.23) through (3.26) 

are assembled repeatedly and solved until a defined number of layers are wound onto the core or a 

defined outer roll radius is achieved. 

3.2 Validation 

  1D winding models have been verified at various levels. The interlayer pressure can be measured 

using steel shim on narrow rolls quite accurately. The steel shim is often enveloped in brass shim 

which is called a pull tab and wound into rolls. The pull force required to induce slip between the 

steel and brass shim is related to the pressure between layers in the wound roll. The relationship is 

best obtained by inserting these pressure transducers into a stack of the web material to be wound. 

A material testing system is used to subject the stack to various pressures and the force required to 

induce slip is measured at each stack test pressure. 

Table 3.1 Winding, Web and Core Properties for Winding Newsprint 

Web Thickness (mm) 0.071 
Core Inner Radius (cm) 3.81 

Finish Radius (cm) 13.35 

Web Width (cm) 15.26 
Core Outer Radius (cm) 4.45 

Winding Stress (MPa) 5.17 

Web Properties Core Properties 

E=Ez (MPa) 3,370 
Er=E=Ez (GPa) 200 

K1 (KPa) 1.175 

K2 45.14 
r=zr=z 0.3 

r=zr=z 0.3 
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  The model developed herein will be verified for a newsprint web with the properties shown in 

Table 3.1. Note that orthotropic property input is possible for both the web and the core. 

 

 

Fig. 3.2 Verification of Orthotropic Winding Model on Newsprint 

  The results of the verification tests are shown in Fig. 3.2. The test data points are the average 

pressure measurements from 3 winding tests where pull tab pressure transducers were wound into 

the rolls consistently at the wound roll radial positions shown in the charts. The error bars show the 

standard deviation of the data at each radius. Model results are shown for both plane stress and 

plane strain material behaviors. The plane strain model developed herein can produce plane stress 

behavior if zr and z are set to zero refer to expression (3.2). In general the comparison of model 
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results with tests is very good with the test results comparing somewhat better with the plane stress 

model behavior. The web width was inadequate to achieve the plane strain behavior. Note the 

tangential stresses () resulting from the two material behaviors are essentially equal. Substantial 

negative axial stresses can be developed when plane strain behaviors are achieved. In plane strain 

conditions the axial stresses tend to vanish at the outer lap and in this case near the core which was 

axially much stiffer than the web in this example. 
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CHAPTER IV 
 

 

DEVELOPMENT OF LAMINATE WINDING MODEL 

 

4.1 1-D Two-layer Laminate Model 

4.1.1 Assumptions 

A stiffness matrix and force vector for a plane strain homogenous web was developed in 

equations (3.19) and (3.22) respectively. Those developments will be extended to a two layer 

laminate web. It will be assumed that the agent used to bond the layers together in the laminator 

does not contribute to the stiffness of the laminate. It will also be assumed that the behavior of a 

stack of laminates in compression will be characterized in a compression test similar to that 

described in section 2.1.1. 

  A laminate is now accreted to the winding roll and a stiffness matrix and a force vector for the 

laminate is needed. Equations (3.19) and (3.22) can be used to determine the stiffness and forces 

the two layers (1 and 2) in the laminate: 

𝐾(1) = [
𝐾1𝑖𝑖 𝐾1𝑖𝑗
𝐾1𝑖𝑗 𝐾1𝑗𝑗

] , 𝑓(1) = {
𝑓1𝑖
𝑓1𝑗
}  𝑎𝑛𝑑 𝐾(2) = [

𝐾2𝑗𝑗 𝐾2𝑗𝑘
𝐾2𝑗𝑘 𝐾2𝑘𝑘

] , 𝑓(2) = {
𝑓2𝑗
𝑓2𝑘
} (4.1) 

where, i, j and k refer to the nodes in Fig. 4.1. Since the two layers have node j in common the 

direct stiffness assembly method can be used to combine the stiffness matrices and force vectors:
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Fig. 4.1 A 1D Axisymmetric Laminate Finite Element 

𝐾𝐿𝑎𝑚𝑖𝑛𝑎𝑡𝑒 = [

𝐾1𝑖𝑖 𝐾1𝑖𝑗 0

𝐾1𝑖𝑗 𝐾1𝑗𝑗 + 𝐾2𝑗𝑗 𝐾2𝑗𝑘
0 𝐾2𝑗𝑘 𝐾2𝑘𝑘

]  𝑎𝑛𝑑 𝑓𝐿𝑎𝑚𝑖𝑛𝑎𝑡𝑒 = {

𝑓1𝑖
𝑓1𝑗 + 𝑓2𝑗
𝑓2𝑘

} (4.2) 

where: 

𝐾1𝑖𝑖 =
𝜋

2
𝑤 (

4𝑟̅

ℎ
𝐷11 +

ℎ

𝑟̅
𝐷22 − 4𝐷12)|

(1)
𝐾2𝑗𝑗 =

𝜋

2
𝑤 (

4𝑟̅

ℎ
𝐷11 +

ℎ

𝑟̅
𝐷22 − 4𝐷12)|

(2)

𝐾1𝑖𝑗 = 𝜋𝑤 (
ℎ

2𝑟̅
𝐷22 −

2𝑟̅

ℎ
𝐷11)|

(1)
𝐾2𝑗𝑘 = 𝜋𝑤 (

ℎ

2𝑟̅
𝐷22 −

2𝑟̅

ℎ
𝐷11)|

(2)

𝐾1𝑗𝑗 =
𝜋

2
𝑤 (4𝐷12 +

ℎ

𝑟̅
𝐷22 +

4𝑟̅

ℎ
𝐷12)|

(1)
𝐾2𝑘𝑘 =

𝜋

2
𝑤 (4𝐷12 +

ℎ

𝑟̅
𝐷22 +

4𝑟̅

ℎ
𝐷12)|

(2)

 (4.3) 

and 

𝑓(1) = {
𝑓1𝑖
𝑓1𝑗
} = −𝜋ℎ𝑊𝑇𝑤|(1) {

1
1
}  𝑎𝑛𝑑 𝑓(2) = {

𝑓2𝑗
𝑓2𝑘
} = −𝜋ℎ𝑊𝑇𝑤|(2) {

1
1
} (4.4) 

  The subscripts (1) and (2) in equations (4.3) and (4.4) denote stiffness and force terms associated 

with layers 1 and 2 in the laminate. The stresses in layers 1 and 2 will be unique and will depend 

on conditions at the laminator which will be discussed later in section 4.1.3. An accretive solution 

similar to that shown for the single orthotropic layer in equation (3.23) can now be developed and 
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solved for the changes in radial deformation of the nodes ( 𝛿𝑢𝑖 ). Those nodal changes in 

deformation can then be used to solve for changes in stress in all layers using equation (3.24). 

4.1.2 Numerical Oscillation and Condensation Method 

When solutions were attempted of the laminate winding model described numerical oscillations 

were witnessed in some cases in the stresses output. In other cases the solution of the set of 

equations was not possible. If identical material properties were input for the two layers of the 

laminate, the oscillations vanished and solution of the sets of equations was always possible. The 

problem stemmed from the assumption that both layers of the laminate shared an identical equation 

(2.1) for the radial modulus (𝐸𝑟). The problem was solved using a condensation method. 

  The equilibrium of the two-layer laminate can be stated as: 

[

𝐾1𝑖𝑖 𝐾1𝑖𝑗 0

𝐾1𝑗𝑗 𝐾1𝑗𝑗 + 𝐾2𝑗𝑗 𝐾2𝑗𝑘
0 𝐾2𝑗𝑘 𝐾2𝑘𝑘

] {

𝛿𝑢𝑖
𝛿𝑢𝑗
𝛿𝑢𝑘

} = {

𝑓1𝑖
𝑓1𝑗 + 𝑓2𝑗
𝑓2𝑘

} (4.5) 

  The condensation method will be used to remove the internal degree of freedom at node j. These 

equations from equation (4.5) can be re-ordered as follows: 

[
[
𝐾1𝑖𝑖 0
0 𝐾2𝑘𝑘

] [
𝐾1𝑖𝑗
𝐾2𝑗𝑘

]

[𝐾1𝑖𝑗 𝐾2𝑗𝑘] [𝐾1𝑗𝑗 + 𝐾2𝑗𝑗]

] {
{
𝛿𝑢𝑖
𝛿𝑢𝑘

}

{𝛿𝑢𝑗}
} = {

{
𝑓1𝑖
𝑓2𝑘
}

{𝑓1𝑗 + 𝑓2𝑗}
} (4.6) 

  This can be rewritten symbolically as: 

[
[𝐾𝑟𝑟] [𝐾𝑟𝑐]

[𝐾𝑐𝑟] [𝐾𝑐𝑐]
] {
{𝛿𝑢𝑟}

{𝛿𝑢𝑐}
} = {

{𝑟𝑟}

{𝑟𝑐}
} (4.7) 

  The condensed stiffness matrix is: 
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𝐾𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑑 = [𝐾𝑟𝑟] − [𝐾𝑟𝑐][𝐾𝑐𝑐]
−1[𝐾𝑐𝑟] =

[
 
 
 
 𝐾1𝑖𝑖 −

𝐾1𝑖𝑗
2

𝐾1𝑗𝑗 + 𝐾2𝑗𝑗

−𝐾1𝑖𝑗𝐾2𝑗𝑘

𝐾1𝑗𝑗 + 𝐾2𝑗𝑗

−𝐾1𝑖𝑗𝐾2𝑗𝑘

𝐾1𝑗𝑗 + 𝐾2𝑗𝑗
𝐾2𝑘𝑘 −

𝐾2𝑗𝑘
2

𝐾1𝑗𝑗 + 𝐾2𝑗𝑗]
 
 
 
 

 (4.8) 

  And the condensed force vector is: 

              𝑓𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑑 = {𝑟𝑟} − [𝐾𝑟𝑐][𝐾𝑐𝑐]
−1{𝑟𝑐} =

{
 
 

 
 𝑓1𝑖 −

𝐾1𝑖𝑗

𝐾1𝑗𝑗 + 𝐾2𝑗𝑗
(𝑓1𝑗 + 𝑓2𝑗)

𝑓2𝑘 −
𝐾2𝑗𝑘

𝐾1𝑗𝑗 + 𝐾2𝑗𝑗
(𝑓1𝑗 + 𝑓2𝑗)

}
 
 

 
 

 (4.9) 

  The condensed stiffness matrix and force vector can now be used in an accretive solution identical 

to that posed earlier for accreting single layers of web as given in equation (3.23). After solving for 

the changes in deformation due to a new outer laminate the changes in stress, the total stresses and 

the radial modulus in each layer must be updated. To compute the changes in stress requires the 

recovery of the deformation associated with the internal node j in each condensed laminate element. 

That deformation can be recovered using: 

{𝛿𝑢𝑐} = [𝐾𝑐𝑐]
−1([𝐾𝑐𝑟]{𝛿𝑢𝑟} − {𝑟𝑐})                                           

{𝛿𝑢𝑗} = [𝐾1𝑗𝑗 + 𝐾2𝑗𝑗]
−1
([𝐾1𝑖𝑗 𝐾2𝑗𝑘] {

𝛿𝑢𝑖
𝛿𝑢𝑘

} − {𝑓1𝑗 + 𝑓2𝑗})
 (4.10) 

  Now equation (3.24) can be used to determine the changes in stress in each layer of all the 

laminates that have been wound onto the roll. The total stresses are obtained using equation (3.26) 

but the winding stress in each layer of the laminate will be unique (Tw1 or Tw2). 

4.1.3 Strain Matched versus Non Strain Matched Laminating Conditions 

Laminates are often strain matched at the site of lamination. Laminated webs that are not strain 

matched will curl when cut into discrete products which is often undesirable. It is not always 

possible to set the web tensions in the layers entering the laminator to achieve strain matching. 
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Nonetheless the laminate must be wound and the winding tension in the laminate layers are 

important input with regard to the winding residual stresses. To achieve strain matching requires 

the web stress in each layer to be controlled prior to lamination according to the MD modulus of 

that layer: 

𝜀𝑀𝐷 =
𝑇𝑤1
𝐸𝑀𝐷1

=
𝑇𝑤2
𝐸𝑀𝐷2

 (4.11) 

  The web layer tensions (𝑇𝑤1 and 𝑇𝑤2) prior to lamination should be in equilibrium with the total 

tension T in the laminated web where A1 and A2 are the cross sectional areas of layers 1 and 2, 

respectively: 

𝑇 = 𝑇𝑤1𝐴1 + 𝑇𝑤2𝐴2 (4.12) 

  The total tension T in the laminate can vary depending on the tension zone in the web line. In the 

winder tension zone if the total tension is T, equations (4.13) can be used to determine the winding 

stress in each layer of the laminate: 

𝑇𝑤1 =
𝑇𝐸𝑀𝐷1

𝐸𝑀𝐷1𝐴1 + 𝐸𝑀𝐷2𝐴2
 𝑎𝑛𝑑 𝑇𝑤2 =

𝑇𝐸𝑀𝐷2
𝐸𝑀𝐷1𝐴1 + 𝐸𝑀𝐷2𝐴2

 (4.13) 

  In non-strain matched conditions the web layer tensions are set independently (Tlayer1 and Tlayer2) 

upstream of the laminator. Although strain matching the layers is desirable when considering curl 

defects it is not always possible to transport webs upstream of the laminator at tensions that would 

be required to strain match the two webs. It is assumed the total web tension may differ from the 

exit of the laminator to the entry of the winder. If the laminate web tension at the entry to the winder 

is T, the winding tension for layers 1 and 2 will be: 

𝑇1 =
𝑇𝑙𝑎𝑦𝑒𝑟1

𝑇𝑙𝑎𝑦𝑒𝑟1 + 𝑇𝑙𝑎𝑦𝑒𝑟2
∗ 𝑇  𝑎𝑛𝑑  𝑇2 =

𝑇𝑙𝑎𝑦𝑒𝑟2

𝑇𝑙𝑎𝑦𝑒𝑟1 + 𝑇𝑙𝑎𝑦𝑒𝑟2
∗ 𝑇 (4.14) 
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4.2 Verification of the 1D Laminate Winding Model  

4.2.1 Abaqus Verification 

  An Abaqus model can be used here to verify some results from the 1D code. The process of 

winding simulation in Abaqus is shown in Fig. 4.2 below: 

 

Fig. 4.2 Simulation Process of Abaqus for Laminate Winding 

A homogeneous web with constant orthotropic properties is verified firstly because of its 

simplicity. Geometry and materials properties are in the table below:  

Table 4.1 Material Properties for a Homogeneous Web 

Ewθ (psi) Ewz (psi) Ewr (psi) νwθr νwzr νwzθ Ec (psi) νc 

711,000 711,000 30,000 0.30 0.24 0.30 2.9E6 0.30 

 

 

Pre-stress the new web layer 

Solving for the equilibrium 

Get the outer radius of the roll 

Create next web layer outside the current roll 

Import stress state of the current roll (initial state) 
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Table 4.2 Geometry Properties for a Homogeneous Web 

Rin (in) Rout (in) Rfinal (in) t(in) W(in) Core Layers #1.5 

1.5 1.75 3.3 0.02 20 5 

 

  Note that, T (the total laminate tension) is equal to 320 lbf. A comparison of the result of the 1D 

model and the Abaqus simulation are show in Fig. 4.3. 

