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Abstract: Rural areas in the U.S. have been notably affected by the opioid crisis, resulting 

in higher rates of opioid-related deaths and misuse than their urban counterparts. This 

dissertation assesses the effectiveness of existing strategies aimed at reducing opioid 

misuse, and also describes an Extension-led effort to engage rural communities struggling 

with this issue. The first study focuses on opioid treatment programs (OTPs) in the South 

census region. Through coarsened exact matching (CEM), the study determines if OTP 

presence is associated with reductions in the opioid-related death rate in counties nearby 

the OTP. Rural and urban counties are analyzed separately, to see if the results vary for 

these different types of areas. The findings of this study suggest that OTPs are not 

negatively associated with future opioid-related deaths, in either rural or urban counties. 

The second study examines prescription drug monitoring programs (PDMPs), which are 

statewide online programs that monitor controlled substance prescriptions. Multiple 

correspondence analysis is used to create a measure of a state’s PDMP robustness. The 

aim of this study is to evaluate if states with more stringent PDMPs in place are 

associated with increased incidences of illicit opioid deaths, due to prescription opioids 

being more difficult to obtain in these areas. Results show that continuous measures of 

PDMP strength are not generally associated with the prescription opioid- or heroin-

related death rate. Yet, one model does confirm the hypothesis that stricter PDMPs are 

related to more illicit opioid use. When the PDMP scores are broken into quartiles in the 

models, only the lowest quartile of scores (i.e. least stringent) is seen to have a negative 

association with overdose deaths. For the third study, a series of three community 

meetings were held in Ardmore, Oklahoma. Community stakeholders attended these 

meetings, and a variety of data collection techniques assessed where they would like to 

direct future resources aimed at reducing opioid misuse in their area. The participants 

noted that they would like funding to go towards increasing access to opioid treatment 

options, and to youth education programs in their community. 
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CHAPTER I 
 

 

INTRODUCTION 

 

 

 

The opioid crisis has gathered widespread attention in the U.S. in recent years, with policy-

makers, medical professionals, and community members continually looking at ways to 

effectively address the issue. The rural U.S. has particularly struggled with high rates of opioid-

related deaths, which is compounded by the lack of available treatment options in these areas 

(Rosenblatt et al., 2015; Hirchak and Murphy, 2017; Mack, 2017). Therefore, it is not surprising 

that when surveyed, about half of rural residents state that they know someone who has had an 

opioid addiction (Robert Wood Johnson Foundation, 2018). The goal of this dissertation is to 

provide evidence of “what works” in preventing and treating opioid misuse in rural areas. This 

dissertation is comprised of three studies, which examine the opioid crisis at the national, 

regional, and community level. 

The first study in Chapter 2 determines whether opioid treatment programs (OTPs) present in the 

South census regional have any association with the opioid-related death rate at the county-level. 

OTPs provide medication-assisted treatment, which combines mediations and behavioral 

therapies into a patient’s treatment plan. Medication-assisted treatment has been proven to be a
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highly effective form of treatment for someone with opioid misuse issues (Schwartz et al., 2013; 

Zaller et al., 2013; Volkow et al. 2014). Therefore, some advocates have called for more rural OTPs, 

but their impact on death rates has not been formally explored in the existing literature. A matching 

technique called coarsened exact matching (CEM) is used in this study. The objective of CEM is to 

“match” counties in the South with and without access to an OTP before 2013 based on similarities in 

opioid-related death rates from 2011 through, opioid prescription rates, and demographic 

characteristics. An important feature of this study is that metropolitan and non-metropolitan counties 

are analyzed separately during the CEM and estimation process, to see if the relationship between 

OTPs and opioid-related deaths differs between these types of counties. 

Chapter 3 is comprised of the second study, which is an examination of prescription drug monitoring 

programs (PDMPs). PDMPs are statewide electronic databases that store information on prescriptions 

for controlled substances, with data being submitted by pharmacists. Each state has autonomy in 

controlling how their PDMP is operated. Currently, every U.S. state including D.C. has a PDMP, with 

the exception of Missouri. This study explores whether having a strict PDMP with more regulations 

in place has the unintended consequence of increasing the rate of illicit opioid deaths. The hypothesis 

is that stringent PDMPs make prescription opioids more difficult to access, so misusers switch to 

illicit opioids, such as heroin. For this study, a statistical method called multiple correspondence 

analysis (MCA) is used to create the measure of PDMP strength. For the MCA, eleven PDMP 

regulations are combined into a single score based on the correlations between the regulations. Then, 

two-way fixed effects models are run on a panel dataset which covers the years 1999 to 2016. 

Outcome variables include a state’s illicit- or prescription opioid-related death rate. Independent 

variables include the score of PDMP strength, state demographic variables, the agency in charge of 

operating the state PDMP, and other variables thought to have an impact on the opioid-related death 

rates.  
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The final study in Chapter 4 revolves around a series of three community meetings that were held in 

the rural town of Ardmore, Oklahoma. Ardmore has historically struggled with opioid misuse, and 

during these meetings community stakeholders learned about and discussed programs they can utilize 

that relate to opioids. Four categories of programs were presented in the meetings, (A) programs that 

try to reduce opioid supply, (B) program that try to reduce opioid demand, (C) opioid treatment 

programs, and (D) overdose prevention and recovery programs. To inform the participants about the 

four categories of programs, experts in each of the areas presented on the programs’ features and on 

current work in these fields. The aim of the meetings was for participants to determine a ranking of 

the four categories of programs, based on the needs of the Ardmore area. Data collection occurred 

through pre/post surveys, study circles, and a participant voting exercise. The surveys asked 

participants their perceptions on opioid-related issues, along with their familiarity and beliefs on the 

different programs discussed during the meetings. Surveys were distributed at the beginning of the 

first and end of the third meetings, to evaluate if participant perceptions changed throughout the 

course of the study. In the study circles, participants were randomly divided into small groups and 

asked questions related to the opioid crisis in Ardmore, and on the programs presented, to prompt 

conversation. The participant voting exercise occurred at the third meeting. Here, participants had to 

allocate a hypothetical set of funds to each of the four programs. Thus, the results from the exercise 

serve as a representation of where the stakeholders would like to devote future funds as they try to 

reduce the effects of opioid misuse in Ardmore.  

Each study discussed above is included with a more thorough explanation of the motivation and 

methodology, along with the study’s results in Chapters 2 through 4. Conclusions and subsequent 

policy implications are also explored in detail. The dissertation ends with a general overview of the 

studies’ outcomes, which is laid out in Chapter 5.
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CHAPTER II 
 

 

DO RURAL OPIOID TREATMENT PROGRAM (OTP) FACILITIES REDUCE DEATHS? 

 

 

 

In recent years, America has been greatly impacted by the opioid epidemic. The number of deaths 

caused by opioids has been steadily rising since the start of the twenty-first century, and in 

October 2017 the opioid epidemic was classified as a national public health emergency by the 

Department of Health and Human Services. Even though the opioid epidemic has been 

widespread across the U.S., rural America has been particularly affected. The Centers for Disease 

Control and Prevention (CDC) estimates that the drug overdose death rate is higher in rural areas 

in comparison to urban ones, and a majority of rural residents (57%) agree that opioid addiction is 

a serious problem in their community (Mack et al., 2017; Robert Wood Johnson Foundation, 

2018). 

One particular issues with combatting the opioid epidemic in the rural U.S. is the lack of access to 

treatment centers. Urban areas are more likely to have opioid treatment centers and doctors who 

are licensed to prescribe medications to help alleviate opioid addictions (Kvamme et al., 2013; 

Rosenblatt et al., 2015; Stein et al., 2015; Hirchak and Murphy, 2017). While previous studies 

have identified the extent to which rural geographies lack opioid treatment options, there is a
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dearth of evidence on the effectiveness of treatment centers that do exist.  Given that other 

approaches to dealing with the opioid crisis are also available, empirical assessment is crucial in 

assessing whether substance use treatment centers are a worthwhile investment for rural 

policymakers. 

The opioid treatment option of interest in this study is medication-assisted treatment (MAT), 

which is the CDC and Substance Abuse and Mental Health Services Administration (SAMHSA) 

recommended plan. MAT has proven to be a successful form of treatment in curbing opioid 

misuse (Schwartz et al., 2013; Zaller et al., 2013; Volkow et al. 2014). and incorporates 

prescribed medications in addition to behavioral counseling into a patient’s treatment plan. The 

goal of the medications used1  in a MAT program is to curb the symptoms from opioid 

withdrawal and to prevent relapse (Connery, 2015).This form of treatment differs from 

abstinence-based programs, which do not integrate prescription medicine into a patient’s 

treatment plan. MAT is an indefinite process, and patients can potentially be on these medications 

for the rest of their lives (Center for Substance Abuse Treatment, 2005; Fullerton et al., 2014). 

The treatment centers that utilize MAT are referred to as opioid treatment programs (OTPs), 

which are certified and accredited by SAMHSA. OTPs can be present in outpatient, residential, or 

hospital settings and the medication provided to patients (methadone, buprenorphine, or 

naltrexone) depends on the program and the patient’s individual treatment plan (Center for 

Substance Abuse Treatment, 2005). It is important to note that OTPs are a different treatment 

option than being prescribed buprenorphine through a medical professional. The number of 

patients receiving treatment through a buprenorphine-waivered physician has increased in recent 

years due to its ease and accessibility (Dick et al., 2014; Stein et al., 2015), however this study 

only focuses on OTPs and their effectiveness in curbing misuse.  

                                                           
1 Currently, the Food and Drug Administration (FDA) approves three drugs for use in MAT: 

buprenorphine, methadone, and naltrexone (Food and Drug Administration, 2018). 
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This study examines counties in the South census region, which had the highest number of drug 

overdose deaths out of all census regions in 2016 (Centers for Disease Control and Prevention, 

2018a). It uses coarsened exact matching (CEM) to uncover how OTPs are associated with opioid 

death rates. CEM creates ‘mirrored counterparts’ to counties with OTP access by matching them 

to non-treated counties with similar characteristics, including 2011-2013 opioid death rates. Two 

treatments are examined, one being if a county had an OTP as of 2013, and the other being if a 

neighboring county contained an OTP in 2013.  After reducing the sample via CEM, opioid death 

rates in the following three years (2014-2016) are compared across treatment and control groups 

using regression analysis. Metro and non-metro counties are analyzed separately due to 

differences in accessibility to treatment centers, opioid death rates, and underlying social 

structures. Thus, we seek to determine if the association between OTPs and opioid-related deaths 

varies between metropolitan and non-metropolitan counties, and to what extent a disparity exists.  

Barriers to Treatment in Rural Areas 

Even though MAT programs have been shown to be highly successful in terms of ending opioid 

misuse, a gap exists between the availability of these programs and the amount of patients who 

need treatment (Jones et al., 2015). The shortage of MAT programs in the U.S. is more evident in 

rural areas in comparison to urban ones. Research has found that rural health centers have about 

half the odds of urban centers in offering MAT programs with buprenorphine dispensed on site 

(Jones, 2018). Further, the number of physicians who have waivers to prescribe buprenorphine (a 

medication used in MAT) is significantly higher in urban areas, even after adjusting to a per-

capita basis (Stein et al., 2015). It is worth reiterating, however, that medical professionals 

prescribing buprenorphine are not considered OTPs.  

Previous studies have found that increased distance to health care services is problematic for rural 

health outcomes (Skinner and Slifkin, 2007; Huang et al., 2009; Stephens et al., 2013). Similarly, 
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transportation to and from OTPs is also an issue for rural patients (Rosenblum et al., 2011). 

During focus group interviews conducted in the rural South, both clients and stakeholders of 

substance use treatment centers identified issues with transportation as an obstacle to attending 

treatment services (Browne et al., 2016). These concerns were echoed in focus groups done in 

rural Kentucky with pregnant women undergoing substance use treatment (Jackson and Shannon, 

2012). These issues are further compounded in rural areas by MAT being a long-term treatment 

plan2, with patients needing to visit the OTP daily (if they are receiving methadone), at least 

weekly (if they are receiving buprenorphine), or daily or thrice weekly (if they are receiving 

naltrexone) until they have progressed to a certain point in their treatment (Center for Substance 

Abuse Treatment, 2004; Center for Substance Abuse Treatment, 2005; Kampman and Jarvis, 

2015).  

An additional barrier to attending and successfully completing treatment in rural locations is the 

heightened stigma that patients and physicians face. During focus groups carried out in the rural 

South, clients detailed how the close-knit culture of rural areas leads to a lack of anonymity when 

getting treatment in those communities (Browne et al., 2016; Rigg et al., 2018). Under these 

circumstances, an OTP location in a neighboring county (where staying anonymous is more 

likely) might be preferred. However, stigma is not limited to just rural patients. Surveys and 

interviews of rural physicians have shown that stigma is a deterrent for doctors exploring the 

possibility of prescribing buprenorphine or similar opioid-dependence medications to patients 

(Andrilla et al., 2017; Andrilla et al., 2019).  

Does More Access to Treatment Increase Success? 

                                                           
2 The National Institute on Drug Abuse suggests that methadone, a prescription medication used in certain 

MAT programs, should be given to patients for a minimum of 12 months in order to prevent relapse 

(National Institute on Drug Abuse, 2018). Patients are able to take home doses of medication at a certain 

point during their treatment. 
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Studies on the relationship between proximity to substance use treatment and drug misuse have 

shown mixed results. Notably, most of this research has taken place in large metropolitan areas. 

In a study of Baltimore patients, those who had to travel less than a mile for their drug treatment 

services were more likely to complete treatment than those who had to travel further (Beardsley 

et al., 2003).  Distance between a patient’s residence and their OTP was found to be positively 

associated with the amount of missed methadone doses in the first month of treatment for patients 

in Spokane County in Washington state (Amiri et al., 2018). Similarly, researchers found that an 

increase in transportation distance for rural patients was associated with higher rates of relapse 

and incarceration following treatment (Oser and Harp, 2015).  

In contrast, other studies have found that the closer treatment is to a patient’s residence, the more 

likely they are to forgo sobriety in the future.  A survey of heroin users in Houston who lived in 

close proximity to treatment facilities (and in areas with a multitude of facilities) reported that 

they were more likely to purchase and use heroin in the future in comparison to those who did not 

live close to many treatment centers (Kao et al., 2014). In Philadelphia, patients who had received 

inpatient substance use treatment who lived nearby more than six narcotics anonymous (NA) 

and/or alcoholics anonymous (AA) meeting location sites were found to have a lower probability 

of attending outpatient treatment (Stahler et al., 2007). Researchers attributed this counterintuitive 

finding - that heroin use increased with proximity to treatment - to the fact that a majority of 

OTPs are located in urban neighborhoods, where illicit substances are easily obtainable 

(Rosenblum et al., 2011). One study saw a similar result with the neighborhoods where substance 

use treatment centers in Los Angeles County are located, which were economically 

disadvantaged areas (Jacobson, 2006). Therefore, the neighborhoods where treatment centers are 

located could promote relapse (with high rates of use in surrounding locations) and subsequent 

drug use. However, no studies we are aware of studied this issue in a rural environment.  

