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CHAPTER I 
 

 

INTRODUCTION 

1.1 Background 

Irrigated agriculture plays a vital role in the production of food, feed and fiber in the U.S. and 

around the world (Howell, 2001). In addition, irrigation has consistently been the largest single 

consumer of water in the U.S., accounting for 80-90% of total consumptive water use (Schaible & 

Aillery, 2012). However, pressure on available water resources has increased because of 

population growth, changing climate, and excessive water resources depletion, particularly 

groundwater (DeJonge, Andales, Ascough II, & Hansen, 2011; Kisekka, DeJonge, Ma, Paz, & 

Douglas-Mankin, 2017). In light of these factors, water has become the major limiting factor for 

crop production, especially in dry regions (Rogers & Elliott, 1989; Kisekka et al., 2017). Many 

areas in U.S., such as the southern Great Plains, are facing water shortages and producers are now 

unable to irrigate to meet the full crop water needs under current irrigation and cropping scenarios 

(Lamm et al., 2016). 

The southern Great Plains is one of the most productive irrigated agricultural regions in the U.S. 

(Weinheimer, Johnson, Mitchell, Johnson, & Kellison, 2013; Chen et al., 2018). Irrigation water 

sources in this region are rivers and aquifers, with the latter being the primarily water source 

(Evett et al., 2014).  However, severe groundwater withdrawals from aquifers have resulted in 

significant declines of well capacities and increased pumping costs in the southern Great Plains 

(Gowda, Colaizzi, & Howell 2009). In areas that rely on surface water resources, water 
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availability challenges are mainly due to poor quality and limited adequacy (Colaizzi, Gowda, Marek, 

& Porter, 2009; Mittelstet, Storm, & Stoecker, 2015). Previous studies have reported that the region 

will have severe water scarcity within the next 20 to 30 years if no significant changes in irrigation 

management are adopted (Haacker, Kendall, & Hyndman, 2016; Chen et al., 2018). Therefore, as 

water resources continue to dwindle in this region, improved agricultural water management will 

become crucial to guarantee continued success of irrigated agriculture (Evett et al., 2014). Sustainable 

water management under these conditions will require determination of innovative irrigation 

strategies that enhance agricultural water use efficiency (Greaves & Wang, 2017).  

Over the past several decades, significant strides were made towards increasing efficiency of 

irrigation systems through technological improvements to combat water scarcity in the southern Great 

Plains region (Howell, 2001; Evett et al., 2014). Most gravity systems in the region were converted to 

efficient center pivot and subsurface irrigation systems (Colaizzi et al., 2009). Nonetheless, this has 

been a partial triumph towards water conservation and more irrigation management efforts will 

certainly be required (Evett et al., 2014). Weinheimer et al. (2013) identified strategic irrigation 

management to be a key factor in the conservation of water resources in the region. Management 

strategies involving changing of crop types and cultivar, sowing date, planting density, irrigation 

amount, and scheduling were pinpointed as potential adaptation measures to cope with water scarcity 

(Debaeke & Aboudrare, 2004). In the Texas High Plains, Chen et al. (2018) underscored the need to 

shift from water-intensive corn to less water demanding crops like cotton, grain sorghum and winter 

wheat to extend the lifespan of the Ogallala aquifer. Although cotton production has expanded into 

traditional corn production areas, more conversions from corn to drought tolerant crops could result in 

additional water savings in the region (Colaizzi et al., 2009).   

In addition to better crop choices, Bordovsky, Mustian, Cranmer, and Emerson (2011) stated that 

producers in the southern Great Plains region should adopt management practices that involve low 

levels of irrigation as opposed to the current irrigation practices. This is in agreement with other 



3 
 

studies that have proposed for the adoption of irrigation management strategies that target 

maximizing production per unit of water as opposed to the traditional thrust of production per unit 

area (Fereres & Soriano, 2006; Evans & Sadler, 2008). In line with these views, several studies have 

highlighted the potential of deficit irrigation as a strategy that can reduce irrigation water use to cope 

with water scarcity (Geerts & Raes, 2009; Bell, Schwartz, McInnes, Howell, & Morgan, 2018). This 

strategy could be significantly enhanced by incorporating various monitoring technologies to estimate 

crop water demand, soil moisture availability, irrigation application rates, and precipitation in 

cropping fields (Weinheimer et al., 2013). However, Fereres and Soriano (2006) emphasized that 

deficit irrigation strategies still need to be developed for most crops, and that there is lack of 

knowledge on whether this strategy can be used effectively over long periods in the growing season.  

In other studies, irrigation timing was cited as an important factor in advancing agricultural water 

conservation (DeJonge et al, 2011). Proper selection of the first and last irrigation date based on the 

soil type, crop type, crop growth stage, and evapotranspiration rate could lead to significant water 

savings. Although simple in theory, this was reported to be a complex process, which requires both 

strategic and tactical planning (Unger & Howell, 2000). The timing of earliest and last irrigation 

affect the level of water conservation. First irrigation applications should be done such that water 

losses are minimized while last irrigation should ensure no significant water deficits and overall yield 

losses. The decision on when to start and terminate irrigation may be facilitated through the use of 

simulation models as well as soil water monitoring, possibly using soil moisture sensors (Kisekka et 

al, 2015).  

Several studies have reported that decision support systems and monitoring tools may enhance water 

conservation in irrigated agriculture (Sadler, Evans, Stone, & Camp, 2005; Fereres & Soriano, 2006). 