 

Fig. 4.3 Verification of Radial Stress for Homogenous Webs 

From Fig. 4.3, the 1D Laminate Winding Model compares well for a homogenous orthotropic 

web with constant modulus input. Although this is not a state dependent modulus, results show that 

the 1D code has good accuracy. There are some minor differences in the results from the Abaqus 

model and the 1D code. In Abaqus model the thickness of the laminate is 0.02’’, while the 1D code 

uses 0.01’’ as the thickness of each layer of the laminate. 

The next step in verifying the 1D laminate winding model was to allow the two layers of the 

laminate to have unique orthotropic properties. These properties are listed in Table 4.3. 
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Table 4.3 Material Properties for an Orthotropic Web (i and j) 

Laminate i 
𝐸𝑤𝜃 𝐸𝑤𝑧 𝐸𝑤𝑟 𝜐𝑤𝜃𝑟 𝜐𝑤𝑧𝑟 𝜐𝑤𝑧𝜃 𝑡𝑖 

711 ksi 711 ksi 30 ksi 0.30 0.24 0.30 0.01in 

Laminate j 
𝐸𝑤𝜃 𝐸𝑤𝑧 𝐸𝑤𝑟 𝜐𝑤𝜃𝑟 𝜐𝑤𝑧𝑟 𝜐𝑤𝑧𝜃 𝑡𝑗 

400 ksi 400 ksi 30 ksi 0.30 0.13 0.30 0.01in 

 

Table 4.4 Geometry Properties for an Orthotropic Web 

𝑅𝑖𝑛 𝑅𝑜𝑢𝑡 𝑅𝑓𝑖𝑛𝑎𝑙 𝐸𝑐 𝜐𝑐 

1.5 in 1.75 in 3.64 in 2.9E6 psi 0.3 

 

  Note the total tension T is equal to 16 lbf. A comparison of the results from the 1D laminate model 

and Abaqus simulations are shown in Fig. 4.4. 

 

Fig. 4.4 Verification of Radial Stress for Orthotropic Webs 

  In Fig. 4.4, we observe that the Abaqus results and laminate winding results overlap, thus the 1D 

laminate Winding Model compares very well with the Abaqus model for a constant orthotropic 

web with constant E. 
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4.2.2 Lab Test Verification-Strain Matched Conditions 

 

 

Fig. 4.5 Tangential Modulus Tests for Paper and Polymer 

 An existing 2-layer laminate was used to verify our model. The laminate has a paper layer and a 

polymer layer. The web was narrow in width (6 inches), and plane stress conditions were assumed 

to apply. The properties of the web materials needed to be measured, including web thickness, MD 

modulus, and radial modulus. The modulus was measured multiple ways in an effort to investigate 

the effect of the adhesive. The Poisson’s ratio (𝜐𝜃𝑟) that couples a tangential stress to a radial strain 

was assumed 0.3 for both webs.  

1) Web Materials Tests-𝐸𝜃: The paper thickness was measured to be 0.0021’’ and the polymer 

thickness was found to be 0.0026’’. Samples of the polymer and paper webs soft long were 

subjected to force/deformation testing. After collection of the data, the deformations were 
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converted to strains (𝛥𝐿/𝐿) and the forces were converted to stress (𝐹/𝐴) by dividing by the cross 

sectional area of the web. In Fig. 4.5, the x-axis is the dimensionless strain and the y-axis is the MD 

stress in the units of psi. The slope of this data is the modulus of elasticity. The MD modulus of 

polymer is 285 ksi and the modulus of the paper is about 2,090 ksi. Both of paper and polymer are 

in the elastic range from Fig. 4.5, and the tension in this thesis will satisfy the elastic range. 

2) Web Material Tests-𝐸𝑟 : The laminated sample roll consists of two base webs (polymer and 

paper) and an adhesive. Individual stack compression tests on the base materials without adhesive 

were run. Next, layers of the base materials into a stack were interleaved to simulate a laminated 

stack without adhesive. Finally a stack cut from the sample roll with adhesive was subjected to 

compression tests. 

  From Pfeiffer’s model, we know that: 

𝑃 = 𝐾1(𝑒
𝐾2𝜀𝑟 − 1) (4.15) 

𝐸𝑟 =
𝑑𝑃

𝑑𝜀𝑟
= 𝐾2(𝑃 + 𝐾1) = 𝐾2(𝐾1 − 𝜎𝑟) 

(4.16) 

 

 

Fig. 4.6 Stack Tests for Laminate Webs 
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where, paper-paper layer alone, polyer-polymer layer alone, LamNO-Without adhesive and 

LamAdh- laminate with adhesive. The four pressures versus strain sets of data in Fig 4.6 were curve 

fit using expression (4.15). The K1 and K2 parameters were varied with the least total error resulted 

between the data set and the curve fit. The K1 and K2 parameters that resulted from this exercise 

are shown in Table 4.5, where we set up the pressure range is 0-150 psi for the curve fit. 

Table 4.5 Pheiffers Material Constantans of the Laminate 

 Paper Polymer No Adhesive Adhesive 

Range (psi) 150 150 150 150 

K1 (psi) 0.08 1.40 0.58 1.31 

K2 70.81 59.81 60.69 71.69 

 

3) Winding Tests: A strain matched 2-layer laminate was used in winding tests to verify the model. 

The laminate is composed of a paper layer and an oriented polypropylene polymer layer. The inputs 

provided to the laminate winding code are shown in Table 4.6, the polypropylene is layer i and 

paper is layer j. All input was measured except for the Poisson ratio terms which were assumed. 

Table 4.6 Input for Laminate Winding Model: Strain Matched Case 

Core inner radius 0.0381m (1.5 in) 

Core outer radius 0.0445m (1.75 in) 

Roll final radius 0.1334m (5.25 in) 

𝐸𝑤𝜃𝑖, 𝐸𝑤𝑧𝑖 1.96 GPa (285,188 psi) 

𝐸𝑤𝜃𝑗, 𝐸𝑤𝑧𝑗 14.41 GPa (2,091,000 psi) 

Web: νri, νzri, νzi, νrj, νzrj, νzj 0.3 

Ecr, Ecq, Ecz 206.7 GPa (30 Mpsi) 

νrc, νzrc, νzc 0.3 

Web width w 0.1524 m (6 in) 

Thickness hi and hj 66.04 m (0.0026 in), 53.34 m (0.0021 in) 

𝐸𝑟  (𝐾1, 𝐾2) 9.03 KPa (1.31 psi),71.1 

T, winding tension 32 N (7.2 lb) 

 

  Results for the strain matched case are shown in Fig. 4.7. This is a narrow web which has not 

achieved plane strain conditions. The model result shown in Fig. 4.7 is for the plane stress case 
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which was achieved by input of zero for the Poisson ratios νzri, νzθi, νzrj, and νzθj. When winding 

laminates there is a choice of which layer faces the outside of the roll. The model shows no effect 

whether the paper or the polypropylene is chosen for layers i or j. The winding tests were conducted 

with the paper facing outwards three times and then with the polypropylene facing outward three 

times. The test data points in Fig. 4.7 are the average of three pressure measurements taken with 

pull tabs and the error bars indicate the standard deviation of the data. Use of the statistical t-test 

indicated that the data taken with the paper facing outward could not be claimed different than the 

data collected when the polypropylene faced outward. The agreement between the model for plane 

stress conditions and the test data is good. The tangential stress results show that the paper, whose 

in-plane modulus was roughly 7 times larger than that of the polypropylene, bore significantly 

larger stress at the outside of the roll. This was expected as a result of the strain matched condition. 

 

Fig. 4.7 Strain Matched Case T=2.1N/cm 

  As discussed earlier the laminate winding model developed shows no influence on output 

regarding which layer properties are input for layer i and layer j. To determine if this was a physical 

reality tests were conducted. We conducted 4 sets of laminate winding tests 1.2pli and 2 pli winding 

tensions, polymer ply out and paper ply out. Each test was repeated 5 times. All the test results are 
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presented in Fig. 4.8. T-test was employed here to analyze the data. In mathematic statistics, the t-

test is a useful method to determine if two sets of data are significantly different from each other. 

 

Fig. 4.8 Average of 5 Times Repeated Tests for the Laminate 

  We wanted to explore if the polymer or paper ply faced outward affected the roll pressure. The t-

test result showed that there is no significant difference between the two situations. Thus both the 

model and the winding test results concur that which ply faces outward has no impact on the 

pressure in the wound roll. There would be an impact on tangential and axial stresses. 

4.2.3 Lab Test Verification-Non Strain Matched Conditions 

  We desired to further verify the model on laminates where strain matching may or may not have 

occurred. Compared with strain-match situation, winding tension in each layer changed if the strain 

matching did not occur. In order to verify our model which is capable of considering the non-strain 

matched condition, 8 test rolls were wound. Two cases were tested in which the laminating tensions 

in each layer were varied. 
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  The web tension downstream of the laminator can differ from the laminate tension in the winder 

tension zone. Equation (4.14) was employed to determine the tensions in the laminate layers in the 

winding model. Pull tabs were wound into the edge of the winding roll as shown in Fig. 4.9. 

 

Fig. 4.9 Machine Set Up for Laminate Web Winding Tests 

Table 4.7 Input for Laminate Winding Model: Non-Strain Matched Case 

Core inner radius 0.089 m (3.5 in) 

Core outer radius 0.105 m (4.15 in) 

Roll final radius 0.2517 m (9.91 in) 

𝐸𝑤𝜃𝑖, 𝐸𝑤𝑧𝑖 6.12 GPa (887,600 psi) 

𝐸𝑤𝜃𝑗, 𝐸𝑤𝑧𝑗 2.07 GPa (300,000 psi) 

Web: νri, νzri, νzi, νrj, νzrj, νzj 0.3 

Ecr, Ecq, Ecz 68.9 GPa (10 Mpsi) 

νrc, νzrc, νzc 0.3 

Web width w 0.6858 m (27 in) 

Thickness hi and hj 55.88 m (0.0022 in), 66.04 m (0.0026 in) 

𝐸𝑟  (𝐾1, 𝐾2) 1.01 KPa (0.146 psi),117.1 

 Case A Case B 

Laminating Tension i 302.5 N (68 lb) 355.9 N (80 lb) 

Laminating Tension j 89.0 N (20 lb) 44.5 N (10 lb) 

T, winding tension 95.6 N (21.5 lb) 
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Fig. 4.10 Model and Test Results: Non-Strain Matched Case A 

  Results are shown in Fig. 4.10 for both plane stress and plane strain material behaviors. The 

winding tests were conducted 3 times and the pressure test data in Fig. 4.10 represent the average 

of the pressure measurements at each radial location. The height of the error bars represents the 

standard deviation of the data. The test pressures agree best with the plane stress case but the plane 

strain results agree reasonably well too. Tangential and axial stresses throughout the roll are shown 

as well for both material behaviors. 

  Results are also shown in Fig. 4.11 for a Case B where the web tensions at the laminator were set 

markedly different from Case A but the tension in the laminated web at the winder was the same. 
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Fig. 4.11 Effects of Lamination Tension, Non-Strain Matched Cases 

  Note the model shows no difference in pressure for Cases A and B. This indicates pressure is 

being affected by total winding tension and not the laminating tensions. The tangential stresses are 

affected by the lamination tensions and although not shown here by winding tension too.  

4.3 Influence of Bending Stress  

  The elastic bending strains and stresses exist at some level in single layer and laminate webs 

wound into rolls. Bending effects were not considered in the early winding models discussed in 

chapter 2. These winding models were developed to consider only the membrane stresses in the 

web and the pressure throughout the radius range of a wound roll.In the development of the bending 

stresses the distance from the reference axis (𝑦0, 𝑧0) to the centroid axis (𝑦, 𝑧) of the laminate 𝑧0
∗ 

is needed: 
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Fig. 4.12 Cross Section of Laminate 

The distance to the centroid axis is determined by the equation: 

𝑧0
∗ =

ℎ1
2

2
+
𝐸2
𝐸1
ℎ2(ℎ1 +

ℎ2
2
)

(ℎ1 +
𝐸2
𝐸1
ℎ2)

=
𝐸1ℎ1

2 + 𝐸2ℎ2(2ℎ1 + ℎ2)

2(𝐸1ℎ1 + 𝐸2ℎ2)
 (4.17) 

  Where 𝐸1, 𝐸2, ℎ1, ℎ2 are the Young’s modulus and thickness of layer 1 and layer 2,respectively. 