Materials and Methods 
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Sample 

All data for this study is aggregated at the county-level for states in the South census region, 

which is comprised of sixteen states plus the District of Columbia3. Information regarding opioid 

related deaths is gathered through the National Vital Statistics System (NVSS) multiple cause of 

death mortality files, and is accessed through the CDC Wonder database. Following CDC 

practices, opioid deaths are considered to be any death corresponding to the International 

Classification of Disease, Tenth Revision multiple cause-of-death codes T40.0, T40.1, T40.2, 

T40.3, and T40.44. Age-adjusted death rates per 100,000 residents are generated from the county-

level death counts5. One challenge in working with this data is overcoming suppression. For 

privacy reasons, the CDC suppresses any county-level death count if it less than 9. To overcome 

this issue, multiple years of age-adjusted death rates are aggregated in two groups (2011-2013 

and 2014-2016). When multiple years of data are compiled, death counts are aggregated and there 

are more counties with data that is not suppressed – therefore decreasing the amount of missing 

information in the sample. Even so, data suppression still affects a high number of our counties of 

interest. Of the 1,423 counties in the South, 488 (34%) and 553 (39%) counties have non-

suppressed age adjusted death rates for 2011-2013 and 2014-2016, respectively. 442 counties 

(31%) have data in both time periods, allowing percentage change to be calculated. As might be 

expected, the data suppression issue is worse for non-metropolitan counties.  

                                                           
3 The states included in the South census region are: Alabama, Arkansas, Delaware, Florida, Georgia, 

Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, 

Texas, Virginia, and West Virginia. 
4 The codes represent the following drug-related deaths, T40.0: opium, T40.1: heroin, T40.2: other opioids, 

T40.3: methadone, T40.4: other synthetic narcotics. 
5 Age-adjusted death rates account for the counties’ differences in age distributions, so that the counties in 

the sample can be compared to one another (Anderson and Rosenberg, 1988). When death rates are age 

adjusted, the CDC provides age adjusted death rates for counties with death counts greater than 20. Age 

adjusted death rates were calculated manually for counties with 10 to 20 deaths using the average change 

(from crude death rate to age adjusted rate) for counties with a similar population size that do have CDC-

provided age-adjusted death rates. The final age-adjusted death rates are compared to CDC values (Centers 

for Disease Control and Prevention, 2018) to verify calculation accuracy. 



10 
 

The publicly available National Directory of Drug and Alcohol Treatment facilities is used to find 

the locations of OTPs, and to determine what year they started their services. As of 2017, 415 

OTPs are in the South. 314 of those were open in 2013, which are the ones of interest in this 

study. Figure 2.1 shows where these OTPs are located, and distinguishes between metropolitan 

and non-metropolitan counties.  286 of the 314 OTPs (91%) are located in metropolitan counties, 

with the remaining 28 being in non-metropolitan counties, clearly demonstrating their urban bias.  

To control for county-level opioid supply in our analysis, data is pulled from the CDC’s U.S. 

Opioid Prescribing Rate Maps (Centers for Disease Control and Prevention, 2018b). The CDC 

provides data on the amount of opioid prescriptions per 100 people in a county. An opioid 

prescription is considered to be either an initial or refill prescription which is dispensed at a retail 

pharmacy. To stay consistent with the rest of our data, county-level prescription rates are 

averaged between 2011 and 2013.  

Lastly, the 2009-2013 American Community Survey (ACS) was used to collect county-level 

demographic information such as population, percentage of the population who is white, and 

poverty rates. Supplemental information is pulled from the USDA Economic Research Service 

(ERS). 830 (58%) of the counties in the South are non-metropolitan based on ERS rural-urban 

continuum codes. 

Coarsened Exact Matching (CEM) 

A Brief Overview of Coarsened Exact Matching (CEM)
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Figure 2.1. OTPs in South Census Region Prior to 2013
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Figure 2.2. Opioid Related Deaths in the South Census Region (2010-2016) 
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Table 2.1. Descriptive Statistics for Non-Metropolitan and Metropolitan Counties 

 Treatment 1: OTP in County before 2013  Treatment 2: OTP in Neighboring before 2013 

 Non-Metropolitan Counties   Metropolitan Counties  Non-Metropolitan Counties  Metropolitan Counties 

 Treated Control Ttest  Treated Control Ttest  Treated Control Ttest  Treated Control Ttest 

Death Rates                
Age Adjusted Death 

Rate  

(2011-2013) per 

100,000 residents 19.23 20.85   9.02 11.08 **  21.35 20.18   10.31 9.98  
 

Age Adjusted Death 

Rate  

(2014-2016) per 

100,000 residents 20.44 19.89   13.56 14.28   29.59 19.36   13.78 14.47  
 

Percentage change 

between 2014-2016 

and 2011-2013 Death 

Ratesa 20.35 15.81   62.76 44.98 **  22.17 11.13   52.83 52.63  
                
Covariates 

(2009-2013)                
Prescription rate 171.05 96.86 ***  103.24 90.85 **  106.09 95.86 **  91.21 99.52 * 

Population   42,654.04    18,560.38   ***     410,806.30    73,536.87   ***      30,777.05       20,358.42  ***    182,061.10    125,342.10  ** 

Percent white 76.17 69.60   61.68 73.38 ***  68.96 70.24   69.29 72.21 * 

Poverty rate 22.60 21.66   16.34 16.47   22.02 21.53   15.83 17.56 *** 

                
Number of Counties 27 803   156 437   278 552   386 207  
 

Number with Age 

Adjusted Death Rates 

(2011-2013) 15 142   139 192   69 88   234 97  
 

Number with Age 

Adjusted Death Rates 

(2014-2016) 17 166     146 224     86 97     254 116   

 

Note: ***, **, and * represent statistical significance at the 1%, 5%, and 10% level, respectively 
a  Percentage changes are calculated from counties with non-suppressed death counts for both the 2011-2013 and 2014-2016 time periods
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To determine the relationship between OTP presence and rates of opioid-related deaths, a 

matching technique is implemented. Because we are not using experimental data in our analysis, 

matching controls for any selection bias or confoundedness that could skew the results (Imbens 

and Wooldrige, 2009). In this study, coarsened exact matching (CEM) is the primary method 

used to determine the causal effect of having an OTP nearby. It has been suggested that since 

CEM is a monotonic imbalance bounding method, it has significant advantages over other 

matching techniques such as propensity score matching and Mahalanobis matching (Iacus et al., 

2011a). CEM’s main advantage is that the balance between the treated and control groups is 

selected ex ante by the user, which avoids any re-estimating of the matching process in order to 

improve the balance in the data. The technique ‘coarsens’ selected variables into strata of 

different sizes, and only keeps observations (treated and control) with a matched counterpart in 

all bins. Thus, CEM is essentially a pruning technique, and is typically combined with a 

parametric modeling technique such as linear regression when the matching is not exact 

(Blackwell et al., 2012).  

Determining the Impact of OTPs with CEM  

The goal of the CEM methodology is to reduce the dataset to matched treated and control 

counties. These matched counties can then be used to estimate the  association of an OTP on the 

county-level age-adjusted opioid death rate from 2014 to 2016; or, as an alternative metric, the 

percentage change between the 2011-2013 and 2014-2016 death rates. For this study, two 

separate treatments are considered. The first treatment is whether a county had an OTP facility in 

place as of 2013. As Figure 2 displays, the number of opioid deaths in the South began to increase 

dramatically beginning in 2013. So, we are interested in whether OTPs existing prior to the spike 

in opioid-related deaths have any association with future death rates6.  As previously noted, the 

                                                           
6 Ideally, we would be most interested in OTPs that came in existence after the initial spike, and measure 

their resulting impact. Data limitations prevent this analysis. 
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CEM analyses is run separately for metropolitan and non-metropolitan counties, to determine if 

the effect of OTPs differs between these two types of areas. The descriptive statistics for the 

treated and control counties for treatment 1 (OTP presence in county) are displayed in Table 2.1. 

27 of the 830 non-metropolitan counties in the South (3%) are considered treated, compared with 

156 of the 593 metropolitan counties (26%).  Treatment 2 is the existence of an OTP in a 

neighboring county before 20137. The purpose of including treatment 2 is to determine whether 

OTPs have any spillover effects on opioid death rates in surrounding areas. Rosenblum et al. 

(2011) found that the average travel distance of patients from their residence to an OTP was 15 

miles, suggesting that patients may travel into a neighboring county in order to receive treatment. 

278 non-metropolitan and 386 metropolitan counties are considered treated under this method. 

Descriptive statistics for the treated and control counties under treatment 2 are also listed in Table 

2.1.  The selected covariates that are coarsened and then used to match treated and control 

counties in the CEM are the county’s age-adjusted opioid death rates from 2011-2013, the 

county’s average prescription rate from 2011-2013, the log of the county’s population, the 

percentage of the population that is white, and the poverty rate. High opioid supply in the form of 

excessive opioid prescriptions has been identified as a contributing factor to the U.S. opioid crisis 

(Maxwell, 2011; Kolodny et al., 2015;). Therefore, it is crucial to control for opioid supply via 

the county-level prescription rate in our analysis. Population size, percentage of the population 

that is white, and poverty rates have also been found to be related to the number of an area’s 

opioid-related deaths (Paulozzi and Xi, 2008; Bohnert et al., 2011; Siegler et al., 2014; Visconti et 

al., 2015). When looking at the descriptive statistics in Table 2.1, the death rates between treated 

and control non-metropolitan counties show no statistical difference. However, treated non-

                                                           
7 A neighbor is considered to be any county that shares a border with the county of interest (queen 

contiguity matrix). 
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metropolitan counties have higher populations than control counties for both treatments 1 and 2. 

Treated counties also have higher prescription rates.  

In CEM, it is important to note if the imbalance in covariates between the treated and control 

groups improves after the treated and control observations are matched and placed into strata. The 

L1 imbalance measure is used, with smaller values indicating less imbalance8. As Table 2.2 

shows, the multivariate L1 imbalance measures improve after the CEM procedure for non-

metropolitan counties, signaling that there is more balance in the data after matching. Appendix 

2.A shows that the same result holds for metropolitan counties. The tables also indicate how 

many treated and control observations are included in the sample for analysis before and after the 

CEM. For example, the unmatched data for treatment two in the non-metropolitan sample had 

278 treated and 552 control counties; this is reduced to 143 treated and 195 control after CEM 

(Table 2.2). 

After the strata have been created, a weighted least squares regression is used to determine the 

treatment effects. The regression model can be specified as 

(2.1)    𝑌𝑖 = 𝛼𝑖 + 𝛽1𝑇𝑖 + 𝛽2𝐗𝑖 + 𝜀𝑖 

where the dependent variable 𝑌𝑖 is either the age adjusted death rates from 2014-2016 or the 

percentage change between the age-adjusted 2014-2016 and 2011-2013 death rates for county i,  

𝑇𝑖 is a binary variable which takes the value of 1 if county i is considered treated, and 𝐗𝑖 is a 

vector of county i’s demographic variables that may influence 𝑌𝑖. Following the procedure in 

Ford (2018), a simple specification is first carried out with  𝑇𝑖 as the sole explanatory variable 

(i.e. omitting 𝐗𝑖 and assuming the data has been exactly matched). A supplementary specification 

 

                                                           
8 The L1 values are calculated by determining the difference in the empirical distributions between the 

treated and control groups (Iacus et al., 2011b). 
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Table 2.2. L1 Imbalance Measures for Non-Metropolitan Counties 

 

 

Treatment 1: OTP in County  

before 2013  

Treatment 2: OTP in 

Neighboring County before 2013 

 

Unmatched  

Data 

Matched  

Data  

Unmatched  

Data 

Matched 

Data 
      

Age Adjusted 

Death Rates 

(2011-2013) 0.25 0.00  0.21 0.03 

Prescription rate 0.18 0.21  0.11 0.08 

Ln(Population) 0.30 0.09  0.15 0.14 

Percent white 0.10 0.13  0.08 0.05 

Poverty rate 0.15 0.10  0.19 0.10 

      

Multivariate L1 0.99 0.64  0.98 0.89 

Number of 

Observations: 

Treated, 

Control 27, 803 10, 27  278, 552 143, 195 
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includes the other control variables with the argument that the CEM has not fully controlled for 

differences across the treated and control groups.  

While CEM is a relatively new matching technique, other forms of matching have been used 

more extensively in the health literature. To verify the robustness of the weighted least squares 

models, propensity score matching (PSM) is executed. This technique first estimates the 

likelihood of receiving treatment (access to an OTP) via logistic regression, using the same 

county-level variables as in the CEM specification. The resulting probabilities are then used to 

match treated counties with control counterparts with similar likelihoods. Differences in county-

level death rates between the matched treated and control groups then show the average treatment 

effect of OTP accessibility. The full sample (i.e. not reduced via CEM) is used to perform PSM 

for each geography (metro / non-metro), and both kernel matching and nearest neighbor matching 

techniques are carried out9.  

Results 

Regression Results Following CEM 

The weighted least squares regression results are displayed in Tables 2.3 (non-metro counties) 

and 2.4 (metro).  There are two dependent variables of interest: (1) the age-adjusted opioid death 

rate from 2014-2016 and (2) the percentage change in deaths across the two periods (2011-13 to 

2014-16). Note that there are typically fewer observations under this second variable, since some 

counties did not have death data available in both time periods. Each table contains 4 models 

across the 2 treatment effects. In the initial models (1) and (3), the binary treatment variable is the

                                                           
9 In nearest neighbor matching, treated and control observations are matched based on similarities in the 

covariates. A commonly used approach is to include kernel matching as a robustness check for nearest 

neighbor matching, because it corrects for any large differences in covariates between the treated and 

control units (Whitacre et al., 2014). Kernel matching determines the distance between one treatment 

observation and many control observations, and gives the closer units a higher weight in the matching 

procedure. 
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Table 2.3. Regression Results for Non-Metropolitan Counties following CEM 

 

 Age Adjusted Deaths (2014-2016)  Percentage Change in Deaths 

 (1) (2)  (3) (4) 

Treatment 1: OTP in County 

before 2013 5.65 10.87**  20.28 14.28 

Age Adjusted Death Rates 

(2011-2013)  0.42   -1.34 

Prescription rate  0.17   -0.41 

Ln(Population)  6.01   44.15 

Percent white  0.42   2.01 

Poverty rate  1.90**   9.62** 

Constant 17.84*** -150.99*  21.46 -716.28* 

      

Number of Observations 18 18  18 18 

R2 0.03 0.87  0.04 0.61 

 (5) (6)  (7) (8) 

Treatment 2: OTP in 

Neighboring County before 

2013 0.24 1.60  8.62 7.42 

Age Adjusted Death Rates 

(2011-2013)  0.75   -0.95 

Prescription rate  -0.12*   -0.91* 

Ln(Population)  -7.42   -10.52 

Percent white  -0.10   -0.28 

Poverty rate  0.10   2.62 

Constant 16.52*** 98.46  25.53** 245.93 

      

Number of Observations 65 39  39 29 

R2 0.00 0.43  0.01 0.23 

 
Note: ***, **, and * represent statistical significance at the 1%, 5%, and 10% level, respectively 
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Table 2.4. Regression Results for Metropolitan Counties following CEM 

 

 Age Adjusted Deaths (2014-2016)  Percentage Change in Deaths 

 (1) (2)  (3) (4) 

Treatment 1: OTP in 

County before 2013 0.30 0.64  7.60 4.08 

Age Adjusted Death Rates 

(2011-2013)  1.15***   -5.39 

Prescription rate  0.05   0.47 

Ln(Population)  -0.31   0.49 

Percent white  -0.01   0.67 

Poverty rate  -0.20   -0.30 

Constant 11.08*** 4.65  54.66*** 4.87 

      

Number of Observations 62 60  60 60 

R2 0.00 0.67  0.00 0.08 

 (5) (6)  (7) (8) 

Treatment 2: OTP in 

Neighboring County before 

2013 0.19 0.18  19.58 23.30 

Age Adjusted Death Rates 

(2011-2013)  1.09   -7.42* 

Prescription rate  0.06*   0.70 

Ln(Population)  0.60   21.12 

Percent white  -0.01   0.92 

Poverty rate  -0.20   -3.20 

Constant 13.15*** -5.56  61.11*** -223.68 

      

Number of Observations 68 57  57 57 

R2 0.00 0.46  0.02 0.18 

 
Note: *** represents statistical significance at the 1%
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only explanatory variable, along with a constant term.  In Table 2.3, none of the coefficients for 

the treatment variable are statistically significant in the simple regression models, showing that a 

county’s opioid related death rates are not associated with having an OTP within their borders or 

in a neighboring county. This result does not hold in model (2) when the specification is 

expanded to include the county-level variables that were matched on during CEM. In model (2), 

the coefficient on treatment 1 is positive, and statistically significant. Thus, the presence of an in-

county OTP as of 2013 is associated with higher opioid-related deaths in 2014 through 2016. This 

result is similar to those for previous studies in metropolitan areas, which found that increased 

access to substance use treatment is related to undesirable outcomes for patients with substance 

use disorders (Stahler et al., 2007; Kao et al., 2014).  