This followed the findings by Adeyemi, Grove, Peets, and Norton (2017), who revealed that 

incorporating monitoring tools such as soil, plant and weather sensors into irrigation decision support 

systems like crop simulation models could be critical to achieve optimal use of limited water 
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resources. However, adoption of monitoring tools has been slow in the U.S. For instance, less than 

10% of the irrigated farms use soil moisture sensors or any other advanced on-farm water 

management decision tools (Schaible & Aillery, 2012). In Oklahoma, Taghvaeian (2014) reported 

that 8% of the producers utilize the daily evapotranspiration (ET) products despite the availability of 

extensive and well-maintained Mesonet weather stations. Many factors like cost and level of 

education could have contributed to the low adoption levels. Sadler et al. (2005) reported that most of 

the available precision tools were developed with disregard to the level of skillsets, knowledge and 

abilities of producers making it difficult for effective use. As highlighted by Taghvaeian (2014), there 

is potential to improve adoption of technology for irrigation management by producers, however, 

more research on the application of these technologies is required to enhance confidence.     

Douglas-Manking (2018) listed simulation studies as one of the future research focus areas that would 

address the needs of decision makers as they work to ensure sustainability of land and water 

resources. Simulation models may be beneficial in water and irrigation management to quantify the 

effects of water on yield by virtue of their capacity to integrate the impacts of soils, weather and 

irrigation management on crop production at various scales (Evett & Tolk, 2009; Heng, Hsiao, Evett, 

S., Howell, & Steduto, 2009). While field research are equally important, valuable information can be 

obtained from modeling studies of different irrigation management practices, and various alternatives 

can be evaluated quickly and more efficiently than field experiments (Cabelguenne, Jones, & 

Williams, 1995; DeJonge et al., 2011; Modala et al., 2015, Kisekka et al., 2017). In most cases, field 

experiments could not allow easy evaluation of management alternatives and their potential 

outcomes, and generated recommendations are not normally generalizable for larger scales (Araya, 

Kisekka, & Holman, 2016). Additionally, several studies have noted a drop in field research on 

cropping systems, thus, simulation models may fill that gap and could be applied to optimize 

irrigation under limited water supplies while reducing risk and uncertainty in crop production (Fereres 

& Soriano, 2006; Kisekka et al., 2017). With historical long-term weather data, crop models provide a 
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platform to evaluate the effectiveness and trade-offs among different irrigation scenarios, thereby 

allowing timely decision-making and provision of quality recommendations for producers (Debaeke 

& Aboudrare, 2004; Greaves & Wang, 2017). Nevertheless, Evett and Tolk (2009) reported that a gap 

still exists between what can be done using crop simulation models and what policymakers and water 

managers need to address water challenges. Incorporating producers’ objectives and their potential 

operational limitations in irrigation modeling studies is more likely to generate relevant and reliable 

information, which will ultimately enhance adoption (Greaves & Wang, 2017). These views suggests 

that there is potential for more application of crop models in irrigation research and management.  

Crop models should have a balance between accuracy and complexity in order to be useful (Monteith, 

1996). Some models often require more specific crop data that may not be easily obtainable to 

perform simulations (García-Vila & Fereres, 2012). For instance, some studies have pointed out that 

the Decision Support System for Agrotechnology Transfer (DSSAT) is complex and require 

numerous input parameters for making thorough evaluations of crop growth and development and 

water dynamics (Modala et al., 2015). On the other hand, the AquaCrop model developed by the 

Food and Agricultural Organization (FAO) of the United Nations balances accuracy and usability 

(Heng at al., 2009). This crop model simulates yield in response to water management, and has 

relatively low requirement of specific inputs (Raes, Steduto, Hsiao, & Fereres, 2012). According to 

Heng et al. (2009), this model could be used to design and study the effect of water management 

options including irrigation management, planting dates and planting densities. Despite its potential, 

very few studies are available in the literature that have utilized the AquaCrop model for irrigation 

management research in the U.S. One of the known study was conducted by Araya et al. (2016) who 

used the model for evaluating deficit irrigation management strategies for grain sorghum in southwest 

Kansas. In the same area, similar deficit irrigation studies were done for corn (Linker & Kisekka, 

2017; Araya, Kisekka, Prasad, & Gowda 2017). Even so, no published AquaCrop simulation studies 
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were found for cotton, which is one of the major important crops, particularly in Texas and 

Oklahoma.  

If water resources continue to decline at the current rate, the regional economy, rural communities, 

and the agricultural industries that depend on agricultural production in the southern Great Plains 

region will be affected negatively (Weinheimer et al., 2013). However, just like in many water-

limited regions, water conservation is possible provided new water management strategies are 

adopted (Zwart & Bastiaanssen, 2004). Thus, several strategies will be explored in this research to 

determine how they affect crop yield and water use, and ultimately select best possible options for 

conserving water.  

1.2 Objectives 

The main goal of this research is to investigate crop and irrigation management practices for 

improving water conservation in the southern Great Plains using a combination of field monitoring 

and crop growth simulation models. The specific objectives are: 

1. To investigate the impacts of irrigation termination date on cotton yield and irrigation requirement,  

2. To calibrate and validate a crop model for cotton and to apply the model to study the impact of 

irrigation capacity and planting date on cotton performance, and  

3. To calibrate and validate a crop model for variably irrigated grain sorghum by simulating soil water 

content, evapotranspiration and yield, and to apply the model to evaluate the performance of key 

water management scenarios. 
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CHAPTER II 
 

 

IMPACTS OF IRRIGATION TERMINATION DATE ON COTTON YIELD AND 

IRRIGATION REQUIREMENT 

 

2.1 Abstract 

Optimization of cotton irrigation termination (IT) can lead to more efficient utilization and 

conservation of limited water resources in many cotton production areas across the U.S. This 

study evaluated the effects of three IT timings on yield, fiber quality, and irrigation requirements 

of irrigated cotton in southwest Oklahoma during three growing seasons. The results showed 

cotton yield increased with later IT dates, but this response was highly dependent on the amount 

and timing of late-season precipitation events. Only a few fiber quality parameters were 

significantly different among treatments, suggesting a more limited impact of IT on fiber quality. 