  The strain must be continuous and linear in the thickness direction, which means that the stress 

changes abruptly at the contact surface. The general equation for the stress in a non-homogeneous 

beam with axial and bending loads and a temperature change [29]. 

𝜎𝑥𝑥 =
𝐸

𝐸1
[
𝑃∗

𝐴∗
−
𝑀𝑧
∗𝐼𝑦𝑦
∗ −𝑀𝑦

∗𝐼𝑦𝑧
∗

𝐼𝑦𝑦
∗ 𝐼𝑧𝑧

∗ − (𝐼𝑦𝑧
∗ )

2 𝑦 −
𝑀𝑦
∗𝐼𝑧𝑧
∗ −𝑀𝑧

∗𝐼𝑦𝑧
∗

𝐼𝑦𝑦
∗ 𝐼𝑧𝑧

∗ − (𝐼𝑦𝑧
∗ )

2 𝑧 − 𝐸1𝛼𝑇] (4.18) 

  Where, 𝐴∗ is the modulus weighted area and can be shown as: 

𝐴∗ =∑𝐴𝑖
∗,    𝐴𝑖

∗ =
𝐸𝑖
𝐸1
𝐴𝑖

𝑛

𝑖=1

 (4.19) 
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  For the laminate web winding process, there is no temperature change and there is no initial curve 

in the web. We only need to consider the bending effect on the machine direction. The stress 

through the thickness as a function of z location is: 

𝜎𝑥𝑥 =
𝐸

𝐸1
(
𝑃

𝐴∗
−
𝑀𝑦𝑧

𝐼𝑦𝑦
∗ ) (4.20) 

  Where, P is the axial or MD loads, E is the young’s modulus of each layer. We usually choose the 

young’s modulus of the bottom layer as 𝐸1. 

  𝐼𝑦0𝑦0
∗  is the modulus weighted area moment of inertial about the reference axis. 

𝐼𝑦0𝑦0
∗ =

𝐸1
𝐸1
[
𝑤ℎ1

3

12
+ (

ℎ1
2
)
2

𝑤ℎ1] +
𝐸2
𝐸1
[
𝑤ℎ2

3

12
+ (ℎ1 +

ℎ2
2
)
2

𝑤ℎ2] (4.21) 

  𝐼𝑦𝑦
∗  is the modulus weighted area moment of inertial about the centroid axis: 

𝐼𝑦𝑦
∗ = 𝐼𝑦0𝑦0

∗ − (𝑧0̅
∗)2𝐴∗ (4.22) 

  The bending moment and stiffness will be related to the radius of the winding roll r: 

1

𝑟
=
𝑀𝑦

𝐸𝐼𝑦𝑦
∗                    𝑀𝑦

∗ =
𝐸1𝐼𝑦𝑦

∗

𝑟
 (4.23) 

  The final stress in each layer of laminate can now be developed: 

𝜎𝑥𝑥 =
𝐸

𝐸1
(
𝑃∗

𝐴∗
−
𝑀𝑦
∗𝑧

𝐼𝑦𝑦
∗ ) =

𝐸

𝐸1
(
𝑃∗

𝐴∗
−
𝐸1𝑧

𝑟
) (4.24) 

  Similar to the homogenous beam, the stress is the function of the z direction, but z is relative to 

the centroidal axis. We can integrate this stress though the thickness to find the average axial stress 

in each layer of laminate. The average axial stress in each layer becomes the input to the force 

vector we use in our finite element winding model: 
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𝑇𝑤1 =
𝑃

𝐴∗
−
𝑤∫

𝐸1𝑧
𝑟

−𝑧0
∗+ℎ1

−𝑧0
∗ 𝑑𝑧

𝑤∗ℎ1
=
𝑃

𝐴∗
−

𝐸1
2𝑟ℎ1

[(−𝑧0
∗ + ℎ1)

2 − 𝑧0
∗2] (4.25) 

𝑇𝑤2 =
𝐸2
𝐸1

𝑃

𝐴∗
−
𝑤∫

𝐸2𝑧
𝑟
𝑑𝑧

−𝑧0
∗+ℎ1+ℎ2

−𝑧0
∗+ℎ1

𝑤∗ℎ2
=
𝐸2
𝐸1

𝑃

𝐴∗
−

𝐸2
2𝑟ℎ1

[(−𝑧0
∗ + ℎ1 + ℎ2)

2 + (−𝑧0
∗ + ℎ1)

2] 

(4.26) 

  We see that 𝑇𝑤1 and 𝑇𝑤2 are now influenced by the radius r at which the layer was wound onto 

the roll. We incorporated this expression into a new version of the laminate winding model in order 

to explore the difference with the model which did not consider the bending stress in each layer. 

  The model input was for strained match condition to compare the difference (Table 4.6). The 

paper ply will face out in this example. 

 

Fig. 4.13 Radial Pressure Including the Bending Effect 

  The pressures are nearly identical. Thus the bending stresses have little influence on roll pressures. 

The tangential stress should change significantly due to existence of the bending stress in each 

layer. 
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Fig. 4.14 Tangential Stress Including the Bending Effect 

  These bending effects cannot be neglected in the investigation of web curl, which is dependent on 

accurate representation of the tangential stains and stresses and their impact on creep and curl. 

 

Fig. 4.15 Axial Stress Including the Bending Effect 

  The axial stresses are almost unaffected by bending. Laminated webs can be formed from 2 to n 

webs depending on product needs. The stiffness matrix presented in (4.2) and force vector in (4.4) 
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will become more complex as the number of layer increases. Also unique to multiple-layer 

laminates is the allocation of tension of each layer. In the laminate winding, the winding tension 

cannot be input directly in units of stress, the laminate plies may hang the same strain level. If strain 

matched at the laminator, the winding tension will now have the units of force. Assuming strain 

matching at the laminator; 

𝜀𝑀𝐷 =
𝑇𝑤1
𝐸1

=
𝑇𝑤2
𝐸2

= ⋯ =
𝑇𝑤𝑛
𝐸𝑛

=
𝑇

∑ 𝐸𝑖𝐴𝑖
𝑛
𝑖=1

 (4.27) 

  From equilibrium: 

𝑇 = 𝑇𝑤1𝐴1 + 𝑇𝑤2𝐴2 +⋯+ 𝑇𝑤𝑛𝐴1𝑛 (4.28) 

where T is the total winding tension and the 𝑇𝑤𝑖 are the stresses induced in each ply due to T. 

  The tension for jth layer of n-layer laminate is: 

𝑇𝑤𝑗 =
𝑇𝐸𝑗

∑ 𝐸𝑖𝐴𝑖
𝑛
𝑖=1

 (4.29) 

 

4.4 An Equivalent Single-Layer Laminate Model 

 

Fig. 4.16 Equivalent Modulus of Laminate 
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  The previous laminate winding models developed in this chapter were finite element formulations 

that treat each layer of the laminate as a finite element. The multiple layers and the properties of 

those layers can be treated as an equivalent single layer web. This offers the advantage of using our 

previous winding models directly for laminate. It is possible that a similar development would be 

feasible for laminate viscoelastic winding models. For elastic winding the winding model would 

accrete a single layer whose thickness is ℎ𝐴 + ℎ𝑏 for a 2 ply laminate. Then an equivalent MD 

modulus is calculated to represent the entire layer in the x (MD) and y (CMD) directions: 

𝐸𝑐𝑥 =
𝐸𝐴ℎ𝐴 + 𝐸𝐵ℎ𝐵
ℎ𝐴 + ℎ𝐵

 (4.30) 

𝐸𝑐𝑦 =
𝐸𝐴𝐸𝑏(ℎ𝐴 + ℎ𝐵)

𝐸𝐴ℎ𝐴 + 𝐸𝑏ℎ𝐵
 

(4.31) 

where, E is the Young’s modulus and h is the thickness. Since the radial modulus is state 

dependent, it has to be determined by performing a compression test on a stack of laminates and 

fitting Pfeiffer’s curve to the pressure strain data. This ensures that coefficients account for the 

dissimilar web surfaces in contact and the effects of the adhesive. 

 

Fig. 4.17 Elastic Strain Matched Verification for Radial Pressure 
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  To demonstrate how well this approach can work an equivalent layer was developed for the strain 

matched 2-layer case where the input was presented in Table 4.6. The winding tension was set at 

1.2pli, equivalent to the case 1 and 3. The pressure results are shown in Fig. 4.17. The equivalent 

layer properties were input to a single layer winding code (Winder 6.3). Note that the agreement 

between Winder 6.3 and 1D finite element laminate winding model is quite good. A non- strain 

matched case was also investigated using the input data in Table 4.7. Pressure is shown for a 

winding tension of 21.5 pounds in Fig. 4.18. Again good agreement is witnessed. 

 

Fig. 4.18 Elastic Part-Strain not Match Verification for Radial Pressure 

4.5 Elastic Curl for Laminate 

  Laminates are often strain matched at the site of lamination. Laminated webs that are not strain 

matched will curl when cut into discrete products which is often undesirable. It is not always 

possible to set the web tensions in the layers entering the laminator to achieve strain matching. In 

pure bending of beam, the relationship between bending moment M and the radius of curvature is 

in equation (4.32): 

𝑀 =
𝐸𝐼

𝜌
→ 𝜌 =

𝐸𝐼

𝑀
 (4.32) 
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  Due to strain mismatch, lamination winding tension 𝑇1and 𝑇2 will form a moment to the neutral 

axis. The procedure to estimate the radius of curvature of strain mismatch condition is: 

(1) Determine the neutral axis of laminate web. 

(2) Calculate the total moment. 

(3) Use equation (4.32) to predict the radius of curl. 

  In chapter 2, we talked about Kidane’s 2D model to predict the laminate curl. Non-equal strain in 

different layers of the laminate, lead to curl. Kidane, in his paper [26], discussed the prediction of 

MD and CD curl by using laminate theory. MD and CD strain for the ithlayer was given as follows: 

𝜀𝑖
𝑀𝐷 =

𝑇𝑖
𝐸𝑖𝑡𝑖

  𝜀𝑖
𝐶𝐷 = −𝜐𝑖𝜀𝑖

𝑀𝐷 (4.33) 

where 𝜀𝑖
𝑀𝐷 and 𝜀𝑖

𝐶𝐷are machine direction strain and cross machine direction strain of the ith layer 

of web. Ti is given in fore per unit length, 

  When the strains are calculated through the equations above, the modified load can be substituted 

into the traditional laminate theory equations. 

{

𝑁𝑥
𝑇

𝑁𝑦
𝑇

𝑁𝑥𝑦0
𝑇

} = 𝛥𝑇∑ [

𝑄11 𝑄12 0
𝑄12 𝑄11 0
0 0 𝑄11

]

𝑛

𝑘=1

{
𝛼𝐿
𝛼𝑇
0
} (ℎ𝑘 − ℎ𝑘−1) (4.34) 

{

𝑀𝑥
𝑇

𝑀𝑦
𝑇

𝑀𝑥𝑦
𝑇

} =
1

2
𝛥𝑇∑ [

𝑄11 𝑄12 0
𝑄12 𝑄11 0
0 0 𝑄11

]

𝑛

𝑘=1

{
𝛼𝐿
𝛼𝑇
0
} (ℎ𝑘

2 − ℎ𝑘−1
2 ) (4.35) 

where N and M are the equivalent forces and moments due to temperature difference ΔT. Q is the 

stiffness matrix element and α is the coefficient of thermal expansion. 
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  Kidane’s 2d curl prediction model is applicable for estimating curl in both MD and CMD 

directions for a number of web processes, including lamination. During the laminating process, the 

strains of different layers should theoretically be the same to prevent MD curl for all tensions in 

the laminate (perfect bonding condition). However, in reality the problem is more complicated due 

to the existence of strain matching loss, which means that the strain will not the same, and thus 

laminate winding will want to curl when unwound. By using these equations above combined with 

laminate elastic and viscoelastic winding model developments, curl can be predicted. If the layers 

in a laminate have different Poisson ratios, CMD curl can be expected at laminate web tensions 

other than the combined tensions in the two webs at the laminator. After a discrete product is cut 

from a web there will be no tension and some CMD curl may result. 
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CHAPTER V 
 

 

VISCOELASTIC CHARACTERIZATION OF WEB MATERIALS 

 

  Some web curl defects are the combined result of the total membrane bending stresses and 

viscoelastic creep. Before discussing the curl analysis, it is necessary to characterize viscoelastic 

properties correctly and quickly. This chapter focuses on the viscoelastic characterization of the 

web. 

5.1 Viscoelastic Models and Methods 

5.1.1 Wiechert Model 

 

 

Fig. 5.1 Generalized Maxwell Model (Wiechert Model) 

  The Wiechert model (General Maxwell Model) in Fig. 5.1 is widely used in viscoelastic analysis. 

One term Wiechert model (Standard Linear Solid Model) is in Fig. 5.2.  
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Fig. 5.2 Standard Linear Solid Model (One Term Wiechert Model) 

The constitutive equation of the model is: 

𝜎 + 𝑝1𝜎̇ = 𝑞0𝜀 + 𝑞1𝜀̇ (5.1) 

  The p and q terms in equation (5.1) are related to the elastic constants (E∞,E1)  and the viscosity 

term (η1) in the standard linear solid model. 