Robustness Check with Propensity Score Matching 

Appendix 2.B contains the results of the first-stage logistic regression for the PSM technique, 

where population and the prescription rate prove to be an important predictor of OTP availability. 

Tables 2.5 and 2.6 display the PSM results, which generally confirm the findings of the CEM-

based regressions. The differences between treated and control counties are mostly never 

statistically significant, regardless of metro / non-metro location or matching technique used. Two 

cases which do indicate a statistically significant association between OTP presence and the 

opioid death rate are seen in Table 2.5. For treatment 2, a positive difference is seen between 

treated and control counties. This finding implies that non-metropolitan counties with a 

neighboring OTP as of 2013 are associated with increased incidences of future opioid-related 

mortality.  In aggregate, none of the modeling techniques implemented found that treatments 1 

and 2 have a statistically significant negative association with the rate of, or change in, opioid-

related deaths in Southern counties. 

Discussion
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Table 2.5. Matching Estimator Results for Non-Metropolitan Counties 

 

 Nearest Neighbor   Kernel  

 Treated Control Difference T-stat   Treated Control Difference T-stat  

Treatment 1: OTP in County before 

2013     

 

     

 

Age Adjusted Death Rate (2014-2016) 21.66 17.59 4.07 0.79   21.66 19.28 2.39 0.53  

Percent Change in Deaths 20.35 15.49 4.86 0.30   20.35 17.61 2.75 0.21  

Number of Observations 15 112     15 112    

            

Treatment 2: OTP in Neighboring 

County before 2013     

 

     

 

Age Adjusted Death Rate (2014-2016) 23.20 16.76 6.44 2.22 **  21.02 18.39 2.62 1.09  

Percent Change in Deaths 22.17 7.27 14.90 1.54   23.83 6.24 17.59 1.77 * 

Number of Observations 60 67     55 67    

 
Note: ** and *  represents statistical significance at the 5% and 10% level, respectively
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Table 2.6. Matching Estimator Results for Metropolitan Counties 

 

 

 

 

 

 

 

 

 

 

 

 Nearest Neighbor  Kernel 

 Treated Control Difference T-stat  Treated Control Difference T-stat 

Treatment 1: OTP in County before 2013          

Age Adjusted Death Rate (2014-2016) 13.88 11.70 2.18 0.72  13.88 12.12 1.76 0.72 

Percent Change in Deaths 62.76 64.51 -1.75 -0.08  62.76 58.57 4.19 0.26 

Number of Observations 138 177    138 177   

          

Treatment 2: OTP in Neighboring County 

before 2013          

Age Adjusted Death Rate (2014-2016) 14.27 15.87 -1.60 -0.81  14.34 16.76 -2.42 -1.35 

Percent Change in Deaths 52.83 57.38 -4.55 -0.41  53.63 52.24 1.39 0.14 

Number of Observations 222 93    220 93   
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This study provides a first look at OTP effectiveness in the South census region, specifically 

asking whether increased access to treatment is associated with opioid-related death rates for both 

metropolitan and non-metropolitan counties. To simulate an experiment for analysis, two distinct 

treatments are considered: (1) an in-county OTP in 2013, and (2) a neighboring county OTP in 

2013. The results from a variety of matching and regression techniques suggest that there are no 

robust, measurable association between OTPs and lower opioid-related deaths for any of the 

treatments or locations considered. 

These results are likely to be viewed as a disappointment to proponents of medication-assisted 

treatment, particularly to those advocating for more OTP facilities in rural locations. However, a 

thorough empirical assessment of varied opioid treatment options – and comparison of outcomes 

across options – is crucial to developing an appropriate framework of policies. Additionally, as 

states and regions continue to respond to the opioid crisis, it is important to have baseline data for 

comparison purposes. For example, the analysis here was limited by having only 27 non-metro 

counties in the South with OTP sites as of 2013, which led to a small number of observations in 

our regression models. The most current (2018) National Directory of Drug and Alcohol 

Treatment Facilities now shows that 50 non-metro counties in this region have OTPs, and it may 

be possible that newly added programs will have a measureable effect on opioid deaths. If so, 

understanding what changed would be an important policy consideration.  

We note that our results do not necessarily imply that rural areas with a lack of existing treatment 

options should avoid OTPs, or that OTPs should not be targeted for these locations. Unlike the 

findings of Martinson (1974), which were generalized to state that treatment is not effective in 

prison recidivism, the conclusions from this study should not be used to say that OTPs are not 

worthwhile investments. First, our research focuses only on opioid-related deaths. There are other 

meaningful opioid-related outcomes without easily accessed data at the county level, such as 

addiction, relapses, or overdoses (but not deaths). Several studies have demonstrated that MAT 
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can curb opioid misuse – which is another important component of the crisis (Schwartz et al., 

2013; Volkow et al., 2014). Second, there are several possible outside factors for why OTPs are 

not shown to have an effect on opioid deaths in this study, which should be researched further. As 

previous studies have mentioned, deterrents to attending treatment in rural locations can be the 

high cost of treatment, transportation barriers, and the limited number of services available 

(Jackson and Shannon, 2012; Browne et al., 2016; Moody et al., 2017). Future work should 

explore the degree to which these obstacles impact the number of patients able to receive 

treatment at an OTP.  

Another hindrance to OTPs’ effectiveness could be societal factors that either prevent a patient 

from going to treatment, or encourage them to relapse once their treatment is completed. Opioid-

dependent rural patients have expressed that there is stigma surrounding attending treatment 

which is heightened in close-knit communities (Jackson and Shannon, 2012; Browne et al., 2016;  

Rigg et al., 2018). This stigma can deter those who are opioid-dependent from seeking the 

necessary assistance, or continuing treatment once it has begun. Studies in urban cities have 

shown that substance use treatment centers tend to locate in places with high levels of criminal 

activity, which can lead to continued drug misuse after treatment completion (Jacobson, 2006; 

Kao et al., 2014). Previous work has identified how the culture of rural regions can promote 

opioid misuse (Keyes et al., 2014; Monnat and Rigg, 2016), but no work to date has specifically 

examined the cultural environment of the rural cities with treatment centers. This is an additional 

area for future research.  

Limitations for the analyses in this study should also be considered. Our work is limited by the 

CDC suppression of county-level death counts which are less than ten. As previously stated, a 

majority of the counties in the South had suppressed death counts for the aggregated years 2011-

2013 (66%) and 2014-2016 (61%). Appendix C shows a comparison of demographic differences 

between counties with suppressed and non-suppressed data shows that some differences do exist, 
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although they are typically small in magnitude. This suggests that the findings here may not be 

applicable to all counties in the Southern region. This limitation should ease as more data is 

collected and aggregation across even more years becomes possible; alternatively, the CDC offers 

restricted-access to the data which requires project approval and a confidentiality agreement. An 

additional data-related limitation concerns the information provided in the National Directory of 

Drug and Alcohol Abuse Treatment Facilities. The directory does not provide information about 

an individual facility’s number of treated patients per year, or number of medical professionals on 

staff – which could have an impact on an OTP’s effectiveness in reducing opioid misuse. A final 

limitation for this study is its inclusion of only one census region. Our results only hold for the 

South census region counties with available opioid-related death rate data, and future work should 

consider other regions to determine if OTP impacts vary geographically. Addressing the growing 

opioid crisis requires examining the outcomes associated with treatment options for misusers, and 

this analysis should be considered a first step in empirically assessing one major method currently 

in use. Similar analysis should follow for other treatment options. 
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CHAPTER III 
 

 

DO PRESCRIPTION DRUG MONITORING PROGRAMS ENCOURAGE ILLICIT OPIOID 

ABUSE? 

 

 

 

As the opioid epidemic has expanded across the U.S., states have intervened by enacting 

legislation and establishing programs aimed at curtailing the crisis. Currently, forty nine U.S. 

states and D.C.10 have operational statewide prescription drug monitoring programs (PDMPs) in 

an effort to thwart prescription opioid abuse. PDMPs are statewide electronic databases that store 

information on prescriptions for controlled substances, with data coming from the dispensing 

pharmacies. PDMPs are useful in identifying patients who are misusing prescription opioids or 

“doctor shopping”, and in recognizing doctors who are overprescribing opioid medications. 

Doctor shopping and overprescribing have both been linked to increased incidences of patient 

misuse and overdose (Edlund et al., 2007; Dunn et al., 2010; Peirce et al., 2012; Miller et al., 

2015). Other uses for PDMPs are to reduce drug diversion, detect patients who require 

prescription opioids for legitimate medical reasons, and to inform public health policies by

                                                           
10 Missouri is the only state without a statewide PDMP program. St. Louis County operates a PDMP which 

includes 72 jurisdictions within the state as of February, 2019. (St. Louis County Prescription Drug 

Monitoring Program, 2019). 



28 
 

identifying trends in drug use and misuse (Finklea, 2014). 

The main objective of this study is to assess the relationship between the strength of a state 

PDMP program (measured by the number and robustness of PDMP regulations) and two types of 

opioid overdose deaths from 1999 to 2016: prescription vs. heroin. In recent years, researchers 

have observed a shift away from deaths caused by prescription opioids to deaths caused by illicit 

opioids, like heroin (Dasgupta et al., 2014; Maxwell, 2015). Figure 3.1 displays trends in the 

prescription- and heroin- related age adjusted death rate in the U.S. during our study period, using 

data from the Centers for Disease Control and Prevention’s (CDC’s) multiple cause-of-death 

mortality files. From 2010 to 2016, the heroin death rate has seen a five-fold increase, while the 

prescription opioid death rate has less than doubled. Thus, beginning in 2010, heroin deaths have 

risen at a quicker rate than prescription opioid deaths. However, the heroin-related death rate is 

still below the prescription-related death rate.  

Past studies have found a positive link between the implementation of PDMPs and these 

increased rates of heroin misuse (Ali et al., 2017; Faryar et al., 2017; Victor et al., 2017; 

Branham, 2018). That is, states that have enacted PDMPs have seen their heroin-related deaths 

increase. An explanation behind this relationship between PDMPs and heroin use are that PDMPs 

make accessing prescription drugs more difficult, so those who misuse these medications switch 

to using heroin. Many heroin users began through misusing prescription opioids (Pollini et al., 

2011; Lankenau et al., 2012; Jones, 2013; Muhuri et al., 2013;), so this reasoning is certainly 

plausible. As opposed to these previous works, our analysis looks at the impact of a combination 

of many different PDMP regulations instead of the effect of general PDMP enactment.  

This paper expands upon a previous study (Pardo, 2017) which used a series of fixed effects 

models to examine how PDMP robustness affected the prescription opioid overdose death rate at 

the state level. We expand upon the Pardo paper in three ways: 1) additional outcome variables,
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Figure 3.1. Prescription Opioid- and Heroin-Related Age-adjusted Death Rates, 1999-2016  
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2) a more analytical approach to generating the PDMP robustness score, and 3) additional years 

of data. In our fixed effects models, we use the heroin death rate (along with the prescription 

opioid death rate) as the outcome variable to determine if PDMP strength is associated with 

higher (or lower) mortality incidences. To create the measure of PDMP strength, Pardo 

aggregated the number of state PDMP regulations, with ad hoc weights assigned to different 

legislative components. As an alternative to that approach, this study uses multiple 

correspondence analysis (MCA) to generate the score of PDMP robustness. MCA is an extension 

of principal component analysis (PCA), and is used to identify latent variables of state PDMP 

strength by analyzing the same set of PDMP regulations assessed by Pardo. Incorporating MCA 

maximizes the correlations between the variables that went into the formation of Pardo’s score, 

and will provide an alternative (and likely more robust) measure of the intensity of a state’s 

PDMP throughout the years.  

Another extension of Pardo’s work is the use of a larger and more current sample of data. In his 

work, Pardo used a panel dataset that covered PDMP legislation, prescription overdose death 

rates, and state demographic variables from 1999 to 2014. Our panel dataset covers the years 

1999 to 2016, which notably includes two additional years of data as the opioid crisis continued 

to grow. For our analysis, two series of fixed effects models are conducted: one using our MCA-

generated score as the measure of PDMP strength, and the other using Pardo’s score for 

comparative purposes. Maps are also created to determine if any spatial correlations exist 

between the MCA-generated scores and opioid-related deaths.  

Evaluating the Mixed Evidence: The Impact of State PDMPs 

Previous research has come to conflicting conclusions when examining opioid-related outcomes 

in states with operational PDMPs versus those without PDMPs in place. Reisman et al. (2009) 

found that states with PDMPs had lower rates of admissions to substance abuse treatment 
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programs for prescription drug abuse when compared to states with no operational PDMP 

programs during the period 1997 to 2003. Yet, when looking at the U.S. Drug Enforcement 

Agency (DEA) Automation of Reports and Consolidated Orders System (ARCOS) data, their 

analysis indicated that states with PDMPs had an overall increase in opioid shipments11. Thus, 

their findings imply that physicians were not deterred from prescribing opioid medications due to 

PDMPs. This early finding regarding how PDMP programs influence the amount of prescriptions 

for opioid medications has been supported and contradicted in the later PDMP literature. Brady et 

al. (2014) showed that the enactment of a state wide PDMP from 1999 to 2008 had no significant 

effect on the amount of opioids dispensed per capita. Similar to Reisman et al. (2009), Brady et 

al. (2014) also used DEA ARCOS data in their studies, however, the researchers differed in the 

specific opioid medications they tracked in their analysis. Conversely, several studies 

demonstrate that there is a significant reduction in the number of prescriptions for Schedule II 

opioids following the implementation of a PDMP program (Bao et al., 2016; Wen et al., 2017). 

Bao et al. (2016) looked at the effect of PMDP implementation on opioid prescribing in 

ambulatory medical centers, whereas Wen et al. (2017) examined the issue in the context of how 

implementation impacts such prescriptions for Medicaid patients.  