When averaged over the three study years, the lint yield was significantly different amongst all 

treatments, with an average increase of 347 kg ha−1 from the earliest to the latest IT. Additionally, 

the seed yield and the micronaire were similar for the two earlier IT treatments and significantly 

smaller than the values under the latest IT treatment. The differences in fiber uniformity and 

strength were also significant amongst IT treatments. Strong positive relationships were found 

between yield components and average late-season water content in the root zone. Lint and seed 

yields plateaued at an average late-season soil matric potential of about −30 kPa and had a 

quadratic decline as soil moisture depleted.  When benchmarked against the latest IT treatment, 
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the earlier IT treatments achieved average reductions of 16–28% in irrigation requirement. 

However, this water conservation was accompanied with considerable declines in yield 

components and micronaire and smaller declines in fiber length, uniformity, and strength. 

Keywords: lint; seed; fiber quality; heat units; soil matric potential; water conservation; 

Oklahoma  

2.2 Introduction  

The United States (U.S.) is amongst the top cotton producers in the world, ranking third in 

production and first in exports (Evett, Howell, Ibragimov, & Hunsaker, 2012; National Cotton 

Council of America [NCCA], 2018). Cotton is predominantly grown in the cotton belt region of 

the U.S., mostly in states below the 37° N latitude (Gowda, Baumhardt, Esparza, Marek, & 

Howell, 2007). Among these, Oklahoma has been consistently listed as one of the leading cotton 

producing states, ranking fifth for the year 2017 (United States Department of Agriculture—

National Agricultural Statistics Service [USDA-NASS], 2017). Furthermore, cotton is the third 

most important field crop in Oklahoma and contributes significantly to the economy of this state 

(Franke, Kelsey, & Royer, 2009; Strawn, 1994). More than 80% of cotton by area and production 

is cultivated in Southwest Oklahoma (Evers, Elliott, & Stevens, 1998). Due to the semi-arid 

climate of this region, irrigation plays an important role in sustaining the production and 

enhancing the market value of cotton (Ziolkowska, 2018). 

Irrigation water resources in southwest Oklahoma are scarce due to several reasons. First, many 

local surface and groundwater resources have poor quality caused by dense salt deposits 

(Mittelstet, Storm, & Stoecker, 2015). Osborn and Hardy (1999) reported total dissolved solids 

(TDS) in the range of 1500 to 5000 mg L−1 in the Blaine aquifer, one of the major aquifers in the 

region. The critical TDS of irrigation water for cotton production is 3264 mg L−1, above which 

yield starts to decline (McFarland, Lemon, & Stichler, 2002). The high salt levels found in 
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irrigation water resources in southwest Oklahoma mostly originate from the abundant thick 

gypsum beds that have a high concentration of calcium and sulfate. These geological features 

have affected local rivers that supply most of the surface water resources in the region. For 

instance, Mittelstet et al. (2015) reported heavy contamination of the North Fork of the Red River 

as water flows through salt deposits via its tributaries. 

In addition to these water quality challenges, southwest Oklahoma has suffered severe droughts in 

recent years, and this has affected surface water availability (Taghvaeian, Fox, Boman, & 

Warren, 2015). The latest drought that occurred from 2010 to 2015 led to a significant decline of 

water level in Lake Altus-Lugert, which supplies the Lugert Altus Irrigation District (LAID), the 

largest irrigation district in southwest Oklahoma (Krueger, Yimam, & Ochsner, 2017). This water 

level decline resulted in the failure to release irrigation water from the lake since the water level 

had dropped below the intake to the main canal (Krueger et al., 2017). Consequently, cotton 

production experienced all-time low records during this period, with devastating impacts on the 

local economy. Moreover, water demand in the Lake Altus-Lugert catchment has been projected 

to increase by approximately 70 percent by 2060. Based on this forecast, southwest Oklahoma 

has been listed as a water resource “hot spot” in the state (CDMSmith & OWRB, 2012). Other 

cotton production areas in the region, such as in the Texas Panhandle, face similar water scarcity 

challenges (Bordovsky, Mustian, Ritchie, & Lewis, 2015). 

Considering the highlighted water resources issues in cotton production, it is imperative that 

producers employ irrigation practices that conserve water. Even though cotton has been reported 

to have relatively higher drought resistance and lower water requirement compared to other field 

crops (Gowda et al., 2007), more ways to reduce cotton irrigation demand should be investigated. 

One approach is through optimizing the time of irrigation termination (IT), an important factor in 

cotton irrigation management that can boost crop maturity by accelerating boll opening, reducing 
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boll rotting, and facilitating defoliation by inhibiting vegetative overgrowth (Grimes & Dickens, 

1974; Karam et al., 2006; Reeves, 2012). 

Reba, Teague, and Vories (2014) reported that water conservation could be realized following a 

precision IT based on growth stages and weather conditions without negatively affecting cotton 

lint yield. However, several studies have shown divergent views regarding the earliness of cotton 

IT without causing yield and quality losses. Monge, Teague, Cochran, and Danforth (2007) and 

(Vories et al., 2011) determined an optimal IT time of approximately 200-degree days (15.6 °C 

base temperature) after physiological cutout. They argued that irrigation beyond this point added 

neither yield nor profit. Conversely, Hogan Jr et al. (2005) estimated an optimal IT time at 306-

degree days after cutout and Buttar, Aujla, Thind, Singh, and Saini (2007) showed significant 

cotton yield increases with later IT. In another study where IT treatments ranged from two to six 

weeks after physiological cutout, Reeves (2012) found contradictory results in different years. 