𝑝1 =
𝜂1
𝐸1
,    𝑞0 = 𝐸∞,    𝑞1 =

𝐸∞ + 𝐸1
𝐸1

𝜂1 (5.3) 

  Using the Laplace Transform to convert the constitutive equation (5.1): 

𝜎̅ + 𝑝1𝑠𝜎̅ = 𝑞0𝜀̅ + 𝑞1𝑠𝜀 ̅ (5.4) 

  If we consider the application of a step strain ε(t) = 𝜀0𝐻(𝑡) to the model, and corresponds to the 

relaxation response of the materials the resulting stress in the s domain is: 

𝜎̅(𝑠) =
𝜀0
𝑠
(
𝑞0 + 𝑞1𝑠

1 + 𝑝1𝑠
) (5.5) 

  The creep response can be written as: 

𝜎(𝑡) = 𝐸(𝑡)𝜀0 (5.6) 
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  and the inverse of the Laplace Transform of equation (5.5), produces the relaxation function: 

𝐸(𝑡) = 𝐸∞ + 𝐸1𝑒𝑥𝑝 (
−𝑡

(𝜂1 𝐸1⁄ )⁄ ) (5.7) 

  If an elastic element in parellel with n Maxwell elements, the relaxation function can be expressed 

as an n-term Prony series: 

𝐸(𝑡) = 𝐸∞ +∑𝐸𝑖𝑒
(−

𝑡
𝜆𝑖
)

𝑛

𝑖=1

 (5.8) 

where, 𝐸∞ is the equilibrium modulus, 𝐸𝑖 are relaxation modulus and 𝜆𝑖 (𝜆𝑖 = 𝜂𝑖 𝐸𝑖⁄ ) are relaxation 

times . The Wiechert model (5.8) will be used to compare different viscoelastic characterization methods 

at the end of this chapter. 

5.1.2 Merchant Model 

  

Fig. 5.3 One Dimensional Merchant Model with One Kelvin Element 

  An elastic spring, in series with a Kelvin element, is called the Merchant model. The constitutive 

equation of the Merchant model is (5.1). The p and q terms in equation (5.1) are related to the 

elastic constants (E0,E1)  and the viscosity term (η1) in the Merchant model. 

E1 

E
0
 

η
1
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𝑝1 =
𝜂1

𝐸0 + 𝐸1
,    𝑞0 =

𝐸0𝐸1
𝐸0 + 𝐸1

,    𝑞1 =
𝐸0𝜂1
𝐸0 + 𝐸1

 (5.9) 

  Using the Laplace Transform to convert the constitutive equation into (5.4). 

  If we consider the application of a step stress σ(t) = 𝜎0𝐻(𝑡) to the model, and corresponds to the 

creep response of the materials the resulting strain in the s domain is: 

𝜀(̅𝑠) =
𝜎0
𝑠
(
1 + 𝑝1𝑠

𝑞0 + 𝑞1𝑠
) (5.10) 

  The creep response can be written as: 

𝜀(𝑡) = 𝐽(𝑡)𝜎0 (5.11) 

  and the inverse of the Laplace Transform of equation (5.10), produces the creep function: 

𝐽(𝑡) =
1

𝐸0
+
1

𝐸1
(1 − 𝑒𝑥𝑝 (−𝑡 (𝜂1 𝐸1⁄ )⁄ )) (5.12) 

  If an elastic element in series with n Kelvin elements, the creep function can be expressed as an 

n-term Prony series: 

𝐽(𝑡) = 𝐽0 +∑𝐽𝑖 (1 − exp(
−𝑡

𝜏𝑖⁄ ))

𝑛

𝑖=1

 (5.13) 

where, 𝐽0 = 1 𝐸0⁄  is the inverse of instantaneous elastic modulus, 𝐽𝑖 are the creep compliances and 

𝜏𝑖 = 𝜂𝑖 𝐸𝑖⁄  are the retardation times. Compared with Burger’s model (a Maxwell element in series 

with Kelvin elements), the equilibrium modulus (when time t is infinity) is not zero, which is 

necessary for solid materials. In this thesis, the Merchant model is used for creep function 

expression unless stated otherwise. 
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5.1.3 Time-Temperature Superposition Method 

 

  When viscoelastic data measured at a temperature different from the reference temperature is 

plotted as a function of frequency or time in double logarithmic scale, the horizontal and vertical 

shifts of the data to those at the reference temperature give a single superposed curve called the 

master curve. This superposition of viscoelastic data is called the principle of time-temperature 

superposition (TTS) [39]. The superposition principle is based upon the premise that the processes 

involved in molecular relaxation or rearrangements occur at greater rates at higher temperatures.  

  A master curve of the modulus at a chosen reference temperature corresponds to a curve of the 

values of the modulus for the full range of frequencies developed from the modulus values 

measured at a various temperatures based on the shift factor. The purpose of determining shift 

factors is to build a smooth master curve that allows the modulus to be estimated for various 

temperature and time. Master curves are made to fit by shifting curves along the time axis. We 

estimated the horizontal shift factor from the log time chart. 

   The storage modulus E’ data acquired at 20°C and 30°C (Fig. 5.4) will be used as an example to 

discuss the determination of the shift factor. At 20°C, when the frequency is 0.292 Hz the modulus 

E’ is 235MPa, which is similar to the value when f is 6.309 Hz at 30°C. Equation (5.9) will be used 

to express the superposition process: 

𝐸′(𝜔, 𝑇) = 𝐸𝑇0
′ (𝜔𝑟 , 𝑇0) = 𝐸𝑇0

′ (𝜔𝑎𝑇 , 𝑇0) (5.14) 

Where 𝐸′(𝜔, 𝑇) is the storage modulus at temperature T and angular frequency  ω, and 𝐸𝑇0
′ (𝜔𝑎𝑇) 

is the storage modulus at reference temperature 𝑇0transferred from temperature T, due to the shift 

of 𝑎𝑇 from x.  In Fig. 5.5, shift factor 𝑎𝑇 = 𝐿𝑜𝑔(𝜔𝑟 𝜔⁄ ) = 𝐿𝑜𝑔(0.292 6.309⁄ ) = −1.4. 
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Fig. 5.4 Storage Modulus at Temperature 20°C and 30°C 

 

Fig. 5.5 Storage Modulus at Reference Temperature 20°C 

5.2 Viscoelastic Characterization 

  At the beginning we used a Differential Scanning Calorimeter (DSC) instrument to determine the 

glass transition and melting temperatures. From the DSC test, we did not see obvious glass 

transition effect or melting effect between -40°C to 90°C. This determined the range of temperature 

for all the tests in this section. 
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5.2.1 Ordinary Lab Creep Test 

  Before conducting the creep test, the Instron machine was used to conduct the elastic tensile test 

for the LDPE. Samples were cut into strips one inch wide and at least 12 inches in length (10 inches 

for the test). For these tests, a strain rate of 1in/in/min was prescribed. All tests were conducted at 

ambient temperature of approximately 70°F. The average LDPE modulus from 2 tests is 22,200psi 

from data in Fig. 5.6. 

 

Fig. 5.6 Instron Test Results of LDPE 

 

Fig. 5.7 WHRC Lab Creep Test Set Up 
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  When a constant stress is applied to a viscoelastic specimen, the strain increases with time, a 

phenomenon called creep. An experimental setup to measure creep is shown in Fig.5.7. 

Displacements are measured via the digital sensors, and thus continuous data acquisition is 

available. For these experiments, 4 inches wide strips of 0.02inch thickness LDPE specimen 

approximately 90 inches in length were prepared. The cross-section area of LDPE is about Ae =

2 ∗ (4")(. 02"). These creep tests were conducted at 15, 25, 35 lbs. (tensile stresses of 93.75, 

156.25, 218.75 psi) at 70°F for a period of 7 days. There are dynamic effects when the dead weights 

are placed and thus we have to subtract the initial data. Test procedures are as follows: 

(1) The intent is to subject the 3 web samples to different loads (15, 25,35lbs) and hence stresses at 

the same time. 

(2) The loads are applied with dead weights which rest on stands until we are ready to begin the 

test.  

(3) The stands are retracted and the webs now support the dead weights. Displacement transducers 

capture the displacement of each web sample due to the unique stress applied. 

(4) The displacements are recorded through time and are used to calculate the strains values 

according to time, then building the creep curve. 

(5) The Excel solver routine (GRG nonlinear method) is used to determine the J and τ coefficients 

in equation (5.13) which best fit the test creep data through time. The creep function is then known. 

  Fig. 5.8 displays the test data from the displacement sensors after removing the beginning dynamic 

effects. 
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Fig. 5.8 Increase of Creep Displacement with Time 

  If the displacement is divided by the length of specimen and the stress, the difference among 

different load is small in Fig. 5.9. This means that the LDPE can be considered as linear viscoelastic 

material. 

 

Fig. 5.9 Normalized Strain with Time 

  A Merchant model was fitted to the normalized creep experiment data. Creep function is expressed 

as equation (5.13).We used the Solver in Excel to calculate the coefficients for the creep function 
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that best fit the test data. It was found that 3 Prony terms were sufficient. The 3 terms Prony series 

for the LDPE creep function from 7 days of testing is shown in Table 5.1: 

Table 5.1 3 Terms Creep Function for LDPE at 70°F 

𝐽0(1/psi) 𝐽1(1/psi) 𝜏1(s) 𝐽2(1/psi) 𝜏2(s) 𝐽3(1/psi) 𝜏3(s) 

1/22,200 1.467e-05 13 5.376e-06 1445 7.913e-06 100,512 

 

  The creep terms and retardation times are determined automatically using solver. In some case, 

the retardation times had to be estimated manually firstly to provide a good starting point. Creep 

function from Table 5.1 compares well with test data in Fig. 5.10. 

 

Fig. 5.10 Measured Creep Function for LDPE at 35lbs 

  Similar creep test was conducted at an elevated temperature 110°F in Table 5.2. 

Table 5.2 4 Terms Creep Function for LDPE at 110°F  

𝐽0(1/psi) 𝐽1(1/psi) 𝜏1(s) 𝐽2(1/psi) 𝜏2(s) 𝐽3(1/psi) 𝜏3(s) 𝐽4(1/psi) 𝜏4(s) 

1/22,200 1.40e-05 1E03 1.19E-05 1E04 1.87E-05 1E05 1.32E-05 1E06 
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5.2.2 Creep Master Curve 

  The principle of time-temperature superposition extends the range of frequencies (DMA) or times 

(creep, relaxation) of viscoelastic properties. The master curve may be used to predict material 

behavior that has not been actually measured. A constant stress is applied to the specimen very 

quickly (about 0.2s) and then the strain is measured through time. Results from various 

temperatures are utilized to build the master curve to analyze the creep property of the web 

materials over long time periods. In this case we will use the RSA G2 TA Instruments machine to 

measure creep data through time at various test temperatures. We estimated the horizontal shift 

factor from the log time chart, and then adjusted it in an effort to obtain a smooth curve. A standard 

creep curve usually exhibit three regions, primary creep, secondary creep and tertiary creep. 

Secondary creep region is a linear part which should be used to build the master curve. 

Superposition and shifting is generally limited to the steady-state regime of the creep phenomenon. 

The dimension of specimen is length 1.6in*width 0.2in*thickness 0.0211in. Detailed procedure is 

as follows: 

1 Stress Control (PID) TA machines does this automatically. 

2 Axial Stress Set Up. Specimen is prevented from buckling with temperature changes and the 

stress cannot be too large. This procedure is not necessary if we preheat the specimen in the 

chamber before the test. 

3 Step Creep (Temperature, Duration, Stress, and Data Acquisition): The test duration should be 

sufficient to determine the shift factor for different temperatures. 1Mpa is applied for all tests. 

4 Temperature Set Up for the Next Specimen: Duration of each temperature is 10mins (600s) in 

this test. The temperature we chose: 23, 27.5, 30, 32.5, 35, 37.5, 40, 43, 45, 47.5, 50, 52.5, 55 °C. 
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Fig. 5.11 Blade Holder for the Specimen Fig. 5.12 Creep Master Test at Room Tem 

  We used a blade holder to improve the accuracy for cutting specimens. This produced greater 

repeatability in the results. Prior to each test, we put the specimen into the clamps but did not tighten 

them. Then we increased the temperature to allow thermal expansion before the creep test. The 

creep and time data recorded are shown in Fig. 5.13.The beginning part has been removed (about 

the first 10s for this test). Now, we used 23°C as the reference temperature. Master curve is as 

plotted in Fig. 5.14 through shift factor in Table 5.3. 

Table 5.3 Creep Master Curve Shift Factors for Reference T 23°C  

T 27.5°C 30°C 32.5°C 35°C 37.5°C 40°C 43°C 

𝑎𝑇 0.6 1.4 1.7 2.7 3.0 3.1 4.4 

T 45°C 47.5°C 50°C 52.5°C 55°C 57°C Ref 23°C 

𝑎𝑇 4.7 5.1 5.7 6.2 7.1 7.9 0 
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Fig. 5.13 Creep Master Curve Test Results at 1Mpa (145psi) 

 

Fig. 5.14 Creep Master Curve for LDPE at Reference Temperature 23°C (1Mpa) 

  From Fig. 5.14, the beginning part (less than 0.01s) is close to 0 due to the accuracy of test. The 

realistic process of applying load to the specimen is a gradual process rather than a step stress. 
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5.2.3 Relaxation Master Curve 

 

Fig. 5.15 Relaxation Master Curve for LDPE at Reference Temperature 23°C (1% strain) 

  Xin Chen, a student from WHRC lab performed relaxation tests on the same LDPE web material. 