Other researchers have focused on how the existence of a state PDMP influences opioid misuse 

and mortality. Similar to the findings on a PDMP’s effect on opioid prescriptions, the relationship 

between having an operational PDMP and nonmedical and illicit opioid use is unclear. It has been 

suggested that PDMPs are not associated with fewer prescription opioid-related deaths (Paulozzi 

et al., 2011; Brown et al., 2017). However, Patrick et al. (2016) did find that PDMP 

implementation led to a decrease in prescription opioid overdose deaths in the year after the 

PDMP became operational. Paulozzi et al. (2011) and Patrick (2016) both conducted their 

analysis using multiple states, however, Patrick (2016) only looked at thirty-four states that 

                                                           
11 Opioid shipments (in grams) are tracked from their manufacturer to point of sale location. 
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implemented PDMPs between 1999 and 2013, whereas Paulozzi et al. (2011) used all fifty states 

(plus D.C.) in their analysis. Delcher et al. (2015) concentrated specifically on overdose deaths 

due to oxycodone, and looked at how they were affected after Florida began their PDMP program 

in 2011. They found that the PDMP in Florida was successful in reducing oxycodone-related 

mortality. When measuring how PDMPs impact treatment admissions for opioid-use disorders, 

two studies came to conflicting conclusions. Reifler et al. (2012) found that PDMPs are effective 

in reducing admissions to opioid treatment programs, whereas Branham (2018) observed that 

PDMP implementation was associated with more patients going to treatment centers due to 

prescription opioids or heroin. Reifler et al. (2012) used data from the Researcher, Abuse, 

Diversion, and Addiction-Related Surveillance (RADARS) System that looked at treatment 

admissions from 2005 to 2009, while Branham (2018) used the Treatment Episodes Data Set 

which covered years 1992 to 2012. Concerning the frequency of opioid misuse, Ali et al. (2017) 

found that PDMPs were associated were fewer days of prescription opioid misuse in the past 

year, but more days of heroin use, using survey data from the National Survey of Drug Use and 

Health. It is also important to consider the findings from Pardo (2017). The fixed effects models 

in their study show that continuous measures of PDMP score are negatively associated with 

prescription-opioid related deaths. When PDMP scores are broken into quartiles, only the third 

quartile of scores is statistically negatively related to the death rate. After looking at previous 

studies, it is apparent that the literature is conflicted about whether PDMPs are useful in reducing 

opioid misuse. This study contributes to this body of work through using a nationwide sample of 

states, and evaluating how a range of PDMP regulations is associated with opioid-related 

mortality. This should provide insight on the effectiveness of overall PDMP strength, as opposed 

to a simple binary measure of PDMP presence.  

Data  
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Panel data for this study regarding the features of state PDMP regulations, prescription opioid and 

heroin age adjusted death rates per 100,000 residents, and demographics are gathered for years 

1999 through 2016. All data is aggregated at the state level for analysis. With 51 states (D.C. is 

included in our analysis) and 18 years of data, 918 observations are included in our sample. The 

Prescription Drug Abuse Policy System (PDAPS) and Brandeis University PDMP Training and 

Technical Assistance Center webpages are used to determine which year the state PDMP became 

operational12, and the regulations that apply to each state’s PDMP. Eleven different state PDMP 

regulations are examined. Following Pardo, each of the eleven regulations is weighted based on 

existing evidence or beliefs that they are effective in reducing opioid overdose deaths or changing 

how opioid medications are prescribed by physicians. Examples of such regulations are if the 

PDMP monitors more than Schedule III drugs, how often data has to be reported from dispensing 

pharmacists to the PDMP, and if the PDMP has an oversight board.  

PDAPS is also used to create additional explanatory variables in our fixed effect models, such as 

the agency in charge of running the state PDMP. Other explanatory variables that come from 

PDAPS are indicators that show if a state has laws that allow access to naloxone, Good Samaritan 

laws related to opioid overdoses, pain clinic management laws, and medical marijuana dispensary 

laws. Studies have identified these categories of legislation as having the potential to reduce the 

number of opioid related overdoses and deaths (Okie, 2010; Hewlett et al., 2013; Compton et al., 

2015; Powell et al., 2018).  

To determine each state’s age adjusted prescription and heroin opioid death rate for 1999 through 

2016, the National Vital Statistics System (NVSS) multiple cause-of-death mortality files are 

accessed through the CDC Wide-ranging Online Data for Epidemiologic Research (WONDER) 

database. Each death certificate is classified on the WONDER database with the person’s cause 

                                                           
12 If a regulation began after July 31st, then it was not considered to be in effect for that year. This coding 

ensures that the regulations were in place for more than five months out of the year. 
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of death, using the coding scheme found in the International Classification of Diseases, tenth 

revision (ICD-10). Deaths found with an underlying cause of death related to drugs or alcohol are 

first selected13, and are then narrowed down to just deaths related to prescription opioids or 

heroin14. A limitation when working with the CDC WONDER database is that data suppression 

occurs when a death count for an area is less than ten. In our sample, about 4% and 37% of the 

918 observations have death counts less than ten for prescription opioid and heroin deaths, 

respectively. Following Pardo (2017), we apply a death count of five for these observations. Data 

suppression is also an issue in terms of the calculation of age adjusted death rates. The WONDER 

database does not make available age adjusted death rates when death counts are less than twenty, 

which accounts for about 8% of our prescription opioid deaths and 44% of our heroin deaths. 

Because crude death rates are oftentimes relatively similar to the age adjusted death rates15, if an 

observation has a death count of less than twenty, the crude death rate per 100,000 residents is 

used in its place.  

Three state demographic variables are also collected: the percentage of the population who is 

white, median household income, and percentage of the population who has at least a high school 

education. An area’s percentage of white residents and its educational attainment levels have been 

found to be determinants of prescription opioid related deaths in previous studies (Bohnert et al., 

2011; Lanier et al., 2012). With respect to median household income, higher socioeconomic 

status has been linked to the probability of receiving an opioid prescription during an emergency 

                                                           
13 The ICD-10 codes for drug and alcohol induced deaths that are gathered for this study are: X40-X44 

(Unintentional), X60-X64 (Suicide), X85 (Homicide), and Y10-Y14 (Undetermined). 
14 The ICD-10 codes for prescription opioid deaths that are gathered for this study are: T40.2 (Other 

opioids), T40.3 (Methadone), and T40.4 (Other synthetic narcotics). The ICD-10 code for heroin deaths is 

T40.1 (Heroin). 
15 Age-adjusted and crude death rates differ due to age-adjusted death rates adjusting for the state’s 

differences in age distributions (Anderson and Rosenberg, 1988). Crude death rates are simply calculated 

by taking the number of deaths in a state in a given year and dividing it by the state’s population during that 

time period, then multiplying the resulting value by 100,000. 
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department visit for pain management (Joynt et al., 2013). Annual data for these three variables 

comes from U.S. Census intercensal estimates.  

Methodology 

Using MCA to Create a Score of PDMP Robustness  

To provide another score of PDMP fitness, we use MCA to create a score for each state in a given 

year. MCA has been used to create indices to measure a person’s health (Kohn, 2012), and a 

household’s socioeconomic status (Cortinovis et al., 1993; Ezzari and Verme, 2012) but has never 

been used previously, to our knowledge, to examine a state-wide program. The general rationale 

behind using MCA is to identify a latent variable by combining a series of variables together that 

relate to the underlying measure they are trying to quantify. For example, Kohn (2012) 

aggregated variables such as a person’s self-reported health, number of accidents they were in 

during the past year, disability status, and if they were a smoker or not to derive his health index. 

So, for the purposes of this research, we are identifying a latent variable of state PDMP strength 

by examining a variety of PDMP regulations.  

These scores generated through MCA are compared to the scores generated using Pardo’s 

methodology to determine if model estimates and fit change with this alternative measure of 

PDMP robustness. The basis behind using MCA in this study is to combine the eleven categorical 

variables that went into Pardo’s score, but in a way that maximizes the correlations between 

them. Thus, we are able to use the relationships between the variables and the dimensions they 

are in as weights when creating our PDMP score, which is an improvement over Pardo’s method 

of assigning his variable weights, based on perceived importance.  

The procedure behind implementing MCA is similar to that of PCA, which is a widely used 

technique to combine multiple variables to derive a latent variable of interest, while still retaining 

the most information from your data. PCA is not incorporated into this study, however, because it
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Table 3.1. PDMP Regulations, Weights, and MCA Coordinate Values 

Regulation Categories Weight 
Standard Coordinate 

from MCA 

   

Schedule3: Monitors more than Schedule III drugs   
No 0 0.23 

Yes 3 1.61 

Disclosure: Required to identify suspicious PDMP 

behavior   
No 0 0.73 

Yes 1 1.35 

Accessbypolice: Law enforcement and prosecutors 

can access PDMP   
No 0 1.11 

Yes 1 1.15 

Accessbyprescribers: Physicians can access PDMP  
No 0 1.21 

Yes 1 1.26 

Frequency: How often data has to be reported to 

the PDMP   
Not required 0 1.18 

Monthly 1 0.23 

Less than a month, greater than a week 2 0.81 

Weekly 3 1.63 

Daily 4 1.89 

Live system 5 0.78 

Prescribe: Prescribers have to check PDMP before 

writing prescriptions   
No 0 0.11 

Yes 4 2.33 

Share: Allowed to share data with other state 

PDMPs   
No 0 0.48 

Yes 1 1.80 

Evaluation: Prone to program evaluations   
No 0 0.33 

Yes 1 1.85 

Oversight: Has an oversight board   
No 0 0.48 

Yes 1 1.66 

Retention: Length of data retention in PDMP   
No operational PDMP 0 1.47 

No timeframe specified but PDMP is operational 1 0.91 

1 year or less 2 1.89 

Between 1 to 2 years 3 0.55 

Between 2 to 5 years 4 1.62 

5 years or more 5 1.27 

Funding: Source of PDMP funding   
No funding is given 0 0.87 

Grants or gifts 1 1.38 

Charging fees 2 1.32 

Appropriated funds 3 1.30 
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works best for normally distributed, continuous variables whereas MCA is suited for categorical 

variables (Hill and Smith, 1976; Kolenikov and Angeles, 2004; Abdi and Valentin, 2007; Sourial 

et al., 2010). The first step in MCA is to determine the dimensions (linear combinations) of your 

variables, which signals how much principal inertia (or variance) is captured within them. We 

only use coordinate scores from the first dimension, since it captures over 85% of the principal 

inertia in our variables. Next, the MCA coordinates are extracted and become weights for the 

categorical variables. Coordinates are similar to factor loadings in PCA, and are correlation 

coefficients between the categorical variables’ responses and the dimension you are examining. 

Following Seplaki et al. (2013), coordinates are standardized and multiplied by negative 1. 

Therefore, higher coordinates indicate a stronger PDMP. Table 3.1 displays the eleven 

regulations included in our analysis, along with their categories. The weights and standardized 

MCA coordinates are also included. It is important to note that the weights shown in Table 3.1 

are the similar to the weights Pardo (2017) used to create their study’s score of PDMP 

robustness16. 

To determine the score for each regulation, the coordinate values are multiplied by Pardo’s 

weights for the responses, which indicate whether they have the statute for their PDMP or what 

category of regulation they have. For example, if a state’s PDMP monitored more than Schedule 

III drugs in a given year, then their score for that regulation would be 4.83 (the weight of 3 

multiplied by the standard coordinate of 1.61). Each observation in the panel dataset therefore has 

their own MCA-generated score. Because we are working with panel data in our analysis, there is 

a question about whether to run MCA for the entire sample, or to split the data into cross sections 

by year and then perform the MCA. As noted in Kohn (2012), it is appropriate to keep the pooled 

                                                           
16 During the data exploration process, discrepancies were discovered between the weights that Pardo 

assigned to the regulations and the corresponding descriptive statistics. In order to reproduce Pardo’s 

descriptive statistics, the weights were modified to fit their findings. The weights for the regulations 

Disclosure, Frequency, and Retention time were adjusted, and are different than the weights Pardo used in 

their analysis. 



38 
 

sample for MCA when your variables are linked between years. Since the PDMP regulations used 

in this study typically did not change for a state once it was implemented17, we use the full sample 

of observations for our MCA. Once the products of MCA coordinates and response weights are 

calculated for the eleven regulations, they are summed together for a final score of PDMP 

intensity. This technique is similar to how Kohn (2012) created their health index.  

Fixed Effects Models with PDMP Scores 

For analyzing the effect of our PDMP score on state age adjusted prescription opioid and heroin 

death rates, we follow Pardo (2017) in estimating two-way fixed effects models. One fixed effect 

is at the state level, and the second is a time fixed effect. The time fixed effects ease concerns for 

reverse causality in the models, due to controlling for any unobserved heterogeneity between the 

sample years. Explanatory variables include our generated PDMP score from the MCA and 

binary indicators for the agency that operates the state PDMP. The categories of different 

agencies include law enforcement agencies, the Department of Health, Consumer Protection 

offices, and professional and licensing boards. An ‘Other’ category is also included if the agency 

in charge of the PDMP falls outside of the aforementioned categories. Other explanatory 

variables are the demographic variables from the U.S. Census (percentage of population who are 

white, median household income, and percentage of population with a high school degree) and 

indicators for if a state has naloxone access, Good Samaritan, pain clinic management, or medical 

marijuana laws. Table 3.2 displays the descriptive statistics for the variables included in the fixed 

effects models. Means and standard deviations are calculated for all of the observations in the 

sample, and also broken into observations with and without operational PDMPs for comparative 

purposes.

                                                           
17 One regulation that did change throughout the years was Frequency, which denotes how often dispensers 

have to report data to the PDMP. 
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Table 3.2. Descriptive Statistics for Variables in Fixed Effects Models 

 All observations  No Operational PDMP  Operational PDMP 

 n = 918  n = 379  n = 539 

Variable Mean SD  Mean SD  Mean SD 

MCA Score 8.18 9.23  - -  13.93 8.05 

Pardo Score 5.93 6.05  - -  10.10 4.48 

Schedule 3 0.38 0.99  - -  0.64 1.23 

Disclosure 0.35 0.48  - -  0.60 0.49 

Access by police 0.49 0.50  - -  0.83 0.37 

Access by prescribers 0.49 0.50  - -  0.84 0.37 

Frequency 1.24 1.43  - -  2.12 1.27 

Prescribe 0.18 0.84  - -  0.31 1.07 

Share 0.21 0.41  - -  0.36 0.48 

Evaluation 0.15 0.36  - -  0.26 0.44 

Oversight 0.22 0.42  - -  0.38 0.49 

Retention time 1.36 1.70  - -  2.31 1.66 

Funding 0.85 1.15  - -  1.45 1.18 

Naloxone 0.18 0.38  0.04 0.19  0.28 0.45 

Samaritan 0.14 0.34  0.03 0.18  0.21 0.41 

Pain clinic laws 0.07 0.25  0.01 0.11  0.10 0.31 

MMJ dispensary 0.25 0.43  0.18 0.38  0.30 0.46 

White 79.59 13.77  80.23 13.73  79.14 13.79 

Income 56,624.31 8,719.96  57,678.02 9,206.33  55,883.39 8,289.82 

Education 86.86 3.71  86.98 3.66  86.78 3.75 

ln(Prescription Death 

Rate) 1.35 0.82  1.02 0.80  1.57 0.76 

ln(Heroin Death Rate) -0.22 1.18   -0.59 1.10   0.04 1.17 
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The general specification for the fixed effects models can be written as  

(3.1)  ln(𝑑𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒𝑖𝑡) =  𝛽0 + 𝛽1𝑆𝑐𝑜𝑟𝑒𝑖𝑡 + ∑ 𝛽2𝑘
4
𝑘=1 𝐴𝑔𝑒𝑛𝑐𝑦itk +  𝛿𝐋𝐚𝐰𝐬𝐢𝐭 +

              𝛾𝐃𝐞𝐦𝐨𝐠𝐫𝐚𝐩𝐡𝐢𝐜𝐬𝐢𝐭 + 𝜏𝑡 + 𝑢𝑖 +  𝜀𝑖𝑡  

with the dependent variable, the log transformation of the prescription opioid or heroin age 

adjusted death rate for state i and year t, being a function of the PDMP score (either from MCA or 

via Pardo’s methods), a dummy variable for which state agency is in charge of operating the 

PDMP, a vector of the indicator variables for the laws that could potentially impact the opioid 

death rate, a vector of state demographic variables, a vector of year effects (𝜏𝑡), a vector of state 

effects (𝑢𝑖), and an error term.  