Cotton fiber quality improved in the later treatment in one year and the earlier treatment in 

another year. In the study by Karam et al. (2006), termination at first open boll achieved higher 

yields compared to later termination treatments. 

These variable results demonstrate the need to further investigate the effects of irrigation 

termination on cotton yield. This is also evident and in support of the study by Lascano, 

Baumhardt, Goebel, Baker, and Gitz (2017), who argued that even though there is an abundance 

of data on cotton yield response to the amount and timing of irrigation, very little information is 

available pertaining to the impact of irrigation termination timing on cotton yield and fiber 

quality. Vories et al. (2011) made the same observation, particularly for the U.S. Mid-South 

region, and highlighted that more research on cotton IT could help improve management 

practices by cotton producers, and more importantly complement water conservation efforts in 

arid and semi-arid regions. The goal of this research was to evaluate the effects of variable 

irrigation termination timings on the quantity and quality of cotton yield in southwest Oklahoma. 
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The more specific objectives were: (i) to determine the impact of three irrigation termination 

dates on cotton seed and lint yield, fiber quality, and irrigation requirement during three growing 

seasons; and, (ii) to explore the relationships between cotton yield and two key management 

parameters: heat units and end-of-season soil water content. 

2.3 Materials and Methods 

2.3.1 Study Area 

This study was conducted at the Oklahoma State University’s Southwest Research and Extension 

Center, near Altus, Oklahoma (Figure 2.1), during three years from 2015 to 2017. The area is 

within the Lugert-Altus Irrigation District, which delivers water to over 18,000 ha of irrigated 

land through a 435 km system of open canals (Evers et al., 1998). The irrigation district draws its 

water from Lake Altus-Lugert, with a capacity of about 120 million m3 (Evers et al., 1998; 

Krueger et al., 2017).  

 

Figure 2.1. The research field and its location in southwest Oklahoma (Google Earth image). 

The study area has a sub-humid climate characterized by hot and dry summers (Evers et al., 

1998). The average annual rainfall is 638 mm. Table 2.1 presents the meteorological parameters 

for the three growing seasons (May–September) of the study, as well as the long-term averages. 
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Weather data were acquired from the Oklahoma Mesonet station that is located within the borders 

of the same Research Center and about 700 m south of the research plots. 

Table 2.1. Meteorological parameters for May–September during each of the three study years 

and the long-term (1981–2010) period. 

Parameter 2015 2016 2017 Long-term 

Total Prec.1 (mm) 451 525 472 409 

Mean Rs2 (MJ m-2) 22.3 23.1 23.6 23.9 

Min. Tair3 (°C) 19.3 19.1 18.5 18.5 

Max. Tair (°C) 32.5 31.8 31.6 33.1 

Min. RH4 (%) 38.8 42.7 40.8 38.0 

Max. RH (%) 90.1 94.4 93.5 86.0 

Mean U25 (m s-1) 3.1 2.9 3.0 4.5 
1 Annual precipitation; 2 Daily accumulation of solar radiation; 3 Daily air temperature; 4 Daily 

relative humidity; 5 Daily wind speed at 2.0 m above the ground. 

The soil of the research plots was Hollister silty clay loam (Fine, Smectitic, Thermic Typic 

Haplusterts), which is also the predominant soil in the irrigation district (Larson, Mapp, Verhalen, 

& Banks, 1996). Chemical properties of the soil were determined from samples taken at different 

depths of the soil profile and analyzed at the Soil, Water, and Forage Analytical Laboratory at 

Oklahoma State University. Table 2.2 presents the mean electrical conductivity (EC), pH, and 

sodium adsorption ratio (SAR) for three soil layers. 

Table 2.2. Chemical characteristics of topsoil at the study site. 

Soil layer (m) EC (dS m-1) pH SAR 

0.0 - 0.15 4.0 8.0 8.7 

0.15 - 0.30 9.3 7.8 8.7 

0.30 - 0.45 13.7 7.8 11.3 
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2.3.2 Experimental Design 

The field layout in this study followed a randomized block design, consisting of three treatments 

of weekly spaced irrigation termination (IT) dates, replicated three times in each of the growing 

seasons. The study targeted IT dates of August 16, August 23, and August 30, based on the usual 

irrigation season dates specified by the irrigation district in each year. Table 2.3 presents the 

actual dates of each IT treatment that were achieved during the study period. 

Table 2.3. Dates of actual irrigation termination (IT) for each treatment and year. 

Treatment 2015 2016 2017 

IT1 17 Aug. 16 Aug. 10 Aug. 

IT2 24 Aug. 23 Aug. 10 Aug.* 

IT3 31 Aug. 30 Aug. 29 Aug. 

* The second IT date could not be achieved in 2017 due to continued precipitation. 

Each replicate was comprised of 8-row plots of Deltapine DP 1044 B2RF cotton cultivar, 

resulting in 24 rows for every treatment. Normal fertilizer, insect, herbicide, plant growth 

regulator, and harvest aid management were carried out in all plots so that variations could be 

attributed solely to irrigation termination treatments. Each weekly irrigation event provided 76 

mm of water via a furrow irrigation system. This irrigation approach (type and timing) is 

predominant in the Lugert-Altus Irrigation District. Table 2.4 shows planting and harvest dates 

and the final plant stand for each growing season. 

Table 2.4. Planting and harvest dates and final plant stand (plant ha−1). 