We include these tests here for comparison with the creep tests. RSA G2 TA Instrument machine 

is used to measure relaxation data through time at various test temperatures. The dimension of the 

specimen is length 1.97in*width 0.53in*thickness 0.0211in. 

1 Step Relaxation: 1% strain is applied for all tests. 

2 Temperature Set Up for the Next Specimen: Duration of each temperature is 30mins (1800s) in 

this test and the temperature we chose 23, 30, 40, 45, 50, 60°C. 

Table 5.4 Relaxation Master Curve Shift Factors for Reference T 23°C  

T 30°C 40°C 45°C 50°C 60°C 

𝑎𝑇 1 5 5.4 8.5 13.5 
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5.2.4 DMA Master Curve 

 

Fig. 5.16 Storage Modulus Results from DMA Test at Different Temperatures 

  Any progress that would allow us to decrease the time required to provide input to a model makes 

those models more usable and useful. Fast and accurate viscoelastic property measurement is 

needed for curl and winding viscoelastic models. Dynamic Mechanical Analysis could be a useful 

method for our application. The dynamic mechanical analysis involves subjecting a specimen to a 

sinusoidal strain through time t of the form: 

𝜀(𝑡) = 𝜀0sin (𝜔𝑡) (5.15) 

where 𝜀(𝑡) is the strain at time t, 𝜀0 is the maximum strain, 𝜔 is the frequency of oscillation. 
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  If the material is viscoelastic linear, this results in a stress that is also sinusoidal in time, but the 

stress will lag the strain by a phase angle δ in expression (5.16): 

𝜎(𝑡) = 𝜎0sin (𝜔𝑡 + 𝛿) (5.16) 

  The complex modulus is treated as a complex number: 

𝜎

𝜀
= 𝐸′ + 𝑖𝐸′′ (5.17) 

  Where 𝐸′ is the storage modulus, which is for the elastic response (spring nature), and 𝐸′′ is the 

loss modulus which is the dashpot part for viscous behavior. 

  The storage and loss modulus cannot be used in our research directly. We must convert them into 

relaxation functions or creep functions. The relaxation function can be expressed as a discrete set 

of exponential decays (5.8).  Equations (5.18) and (5.19) are the relationships between relaxation 

modulus and storage or loss modulus (𝜆𝑖 are the relaxation times in Wiechert model). 

𝐸′(𝜔) = 𝐸∞ +∑ 𝐸𝑖
(𝜔𝜆𝑖)

2

1 + (𝜔𝜆𝑖)
2

𝑁

𝑖=1
 (5.18) 

𝐸′′(𝜔) =∑ 𝐸𝑖
𝜔𝜆𝑖

1 + (𝜔𝜆𝑖)
2

𝑁

𝑖=1
 

(5.19) 

  Through DMA frequency sweep tests, we can obtain 𝐸′(𝜔) and 𝐸′′(𝜔). In equations (5.18) and 

(5.19), 𝐸∞, N, 𝜆𝑖  and 𝐸𝑖  are the unknown. From frequency sweep tests on the DMA, equations 

(5.18) and (5.19) are become a set of nonlinear statically indeterminate equations. After 𝐸∞ and all 

of 𝐸𝑖  are obtained, the relaxation function can be expressed as equation (5.8).Many previous 

researches focus on the method about the conversion from the dynamic modulus to relaxation 

function [32][33][34]. 
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  Dimensions of these specimens were: length 1.6in*width 0.2in*thickness 0.0211in. The thickness 

was the average of several measurements. The range of frequency was set from 0.1Hz to 40Hz 

(0.63 to 251rad/s), and 23 temperatures were tested between -40°C to 90°C. Both storage and loss 

modulus test were recorded. Only the storage modulus data was utilized to obtain the master curve 

since the loss modulus measurement was not as stable as the storage modulus. Increasing the 

temperature decreases the viscosity and thus it can be shifted to express the storage modulus at low 

frequency. Low temperatures are used to obtain the modulus at high frequency. Fig. 5.16 is the 

frequency sweep storage modulus data. 

Table 5.5 DMA Shift Factors for Reference T 20°C  

T -40°C -30°C -20°C -10°C 0°C 10°C 20°C 

𝑎𝑇 11.5 9.3 7 4.8 3.0 1.4 0 

30°C 40°C 45°C 50°C 52°C 54°C 56°C 58°C 

-1.7 -2.4 -2.9 -3.4 -3.6 -3.8 -4.05 -4.3 

60°C 62°C 64°C 66°C 68°C 70°C 80°C 90°C 

-4.6 -4.9 -5.25 -5.65 -6.1 -6.6 -10 -13 

 

  Fig. 5.17 is the DMA master curve at the reference temperature 20°C based on shift factors from 

Table 5.5. 
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Fig. 5.17 DMA Master Curve at Reference Temperature 20°C 

5.2.5 Comparison of the Different Methods 

  Wiechert model (General Maxwell Model) is used in this section and thus the relaxation function 

is shown in equation (5.8). The purpose of this section is to fit different test results into the Wiechert 

model to compare them. A numerical method is conducted in this section to evaluate the creep 

response of the model: 

  From viscoelastic constitutive relations: 

𝜎(𝑡) = 𝐸∞𝜀(𝑡) +∑𝐸𝑖

𝑛

𝑖=1

∫ 𝑒𝑥𝑝 (
(−𝑡 + 𝑠)

𝜏𝑖
⁄ ) 𝜀̇(𝑠)𝑑𝑠

𝑡

0

 (5.20) 

𝜎(𝑡 + 𝛥𝑡) = 𝐸∞𝜀(𝑡 + 𝛥𝑡) +∑𝐸𝑖

𝑛

𝑖=1

∫ 𝑒𝑥𝑝 (
(−(𝑡 + 𝛥𝑡) + 𝑠)

𝜏𝑖
⁄ ) 𝜀̇(𝑠)𝑑𝑠

𝑡+𝛥𝑡

0

 
(5.21) 

where, 
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ℎ𝑖
𝑡 = 𝐸𝑖∫ 𝑒𝑥𝑝 (

(−𝑡 + 𝑠)
𝜏𝑖
⁄ ) 𝜀̇(𝑠)𝑑𝑠

𝑡

0

 (5.22) 

  The integration part is divided into (0,t) and (𝑡, 𝑡 +𝛥𝑡)), and midpoint approximation is used to 

simplify the (𝑡, 𝑡 +𝛥𝑡)) part: 

𝜎(𝑡 + 𝛥𝑡) = 𝐸∞𝜀(𝑡 + 𝛥𝑡) +∑[ℎ𝑖
𝑡𝑒
−𝛥𝑡

𝜏𝑖⁄ + 𝐸𝑖𝑒
−𝛥𝑡

2𝜏𝑖
⁄ (𝜀(𝑡 + 𝛥𝑡) − 𝜀(𝑡))]

𝑛

𝑖=1

 (5.23) 

  Reorganize equation (5.23): 

(𝐸∞ +∑𝐸𝑖

𝑛

𝑖=1

𝑒
−𝛥𝑡

2𝜏𝑖
⁄ )  𝜀(𝑡 + 𝛥𝑡) = 𝜎(𝑡 + 𝛥𝑡) +∑𝐸𝑖

𝑛

𝑖=1

𝑒
−𝛥𝑡

2𝜏𝑖
⁄  𝜀(𝑡) −∑ℎ𝑖

𝑡𝑒
−𝛥𝑡

𝜏𝑖⁄

𝑛

𝑖=1

 (5.24) 

  Equation (5.25) is the final recursive formula: 

𝜀(𝑡 + 𝛥𝑡) =
1

𝐸∞ + ∑ 𝐸𝑖
𝑛
𝑖=1 𝑒

−𝛥𝑡
2𝜏𝑖
⁄

(𝜎(𝑡 + 𝛥𝑡) +∑𝐸𝑖

𝑛

𝑖=1

𝑒
−𝛥𝑡

2𝜏𝑖
⁄  𝜀(𝑡) −∑ℎ𝑖

𝑡𝑒
−𝛥𝑡

𝜏𝑖⁄

𝑛

𝑖=1

) (5.25) 

  When the Wiechert  model is known, or from initial guess, equation (5.25) is applied in creep test 

to calculate the estimated strain, which is used to compare with creep test results. All the relaxation 

time terms are chosen the optimization determines the moduli to fit the data. 

  Fig.5.18 is the Wiechert model for creep test from section 5.2.1 based on equation (5.25) (Values 

of E and λ will be in appendix). Since the WHRC lab creep test is only 7-day test, the number of 

term is fewer than other methods.  
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Fig. 5.18 Wiechert Model for Lab Creep Test 

 

Fig. 5.19 Wiechert Model for Creep Master Curve Test 

  Fig.5.19 is the Wiechert model for creep master curve test from section 5.2.2 (Values of E and λ 

will be in appendix). 
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Fig. 5.20 Wiechert Model for Relaxation Master Curve Test 

  Fig.5.20 is the Wiechert model for relaxation test from section 5.2.3 (Values of E and λ will be in 

appendix). 

  Equation (5.18) is used to characterize the relationship between storage modulus and Wiechert 

modulus.  

 

Fig. 5.21 Wiechert Model for DMA Test 

  We can compare all the methods we used to characterize the viscoelasticity property of LDPE. 
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Fig. 5.22 Moduli vs Relaxation Time 

 

Fig. 5.23 Comparison all Characterization Methods in Creep Test   
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  Fig.5.22 compare the moduli values for all relaxation times. Fig.5.23 represents the resulting creep 

curve for each model in the condition of the WHRC creep test. In the time domain from 10 to 

100,000 seconds, there is reasonable agreement for all the methods except the DMA method. The 

DMA method shows a much faster relaxation, compared with other methods. Experimental errors 

might be partly responsible, but the difference in the results remains mostly unexplained. 

  Performing creep or relaxation tests in the smaller TA Instrument machines combined with time-

temperature superposition method required less than 3 hours.  Finally it required half a day to obtain 

the storage modulus data from the DMA method. The advantage of TTS method is obvious. Both 

creep and relaxation master curves are able to characterize viscoelastic property of LDPE for more 

than 1010 seconds (hundreds of years) storage time, while the time cost of the test is less than half 

a day. In addition, the master curve captured the beginning of the creep or relaxation effect, which 

cannot be obtained from WHRC creep test due to the dynamic effect of the set up. The main error 

in master curve tests might be due to the thermal expansion, which leads to an overestimation of 

the creep strain. 

  The advantage of WHRC lab creep test is its simplicity of operator. The experimental fault 

tolerance of the method is high, while the accuracy might not be reliable enough if faster creep 

happens at the beginning. Both relaxation master curve results and WHRC creep test will be used 

in next chapter for curl analysis. From equation (5.21), stress at a certain rate can be calculated, and 

thus stress strain relationship for strain rate is shown in Fig. 5.24 based on the relaxation master 

curve in Fig. 5.20: 
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Fig. 5.24 Stress-Strain Relationship at Different Strain Rate 

  If the strain rate is 1in/in/min and the final strain is 0.025, which is the same as we did Instron 

test in section 5.2.1, the instantaneous Young’s modulus is about 19,100psi, compared with 

22,200 psi from Instron test. 
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CHAPTER VI 
 

 

MACHINE DIRECTION CURL ANALYSIS 

 

    Curl for a single layer web due to viscoelastic behavior is similar to the bending recovery 

described in chapter 2. If the single layer is wound into a roll, the curl behavior can become more 

complex. The membrane and tangential stresses vary with radius in a wound roll. There are also 

tangential stresses due to bending a web to the spiral shape it assume in a wound roll. It is hard to 

find a way to consider both the orthotropic viscoelastic behavior and the boundary between tensile 

and compressive stresses which may affect creep through the depth of a layer. For a laminate, the 

curl problem becomes more complex. There are several reasons that laminate can become a curled 

web, but the main reason is strain mismatch during lamination or one sided surface treatments. 

Near the core of a wound roll, where the radius of a stored layer may approach that of the core curl 

is common because of the influence of creep due to bending strains inside the roll. Curl can also 

occur in laminates because of the imperfect bonding conditions between two layers. 

  I have found that Abaqus can analyze the curl problem. The web can be partitioned to consider 

the dissimilar relaxation process in the tensile and compressive stress zones of the web in Abaqus, 

if the tensile and compressive creep behaviors differ. 

  Qualls developed a viscoelastic winding model [30] can predict the change of radial pressure and 

tangential stress for different storage times. Based on this model, a new version of Winder 6.3 was 

developed to predict curl. When a constant strain is applied to a flat web, the stress decreases. 
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as the storage time increases. At unloading, a residual viscoelastic stress cannot disappear instantly 

Viscoelastic webs would into rolls will exhibit bending recovery and curl defect when unwound. 

6.1 Curl Analysis of Single Layer Homogeneous Viscoelastic Webs 

6.1.1 Curl Analysis of Homogenous Webs Wound into Rolls 

  The simplest curl calculations for webs wound into rolls would result from ignoring the effects of 

winding membrane residual stresses entirely. After a period of time 𝑡𝑟 in storage process the web 

would be unwound and the curl radius ρ of unstressed web would be measured. Curl radius of 

bending recovery would be calculated using either expression (2.28) or (2.29) and knowledge of 

the radius r at which the layer was wound into the roll. 

𝐵𝑅1 =
1

2
[1 −

𝐸𝑡𝑒𝑛(𝑡𝑟)

𝐸0
] (6.1) 

𝐵𝑅2 = [1 −
𝐸𝑡𝑒𝑛(𝑡𝑟)

𝐸0
] (6.2) 

  Mollamahmutoglu’s converting routine in section 5.1.2 is used here to covert the creep function 

from Table 5.2 (WHRC lab creep test) into the relaxation function (6.3): 

𝐸(𝑡) = 13697 + 6842 ∗ 𝑒
−𝑡

1325⁄ + 1661 ∗ 𝑒
−𝑡

89630⁄  (6.3) 

  From equation (6.3), the relaxation modulus exponentially decreases as the storage time increases. 