Following the model specifications in Pardo (2017), the first two models leave the MCA or Pardo 

score (𝑆𝑐𝑜𝑟𝑒𝑖𝑡) as a continuous variable, with model one omitting the binary indicators for which 

state agency operates the PDMP and model two including those indicators. Models three and four 

switch from using a continuous score measure to assessing it via quartiles, with model three not 

including the binary indicators for state agency, and model four including all of the explanatory 

variables.  

Fixed Effects Models with Mandatory Prescriber Use Variable 

Looking at Table 3.1, the largest standard coordinate from the MCA is 2.33, which is for the 

variable Prescribe. This variable signals if state PDMPs require that prescribers check the PDMP 

before writing prescriptions for controlled substances to patients. Previous studies have found an 

association between the mandatory review of state PDMPs and reductions in prescription opioid 

misuse (Ali et al., 2017; Dowell et al., 2016; Grecu et al., 2019). A decrease in the amount of 

prescribed and dispensed opioids has also been observed as a result of compulsory physician use 

of PDMPs (Rasubala et al., 2015; Winstanely et al., 2018). Faryer et al. (2017) and Victor et al. 
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(2017) specifically examined how Kentucky’s mandated physician use of their PDMP prior to 

prescribing opioids impacted opioid misuse. Both studies found similar results - that nonmedical 

prescription opioid use decreased; however, heroin use increased after the regulation went into 

effect.  

Because of the observed importance of the mandatory querying of PDMPs before writing 

prescriptions both in the literature and in our MCA, an argument can be made that separate fixed 

effects models should be executed using the Prescribe variable as the sole measure of PDMP 

strength. A binary indicator variable is created, and included alongside the other explanatory 

variables in the fixed effects models ran with the Pardo and MCA measures of PDMP robustness. 

The specification for this model can therefore be specified as  

(3.2)  ln(𝑑𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒𝑖𝑡) =  𝛽0 + 𝛽1𝑃𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑖𝑡 + ∑ 𝛽2𝑘
4
𝑘=1 𝐴𝑔𝑒𝑛𝑐𝑦itk +  𝛿𝐋𝐚𝐰𝐬𝐢𝐭 +

              𝛾𝐃𝐞𝐦𝐨𝐠𝐫𝐚𝐩𝐡𝐢𝐜𝐬𝐢𝐭 + 𝜏𝑡 + 𝑢𝑖 +  𝜀𝑖𝑡 

where the outcome and explanatory variables are the same as Model (3.1), with the exception of 

the binary 𝑃𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑖𝑡 variable in place of the Pardo and MCA generated PDMP scores. 

Therefore, with Model (3.2), we are able to determine if requiring physicians to access the PDMP 

has any significant effect on both prescription opioid and heroin deaths. This is different from the 

interpretation of 𝛽1 in Model (3.1), which is a broader measure of how a PDMP’s overall strength 

is associated with opioid-related deaths.  

Results  

Prescription Opioid and Heroin Death Rate and PDMP MCA Score Maps 

Six maps are displayed in Figure 3.2 that show the prescription opioid and heroin age adjusted 

death rates, and MCA-generated PDMP scores at the beginning and end of our sample period. 

The left-hand side of Figure 3.2 shows the maps for 1999, whereas the right-hand is for 2016. 
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Figure 4.2. Prescription Opioid and Heroin Age-adjusted Death Rates, and PDMP MCA 

Scores, 1999 and 2016 
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Looking at the maps for 1999, states with higher quartiles of PDMP scores are seen across the 

U.S., with Hawaii, Utah, and West Virginia standing out as having the largest scores. 

Alternatively, states with high incidences of prescription opioid- and heroin-related deaths are 

primarily located in the West. It should be noted that 7 and 8 of the states in the fourth quartile of 

prescription opioid and heroin death rates in 1999, respectively, did not have operational PDMPs 

during that time.  

Bivariate Moran’s I measures are calculated to verify if any spatial correlations exist between the 

MCA-created PDMP scores and prescription opioid- and heroin-related deaths. The bivariate 

Moran’s I measure is an estimate that goes from -1 to 1 and measures the spatial relationship 

between two variables. An estimate of -1 represents negative spatial autocorrelation where high 

values of one variable are surrounded by low values of the other, a value of 0 indicates no spatial 

autocorrelation, and an estimate of 1 signals positive spatial autocorrelation amongst the two 

variables. Following the common approach to determine the statistical significance of the 

bivariate Moran's I estimates (Anselin, 1995; Sridharan et al., 2007; Loughnan et al., 2008), 999 

permutations are generated using Monte Carlo randomization to create a reference distribution. 

For 1999, the bivariate Moran’s I between PDMP scores and the heroin-related death is 0.18, and 

statistically significant at the 1% level. The bivariate Moran’s I between PDMP scores and 

prescription opioid-related deaths is 0.14 and statistically significant at the 5% level. The 

measures indicate that there exists a slight positive spatial autocorrelation between PDMP scores 

and opioid-related deaths in 1999.  

Moving to the maps for 2016, a clear pattern of high rates of prescription and heroin deaths is 

seen in the Appalachian and Northeast regions of the country. Similarly, states in the fourth 

quartile of PDMP scores are clustered in those regions and the surrounding areas. However, 

Louisiana, Kansas, and Nevada are also in that fourth quartile of highest PDMP scores – even 

though their prescription opioid and heroin death rates fell in the first or second quartiles. States 
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in the third quartile of PDMP scores are dispersed throughout the country. Therefore, in 2016, 

states with higher PDMP scores oftentimes experiences higher incidences of prescription opioid- 

and heroin-related deaths, however, this relationship is not absolute. Bivariate Moran’s I values 

for 2016 are 0.35 and 0.31 between PDMP scores and prescription opioid- and heroin-related 

deaths, respectively. Both measures are statistically significant at the 1% level. These measures 

also indicate a small positive spatial autocorrelation between PDMP scores and opioid-related 

deaths. The bivariate Moran’s I values in 2016 are also larger than the ones in 1999, indicating an 

increased incidence of states with higher PDMP score being surrounded by states with high 

opioid-related deaths as time progressed.  

Fixed Effects Models with PDMP Scores Model Estimates  

Table 3.3 displays the model estimates when the created MCA score is used as the measure of 

PDMP robustness, and Table 3.4 displays the estimates when the replicated Pardo score is used. 

As seen in Table 3.3, the continuous measure of PDMP vigor generated through MCA indicate 

that more state regulations are significantly associated with higher levels of heroin-related deaths 

in Model II. This finding lends some support to the hypothesis that as PDMPs become more 

stringent, heroin deaths rise as a result of prescription opioids being more difficult to access 

through physicians. Contradictory estimates are seen between the continuous MCA and Pardo 

scores when prescription opioid deaths are the outcome variable. The MCA score’s estimates are 

positive, while the Pardo score shows negative coefficients. In Pardo’s 2017 study, his coefficient 

estimates for his PDMP score variable were also negative, however, they were statistically 

significant. It is important to note that the majority of the continuous measures are not statistically 

significant in either the MCA- or Pardo-based fixed effects models for prescription opioid deaths, 

suggesting that increases in PDMP regulations have no association with the prescription opioid-

related death rate.
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Table 3.3. Fixed Effects Model Estimates using MCA Score of PDMP Strength 

  Model I  Model II  Model III  Model IV 

  

ln(Prescription 

Deaths) 

ln(Heroin 

Deaths)  

ln(Prescription 

Deaths) 

ln(Heroin 

Deaths)  

ln(Prescription 

Deaths) 

ln(Heroin 

Deaths)  

ln(Prescription 

Deaths) 

ln(Heroin 

Deaths) 

             

MCA Score (continuous) 0.001 0.004  0.004 0.013*       

MCA Score (class)            

 1st quartile       -0.158* -0.338*  -0.218** -0.209 

 2nd quartile       -0.064 -0.300  -0.109 -0.196 

 3rd quartile       -0.083 -0.157  -0.110 -0.016 

 4th quartile       -0.057 -0.063  -0.078 0.066 

Agency             

 Law Enforcement    0.059 0.015     0.163 0.181 

 Department of Health    -0.162* -0.544***     -0.035 -0.375** 

 Consumer Protection    0.082 -0.397     0.276*** -0.175 

 

Professional and 

licensing    -0.036 -0.285*     0.081 -0.112 

 Other    0.034 -0.202     0.174 -0.061 

Naloxone  0.021 0.347**  0.022 0.332**  0.002 0.306**  0.006 0.317** 

Good Samaritan 0.112 0.280**  0.119 0.318**  0.132 0.326**  0.135 0.340*** 

Pain clinic laws  -0.038 0.499*  -0.049 0.457*  -0.047 0.473*  -0.058 0.451* 

Medical marijuana dispensary 0.137 0.148  0.124 0.129  0.149 0.162  0.126 0.131 

Education  0.037* 0.074**  0.037** 0.068**  0.034* 0.062*  0.036** 0.065** 

White  0.029* 0.045  0.033* 0.057*  0.034** 0.059**  0.037** 0.064** 

ln(Income)  0.929** -2.189***  0.923** -2.255***  -1.005*** -2.290***  -0.973*** -2.251*** 

             

State Effect  Yes Yes  Yes Yes  Yes Yes  Yes Yes 

Year Effects  Yes Yes  Yes Yes  Yes Yes  Yes Yes 

R2  0.730 0.687  0.733 0.702  0.733 0.696  0.736 0.702 

N   918 918   918 918   918 918   918 918 

 
Note: *, **, and ** denote statistical significance at the 10%, 5%, and 1% levels, respectively
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Table 3.4. Fixed Effects Model Estimates using Pardo Score of PDMP Strength 

  Model I  Model II  Model III  Model IV 

  
ln(Prescription 

Deaths) 

ln(Heroin 

Deaths)  

ln(Prescription 

Deaths) 

ln(Heroin 

Deaths)  

ln(Prescription 

Deaths) 

ln(Heroin 

Deaths)  

ln(Prescription 

Deaths) 

ln(Heroin 

Deaths) 

Pardo Score (continuous) -0.003 -0.002  -0.001 0.013       
Pardo Score (class)            

 1st quartile       -0.154* -0.447**  -0.211** -0.348** 

 2nd quartile       -0.025 -0.100  -0.072 -0.022 

 3rd quartile       -0.088 -0.039  -0.111 0.080 

 4th quartile       -0.099 -0.068  -0.115 0.056 

Agency             

 Law Enforcement    0.065 0.002     0.151 0.182 

 Department of Health    -0.133 -0.525**     -0.030 -0.338* 

 Consumer Protection    0.107 -0.387     0.271*** -0.060 

 Professional and licensing    -0.010 -0.272     0.085 -0.081 

 Other    0.015 -0.247     0.146 0.02 

Naloxone  0.023 0.350**  0.027 0.339**  -0.007 0.261*  -0.001 0.276** 

Good Samaritan  0.111 0.277**  0.113 0.312**  0.129 0.332***  0.128 0.343*** 

Pain clinic laws  -0.027 0.518*  -0.036 0.477*  -0.025 0.473*  -0.036 0.447* 

Medical marijuana dispensary 0.145 0.160  0.135 0.146  0.153 0.184  0.134 0.152 

Education  0.037* 0.075**  0.038** 0.071**  0.035* 0.064**  0.037** 0.067** 

White  0.029* 0.044  0.032* 0.055*  0.032* 0.061**  0.035** 0.067** 

ln(Income)  -0.910** -2.157***  0.912** -2.249***  -0.953** -2.365***  0.931*** 2.337*** 

             
State Effects  Yes Yes  Yes Yes  Yes Yes  Yes Yes 

Year Effects  Yes Yes  Yes Yes  Yes Yes  Yes Yes 

R2  0.730 0.687  0.732 0.700  0.734 0.703  0.737 0.708 

N  918 918  918 918  918 918  918 918 

 
Note: *, **, and ** denote statistical significance at the 10%, 5%, and 1% levels, respectively 
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Table 3.5. Fixed Effects Model Estimates using ‘Prescribe’ 

  Model I  Model II  

  

ln(Prescription 

Deaths) 

ln(Heroin 

Deaths)  

ln(Prescription 

Deaths) 

ln(Heroin 

Deaths)  

  
  

 
  

 

Prescribe (0/1) 0.247** 0.566***  0.263** 0.540***  
Agency        

 Law Enforcement    0.116 0.139  

 Department of Health    -0.119 -0.413**  

 Consumer Protection    0.121 -0.283  

 

Professional and 

licensing    0.014 -0.146  

 Other    0.115 -0.068  
Naloxone  0.029 0.366**  0.037 0.370***  
Good Samaritan 0.081 0.207*  0.082 0.236**  
Pain clinic laws  -0.079 0.411*  -0.086 0.401*  
Medical marijuana dispensary 0.126 0.125  0.104 0.105  
Education  0.033* 0.064*  0.034* 0.065**  
White  0.030* 0.046*  0.032* 0.054*  
ln(Income)  -0.864** -2.036***  -0.815** -2.020***  

        
State Effects  Yes Yes  Yes Yes  

Year Effects  Yes Yes  Yes Yes  

R2  0.733 0.697  0.736 0.707  
N   918 918  918 918   

 
 
Note: *, **, and ** denote statistical significance at the 10%, 5%, and 1% levels, respectively 
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Moving to the PDMP scores that are broken down in quartiles for explanatory variables, there is a 

decreasing returns to scale effect which is similar to what was observed in Pardo’s original study. 

Estimates show a statistically significant negative association with prescription and heroin-related 

overdose deaths for a majority of the first (lowest) quartile of scores using both the MCA- and 

Pardo-generated measures of PDMP strength. However, higher quartiles of scores do not indicate 

a statistically significant association with either heroin or prescription overdose deaths. These 

results indicate that states outside of the least stringent PDMP cohort have not seen any changes 

to their prescription or illicit opioid death rates.  

Fixed Effects Models with Mandatory Prescriber Use Variable  

The estimates for when the binary Prescribe variable is used as the measure of PDMP robustness 

are displayed in Table 3.5. All of the models show a positive and highly statistically coefficient 

estimate for Prescribe. Thus, a state’s requirement that their physicians have to query the PDMP 

prior to writing opioid prescriptions is associated with increases in both prescription and illicit 

opioid death rates. These results are consistent with the findings of Faryer (2017) and Victor 

(2017) which saw an increase in heroin misuse after Kentucky’s PDMP required mandatory use 

before dispensing opioid medications. However, they differ from the results seen in previous 

studies which show that obligatory physician access decreases prescription opioid misuse 

(Dowell et al., 2016; Ali et al., 2017; Grecu et al., 2019). 