Year Planting date Harvest date Plant stand 

2015 04 Jun. 12 Nov. 165,560 

2016 28 May 21 Nov. 101,313 

2017 25 May 01 Nov. 93,900 
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2.3.3 Crop Measurements 

Several crop parameters were estimated throughout the growing season, and after harvest and 

processing to determine the effects of IT on yield and fiber quality. Crop maturity was tracked 

during regular site visits using two common indicators of nodes above white flower (NAWF) and 

nodes above cracked boll (NACB). A NAWF of five is often used as an indicator of reaching 

physiological cutout, a stage when flower development ceases and boll development commences 

(Ritchie, Bednarz, Jost, & Brown, 2007). To determine cotton yield and quality parameters, the 

center 4 rows (15.2 m long) in each plot were harvested using a John Deere 482 modified plot 

stripper (without field cleaner). Grab samples were taken from each plot and were ginned on a 

plot gin. Cleaned lint, cottonseed, trash, and burs were collected and weighed to obtain lint 

turnout. Lint turnout for each plot was used to convert plot bur cotton weights to lint per hectare. 

For fiber quality assessment, the ginned lint samples from each plot were sent to the Cotton 

Phenomics Laboratory at the Fiber and Biopolymer Research Institute at Texas Tech University 

for the high volume instrument (HVI) and advanced fiber information system (AFIS) analyses. 

HVI data produces several important fiber measurements that include micronaire, fiber length, 

uniformity, and fiber strength. Per Lascano et al. (2017), micronaire is defined as the degree of 

fineness and maturity; and fiber length represents the average length of the longer half of the 

fibers. Uniformity is equivalent to the ratio between the average fiber length and the upper-half 

mean length of the fibers, expressed as a percentage. Fiber strength gives a measure of a force in 

grams required to break a 1000 m bundle of fibers. AFIS measures the neps content, short fiber 

content, fineness, and maturity ratio. The ratings of these quality parameters determine the value 

of cotton. 

Finally, the economic value for lint was estimated by multiplying lint yield and the adjusted 

Commodity Credit Corporation (CCC) upland loan premiums and discounts. The adjusted loan 
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rates were obtained using the Upland Cotton Loan Calculator program available on the Cotton 

Incorporated website and HVI factors determined as explained above. The rates for the 

2018/2019 growing season were applied to all three years of study. 

2.3.5 Statistical Analysis 

The yield and fiber quality data were analyzed for each year and across the entire study period 

using the analysis of variance (ANOVA) at a significance level of 0.05 in SigmaPlot 14.0 

(SigmaPlot, 2018). To allow for pairwise comparisons among the means, the Fisher’s Least 

Significant Difference (LSD) was also calculated and reported (Lascano et al., 2017).  

2.4 Results and Discussion 

2.4.1 Cotton Yield 

The largest lint yield averaged over all three irrigation termination (IT) treatments was achieved 

in 2016, followed by 2017 and 2015 with estimates of 2006, 1214, and 1016 kg ha−1, respectively. 

The seed yields had a somewhat similar pattern, with average values of 2949, 1801, and 1882 kg 

ha−1 during the same years, respectively. This was consistent with the order of the total amounts 

of rainfall received in each of the three seasons, where 2016 recorded the largest amount, 

followed by 2017 and 2015 (Table 2.1). Bordovsky et al. (2015) found similar cotton lint yields 

under full irrigation application in Texas Panhandle and reported that rainfall had a significant 

impact on lint yield. 

The effect of rainfall amount and distribution was also evident in the response of cotton to IT 

treatments. In general, cotton lint and seed yield increased with later IT dates. However, this 

increase was not statistically significant in all years (Table 2.5). In 2015, the increase in cotton 

lint and seed yields with IT date was statistically different amongst all treatments. In this year, dry 

conditions occurred after the first IT treatment in August and persisted into September, which 
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registered just 11 mm of rainfall, 16% of the long-term average for this month. The enhanced 

yield in IT3 appeared to be a result of the irrigation applied at the end of August, which provided 

better soil moisture conditions for crop growth during the hot and dry September experienced that 

year. These results are similar to the findings of Teague [28] in Arkansas, who observed 

significant differences in yield with each additional irrigation after cutout in a year characterized 

by a mid-season hot and dry period. 

In contrast to 2015, there were no significant differences in cotton yield during the 2016 season. 

This season recorded average rainfall in August and twice the long-term average in September, 

which subdued the treatment effects on cotton performance. In 2017, August recorded almost 

twice the long-term average rainfall, affecting the treatment structure (only two IT treatments 

were possible). September rainfall in 2017 was near average. In this year, the IT3 resulted in a 

significant increase in cotton lint and seed yield compared to IT1 (Table 2.5). 

Table 2.5. Lint and seed yields for all treatments and years. Means followed by the same letter 

are not significantly different within years, at a 0.05 significance level according to the least 

significant difference (LSD). 

Treatment 
Lint yield (kg ha-1) Seed yield (kg ha-1) 

2015 2016 2017 3-year 2015 2016 2017 3-year 

IT1 802 a 1962 a 1131 a 1276 a 1541 a 2923 a 1707 a 2035 a 

IT2 965 b 1951 a 1031* a 1369 b 1841 b 2900 a 1591* a 2182 a 

IT3 1282 c 2106 a 1481 b 1623 c 2264 c 3025 a 2106 b 2465 b 

p-value < 0.001 0.087 0.001 < 0.001 < 0.001 0.369 0.003 < 0.001 

LSD0.05 49 NS 122  96 NS 184  

IT: Irrigation termination; NS: Not significant; * Termination date was the same as for IT1. 

The findings of the present study were in agreement with Reba et al. (2014), who reported larger 

yields in wet years for furrow-irrigated cotton. Furthermore, various studies have highlighted the 

correlation between growing season rainfall distribution and cotton yield (Cetin & Basbag, 2010; 



17 
 

Cull, Hearn, & Smith, 1981; Snowden, Ritchie, Cave, Keeling, & Rajan, 2013). In particular, Cull 

et al. (1981) reported a significant effect of late-season rainfall on the number of bolls set in 

cotton. In addition to rainfall, the length of the growing season may have contributed to the high 

yield attained in 2016. This season had the longest growing season in terms of calendar days and 

thermal time. The length of the growing season was shorter and comparable in 2015 and 2017, 

despite their differences in rainfall. 