Substitute (6.3) into (6.1) and (6.2), relation between BR and storage time is shown as in Fig. 6.1. 
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Fig. 6.1 Bending Recovery Values versus Storage Time 

6.1.2 An Abaqus Model for MD Curl Analysis 

6.1.2.1 Viscoelastic Input for Abaqus 

  Abaqus/CAE allows the user to input isotropic viscoelastic parameters from either experimental 

test data or Prony coefficients. Abaqus uses relaxation parameters, which can be input one of four 

ways: direct specification of the Prony series parameters, inclusion of creep test data, inclusion of 

relaxation test data, or inclusion of frequency-dependent DMA data obtained from sinusoidal 

oscillation experiments. Direct Prony creep terms can be used as direct input to Abaqus but the 

parameters from a pure shear creep test must be input. Shear creep tests are not easily conducted 

on thin web materials in the lab. For test input, there are two types of domain: time domain and 

frequency domain. Shear and volumetric tests are the only two inputs allowed in time domain, 

while dynamic mechanical analysis (DMA) test results are input in frequency domain.  

  Uniaxial creep tests in tension are convenient in the laboratory. It is necessary to transform this 

data to parameters that can be input in Abaqus. In Abaqus, if we want to use shear creep test data, 

two inputs are needed: the normalized shear compliance 𝑗𝑠(𝑡) and the relaxation time τ. 
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𝑗𝑠(𝑡) = 𝐺0𝐽𝑠(𝑡) (6.4) 

Where, 𝐽𝑠(𝑡) is the shear compliance, 𝐺0 is the shear modulus at the initial time t=0. Based on the 

relationship G=E/(2(1+ν)), Young’s modulus relates an elastic stress to an elastic strain.  

  In this research, creep function from Fig. 5.2 (two terms Prony series) is used to simulate in 

Abaqus model later, and the input in the Abaqus model is in Table 6.1: 

Table 6.1 Shear Creep Test Inputs for Abaqus 

Linear, Isotropic, Prony Series Definition 

I G(I) K(I) TAU(I) 

1 0.308 0.308 1325s 

2 0.075 0.075 89,630s 

 

  Besides the creep test data, DMA test results can be used as direct viscoelastic inputs in Abaqus 

as in Fig. 6.2.  

 

Fig. 6.2 DMA Direct Input in Abaqus 
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6.1.2.2 Isotropic Viscoelastic Abaqus Model for Isotropic Relaxation Behavior 

 

Fig. 6.3.a Abaqus Model for Curl Analysis before Winding 

 

Fig. 6.3.b Abaqus Model for Curl Analysis after Winding 

  Fig. 6.3.a and b are the Abaqus models before and after winding step. 

  The purpose of this section is to demonstrate MD curl can be simulated using Abaqus. Simulation 

results will be used to compare with results of other models in later sections.  

  We simulated an LDPE 6 inches in width and 0.02 inches in thickness. The core is an analytical 

surface whose outside radius is 0.5 inches. The web is given isotropic elastic properties with 
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Young’s modulus of 22,200psi and Poisson’s ratio of 0.3. Both of the elastic and the viscoelastic 

property input come from Table 5.1. The web material is viscoelastic for every step in this 

simulation. Since the minimum relaxation time is1325s from input data, while the winding time is 

less than 10s, the winding process is still similar to the elastic state. 

Table 6.2 Step Description of Curl Simulation 

Step Name Time  Step Content 

Pretension 1 (s) 800 psi tension is applied to the right surface of web 

Winding 1.25 (s) 1 lap of web are wound on the core 

Storage 1 (day) or 3 (day) 2 different storage times are set up 

Unwinding 1.25 (s) Opposite rotation of the winding process 

Release Tension 1 (s) Winding tension was released very quickly 

Final State 100 (s) Eliminate dynamic effect 

 

  In the final state, the deformed coordinates (at 1s of final state) of the web are used to determine 

the amplitude of the curl. Fig. 6.4 shows the final deformed state of the web stored for 1 day, 

unwound and released. The deformed coordinates of each node were probed along the MD 

direction. Three consecutive nodes were used to define an arc and compute the arc radius. Inverting 

the radius of the arc yields the curvature of the center node. The curvature divided by the radius of 

the core is used to evaluate the bending recovery. 

 

Fig. 6.4 Final State of Web for 1day Storage Time after Unwinding and Tension Release 
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Fig. 6.5.a Theory of BR and Abaqus Results 1Day Storage 

 

Fig. 6.5.b Theory of BR and Abaqus Results 3Days Storage  

  From Fig 6.5a and b, it is not hard to imagine that viscoelastic effects will be significant when the 

storage time is long. During the storage process, the web is forced to the shape of the core, and the 

stress through the web depth will relax. With more time for the bending stress to relax in storage, 

more curl will result. After about 2 days the result did not change, because the largest time constant 

in the creep function we used was 89,630 seconds or 1.05 days. Additional creep or changes in 
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bending recovery would not be predicted by the model. The constant values of curl radius might 

oscillate are due to influence of core and the step in winding radius that results where the second 

layer overlaps the start of the first layer. The relaxation modulus function input (6.3) was assumed 

to be applicable for tensile and compressive stresses and strains. As we expected, the Abaqus results 

are close to BR2 given by expression (6.2) and shown in Fig. 6.1. The Abaqus results compare with 

theory well. 

6.1.2.3 Consideration for Dissimilar Relaxation Behavior 

  Matsuoka points that there is difference between the stress-relaxation in tension and in 

compression [24]. Greener suggests that compressive stresses will relax at a substantially slower 

rate than tensile stresses for many materials. We discussed this in the literature review, and it is 

contended that the linear-viscoelastic response of a sample in uniaxial compression could be treated 

by shifting the relaxation in tension by a constant shift factor. This provided a method to model this 

in Abaqus. A layer is divided into two parts, each part has 1/2 the thickness of the web. Each portion 

of the web was given the same elastic parameters but different relaxation times. 

  The cases for curl in the literature are for pure bending. The web would be subject to tensile stress 

above the neutral plane and compressive stress below as shown Fig. 6.6. In this case we can divide 

the web into 2 equal thickness portions with different relaxation properties. 

  The winding problem is not pure bending. We apply torque either through the core or a nip roll or 

both to wind the roll. This induces the web tension (T) in the winder tension zone. As the web 

approaches the winder it has only tensile stress (Tw) due to web tension. As the web becomes the 

outer layer of the winding roll it will assume the radius of curvature (R) of the layer beneath. Now 

there are bending strains and stresses in addition to the tensile stresses that were due to web tension. 

There may be no compressive MD stress in the web or there may be a small zone (<t/2) of 

compressive stress near the bottom of the web. 
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(a) Pure Bending (b) Tensile 

Fig. 6.6 Stress in Pure Bending and Tensile State 

  For dissimilar relaxation processes, relaxation times for compressive state of web are assumed a 

large number, whose coefficients are determined by the material. 

 

Fig. 6.7 Tangential Stress after Winding Process through the Radius 

  Use of winding models shows that the membrane tangential stress in a wound roll varies with 

radius as shown in Fig. 6.7. The interior of the roll has small tangential stress and thus during 

storage, most of the interior web is influenced by bending stress only, except the innermost and 

outermost layers of web. The dissimilar relaxation process may affect the curl in the interior of the 

roll. The low tangent stress in this region will assure compressive stresses due to bending and thus 

dissimilar relaxation, if dissimilar relaxation exists. If the web stress is tensile throughout the 
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thickness, the dissimilar relaxation consideration will increase the curl rather than reduce the curl 

in Abaqus results. 

6.2 Curl Simulation Using Viscoelastic Winding Models 

  Qualls [30] development of a viscoelastic winding model demonstrated that state dependent 

orthotropic elastic material characterization was necessary during the winding phase of his solution. 

He also demonstrated that orthotropic creep compliance characterization was necessary for the 

storage phase of his solution. Ren et al., [6] demonstrated how the state dependent orthotropic 

elastic properties in winding simulations could be addressed with VUMAT and UMAT subroutines 

for Abaqus Explicit and standard Implicit simulations. It may be possible to model orthotropic 

creep behaviors using the VUMAT and UMAT subroutines. However, the exits to subroutines to 

update properties are very time consuming and several computational hours are required to simulate 

the winding of a few layers. 

  Based on existing winding model 6.3, a new version of the existing viscoelastic winding model 

has been developed to calculate the radius of curl at a certain radius after winding based on bending 

recovery theory. 
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6.2.1 Bending Recovery Theory to Develop Winder 6.3 

 

Fig. 6.8 Flow Chart of Curl Analysis in Winder 6.3 

  Winder 6.3 requires creep function viscoelastic inputs for the web material. The conversion 

between creep functions and relaxation functions was discussed in Appendix B. Details of the 

conversion procedure come from Mollamahmutoglu et al. [31]. 

  To calculate the curl radius, we return to equations (6.1) and (6.2) again. We do not want to 

consider differential relaxation firstly. 

𝜌(𝑟) = 𝑟/𝐵𝑅2 = 𝑟/ [1 −
𝐸𝑡𝑒𝑛(𝑡𝑟)

𝐸0
] (6.5) 

where 𝜌(𝑟) means the radius of curvature at the radius of r.  

Input for Curl Analysis 

Run Winding Model 

Run Viscoelastic Model 

Convert Creep Function 
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Calculation 

Results 
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  𝐸0 is the initial Young’s modulus, which means that the Young’s modulus when the time is 0. We 

used the instantaneous MD Young’s modulus to represent this. . 𝐸𝑡𝑒𝑛(𝑡𝑟) is the relaxation modulus 

that we can converting the creep functions input to Winder 6.3. In Winder 6.3, the radius of each 

layer is known and the state dependent radial modulus is considered. 

  Adjustment of dissimilar relaxation is a manual choice, because although common in web 

materials, it is not a universal phenomenon. The tangential stress is not large in the middle of roll 

for some winding situations (Fig. 6.7), which means that some part of the web is in a compressive 

state. If so, 𝐵𝑅2 might need to be replaced by 𝐵𝑅1. The difference between relaxation processes in 

tensile and compressive zones is difficult to quantify for webs, the measurement of MD creep in 

compression would require short sample lengths to prevent buckling. However, the effect may be 

assumed negligible, if the bending stress is relatively small compared with winding tension. If it is 

not, the real curl value will be smaller than the model prediction. Abaqus was used to consider this 

in section 6.1.2, but different creep functions are not easily assigned to each layer in Winder 6.3. 

An estimating method, which used a curl compensation coefficient is introduced to estimate the 

effect. 

  

(a) Tensile (b) Compressive 

Fig. 6.9 Tensile and Compressive Zone Factor 
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  In pure bending, half of the web is in the tensile zone, and the other half is in the compressive 

state. When we apply a winding tension to the web, the tensile zone stays in the tension, while part 

or all of compressive zone becomes tensile. A new factor is introduced, 𝑡𝑝 (𝑡𝑝 = 2𝑡𝑐/𝑡 ∗ 100% ) 

to express the remaining compressive zone. The range of 𝑡𝑝 is [0, 1). From the single layer bending 

recovery, when 𝑡𝑝=0(means no compressive zone), the adjust coefficient is 1(no adjust). When 𝑡𝑝 

is closed to 1(most compressive part still keep the same state), the adjust coefficient is 0.5(the curl 

is adjusted about 50%). 

  In Winder 6.3, the winding tension and the tangential stress at different radius are known values, 

thus whether the layer of web is in tensile or compressive state can be determined. It is assumed 

that the adjust coefficient is only the function of 𝑡𝑝. Linear interpolation is used to calculate the 

adjust coefficient. The final curl is the multiplication of original curl and adjust coefficient. This is 

a convenient way to consider dissimilar relaxation. 

6.2.2 Curl Simulation Verification 

6.2.2.1 Curl Test Procedure 

  The curl test procedures follow: 

 (1) The web was wound and unwound several times. In between winding and unwinding it was 

stored at 150°F for about 5 hours. The curl of innermost layer and outermost layer are measured 

until the initial curl was less than 2 on the Kappa Gauge*(mentioned at the end of section 2.1), 

which is assumed flat in our test. 

(2) The web was wound at a selected winding tension and stored for 1 day.  
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(3) Curl was measured in the outmost layer. The roll was unwound so that web sample could be 

harvested that was adjacent to the core during storage. This allowed us to measure the curl in what 

was the innermost layer in the roll during storage. 

(4) Procedure was repeated for different winding tensions. 

 
 

(a) 3M Winding Machine (b) Kappa Gauge 

Fig. 6.10 3M Winding Machine and Curl Measurement through Kappa Gauge 

6.2.2.2 Curl Test and Model Results 

  The final radius of the roll decreased after each test because of the web harvested to make the curl 

measurements from previous tests. Generally the test results compare well with model predictions. 