Discussion  

This study looks at how PDMP robustness impacts both prescription and heroin overdose deaths 

across the U.S. during 1999 to 2016. A measure of PDMP strength is created by combining 

eleven different PDMP regulations using MCA, and by replicating a previously used score of 

PDMP vigor. Additionally, past studies and our MCA findings lead us to use a single variable 

denoting if physicians have to perform a PDMP search before writing prescriptions for controlled 
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substances. This variable is used as a proxy for PDMP strength. Continuous measures of PDMP 

vigor mostly show no statistical impact on overdose deaths. When PDMP scores are broken into 

quartiles, only the lowest quartile of scores are seen to have a significant negative impact on 

overdose deaths – thus indicating a decreasing returns to scale effect. A possible explanation for 

this finding could be that states without substantial problems concerning prescription opioid and 

heroin misuse are not passing strict PDMP regulations.  For the models using a simpler PDMP 

measure in the form of a binary variable for if physicians must access the PDMP before writing 

prescriptions, all estimates showed that having this particular regulation is associated with higher 

death rates for both prescription and illicit opioids.  

Our findings generally align with previous works showing no significant association between 

PDMPs and lower incidences of prescription opioid misuse (Paulozzi et al., 2011; Brown et al., 

2017). Our continuous measures of PDMP strength is not statistically associated with the 

prescription opioid-related death rate. Notably, our mandatory access indicator variable is found 

to be positively and significantly associated with the prescription-opioid related death rate (Table 

5). This relationship is not intuitive considering that when physicians are directly surveyed, most 

report that having access to patient prescription histories through PDMPs lead them to prescribe 

fewer opioids (Rutkow, 2015; Lin et al., 2017). So, one would likely theorize that fewer 

prescribed opioids would in turn be associated with fewer incidences of deaths related to these 

substances. However, as Grecu (2019) points out, reduced prescription opioid prescriptions could 

have the unintentional consequence of driving black market prices up for these types of 

medications. These higher prices then incentivize persons to divert their legitimate prescriptions 

to illegal avenues which likely promotes the misuse of these substances. Focus groups with 

patients in substance abuse treatment programs in Wilmington, Delaware revealed that a primary 

source of illegally sold prescription opioids were from those who divert their medications for 

economic gains (Inciardi et al., 2009). Additionally, about a quarter of the 586 street drug users 
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interviewed in New York City were found to use prescription opioids for medical purposes, while 

also diverting a share of their medications for resale (Davis and Johnson, 2008). Thus, it is 

evident from our findings that more research needs to be done into how PDMPs can effectively 

reduce prescription opioid diversion.  

With respect to how PDMPs are associated with heroin misuse, one of our fixed effects models 

shows an instance where higher PDMP scores are associated with increased rates of heroin-

related deaths. In other models, a strong positive association is observed between having a PDMP 

with mandatory access regulations and illicit overdose death rates – similar to what has been seen 

before in the literature (Faryer et al., 2017; Victor, 207). Interestingly, all the coefficient estimates 

for our mandatory access indicator variable are higher than those for the PDMP score variables. 

This result indicates that having that particular regulation in a state’s PDMP is likely driving the 

association with illicit opioid deaths, since it has been shown that physicians access to PDMPs 

leads to them to prescribe fewer opioids (Rutkow, 2015; Lin et al., 2017).  Therefore, it is 

reasonable that requiring physicians to use the PDMP is the most important predictor of higher 

incidences of illicit opioid deaths. This association would be due to the increased difficulty of 

obtaining prescription opioids, caused by physicians writing fewer prescriptions. In future works, 

researchers should further examine the theory that heroin can be a substitute for prescription 

opioids when these types of controlled substances become more difficult to procure due to 

government regulations for PDMPs.  

Limitations to this study should also be considered. As previous studies have mentioned, there are 

a multitude of reasons for why deaths due to illicit opioids has risen recently. Some of the 

explanations are the rise of fentanyl mixed with heroin, and the low cost and widespread 

availability of heroin in comparison to prescription opioids (Mars et al., 2014; Frank and Pollack, 

2017). These additional factors are not accounted for in our model, and have the potential to 

obscure the relationship between PDMP strength and overdose rates due to heroin – thus reducing 
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our ability to make strong causal claims. Nonetheless, our results do offer some evidence of a 

positive relationship between PDMP robustness and illicit opioid deaths. This research area 

should continue to be explored as additional data becomes available.
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CHAPTER IV 
 

 

COMMUNITY MEETINGS ON THE RURAL OPIOID CRISIS: SETTING A PATH 

FORWARD BY LEARNING FROM OTHERS 

 

 

 

Although the opioid epidemic has negatively impacted the entirety of the U.S. in recent years, 

rural areas have been especially affected. The Centers for Disease Control and Prevention (CDC) 

now estimates that the opioid death rate is higher in rural communities in comparison to urban 

ones (Mack, 2017). This difference is due to a variety of factors. Rural areas do not have 

extensive access to substance abuse treatment options, and are also faced with higher rates of 

opioid prescribing by physicians in comparison to urban areas (Rosenblatt et al., 2015; Hirchak 

and Murphy, 2017; Garcia et al., 2019). Additionally, the societal dynamics of rural communities 

may promote opioid misuse. There exists a stigma that surrounds receiving substance abuse 

treatment in a rural close-knit community, which discourages their utilization (Jackson and 

Shannon, 2012; Browne et al., 2016; Rigg et al., 2018). Those who live in rural locations also 

typically have wide social networks, which can expedite access to opioids (Keyes et al., 2014). 

Similarly, administering services in rural communities to help with substance misuse can be 

burdensome. When substance abuse agencies in Washington state were surveyed about their 
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practices, rural clinics noted that their small staff sizes prevented them from being able to devote 

work time to receive training on evidence-based practices (Dotson et al., 2014). Therapists noted 

that reliable transportation is a significant barrier for their rural clients who are receiving 

treatment for substance misuse, and this in turn makes it difficult for them to build a stable 

relationship with their patients (Godlaski and Clark, 2012). In focus groups, substance abuse 

counselors who work in rural areas stated that a lack of available funding makes having an 

adequate facility to provide services difficult (Pullen and Oser, 2014).  

Despite these challenges, studies that have examined programs targeted at the opioid epidemic in 

rural areas have found promising results. Albert et al. (2011) focused on Project Lazarus, a 

community coalition in North Carolina aiming to help a county reduce their number of 

prescription opioid overdose deaths. Through outreach efforts such as prescriber education 

programs and providing naloxone18 kits to at risk community members, they were successful in 

lowering the overdose death rate in their target area from 46.6 in 2009 to 29.0 in 2010. In Nevada, 

a training program where emergency medical technicians (EMTs) in rural communities learned 

how to effectively administer naloxone was found to increase their knowledge about the signs of 

an opioid overdose and decrease their concerns about using the product in the field (Zhang et al., 

2018). Palombi et al. (2018) investigated a joint partnership between a pharmaceutical college 

and rural and indigenous citizens in northern Minnesota, which sought to increase community 

engagement by medical professionals. As a result of the cooperative effort, communities in the 

area have benefitted through forums, grants, and naloxone trainings designed to reduce overdose 

deaths.  

This study takes a different look at the issue of administering programs to alleviate opioid misuse 

in rural communities. It describes a series of community meetings in a rural setting, where 

                                                           
18 Naloxone is a medication that aids in reversing the effects of an opioid overdose. 
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community stakeholders learned about a variety of programs that can potentially help address the 

crisis. The ultimate goal of this study was for the participants to pinpoint where they would like 

future resources to go as they seek to reduce opioid misuse. Their decisions were based on the 

needs of the community, and the programs’ respective feasibilities. Through involving the 

community, and hearing their input and views, these meetings laid the groundwork for 

stakeholders in the community to develop supported strategies in the future. To our knowledge, 

no previous studies have held and assessed meetings where multiple plans of action related to the 

opioid epidemic are examined, and where those who live in the community provided their input 

for which programs should be emphasized to reduce opioid misuse in their area. It is important to 

involve those from the area of interest in community-based research, as it has been shown to 

increase the knowledge of the community members which leads to better informed resource 

allocation and policy decisions (Israel et al., 1998; Macaulay et al., 1999; O’Brien and Whitaker, 

2011).  

Methods 

Setting 

This study occurred in the town of Ardmore, Oklahoma. The state of Oklahoma has been hit 

particularly hard by the opioid epidemic. According to the CDC, about 800 Oklahomans died due 

to drug overdoses in 2017, which is the twenty-eighth highest total number of deaths by state 

(Centers for Disease Control and Prevention, 2018). One potential explanation for why Oklahoma 

is experiencing a high number of drug-related deaths could be due to it being a predominately 

rural state (Keyes, 2014). According to the Economic Research Service Rural-Urban Continuum 

Codes, 59 of the 77 counties in Oklahoma are classified as non-metropolitan.  

Of all the rural areas in Oklahoma, the community of Ardmore has been especially effected by 

the opioid epidemic. Ardmore is located in south central Oklahoma, with an estimated 2017
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Figure 4.1. Oklahoma Age-adjusted Opioid-Related Death Rates, 2015-2017
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population of about 25,000 residents (U.S. Census Bureau, 2019). Ardmore is also the county seat 

of Carter County, which is classified as non-metropolitan. Using CDC data, opioid-related deaths  

for 2015 through 2017 in Oklahoma counties are shown in Figure 4.1. Carter county has a death 

rate of about 13, which is slightly higher than both the U.S. and Oklahoma rates (12 and 11, 

respectively). As Figure 1 also shows, the surrounding counties (Garvin and Stephens) also have 

high opioid death rates for 2015 through 2017– thus implying that opioid misuse is an issue for 

the general area.  

Participant Recruitment  

Stakeholders who live or work in the Ardmore area were recruited primarily through word-of-

mouth with the help of the researchers’ professional contacts. A flyer was also created to be 

distributed throughout the community which explained the overall premise of the meetings, along 

with other pertinent information (Appendix 4.A). For the purposes of this research, stakeholders 

were considered to be those who were involved in organizations or jobs who worked on 

preventing or treating opioid misuse in the Ardmore area. For example, participants came from a 

nearby opioid treatment program, the Carter County sheriff’s office, and a behavioral wellness 

center. All the organizations represented at the meetings are presented in Appendix 4.B.  

Data Collection 

All research procedures were approved prior to the meetings by a university human subjects 

institutional review board (IRB). A detailed agenda for the three meetings can be found in 

Appendix 4.C. Data collection occurred throughout the meetings, which were held two weeks 

apart from one another. During the first two meetings, four different categories of programs were 

introduced to the participants with the goal of providing information that could be used for group 

discussions and evaluations. The Ardmore area has current efforts in each of these four 

categories; however, participants’ knowledge of the programs was assumed to be varied at the 
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beginning of the meetings. To help explain the different categories of programs, professionals 

were brought in who have experience with these approaches and could speak to their strengths 

and weaknesses in helping to reduce opioid misuse. These professionals presented to the 

participants regarding the programs, and answered any questions participants had.  

The four categories of programs that participants learned about are (A) programs that try to 

reduce the supply of opioids, (B) programs that try to reduce the demand for opioids, (C) opioid 

treatment options, and (D) overdose prevention and recovery programs. Examples for these 

categories of programs are listed in Table 4.1, along with the professional’s organization who 

presented on each of the categories. For both (C) and (D), two speakers from different 

organizations spoke on each category. The first three categories (A, B, and C) came from a 

National Issues Forums guide regarding different strategies to address the opioid epidemic 

(Wharton, 2018). The last category (D) is included due to overdose prevention programs being 

proven in previous studies to be effective in reducing opioid-related deaths in rural areas (Albert 

et al., 2011; Zhang et al., 2018). A selection of pictures from the presentations are displayed in 

Appendix 4.D. 

Surveys  

The first method in which data was collected in this study was through two surveys. Meeting 

members were provided with written informed consent forms before they took the surveys, which 

stated that their participation was voluntary. Surveys were distributed at the beginning of the first 

meeting (the ‘pre’ survey), and at the end of the third meeting (the ‘post’ survey). The pre and 

post surveys are identical, and is displayed in Appendix 4.E. The rationale behind distributing 

surveys at the beginning and end of the meetings is to determine if participants’ opinions changed 

as a result of the presentations and group discussions. To match the surveys among the two 

different time periods, participants provided a 4 digit ID at the start of their survey. To avoid
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Table 4.1. Program Examples and Represented Presenter Organizations 

 

Category Examples 
Organization of 

Presenter(s) 

[A]: Programs that try to reduce 

the supply of opioids 

Law enforcement efforts, 

prescribing guidelines for 

physicians, and legislative 

measure to try and reduce 

doctor shopping 

 

Oklahoma Bureau 

of Narcotics and 

Dangerous Drugs 

[B]: Programs that try to reduce 

the demand for opioids 

Public health campaigns, youth 

intervention programs, and 

reduced marketing for opioids in 

the community 

 

Wichita Mountains 

Prevention 

Network 

[C]: Opioid treatment programs 

Medication-assisted treatment 

(MAT), physician prescribing of 

buprenorphine, abstinence-

based programs, and peer 

recovery support 

 

Private practice 

physician and 

Southern Oklahoma 

Treatment Services 

[D]: Overdose prevention and 

recovery 

Making naloxone available to 

those in the community and 

providing education on how to 

administer naloxone safely 

Ardmore Police 

Department and 

Oklahoma 

Department of 

Mental Health and 

Substance Abuse 
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participants forgetting their ID between the first and third meetings, the ID was comprised of the 

first and third letters of their first name and the day of the month they were born. Therefore, the 

unique nature of the number ensured that each participant would provide the same ID for the pre 

and post surveys. 

Questions on the surveys included eliciting participant’s opinions on issues related to the opioid 

epidemic, along with their level of familiarity for the four categories of programs discussed 

during the meetings. The next subset of questions asked the participants how effective they think 

each category’s current efforts are in addressing the opioid epidemic in Ardmore, and if they 

believe more or less resources should be devoted to efforts in the category. Participants were also 

asked the percentage of total efforts (out of 100) they believe Ardmore currently puts into each 

category, and how much effort should be directed towards that category in the future. The last 

subgroup of questions asked about the participant’s demographics, including their race, 

household income, highest education level received, political affiliation, age, gender, and how 

long they have lived in the Ardmore area.  

Study Circles  

The second data collection technique used in this study was study circles. Study circles are a tool 

for encouraging group discussion where participants are randomly broken into smaller groups (of 

5 to 6 participants), given a list of questions to prompt dialogue, and then report as a group. A 

comparable study used study circles to address poverty in rural communities in Idaho (Cummins 

et al., 2012). Two study circles occurred during the community meetings, one at the second 

meeting and one at the third. The first study circle (at the second meeting) asked the groups why 

they believe opioid misuse is an issue for the area, and had them report back the top three reasons 

they came up with. Questions on the first study circle prompt also included asking the participants 

whether any of the categories of programs discussed directly address the underlying reasons for 
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opioid misuse that they developed, and which reasons will be the easiest and hardest to address in 

the future. For the second study circle, groups were asked about the assets present in the Ardmore 

area that help each of the four categories of programs be effective. Groups were also asked what 

specific programs they believe should be expanded (and conversely, reduced) in the future, and 

reported back the programs they identified. The study circle guides distributed to participants are 

shown in Appendix 4.F.  

Category Voting  

To quantify how the participants felt resources should be directed to each of the four categories in 

the future, a voting exercise was conducted at the third community meeting. In this exercise, each 

participant was handed a strip of four different colored stickers and verbally given a hypothetical 

scenario. In this scenario, they had ten dollars to devote to the four categories of programs. 

Yellow stickers denoted four dollars, blue was for three dollars, green was for two dollars, and 

red was for one dollar. Participants had to decide how they wanted to allocate their ten dollars 

between the programs, and therefore choose which program they believe should receive the most 

(and least) resources. Each participant marked their final decision on a large sheet of paper in the 

meeting room which had the four categories listed and spaces for the stickers. This method 

provided a visual representation of how the meeting participants individually allotted their 

theoretical funds, which serves as a proxy for which program they believe should receive more 

resources in the future. 