When data were combined over the three-year period, there were statistically significant 

differences in lint yield (p < 0.001) amongst all treatments. For seed yield, there was no 

statistically significant difference between IT1 and IT2 treatments (p = 0.056). However, both 

IT1 and IT2 were significantly smaller than IT3 (p < 0.001). Overall, the results of this study 

showed an increase in yield with increase in the length of the irrigation season. This was 

consistent with the results of Vories and Glover (2000) and Teague (2007). On the other hand, 

Karam et al. (2006) studied three IT timings at first open boll, early boll loading, and mid-boll 

loading under the semi-arid conditions of Lebanon and found a reduction in lint yield with later 

IT treatments. They argued that the decrease in yield caused by additional irrigations was due to 

reduced boll opening, which generally occurs in high water supply conditions. 

2.4.2 Cotton Fiber Quality 

The results indicated that except for 2015, HVI properties had mostly no significant differences 

among IT treatments (Table 2.6). The 2015 growing season had the smallest values of micronaire 

compared to 2016 and 2017, and the differences in this parameter among treatments were 

statistically significant. A number of previous studies have highlighted the increase of micronaire 

with late IT, and its susceptibility to environmental conditions including rainfall and temperature 

(Lascano et al., 2017; Silvertooth & Galadima, 2003). Teague (2007) observed an increase in 

micronaire with each additional irrigation after cutout, in a year characterized by a hot and dry 
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mid-season in Arkansas. In case of other HVI parameters (length, uniformity, and strength), IT2 

and IT3 attained similar values that were significantly larger than those of IT1 in 2015. None of 

the HVI properties were significantly different across IT treatments in 2016. In 2017, one of the 

IT1 treatments achieved a significantly lower micronaire compared to IT3, but there was no 

significant difference in length, uniformity and strength qualities. 

Table 2.6. Cotton HVI properties. Within each year, means followed by the same letter are not 

significantly different at the 0.05 level. 

Micronaire (units) 

Treatment 2015 2016 2017 3-year 

IT1 2.87 a 4.40 a 3.73 ab 3.65 a 

IT2 2.87 a 4.40 a 3.60* a 3.64 a 

IT3 3.30 b 4.47 a 3.90 b 3.89 b 

p-value 0.018 0.907 0.035 0.021 

LSD0.05 0.27 NS 0.20  

Length (mm) 

Treatment 2015 2016 2017 3-year 

IT1 28 a 29 a 29 a 29 a 

IT2 30 b 29 a 28* a 30 a 

IT3 29 ab 30 a 29 a 29 a 

p-value 0.040 0.585 0.327 0.121 

LSD0.05 0.02 NS NS  

Uniformity (%) 

Treatment 2015 2016 2017 3-year 

IT1 80.7 a 82.4 a 82.0 a 81.7 a 

IT2 82.5 b 82.7 a 81.5* a 82.6 b 

IT3 82.4 b 83.4 a 82.5 a 82.8 b 

p-value 0.035 0.232 0.279 0.007 

LSD0.05 1.3 NS NS  

Strength (g tex-1) 

Treatment 2015 2016 2017 3-year 
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IT1 28.80 a 31.80 a 29.83 a 30.02 a 

IT2 30.80 b 31.27 a 29.37* a 30.89 ab 

IT3 30.57 b 31.33 a 30.90 a 30.93 b 

p-value 0.008 0.670 0.301 0.079 

LSD0.05 0.96 NS NS  

IT: Irrigation termination; NS: Not significant; * Termination date was the same as for IT1. 

When samples from the three years were combined, the average micronaires in IT1 and IT2 were 

not significantly different, but both were smaller than in IT3. Even though the averages seemed 

very close, cotton uniformity was higher in IT2 and IT3 than in IT1. Although slight increases in 

fiber length and strength were observed with later IT treatments, there were no significant 

differences in these two properties across treatments. The results of this study are in agreement 

with previous studies conducted in Arizona (Grimes & Dickens, 1974) and in the U.S. Mid-South 

(Vories et al., 2011), where significant differences in fiber quality with irrigation termination 

timing were rarely observed. 

Overall, the results of AFIS quality properties were similar to those of HVI, showing mostly no 

significant impact caused by the IT treatments (Table 2.7). Fiber fineness and maturity ratio were 

the only parameters that had significantly different values among IT treatments in 2015 and 2017. 

When the data from the three seasons were combined, IT date had no significant effect on any of 

the AFIS parameters. 

Table 2.7. Cotton advanced fiber information system (AFIS) properties. Within each year, means 

followed by the same letter are not significantly different at the 0.05 level according to the LSD. 

Neps (count g-1) 
Treatment 2015 2016 2017 3-year 

IT1 464.3 a 181.0 a 260.7 a 309.8 a 
IT2 415.0 a 219.7 a 303.3* a 302.4 a 
IT3 414.0 a 185.0 a 248.7 a 282.6 a 

p-value 0.733 0.260 0.219 0.450 
LSD0.05 NS NS NS  
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Short fiber content (%) 
Treatment 2015 2016 2017 3-year 

IT1 10.47 a 8.50 a 10.57 a 10.29 a 
IT2 9.67 a 9.80 a 12.93* a 10.38 a 
IT3 10.40 a 8.77 a 11.07 a 10.09 a 

p-value 0.864 0.315 0.205 0.908 
LSD0.05 NS NS NS  

Fineness (mtex) 
Treatment 2015 2016 2017 3-year 

IT1 143.0 a 165.3 a 164.3 a 156.3 a 
IT2 144.3 ab 163.0 a 157.3* b 156.0 a 
IT3 152.0 b 164.3 a 165.7 a 160.7 a 

p-value 0.076 0.871 0.051 0.121 
LSD0.05 NS NS NS  

Maturity ratio (units) 
Treatment 2015 2016 2017 3-year 

IT1 0.827 a 0.867 a 0.840 ab 0.839 a 
IT2 0.837 a 0.847 a 0.817* a 0.838 a 
IT3 0.833 a 0.860 a 0.847 b 0.847 a 

p-value 0.758 0.174 0.091 0.517 
LSD0.05 NS NS NS  

IT: Irrigation termination; NS: Not significant; * Termination date was the same as for IT1. 