For the outermost layer, the web is loose due to relaxation and a small radial pressure, and thus test 

results are smaller than the theoretical value. For the innermost layer, the quality of the wound roll 

is not good since it is difficult to maintain winding tension as the winder starts. We know that 

winding tension significantly influences the radial pressure in a wound roll. Winding tension does 

not have significant influence on curl as shown by tests and modeling. The radial location of the 

layer in the wound roll will have influence on the curl. High temperature accelerates the creep 

process and therefore increases the curl. 
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  Since the first layer of web is influenced by the core splice, we usually harvest the third or fourth 

layer to measure the radius of curl as the innermost layer. For the Kappa Gauge measurement, 

100mm and 150mm samples are recommended when the curl is larger than 10(𝑚−1). In Tables 6.4 

and 6.6, model (WHRC) means that WHRC creep test is used as the input, while model (Master) 

means that relaxation master curve is as the input in Winder 6.3. 3 LDPE wound rolls are used for 

these tests. The results in the following tables refer to wound rolls 1,2 and 3. Per the procedure (see 

page 92) these rolls were conditioned to reduce any existing curl prior to these tests. The wound 

roll from which curl test were conducted is recorded here to be able to trace these results: 

Table 6.3 Geometry and Winding Tension for Curl Test (70°F) 

Test 
Wound 

Roll 
T (lb) Inner Radius (in) Outer Radius (in) 

1 1 

9 

1.75 

4.75 

2 1 4.50 

3 1 4.35 

4 1 18 4.30 

5 1 5 4.30 

 

Table 6.4 Comparison between Lab Tests and Model Results for Single-Layer Curl (70°F) 

Test 

Innermost Layer (Kappa 1/m) Outermost Layer(Kappa 1/m) 

Measured 
Model 

(WHRC) 

Model 

(Master) 
Measured 

Model 

(WHRC) 

Model 

(Master) 

1 6.5 7.77(19.5%) 9.6(47%) 2.5 2.94(17.6%) 3.56(42.4%) 

2 9.0 7.77(-13.6%) 9.6(6.7%) 3.5 3.1(-11.4%) 3.76(7.5%) 

3 8.5 7.77(-9.1%) 9.6(12.9%) 2.5 3.21(28.4%) 3.89(55.6%) 

4 8.5 7.77(-9.1%) 9.6(12.9%) 2.5 3.24(29.6%) 3.93(57.2%) 

5 9.0 7.77(-13.6%) 9.6(6.7%) 2.5 3.24(29.6%) 3.93(57.2%) 

  The real measurement cannot be instantaneous and it was conducted about 10s after removal. 

Some relaxation process may happen during the time, especially when relaxation happens 

significantly at the beginning. In Greener’s paper [22], he used Young’s modulus in tensile test at 

1in/in/min strain rate to represent E(0). In order to reduce the possible recovery that occurs before 
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the curl measurement, Young’s modulus in tensile test at 0.6in/in/min strain rate (from relaxation 

master curve) is chosen in this section to represent E(0) for the model (master curve). All he input 

for the Winder 6.3 is in Appendix C.  

  For the innermost layer, the test results agree with the model prediction with errors ranging from 

-14 to 20% for room temperature. In all tests but two the error was negative which means the model 

predicts less curl than the test produce. For the outermost layer, the curl is less as expected but the 

%errors can be larger since these are small numbers. Initial Kappa measurement less than 2 might 

be not flat enough for the outermost layer since its value is small. 

Table 6.5 Geometry and Winding Tension for Curl Test (110°F) 

Test 
Wound 

Roll 
T (lb) Inner Radius (in) Outer Radius (in) 

6 2 

9 1.75 

3 

7 2 3 

8 3 5 

9 3 5 

Table 6.6 Comparison between Lab Tests and Model Results for Single-Layer Curl (110°F) 

Test 

Innermost Layer (Kappa 1/m) Outermost layer (Kappa 1/m) 

Measured 
Model 

(WHRC) 

Model 

(Master ) 
Measured 

Model 

(WHRC) 

Model 

(Master) 

6 11 10.3(-6.3%) 17.3(57%) 3.5 6(71%) 10(>100%) 

7 11 10.3(-6.3%) 17.3(57%) 3.5 6(71%) 10(>100%) 

8 12 10.3(-14.1%) 17.3(44%) 3.5 3.6(3%) 6(71%) 

9 13 10.3(-20.8%) 17.3(33%) 3.5 3.6(3%) 6(71%) 

  Tables 6.5 and 6.6 display the set up and results at elevated temperature. The input is in Appendix 

C. From Table 5.4, shift factor is estimated at 5.2 for 110°F (43°C). The possible reason for the 

large errors from the master curve relaxation input is that the thermal expansion was not treated 

correctly when the procedures were set up. This needs to be solved in future characterization tests. 
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Review of results in Tables 6.6 and 6.4 demonstrate that storage at elevated temperature will result 

in smaller curl radius and larger curl by Kappa measurement. 

6.2.3 Laminate Viscoelastic Model  

  In section 4.5, equivalent single-layer laminate elastic winding model was introduced. For 

viscoelastic laminate, equation (4.30) can be applied in the MD and CMD directions. Since the 

radial modulus is a nonlinear state dependent term, stack test is always necessary rather than any 

estimation. We developed equation (4.30) into (6.6): 

𝐸𝑙𝑎𝑚(𝑡) =
𝐸𝐴(𝑡)ℎ𝐴 + 𝐸𝐵(𝑡)ℎ𝐵

ℎ𝐴 + ℎ𝐵
 (6.6) 

where 𝐸𝑙𝑎𝑚(𝑡)  is the equivalent relaxation function for laminate, 𝐸𝐴(𝑡)  and 𝐸𝐵(𝑡)  are the 

relaxation function for each layer, and ℎ𝐴 and ℎ𝐵 are the thickness of each layer, respectively. The 

equivalent creep function is still function of time.  𝐸𝑙𝑎𝑚(𝑡)  is also function of time, which is 

considered as the equivalent relaxation function of the laminate. Excel Solver is used to obtain the 

equivalent relaxation function. This relaxation function can be converted to creep functions, which 

is the direct input in Winder 6.3. This extension has been developed for Winder 6.3 but has not 

been verified. 

6.3 Online Measurement  

6.3.1 Anticlastic Curl Theory 

  Now assume a layer of LDPE web which can creep at room temperature and creep faster at 

elevated temperature has been stored in a cylindrical shape in a wound roll for some storage time. 

Creep occurs as a function of bending and membrane stresses and time. 
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  When this roll is unwound we would expect it to have varying levels of MD curl that we could 

measure. Samples would be cut to establish a stress free state, and then make the measurement with 

a Kappa gage. If we wished to know how the curl varied through the wound roll we would destroy 

the web by cutting many samples and making several Kappa gage measurements. 

  A web with MD curl will elastically curl in the CMD direction when unwound under tension due 

to anticlastic bending. Lab tests were conducted to quantify the relationship between MD curl and 

CMD curl. An on-line measurement instrument for monitoring the CMD curl has been developed. 

The measured CMD curl was used to estimate the MD curl that must have been present in the web 

in the wound roll. This On-line measurement method was used to verify our previous curl tests.  

  The bending moment M that would be required to make an 0.02” thick LDPE web conform to the 

shape of a .5” radius cylindrical roller would be: 

M =
D

r
=

EI

r(1 − υ2)
=

Ewh3

12r(1 − υ2)
=
22200 ∗ 4 ∗ 0.023

12 ∗ 0.5(1 − 0.32
) = .13010989in − lb (6.7) 

  Timoshenko plate theory [23] demonstrates that a moment M on web two opposite edges of a 

rectangular plate generates an anticlastic surface. The web could conform to a cylindrical surface 

only if there is a second bending moment 𝑀𝑦 which is applied on the moment 𝑀𝑦 applied to the 

other two edges of the web: 

𝑀𝑥 = 𝑀 𝑤⁄ = . 13010989 4 =⁄ . 032527𝑙𝑏 − 𝑖𝑛/𝑖𝑛 (6.8) 

𝑀𝑦 = 𝑀𝑥 ∗ 𝜐 = .032527 ∗ 0.3 = .009758𝑙𝑏 − 𝑖𝑛/𝑖𝑛 (6.9) 

𝑤 = −
𝑀𝑥

2𝐷(1 − 𝜐2)
𝑥2 +

𝜐𝑀𝑥
2𝐷(1 − 𝜐2)

𝑦2 (6.10) 

  CMD bending stresses are induced by the moment My on the outer surface and inner surface of 

the web: 
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𝜎𝑦,𝐶𝑀𝐷 = ±
6𝑀𝑦

𝑡2
= ±

. 058549

0.022
= ±146𝑝𝑠𝑖 (6.11) 

   If we were to unwind this roll of material into a web line, the web tension would elastically pull 

out the curled shape of the web, however due to anticlastic bending a CMD curl will be induced 

that we intend to measure and then relate to the MD curl without destroying the web. If the web 

assumed an MD curl of radius MDR while in storage and if the MD curl was drawn flat by tension 

when unwinding then theoretically the out-of-plane deformation in the CMD would be: 

𝑤 =
𝜐𝑀𝑥

2𝐷(1 − 𝜐2)
=

𝜐

2 𝑅𝑀𝐷(1 − 𝜐
2)
𝑦2 (6.12) 

  The 2nd derivative of w is related to the CMD curl radius CMDR: 

𝜕2𝑤

𝜕𝑦2
=

𝜐

𝑅𝑀𝐷(1 − 𝜐
2)
=

1

𝑅𝐶𝑀𝐷
 (6.13) 

  Thus potentially we should be able to measure a CMD radius of curvature in the free span of: 

𝑅𝐶𝑀𝐷 = 𝑅𝑀𝐷
1 − 𝜐2

𝜐
 (6.14) 

  This is only an estimate of the radius of the CMD curl after unwinding. It is expected that out-of-

plane web constraint at rollers, web elasticity, web tension and span geometry would affect the 

measured CMD curl radius. 

6.3.2 Characterizing the Relationship between MD and CMD Curl 

  Several 18 inches specimen (LDPE) were prepared. All of the specimen are wound and then stored 

in 150°F about 2 hours to remove the initial curl once. We used the Kappa gage to measure the 

curvature (both MD and CMD) for several samples as shown in the following table: 
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Table 6.7 Initial MD and CMD Curl of Specimen 

Specimen 1 2 3 4 5 

MD Curl Kappa(in) 2.50(16) 2.00(20) 1.25(31) 4.25(9.0) 1.0(39) 

CMD Curl Kappa(in) 3.00(13) 1.00(39) 3.75(10) 5.25(7.5) 1.0(39) 

 

  It is found that the web can have curl in both the MD and the CMD directions in a stress free state. 

Some CMD curl can exist independently from MD curl and anticlastic bending. This could affect 

the accuracy of an online measurement system. 

  Keyence LK031 laser displacement sensors were used in online measurement. The sensors are 

mounted 30 mm (1.2 in) away from the undeformed web plane. The measuring range is ± 5 mm 

(+0.2 in). In the CMD direction, one sensor is targeted at the middle of the web, and the other two 

are quite symmetric at about 3.8 cm (1.5 in) away. The length of vertical test span is 18 inches. The 

relationship between MD and CMD curl was characterized by tests. 

 

Fig. 6.11 Web Path for Online Measurement Characterization 

(1) To conserve web 5 different LDPE specimens were prepared about 16 feet in length with known 

MD curl levels (the Kappa Gauge was used to measure the MD curl).  
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(2) Each web sample was then transported under tension through the test span shown on the 

previous slide. It is important to ensure the 3 Keyence laser sensors are targeted accurately in the 

CMD as shown in Fig. 6.11. When we start moving the web there will be some length of web that 

will pass before the guide system will bring the web laterally to a steady state positions (we usually 

delete the results until the web is tracking properly). 

(3)These samples were so short and thus they are manually assisted the winding and unwinding 

rolls in order to gain the target winding tension from the control panel as quickly as possible 

(3lbs,6lbs,9lbs).  

(4) The data was recorded from the 3 Keyence sensors from which I inferred the radius of CMD 

curvature. These values oscillated some and averaged values were recorded. 

(5) Every MD curl test was repeated at least 3 times. Finally, a relationship between initial MD 

curls (no tension) and CMD curl (online under tension) is obtained. 

 

Fig. 6.12 Relationship between MD and CMD Curl versus Timoshenko Theory 
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  Test data shows a linear relationship between MD and CMD Curl as the Timoshenko expression 

does. The test data demonstrates the slope between MD and CMD curl is dependent on web tension 

whereas the Timoshenko expression shows dependence only on Poisson’s ratio. For this web and 

test span the regression curve can be to infer the MD Curl in a stress free state from the CMD Curl 

with the web in tension. Expression (6.15) is the test data regression to show the relationship 

between MD and CMD curl. 

𝑅𝑀𝐷(𝑖𝑛) = [−0.174 ∗ 𝑇(𝑙𝑏) + 2.380] ∗ 𝑅𝐶𝑀𝐷(𝑖𝑛) + [0.388 ∗ 𝑇(𝑙𝑏) − 9.531] (6.15) 

 

6.3.3 Online Measurement and Winder 6.3 Curl Analysis 

  We only measured the curl of innermost layer and outermost layer in section 6.2.2. The standard 

we used is that the initial Kappa is less than 2, which we thought the whole roll should be flat 

enough through the radial direction. Online measurement method is used to verify this.  LDPE web 

rolls were still used in this online measurement test.  The outer radius of rolls is 3.5in. 

 

Fig. 6.13 Online MD Curl after Removing Initial Curl 
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  After removing the initial curl several times, online measurement from Fig. 6.13 shows that the 

initial curl is less than 2 Kappa for most of rolls, which means the whole roll is reasonably flat. 

Then the roll was stored one day at room temperature and online measurement was conducted again. 

Fig.6.14 shows that the final online MD radius through the radial direction in Kappa unit, while 

radius of curl (inch unit) shows in Fig. 6.15. 

 

Fig. 6.14 Online MD Curl after 1 Day Storage (Kappa Unit) 

 

Fig. 6.15 Online MD Curl after 1 Day Storage (Radius of Curl) 

0

2

4

6

8

10

1.75 2.25 2.75 3.25 3.75

M
D

 C
u

rl
 (

K
ap

p
a)

Radius (in)

0

5

10

15

1.75 2.25 2.75 3.25 3.75

R
ad

iu
s 

o
f 

M
D

 C
u

rl
 (

in
)

Radius (in)

Measured Raidius of Curl

Storage Radius in Wound Roll



103 
 

  The specimens of web were cut from the innermost and outermost layer also to directly measure 

the MD curl through Kappa Gauge. The results compare quite well with online measurement. 