Results 

Survey Results  

Descriptive statistics for the meeting participants are displayed in Table 4.2. These descriptive 

statistics come from the surveys that were distributed at the first and third community meetings. 

53 participants took the first survey (the ‘pre’ survey), with 32 participants taking the survey at
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Table 4.2. Descriptive Statistics of Meeting Participants 

  Aggregate  Matched 

  Pre  Post   

Ethnicity      
 White 75%  63%  72% 
 Non-White 25%  38%  28% 

Yearly Household Incomea 
     

 Under $25,000 4%  9%  6% 
 $25,000 - $49,999 15%  9%  17% 
 $50,000 - $74,999 28%  38%  22% 
 $75,000 - $124,999 23%  28%  22% 
 $125,000 or more 13%  6%  22% 

Education      
 Did not graduate high school 0%  0%  0% 
 High school, GED, or Equivalent 6%  9%  6% 
 Some College / Associates Degree 19%  19%  11% 
 College Degree 43%  50%  50% 
 Post College Degree 30%  22%  33% 

Gender      
 Male 17%  25%  11% 
 Female 79%  75%  89% 

Political Affiliationa 
     

 Republican 34%  34%  33% 
 Democrat 30%  25%  33% 
 Independent 9%  19%  6% 
  

     

Mean Age 42  42  38 

Mean Number of Years Lived in 

Ardmore 21  19  18 

       

Number of participants 53   32   18 

 
a The response categories included a ‘Prefer Not to Answer’ option 
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the third community meeting (the ‘post’ survey). This group of 53 pre and 32 post responses 

makes up the aggregate sample in this study. It is important to note that the 32 participants at the 

third meeting were comprised of both participants who were present at the first meeting, and new 

participants. Between the pre and post survey, 18 participants were matched using the 4 digit ID 

they provided. The descriptive statistics that follow look at 2 distinct groups: the pre/post 

aggregate groups, and the matched group of 18.  

Looking at the descriptive statistics, there is not a wide variation in demographics between the 

pre, post, and matched group. Most of the participants at the meetings were white, had household 

yearly incomes above $50,000, were college educated, female, and in their late 30’s to early 40’s. 

Among the groups, the participants had lived in the Ardmore area for an average of around 20 

years, which means they have an extensive familiarity with the community. Political affiliation 

was split between Republican and Democrat, with only a small portion of the participants 

identifying as Independent.  

Figure 4.2 shows the percentage of responses across varying categories to the statement ‘Like 

Alcoholism, Opioid Addiction Should be Treated as a Disease, Not a Crime’. Figure 2a is for the 

aggregate sample, with Figure 4.2b being for the matched sample of 18 participants. A majority 

of the participants’ responses in both the aggregate and matched samples, between the two time 

periods, strongly agreed or somewhat agreed with this statement. These responses fall in line with 

the American Medical Association, which classified addiction as a disease beginning in 1987 

(Bettinardi-Angres and Angres, 2010). Most of the participants’ responses agreeing with this 

statement also indicates that they would lean towards providing those who are facing opioid 

misuse issues with treatment, instead of legal prosecution. Interestingly, for both the aggregate 

and matched samples, there was an increase seen in the “somewhat disagree” classification 

between the pre and post surveys. A possible justification for this finding is that a portion of the 

respondents during the meetings began to believe that legal prosecution is a more effective way to 
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Figure 4.2. Percentage of Responses for the Statement: ‘Like Alcoholism, Opioid Addiction 

Should be Treated as a Disease, Not a Crime’ for (a) Aggregate Sample and (b) Matched 

Sample 

  

67

33

0 0 0

67

11
17

0
6

0

10

20

30

40

50

60

70

Percentage of 

Responses

Pre

Post

60

40

0 0 0

63

19
16

0
3

0

10

20

30

40

50

60

70

Percentage of 

Responses

Pre

Post

b 

a 



64 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Percentage of Responses for How Effective These Efforts Currently are in 

Addressing the Opioid Epidemic in Ardmore, Aggregate Sample
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Figure 4.4. Percentage of Responses for How Effective These Efforts Currently are in 

Addressing the Opioid Epidemic in Ardmore, Matched Sample 
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deter those from continuing substance use as opposed to offering rehabilitation to those 

experience an opioid addiction. During the first meeting, there was a discussion amongst the 

participants regarding Oklahoma State Question (SQ) 780 and 781 which went into effect in 

2017. SQ 780 reclassified simple drug possession as a misdemeanor (as opposed to a felony) and 

SQ 781 made it possible for the savings from SQ 780 to be transferred into county government 

funds for substance abuse and mental health services (Oklahoma Policy Institute, 2018). Some of 

the participants felt that SQ 780 led to law enforcement having less authority and bargaining 

power when dealing with individuals charged with drug-related crimes, since misdemeanors are 

more minor than a felony. Thus, perhaps the participants who stated that they somewhat disagree 

with addiction being classified as a disease in the post survey were swayed by the conversation 

regarding SQ 780 and 781 into thinking that treating addiction as a felony is more effective in 

reducing misuse than classifying it as a misdemeanor.  

Survey responses for questions asking the participants how effective they believe the four 

categories are in addressing the opioid epidemic in the Ardmore area are seen in Figures 4.3 and 

4.4. Figure 4.3 is for the aggregate sample, with Figure 4.4 being for the matched sample. The 

“somewhat effective” option saw an increase in its percentage of responses between the pre and 

post surveys, for all four categories and with both the aggregate and matched samples. In the post 

survey period, a sizable portion of the responses indicated for all four categories of programs that 

they were somewhat effective in combatting the crisis in the community. This finding held for 

both the aggregate and matched samples. So, as a result of the group discussions and 

presentations, a considerable share of the participants still believe that current efforts in these 

categories are lacking in their efficacy, and still have room for improvement. Another notable 

finding from Figures 4.3 and 4.4 is that the percentage of responses in the “very ineffective” 

option for category B (programs that try to reduce the demand for opioids) saw a large increase 

between the pre and post period for both samples. For the aggregate sample, the option went from 
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2% to 13% of the responses, and for the matched sample it went from 0% to 17%. This result 

implies that at the end of the meetings, a portion of participants did not believe that present efforts 

focused on trying to reduce the demand for opioids in Ardmore are effective at all, which could 

be an area to direct efforts towards in the future. Or, it could suggest that this subset of 

participants do not believe that category B is useful at reducing opioid misuse in any capacity, 

and resources should be devoted to other types of programs.  

Figure 4.5 shows the mean percentage of efforts (out of 100) that participants noted on their 

surveys that currently (Figure 4.5a) and should (Figure 4.5b) go in to each category for the 

aggregate sample. Figure 4.6 displays the same findings for the matched sample. Going from the 

pre to post periods, a majority of the means stayed the same. However, for the aggregate sample’s 

responses for the percentage of efforts that Ardmore should put into each category (Figure 4.5b), 

noteworthy changes are seen for categories B (programs that try to reduce the demand for 

opioids) and D (overdose prevention and recovery). Participants thought less resources should go 

towards category B, and more resource should go towards category D moving from the pre to 

post periods. Another result worth mentioning is observed in Figure 4.6a, where the matched 

sample’s percentage of efforts that they believe are currently in Ardmore increased for category C 

(treatment options) between the periods. This change is likely due to participants learning about 

different treatment options during the presentations and having discussion that allows them to 

hear other opinions.  

For both the aggregate and matched samples, similar trends are observed. Participants believe that 

the most efforts in the Ardmore area are currently centered in category A (programs that try to 

reduce the supply of opioids). However, when asked how many efforts should go into each 

category, they indicate that category C (treatment options) should receive the most. This finding 

relates to a majority of survey responses either strongly or somewhat agreeing that addiction is 
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Figure 4.5. Mean Percentage of Efforts Ardmore (a) Currently Puts in to Each Category and (b) Should Put in to Each Category, 

Aggregate Sample 
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Figure 4.6. Mean Percentage of Efforts Ardmore (a) Currently Puts in to Each Category and (b) Should Put in to Each Category, 

Matched Sample
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disease, not a crime (as seen in Figure 4.1). As a result, it is logical that treatment options for 

opioid misuse would be given the highest percentage of future efforts by participants.  

Study Circle Results 

The reasons for opioid misuse in the Ardmore community that groups identified in the first study 

circle are listed in Table 4.3. The most common reason was overprescribing by physicians, which 

has been identified as a significant contributor to the opioid crisis in previous research (Compton 

et al., 2015; Makary et al., 2017). Another reason was high incidences of adverse childhood 

experiences (ACE) in the community. ACEs consist of exposure to abuse and household 

dysfunction during ones childhood (Felitti et al., 1998). An individual’s ACE score has been 

shown to be positively related to their likelihood of opioid misuse (Stein et al., 2018), so it is 

reasonable that participants would recognize this as a main reason for opioid misuse in their area.  

Other reasons that the groups noted are societal factors such as social access and acceptability of 

opioids, which again have been identified as issues for rural areas (Young et al., 2012; Keyes et 

al., 2014). Some causes were particular to the Ardmore area. The location of Ardmore was 

recognized as being a contributing factor, since the community is situated off a major interstate 

highway (I-35) and between the major metropolitan areas of Oklahoma City and Dallas. Another 

reason was that a majority of the people in Ardmore are involved in working class jobs, which 

participants believe have a higher risk of injury than middle or upper class positions. Participants 

stated that those who become injured in the workplace are then prescribed opioids for pain 

management, which leads to misuse problems.  

Table 4.4 shows the programs that the groups during the second study circle listed as being 

programs they would like to expand in the future. The most frequently cited program was youth 

education efforts that target school-age adolescents, which are a part of category B (programs that 

try to reduce the demand for opioids). The remaining programs cited by the study circle groups 
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Table 4.3. Study Circle 1 Findings, Reasons for Opioid Misuse in Ardmore area 

 

Reason 

Number of Times 

Reported by 

Groups 

Overprescribing by physicians 5 

High ACE scores 3 

Social access / accessibility 3 

Lack of entertainment / boredom 2 

Lack of patient education 2 

Location of area 2 

High injury risk industries in area 2 

Lack of treatment options 1 

Prescription justification 1 

Drug dealers and gangs 1 
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Table 4.4. Study Circle 2 Findings, Programs to be Expanded in the Future 

 

Program 

Number of 

Times Reported 

by Groups 

Youth education programs in schools 4 

Treatment for uninsured 2 

MAT with buprenorphine 1 

Inpatient services 1 

Drug court 1 
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Table 4.5. Category Voting Findings, Dollar Allocation to Each Program 

 

 Number of Allocated Stickers   

Program 

Yellow 

($4) 

Blue 

($3) 

Green 

($2) 

Red 

($1)  Total Dollar Amount 

[C]: Opioid treatment programs 15 12 4 3  $107  

[A]: Programs that try to reduce the supply of opioids 9 10 7 6  $86  

[B]: Programs that try to reduce the demand for opioids 7 7 14 2  $79  

[D]: Overdose prevention and recovery 1 3 7 22  $49  
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were a variety of different treatment options including providing treatment for uninsured persons, 

medication-assisted treatment (MAT) with buprenorphine, inpatient services, and drug courts. 

Category Voting Results 

Table 4.5 displays the findings for the participant voting exercise that occurred at the third 

meeting. Appendix 4.G also shows a picture of the paper where participants made their 

selections. In this exercise, participants had to denote with stickers how they would assign a 

hypothetical ten dollars, with each sticker representing a different dollar amount. Category C 

(opioid treatment options) received the most theoretical funding ($109) with categories A 

(programs that try to reduce the supply of opioids) and B (programs that try to reduce the demand 

for opioids) falling in second and third place, respectively. Category A obtained $86, while 

category B received $79. The small dollar difference ($7) between the two categories indicates 

that participants valued these programs to a similar degree.  

The category of program that earned the least dollar allocation was category D (overdose 

prevention and recovery) with $49. A possible reason for this result in the voting exercise could 

be because after the presentations and discussions, participants believe current efforts in this 

category are sufficient and future resources should be directed elsewhere. Going back to the 

survey results seen in Figures 4.3 and 4.4, 82% of the responses in the aggregate sample and 89% 

of the responses in the matched sample believed that category D was either “somewhat effective” 

or “very effective” in addressing the opioid epidemic in Ardmore in the post period.  

Discussion  

This study is comprised of the findings from a series of three community meetings in Ardmore, 

Oklahoma. In these meetings, participants learned about four different categories of programs 

they can utilize to help with the high rates of opioid misuse in their area. The aim of these 

meetings was to use surveys, study circle discussions, and a voting exercise to determine 
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participant perceptions of the opioid crisis, and how they believe resources should be allocated 

among the different programs in the future. Results reveal that the participants would like to 

direct resources mainly towards treatment services in their community. Participants would also 

like to expand efforts for youth education programs regarding opioids.  

It is not surprising that participants believed that the most resources should go towards treatment 

options for those with opioid use disorders, as access to viable treatment is a problem for rural 

areas (Rosenblatt et al. 2015; Hirchak and Murphy, 2017). When prompted during the second 

study circle, participants listed that they would like to expand treatment for uninsured 

populations, inpatient services, and drug court programs. Another treatment option that was listed 

for future expansion was MAT with buprenorphine. In a MAT program with buprenorphine, 

patients have to visit the facility less frequently than if they were in a MAT program with 

methadone (Center for Substance Abuse Treatment, 2005). Patients can also receive the 

medication from their primary care physician, if the physician is trained and has the waiver to 

prescribe it (Substance Abuse and Mental Health Services Administration, 2019). Because of the 

features of a MAT program that uses buprenorphine, it has been identified as being a worthwhile 

treatment option for rural patients (Quest et al., 2012). Thus previous research and our study show 

that stakeholders in rural areas should look into expanding this form of treatment.  

During the second study circle, it was also identified that youth education programs in schools 

should be expanded in the future. These programs fall under category B (programs that try to 

reduce the demand for opioids). Calling for the increase in programs targeting at adolescents in 

Ardmore is understandable, considering it has shown that rural drug users typically beginning 

their use at a younger age in comparison to their urban counterparts (Young et al., 2012). 

Research has shown that youth intervention programs are useful tools in decreasing opioid misuse 

in nonmetropolitan areas. Crowley et al. (2014) assessed the efficacy of school-based youth 

interventions in rural school districts in Iowa and Pennsylvania. Interventions began in sixth 
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grade for the treated group, and researchers followed the adolescents in the study until they were 

in twelfth grade. They found that preventative programs were effective in reducing nonmedical 

prescription opioid misuse for the youths in their sample. Similar results are seen in Spoth et al. 

(2013) when they examined the effectiveness of family-focused and school-based youth 

intervention programs. Future research should continue to look into the effects of providing youth 

education programs to rural adolescents on later opioid misuse – and in particular what type of 

intervention works best.  

Of special note in this study is the category of programs that did not receive a lot of funding in 

terms of the hypothetical voting exercise, category D. This category was for overdose prevention 

and recovery programs, and was allocated about half of the funds as category C (opioid treatment 

programs). When evaluating the survey responses, over 80% of the responses in the post survey 

deemed category D as being either “somewhat” or “very” effective in addressing opioid misuse in 

Ardmore for both the aggregate and matched samples. These findings could be attributed to 

Oklahoma currently being highly involved in taking measures to reduce fatal opioid overdoses. 