Cotton yield and fiber quality data were used in estimating the economic value of lint. The 

variations in lint value were similar to those of lint yield, where the smallest value of 895 USD 

ha−1 was estimated for IT1 in 2015 season and the largest value of 2659 USD ha−1 belonged to 

IT3 in 2016 season. The impact of IT on lint value was most significant in 2015, with IT1 and 

IT2 resulting in 633 and 432 USD ha−1 less revenue compared to IT3. The reductions in revenue 

were smallest in 2016 at 179 and 192 USD ha−1 for the same two treatments, respectively. The 

2017 season was in the middle, with 587 and 436 USD ha−1 less revenue for the two IT1 

treatments when compared to IT3. 

2.4.3 Heat Units 

In this study, IT treatments were based on calendar dates with weekly intervals following the 

common practices and the irrigation delivery scheme in the study area. Nonetheless, the 
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accumulated heat units (HU) prior to and after irrigation termination were estimated for each 

treatment to investigate the impact of thermal conditions on cotton yield. Previous studies have 

reported a direct influence of prevailing thermal conditions on the growth and development of 

cotton and recommended the use of degree heat units as a tool to make decisions about irrigation 

termination (Cetin & Basbag, 2010; Lascano et al., 2017; Peng, Krieg, & Hicks, 1989). In the 

present study, variations in air temperatures, planting dates, and IT dates resulted in different HUs 

by each treatment amongst the three years. Table 2.8 presents the HUs accumulated during the 

three periods of planting to IT, cutout to IT, and IT to harvest in each year. Heat units were 

calculated based on a daily lower temperature threshold of 15.6 °C (Gowda et al., 2007). 

Table 2.8. Cumulative heat units (HU) during different periods of the growing season. 

Year Treatment 
Cumulative HU (°C) 

Planting-IT Cutout-IT IT-harvest 

 

2015 

IT1 951 37 578 

IT2 1017 103 512 

IT3 1100 186 429 

 

2016 

IT1 1000 80 540 

IT2 1060 141 480 

IT3 1132 213 408 

 

2017 

IT1 907 13 558 

IT2* 907 13 558 

IT3 1100 193 366 

* Termination date was the same as for IT1. 

As shown in Table 2.8, the magnitude of heat units accumulated between IT and harvest 

decreased with increase in IT date since a smaller period was used in HU calculation for later IT 

treatments. For each treatment, the largest HU after IT was achieved in 2015 due to the hot and 

dry conditions of August and September in this season compared to others. Previous studies have 

generally targeted physiological cutout to be the first IT date (Vories et al., 2011; Vories & 
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Glover, 2000). Monge et al. (2007) included a treatment before physiological cutout (NAWF = 

7.2) and latest treatments of 167–361 °C HU past cutout. In another study, Reeves (2012) had the 

latest treatments of 378 and 538 °C HU past cutout during the first and the second year of study, 

respectively. In the present study, the earliest treatment (IT1) accumulated 13 to 80 °C HU past 

cutout among the three years, suggesting that despite using calendar dates, IT1 in this study 

occurred about the physiological cutout. The latest treatment (IT3) accumulated 186 to 213 °C 

HU past physiological cutout, similar to Monge et al. (2007).  

Other studies have used different periods for HU-based irrigation termination. For example, 

Lascano et al. (2017) evaluated three HUs of 890, 1000, and 1110 °C from emergence to IT over 

a 4-year period in the Texas High Plains. In this study, average HUs of 941, 1039, and 1111 °C 

were estimated from planting to IT for IT1, IT2, and IT3 treatments, respectively. Considering 

that cotton requires about 28 °C HUs from planting to emergence (Ritchie et al., 2007), the 

evaluated range of thermal times by Lascano et al. (2017) was similar to the one implemented in 

the present study. Considering the entire growing season, cotton accumulated 1529, 1540, and 

1466 HUs in 2015, 2016, and 2017, respectively, which are larger than the 1444 °C limit required 

for complete maturity according to Gowda et al. (2007).  

The linear regression models revealed weak positive relationships between cotton lint/seed yield 

and cumulative HUs during planting-IT and cutout-IT periods (Figure 2.2), with coefficients of 

determinations ranging from 0.34 to 0.45. However, the only regression model that was 

statistically significant was the one between seed yield and HUs during planting-IT (p = 0.047). 

Peng et al. (1989) found that cotton yield was highly correlated to accumulated HUs when water 

availability was not a limiting factor. They also highlighted that water supply can alter the yield-

HU relationship and observed no significant correlation between lint yield and HU under water 

stress in the Southern High Plains of Texas. 
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Figure 2.2. Yield response to accumulated heat units from (a) Planting to IT and (b) Cutout to IT. 

2.4.4 Soil Water Content 

The root zone soil water content declined following IT dates for all treatments and years, but the 

rate of decline was significantly larger in 2015 and 2017 compared to 2016 (Figure 2.3). The 

range of observed soil matric potentials (SMP) was greater in 2015 and 2017, with driest IT 

treatments reaching approximately −140 kPa before harvest. In 2016, however, the driest IT 

treatment reached a SMP of −64 kPa due to above average rainfall events.  
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Figure 2.3. Treatment averages of soil matric potential in (a) 2015, (b) 2016 and (c) 2017. 