Table 6.8 Kappa Gauge Measurement and Online Measurement 

 Direct MD Measurement Online MD Measurement 

Innermost Layer 8.0 Kappa 7.7Kappa 

Outermost layer 3.5 Kappa 3.8Kappa 

 

  Fig. 6.16 shows a comparison between the online measurement and Winder 6.3. For the outermost 

layer and innermost layer, the results compare quite well. For the middle part of the web, the error 

is about 15%. Dissimilar relaxation may happen and thus the Kappa Gauge of middle part will 

become smaller compared with the Winder 6.3 which did not consider this phenomenon. The 

influence of friction might be another reason, since the existence of slippage also reduces the Kappa 

value. 

 

Fig. 6.16 Comparison between Online Measurement and Winder 6.3 
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  Even though the web is flat enough (less than 2Kappa), the final curl is still related to the winding 

direction according or conversing to the initial curl direction, especially for the high temperature. 

Several outer layers (at least 10 layers) become quite loose after a certain storage time, since the 

radial pressure is not large enough for it. The test results always a little less than the values from 

Winder 6.3. Some possible factor influences the curl, such as the friction or dissimilar relaxation. 

  So maybe the correlation is not great all radius locations but this is the first attempt to characterize 

the curl in an entire roll of web. 
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CHAPTER VII 
 

 

CONCLUSIONS AND FUTURE WORK 

 

7.1  Findings and Conclusions 

1. An orthotropic 1D finite element plane strain winding model with Poisson effects included in 

all dimensions was developed and verified for a newsprint web. This model was extended for 

laminate webs. Laminates may or may not be strain matched when laminated. The winding 

model was validated for both cases where the web strains were matched at the laminator and 

for cases where the strains were intentionally not matched. This research was published [38]. 

2. The laminate winding model developed and repeated laminate winding test results 

demonstrate that there was no difference in the wound roll pressures based on which ply of a 

laminate faces outward. The combined membrane and bending stresses in the laminate will 

be affected by which ply faces outward. 

3. We explored multiple methods to characterize the viscoelastic properties of web. DMA, creep 

and relaxation measurements were performed and a master curve for each was compared to 

standard creep tests at room temperature. DMA method and relaxation (or creep) master curve 

methods characterized the viscoelastic properties much more quickly than laboratory creep 

tests. Currently the bending recovery is estimated using the relaxation modulus. 

Characterization directly in the form of the relaxation modulus is recommended since the 

conversion errors would be eliminated.  
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4. MD curl in winding was simulated using commercial finite element software (Abaqus). Such 

simulations are currently limited to a few wound layers and isotropic material behavior. 

WINDER 6.3 was extended to model MD curl for rolls that may have several thousand layers 

and that exhibit non-isotropic viscoelastic behavior. This code was verified for a low density 

polyethylene web. 

5. An online measurement method for MD curl was developed. The method was used to 

characterize the MD curl of an entire wound roll of LDPE film. This method has potential for 

commercial application and is a non-destructive in comparison to the destructive Kappa tests. 

7.2 Future Work  

1. Laminate curl analysis would be an interesting and meaningful topic for future research. 

Laminate webs may curl for several reasons. This curl can be an elastic response due to the 

strain mismatch during lamination or due to viscoelastic creep of one or more of the laminate 

layers. The curl could also be affected by the viscoelastic behavior of the adhesives used to 

laminate the layers. 

2. Methods to characterize the dissimilar relaxation effect for tensile and compressive states in 

thin webs should be developed. 
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APPENDICES 
 

 

APPENDIX A 

Moduli and Relaxation Times in Chapter V 

 
Table 1 Moduli and Relaxation Time in Fig. 5.18 

Moduli(MPa) 113.27 27.27 7.12 5.21 6.33 5.04 102.81 

Time(s) 1 10 50 500 5E3 5E4 Equilibrium 

 

Table 2 Moduli and Relaxation Time in Fig. 5.19 

Moduli(MPa) 95.25 54.34 37.29 11.49 9.44 10.97 6.91 

Time(s) 0.1 1 10 1E2 1E3 1E4 1E5 

Moduli(MPa) 7.55 5.47 4.92 4.01 6.01 44.41  

Time(s) 1E6 1E7 1E8 1E9 1E10 Equilibrium  

 

Table 3 Moduli and Relaxation Time in Fig. 5.20 

Moduli(MPa) 87.29 40.14 31.70 21.35 16.15 11.85 9.58 

Time(s) 0.01 0.06 0.40 2.51 15.85 102 630 

Moduli(MPa) 8.05 7.39 7.02 6.91 6.83 6.63 6.33 

Time(s) 3.98E3 2.51E4 1.58E5 1E6 6.31E6 3.98E7 2.51E8 

Moduli(MPa) 5.76 5.09 4.17 3.32 2.29 1.72 1.05 

Time(s) 1.58E9 1E10 6.31E10 3.98E11 2.51E12 1.58E13 1E14 

Moduli(MPa) 1.75 1.24 8.17 2.08    

Time(s) 6.31E14 3.98E15 2.51E16 Equilibrium    

 

Table 4 Moduli and Relaxation Time in Fig. 5.21 

Moduli(MPa) 30.98 144.78 88.00 134.45 192.48 200.09 190.64 

Time(s) 1E-13 1.25E-12 1.58E-11 2.00E-10 2.51E-9 3.16E-8 3.98E-7 

Moduli(MPa) 153.43 134.61 110.60 96.91 75.30 75.47 64.47 

Time(s) 5.01E-6 6.31E-5 7.94E-4 6.31E-3 5.01E-2 3.98E-1 3.16 

Moduli(MPa) 56.02 46.95 30.94 19.92 10.82 4.71 3.41 

Time(s) 3.16E1 3.16E2 3.16E3 3.16E4 2.00E5 1.26E6 Equilibrium 
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APPENDIX B 

Converting Routine 

  The Web Handling Research Center has developed two winding codes (Winder 6.3 and 

Maxwinder), which are widely used for winding analysis. In Winder 6.3, tangential and radial creep 

functions are the direct viscoelastic inputs. The user must input the number of Prony series terms, 

the creep coefficients and time constants that fit their creep data. In Qualls’ creep test [30], he 

measured the elastic modulus firstly through Instron machine, and then captured the displacement 

due to the creep using a separate apparatus. The creep function is as in Table 5. The instantaneous 

Young’s modulus for the LDPE is 𝐸0 = 24,000𝑝𝑠𝑖, which means that 𝐽0 =
1

24,000
/𝑝𝑠𝑖. 

  In order to simplify the problem, Qualls removed the elastic displacement from creep test, and 

thus the initial creep at t=0 is also zero. Qualls used the excel solver routine to determine the values 

of J and through curve fit and thus these are viscoelastic inputs in Table 5.  

Table 5 Qualls Creep Function for LDPE at 70°F 

𝐽0(1/psi) 𝐽1(1/psi) 𝜏1(s) 𝐽2(1/psi) 𝜏2(s) 

0 1.05E-05 581 1.62E-05 121,900 

                                                     ( 𝑱𝟎 is 0 here since the elastic part has been removed) 

  More recently, Mollamahmutoglu [31] developed an axisymmetric finite element winding code 

that allows the user to study how web thickness and length variations affect the residual stresses in 

a wound roll called Maxwinder. Internally they use the relaxation modulus to predict how time and 

temperature affect winding residual stresses and deformations. Mollamahmutoglu added a robust 

semi-analytical method and converts creep functions into relaxation functions, which allows creep 
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 function input in this FEM winding model. The similar form of relaxation function in equation (1) 

would be derived through Mollamahmutoglu’s conversion routine if creep function is Merchant 

model (5.13). 

𝐸(𝑡) = 𝐸0 +∑𝐸𝑖 (1 − exp (
−𝑡

𝜆𝑖
⁄ ))

𝑛

𝑖=1

 (1) 

  The conversion routine from Mollamahmutoglu’s paper is as follows: 

  The Laplace transform is applied for the convolution and a relation is obtained for creep 

compliance J(t) from equation (5.13) and the corresponding relaxation modulus E(t): 

𝑠2𝐽(̅𝑠)𝐸̅(𝑠) = 1 (2) 

  The Laplace transform of J(t) and E(t) can be given as (3) and (4), respectively (τ0 = λ0 = 0). 

𝐽(̅𝑠) =∑
𝐽𝑖

𝑠(𝑠𝜆𝑖 + 1)

𝑚

𝑖=0
 (3) 

𝐸̅(𝑠) =∑
𝐸𝑖

𝑠(𝑠𝜏𝑖 + 1)

𝑚

𝑖=0
 

(4) 

  If we introduce two functions: 

X(𝑠) = (∑ 𝐽𝑖∏ (𝑠𝜆𝑗 + 1)
𝑚

𝑗≠𝑖

𝑚

𝑖=0
) 

𝑌(𝑠) = (∑ 𝐸𝑖∏ (𝑠𝜏𝑗 + 1)
𝑚

𝑗≠𝑖

𝑚

𝑖=0
) 

(5) 

Equation (2) simplifies to (6): 

(∏ (𝑠𝜆𝑖 + 1)
𝑚

𝑖=1
) (∏ (𝑠𝜏𝑖 + 1)

𝑚

𝑖=1
) = Χ(𝑠)𝑌(𝑠) (6) 
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  The relaxation times 𝜆𝑖  will be the roots of a high order equations, and the modulus 𝐸𝑖  are 

expressed in equation (7): 

𝐸𝑖 = 𝐸0

∏ (
𝜏𝑖
𝜆𝑗
− 1)𝑚

𝑗=1

∏ (
𝜏𝑖
𝜏𝑗
− 1)𝑚

𝑗≠𝑖

 (7) 

  The creep input shown in Table 5-1 as the input but the conversion routine would produce the 

relaxation modulus terms needed by the code as shown in equation (8): 

𝐸(𝑡) = 24000 + (−4850) ∗ (1 − 𝑒
−𝑡

463⁄ ) + (−4520) ∗ (1 − 𝑒
−𝑡

93082⁄ ) (8) 

  Reorganize equation (8) 

𝐸(𝑡) = 14630 + 4850 ∗ 𝑒
−𝑡

463⁄ + 4520 ∗ 𝑒
−𝑡

93082⁄  (9) 
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APPENDIX C 

Winder 6.3 Input 

Table 6 Main Material Properties Input (70°F and 110°F) for Chapter VI 

Caliper 0.02 in 

Width 4 in 

CMD Modulus 22,200 psi 

MD Modulus 22,200 psi 

 

Table 7 Main Winding Parameters Input (70°F) for Chapter VI 

Core OD 3.5 in 

Core ID 3.0 in 

Material Modulus 1E8 psi 

Calculated Core Stiffness  16,029,593 psi 

Poisson’s Ratio of Core 0.3 

Wound Roll OD (in) 9.5(test1), 9(test2), 8.7(test3), 8.6(tests4,5) 

Winding Tension (psi) 112.5(tests1,2,3), 225(test4), 62.5(test5) 

K1 (psi) 1E-05 

K2 246.5 
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Table 8 Main Viscoelastic Input (WHRC Creep) for Chapter VI 

MD Creep Terms 

J1 -1.467E-05 in/in/psi 

J2 -5.376 E-06 in/in/psi 

J3  -7.913E-06 in/in/psi 

Tau 1 13s 

Tau 2 1445s 

Tau 3 100,512s 

Radial Creep Terms 

J1 -8.869 E-06 in/in/psi 

J2 -9.312E-06 in/in/psi 

Tau 1 696s 

Tau 2 72,810s 

 

 Table 9 Main Viscoelastic Input (Relaxation Master Curve 70°F,110°F) for Chapter VI 

MD Relaxation Terms (Radial direction is the same as in Table 8) 

 

Moduli(psi) 12,660 5,821 4,598 3,097 2,342 1,719 1,389 

Time(s) 0.01 0.06 0.40 2.51 15.85 102 630 

Moduli(psi) 1,168 1,071 1,018 1,002 991 962 918 

Time(s) 3.98E3 2.51E4 1.58E5 1E6 6.31E6 3.98E7 2.51E8 

Moduli(psi) 838 738 605 482 332 250 1.05 

Time(s) 1.58E9 1E10 6.31E10 3.98E11 2.51E12 1.58E13 1E14 

Moduli(psi) 152 180 1,185 3.02 Storage Time   

Time(s) 6.31E14 3.98E15 2.51E16 Equilibrium 86,400s   

(70°F,110°F have the same input, since the shift factor 5.2 is applied to110°F) 
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Table 10 Main Winding Parameters Input (110°F) for Chapter VI 

Core OD 3.5 in 

Core ID 3.0 in 

Material Modulus 1E8 psi 

Calculated Core Stiffness  16,029,593 psi 

Poisson’s Ratio of Core 0.3 

Wound Roll OD (in) 6(tests6,7), 10(tests8,9) 

Winding Tension (psi) 112.5 

K1 (psi) 1E-05 

K2 246.5 

 

 Table 11 Main Viscoelastic Input (WHRC Creep 110°F) for Chapter VI 

MD Creep Terms 

J1 -1.40E-05 in/in/psi 

J2 -1.19 E-05 in/in/psi 

J3  -1.87E-05 in/in/psi 

J4 -1.32E-05 in/in/psi 

Tau 1 1E03s 

Tau 2 1E04s 

Tau 3 1E05s 

Tau 4 1E06s 
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