The Oklahoma Department of Mental Health and Substance Abuse Services is active in training 

citizens to use naloxone, and having it available across the state for free (Oklahoma Department 

of Mental Health and Substance Abuse Services, 2019). Additionally, Oklahoma passed a Good 

Samaritan law which went into effect in 2018 (Oklahoma State Legislature, 2018). Good 

Samaritan laws allow persons to report an overdose to authorities, without being prosecuted under 

certain circumstances. Another overdose prevention tool that Oklahoma is involved with is the 

Overdose Detection Mapping Application Program (ODMAP). First responders to an opioid 

overdose report the location of the incident, along with other information including victim details, 

the suspected drug used, and whether or not naloxone was used to ODMAP. Then, agencies can 

access this data to see if there are any overdose spikes occurring in their area, and take 
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appropriate measures if necessary. Currently, 79 law enforcement agencies across the state of 

Oklahoma use ODMAP (Overdose Detection Mapping Application Program, 2019).  

This study is not without its limitations. The findings from this research are specific to the 

Ardmore, Oklahoma community and the participants that partook in the meetings. Future 

researchers should expand on these meetings in their areas of interest, and determine if these 

results hold for other rural communities – which may face very different circumstances. 

Additionally, participants’ opinions regarding the programs may have been swayed by the 

presenting skills of the experts, which varied across the categories. Participant perceptions about 

the cost of each category of program could have also influenced the voting exercise. Category C 

(opioid treatment programs) may have received the most funds due to the fact that these programs 

cost more to implement in the community in comparison to the other categories of programs. 

Another limitation is that although the categories of programs discussed in this study were broad 

in nature, they did not encompass every possible tool available to address the crisis. For example, 

the harm reduction strategy of a syringe exchange program was not discussed, and participants’ 

views on this approach was not elicited through our data collection techniques. The use of syringe 

exchange programs has been shown to be associated with subsequent retention in substance use 

treatment (Hagan et al., 2000). Thus, future studies should look into whether or not rural 

community members are willing to direct resources towards providing this service in their areas. 

 Overall, this study has described a series of community meeting seeking to develop a consensus 

for moving forward to address the rural opioid crisis in rural communities. The results show that 

participants are generally interested in further developing treatment and youth-based prevention 

efforts in their area, due to the needs of the area. While specific to Ardmore, this process could be 

replicated by other rural communities struggling with the opioid epidemic. The presented 

programs and speakers would vary, but the process should allow stakeholders to come together 
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and begin the process of taking steps forward in bettering the health and well-being of their 

communities.
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CHAPTER V 
 

 

CONCLUSION 

 

 

 

The three studies included in this dissertation provide a thorough explanation of several issues 

related to the rural opioid crisis. The first and second studies econometrically evaluate specific 

strategies to address the crisis, while the third study is on an Extension-led community discussion 

on the best path forward. The first study (Chapter 2) looks at opioid treatment programs (OTPs) 

in the South census region that existed in 2013. Chapter 3 contains the second study, which 

focuses on prescription drug monitoring programs (PDMPs) from 1999 to 2016. The third study 

in Chapter 4 is an evaluation of a series of three community meetings that took place in Ardmore, 

Oklahoma. Moving forward, the findings of these studies can be used as an examination of the 

effectiveness of current approaches targeted at reducing the impacts of the crisis in rural areas. 

They can also guide future efforts. 

Results show that OTPs in the South are not associated with reductions in opioid-related deaths in 

both the counties they are located in, and neighboring counties in the first study. This finding held 

for both metropolitan and non-metropolitan counties. Outside factors could be causing this lack of 

a negative relationship in rural areas, such as the cost of treatment, lack of access to OTPs, and 
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transportation issues. Another potential issue is that rural OTPs could locate in places with high 

crime rates, which leads to increased incidences of opioid misuse. These issues concerning OTPs 

should be explored further.  

The second study found that PDMP scores are generally not associated with prescription opioid-

related deaths at the state level. For illicit opioid-related deaths, one model saw a positive 

relationship between PDMP score and the heroin death rate. This result lends some support to the 

hypothesis that stringent PDMPs lead to increases incidences of deaths attributed to illicit opioids. 

Models were also executed which used a binary variable indicating if the state’s PDMP requires 

physicians to check the PDMP prior to writing prescriptions for controlled substance. This 

regulation was seen to have the highest coordinate score in the multiple correspondence analysis 

(MCA), which signals that is the most important regulation that makes up a state’s overall PDMP 

score. When only the mandatory access binary variable was included in the fixed effects models, 

it was positively associated with both the illicit- and prescription-opioid related death rate. Future 

policy-makers looking to increase the efficacy of PDMPs should examine their possible 

unintended consequences on heroin deaths. They should also delve further into why the 

mandatory access provision in PDMPs is associated with higher prescription opioid-related 

deaths. A possible reasoning is that the regulation leads to more prescription opioid diversion, 

which leads to increased misuse.  

Participants who attended the community meetings in Ardmore, Oklahoma demonstrated that 

they would like to devote future resources towards treatment options for those dealing with opioid 

use issues. They also noted that they would like to expand youth education programs in school, 

which would be targeting at preventing adolescent opioid misuse. Interestingly, participants chose 

to allocate the least amount of resources towards overdose prevention programs. This result could 

be due to Oklahoma being highly active in distributing naloxone, providing overdose prevention 

training, and tracking overdoses in communities. Because this study occurred in a select rural 
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community, these meetings should be expanded to other areas to see if the results hold in 

different locations. This area of ripe for Extension intervention, and replication of these meetings 

would be an appropriate use of land-grant resources.  

As this dissertation shows, the rural U.S. is in need of programs dedicated to reducing opioid 

misuse. The outcomes and conclusions from these three studies demonstrate that a diverse 

approach is needed to combat the opioid crisis in rural areas. Programs and policies should focus 

both on the prevention of further opioid misuse, and making treatment accessible for all 

populations. Additionally, researchers and policy-makers should continue community-based 

research, to explore the specific needs of rural areas in their efforts to combat the opioid crisis.
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APPENDICES 
 

 

 

 

 

 
Appendix 2.A. L1 Imbalance Measures for Metropolitan Counties 

 
 

Treatment 1: OTP in 

County before 2013  

Treatment 2: OTP in 

 Neighboring County before 2013 

 

Unmatched 

Data 

Matched 

Data  Unmatched Data Matched Data 
      

Age Adjusted Death 

Rates (2011-2013) 0.15 0.18  0.16 0.03 

Prescription rate 0.12 0.27  0.23 0.04 

Ln(Population) 0.50 0.12  0.12 0.03 

Percent white 0.33 0.06  0.18 0.05 

Poverty rate 0.16 0.00  0.26 0.22 

      

Multivariate L1 0.97 0.79  0.97 0.71 

Number of 

Observations: 

Treated, Control 156. 437 34, 31  386, 207 62, 55 
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Appendix 2.B. Logit Models for Treatment 1 and Treatment 2 for Non-Metropolitan and Metropolitan Counties 

 Non-Metropolitan Counties  Metropolitan Counties 

 

Treatment 1: OTP 

in County before 

2013 

 

Treatment 2: 

OTP in 

Neighboring 

County before 

2013  

Treatment 1: OTP 

in County before 

2013 

Treatment 2: 

OTP in 

Neighboring 

County before 

2013 
      

Age Adjusted Death Rates (2011-

2013) -0.01 0.04**  0.05*** 0.03 

Prescription rate 0.01 6.3e-3*  0.01** -0.01*** 

Ln(Population) 1.02 1.59***  1.91*** -0.02 

Percent white 0.02 4.49e-3  -0.03** 1.78e-3 

Poverty rate 9.51e-3 0.04  0.04 -0.10*** 

Constant -15.43* -18.07***  -23.51*** 3.21 

      

Number of Observations 157 157  331 331 

R2 0.06 0.07  0.34 0.08 
 

Note: ***, **, and * represent statistical significance at the 1%, 5%, and 10% level, respectively 



95 
 

Appendix 2.C. Descriptive Statistics between Counties with Suppressed and Non-Suppressed Death Counts 

 

Note: ***  and * represent statistical significance at the 1% and 10% level, respectively 

 

 

 Age Adjusted Death Rates (2014-2016)  Age Adjusted Death Rates (2011-2013) 

 

Non-Metropolitan  

Counties   

Metropolitan 

 Counties 

Non-Metropolitan 

 Counties 

Metropolitan 

 Counties 

 
No Suppressed Counts 

Suppressed 
Counts 

Ttest  No Suppressed 
Counts 

Suppressed 
Counts 

Ttest  No Suppressed  
Counts 

Suppressed  
Counts 

Ttest  No Suppressed 
 Counts 

Suppressed  
Counts 

Ttest 
                
Covariates                
Prescription 

rate 
145.70 86.16 ***  105.29 75.55 ***  144.47 88.74 ***  104.93 80.44 *** 

Population 41,897.95 18,742.72 ***  240,007.10 33,268.09 ***  41,511.58 19,727.41 ***  256,917.80 42,677.87 *** 

Percent 

white 
81.08 66.62 ***  70.30 70.33   81.08 66.62 ***  70.30 70.33  

Poverty 
rate 

21.08 21.86   15.55 17.90 ***  20.93 21.87 *  15.53 17.58 *** 

                

Number of 

Counties 
183 647   370 223   157 673   331 262  
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Appendix 4.A. Flyer Used to Advertise Community Meetings 
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Appendix 4.B. List of Represented Organizations at Community Meetings 

 

Organization 

Arbuckle Life Solutions 

Ardmore Behavioral Health Collaborative 

Ardmore Police Department 

BreakThru Medical Withdrawal Services at Mercy Hospital 

Carter County - OSU Extension 

Carter County Health Department 

Carter County Sheriff's Office 

Chickasaw Nation 

Destiny Recovery Center 

Family Shelter of Southern Oklahoma 

Good Shepherd Community Clinic 

INCA Community Services 

Lighthouse Behavioral Wellness Center 

Mercy Hospital 

Oasis Staffing 

Oklahoma Bureau of Narcotics and Dangerous Drugs 

Oklahoma Department of Human Services 

Oklahoma Department of Mental Health and Substance Abuse 

Oklahoma Families First 

Southern Oklahoma Treatment Services 

Southern Tech 

Take Two Academy 

The Community Children's Shelter and Family Services Center 

The Salvation Army 

USDA Rural Development Division 

Wichita Mountain Prevention Network 
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Appendix 4.C. Detailed Agenda for Community Meetings 

 
Ardmore, Oklahoma Community Meetings on 

Community Perceptions to Different Approaches for Solving the Rural Opioid Crisis 
 

Location, Dates, and Time: 
 
Location 

 Mercy Hospital in Ardmore 
 
Dates 

 1. February 6 (Wed) 
 2. February 20 (Wed) 
 3. March 5 (Tues) 

 
Time 

 2 – 4pm 
====================================================================== 

Meeting 1 Agenda (February 6) 
 
2:00-2:15 

 Introductory presentation 
o Opioid epidemic in Ardmore 
o Community meeting structure overview 

 
2:15-2:20 

 Introductory survey 
o Perceptions / knowledge level about programs 
o Basic demographic information 

 
2:20-2:40 

 Discussion of 4 categories of programs; examples from participants 
 
2:40-3:10 

 Documentary showing “Killing Pain” parts 1-3 
 
3:10-3:30 

 Presenter #1 
o Category A: Supply-side programs (Law enforcement, prescribing 

guidelines,…) 
 Oklahoma Bureau of Narcotics and Dangerous Drugs – Agent Craig 

Williams 
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3:30-3:50 
 Presenter #2 

o Category B: Demand-side programs (Youth intervention, public health 
campaigns,…) 

 Wichita Mountains Prevention Network – Lisa Jackson & Jayci 
Enerson 

3:50-4:00 
 Meeting 1 debrief and preview of Meeting 2 

====================================================================== 

Meeting 2 Agenda (February 20) 
 
2:00-2:10 

 Brief re-cap of Meeting 1 and introduction on what will be occurring in Meeting 2 
 
2:10-2:40 

 Documentary showing “Killing Pain” parts 4-6 
 
2:40-3:00 

 Presenter #3 
o Category C: Treatment programs (MAT, abstinence-based programs,…) 

 Dr. Layne Subera and Southern OK Treatment Services – Sasha 
Rogers 

 
3:00-3:20 

 Presenter #4 
o Category D: Overdose prevention / recovery (Naloxone provision) 

 Ardmore Police Department – Deputy Chief Kevin Norris 
 OK Dept of Mental Health & Substance Abuse – Mary Kate Cole 

3:30-3:50 
 Study circle #1 

o Participant views on why the opioid epidemic is occurring in the Ardmore 
community 

 
3:50-4:00 

 Debrief of Meeting 2 and preview of Meeting 3 
 
====================================================================== 

Meeting 3 Agenda (March 5) 
 
2:00-2:15 

 Brief re-cap of Meetings 1 and 2 and introduction on what we will be occurring in 
Meeting 3 

 
2:15-2:45 

 Study circle #2 
o Participant thoughts on the programs presented, and the assets of the 

Ardmore community that make these programs feasible 
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2:45-3:15 
 Group discussion / voting exercise 

o Each study circle reports findings, and each participant votes on which 
program they believe is the best fit for Ardmore 

 
3:15-3:30 

 Closing survey 
 
3:30-3:45 

 Community de-brief 
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Appendix 4.D. Select Pictures from Ardmore Community Meetings 
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Appendix 4.E. Pre/Post Survey 
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Appendix 4.F. Study Circle Questions 

 
Study Circle #1 (Meeting 2, February 20) 
 
Purpose: Participant views on why the opioid epidemic is occurring in the Ardmore 
community 
 
Why is there Opioid Misuse in Ardmore? 
 
Questions 
 

1. Think about the Ardmore community. As a group, discuss the underlying 
reasons for why opioid misuse is an issue for this area.  Use the space below 
to write down your reasons.  Make sure to draw on the experiences / 
knowledge of everyone in the group.  

 
2. As a group, come to a consensus on which of the reasons you listed are the 

most important (top 3).  
 

3. Are there direct ties between any of the programs we have heard about so far 
and the reasons your groups have come up with?  Discuss. 

 
4. Which of the reasons for the opioid crisis that you discussed in Question 1 

will be the easiest to address in the future? Which reason will be the hardest 
to address? 

 
 

Reasons for Opioid Misuse in Ardmore 
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Study Circle #2 (Meeting 3, March 5) 
 
Purpose: Participant thoughts on the programs presented, and the assets of the 
Ardmore community that make these programs feasible in the future 
 
What Programs Should Ardmore Utilize in the Future? 
 
Below is a table showing the 4 categories of programs that were presented on. In the 
right-hand column, list some assets that the Ardmore community has that are either 
currently responsible for these programs or could be helpful to their efforts.    
 

Program Category Ardmore Assets 
 

[A]: Prevention options  
(Supply-side focused) 

 

 

 
[B]: Prevention options  
(Demand-side focused) 

 

 

 
 

[C]: Opioid treatment programs 
 

 

 
 

[D]: Overdose prevention and 
recovery 

 

 

 
Questions 
 

1. Think back to the reasons for the opioid epidemic in Ardmore that we 
discussed in the last meeting. Do these four programs address the reasons for 
the opioid epidemic in Ardmore? Why or why not? 
 

2. What programs from the presentations do you think should be expanded, 
and why? Which ones are you now less likely to support, and why?  

 
3. What are the barriers to expanding or improving these programs?  How 

might the community overcome these barriers?   
 

4. Are there other efforts (outside of these four programs) that should be part 
of the discussion?  What are they?   
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Appendix 4.G. Picture of Participant Voting Exercise Results 
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