Thomson (2006) analyzed the relationship between root zone SMP and cotton yield in 

Mississippi Delta and reported that cotton should be irrigated at SMP of −60 kPa. The soil type of 

their experiment was clay in the Sharkey series, which is similar to the soil type in the present 

study. Assuming that their irrigation trigger point applies to this study, no irrigation was required 

after IT1 in 2016 since root zone SMP did not drop below this limit. In other words, the 

additional irrigations applied in IT2 and IT3 did not help with removing any water stress. This 

explains the lack of any significant difference in measured parameters among IT treatments in 
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2016. In contrast, soil water content was depleted well beyond the −60 kPa threshold in both 

2015 and 2017, resulting in a larger response to IT treatments. 

Plotting lint and seed yields against the average late-season SMP revealed strong relationships 

that had the form of quadratic equations with coefficients of determination (R2) of 0.89 and 0.67, 

respectively (Figure 2.4). The coefficients of developed quadratic equations are provided in Table 

2.9. According to these relationships, lint and seed yields plateaued around average SMP of −30 

kPa, which is close to the field capacity limit for most soils. Maintaining SMP at higher levels 

than −30 kPa would not result in improved cotton performance. Similar relationships have been 

reported between cotton yield and applied irrigation water in Turkey (Cetin & Bilgel, 2002) and 

Texas (Wanjura, Upchurch, Mahan, & Burke, 2002) where cotton yield increased with applied 

water to a certain limit and then decreased if more water was applied, especially during late-

season. 

 

Figure 2.4. Yield response to soil matric potential. 
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Table 2.9. Coefficients of the quadratic equation: soil matric potential = a + b × yield + c × 

yield2.  

Yield parameter a b c 

Lint -171.255 0.144 -3.677E-5 

Seed -158.403 0.075 -1.057E-5 

 

To the authors’ best knowledge, there is no published research investigating the effects of late-

season soil water content on cotton yields. Previous studies have mostly explored yield response 

to applied water (Cetin & Bilgel, 2002; Stone & Nofziger, 1993; Wanjura et al., 2002). One 

advantage of developing yield-SMP relationships as opposed to yield-applied water relationships 

is that the former can be used as a decision-making tool by cotton producers in managing late-

season cotton irrigation to achieve target levels of yield. As the results of the present study 

suggest, the maximum yield can be achieved when average soil moisture is kept around field 

capacity. However, some level of deficit irrigation may be either unavoidable due to water 

scarcity, or desirable due to the costs of purchasing and conveying (pumping and pressurizing) 

irrigation water. Under these conditions, producers can optimize deficit irrigation regimes by 

monitoring SMP to maximize water and energy savings and minimize yield losses. 

2.4.5 Water Conservation 

Since earlier irrigation termination can be used as a method to reduce cotton irrigation application 

and conserve water resources, the effects of variable termination dates on cotton performance and 

irrigation demand were further investigated. Table 2.10 presents changes in irrigation amount, 

cotton yield, lint value, and fiber quality for IT1 and IT2 treatments as percentages of the same 

parameters for the IT3 treatment (the latest termination date). Since the AFIS properties were not 

significantly different among the three IT treatments, they were not included in this analysis. 

When averaged across the three study years, reductions in all parameters were observed in 
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response to earlier IT. In other words, irrigation water can be saved by earlier IT, but this will be 

achieved at the cost of lower lint and seed yields, lower micronaire, and potentially lower 

uniformity and strength. 

Table 2.10. Percent changes in irrigation amount, lint and seed yields, lint value, and fiber quality 

relative to the IT3 treatment. 

Year IT Irrig. Lint Seed Lint value Mic. Length Unif. Strength 

2015 
IT1 -29 -37 -32 -41 -13 -1 -2 -6 

IT2 -14 -25 -19 -28 -13 +1 0 +1 

2016 
IT1 -33 -7 -3 -7 -2 -1 -1 +2 

IT2 -17 -7 -4 -7 -2 -2 -1 0 

2017 
IT1 -25 -24 -19 -24 -4 +1 -1 -4 

IT2* -25 -30 -24 -32 -8 -1 -1 -5 

Mean 
IT1 -28 -25 -20 -26 -7 -1 -1 -3 

IT2 -16 -16 -11 -18 -8 -1 -1 1 

IT: Irrigation termination; Irrig. : Irrigation; Mic. : Micronaire; Unif. : Uniformity; * Termination 

date was the same as for IT1. 

Changes in studied parameters were highly variable among years and treatments. This large range 

of variations was mainly due to differences in the amount and timing of rainfall. Both the largest 

saving in irrigation and the smallest reduction in yield were achieved in 2016, which recorded 

above average rainfall. This suggests that late-season precipitation plays an important role in the 

effectiveness of IT practices. It also highlights the need for tools such as soil moisture monitoring 

to assist producers with making day-to-day decisions on irrigation management. When averaged 

over the three years of study that included significantly different rainfall amounts and patterns, 28 

and 16% savings in irrigation applications were obtained with IT1 and IT2 treatments, 

respectively. However, these reductions in applied water resulted in similar percentages of 
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declines in lint yield and lint value for the same IT treatments. Seed yield and micronaire were 

also impacted considerably, but fiber length, uniformity, and strength were minimally affected, 

with percent changes ranging from −3 to 1%. According to these findings, the yield declines 

associated with adopting earlier IT dates in the study area are so significant that render these 

practices economically unviable, unless revenue losses are compensated by economic gains in 

other areas. Two potential sources of economic gains caused by reducing irrigation applications 

are (i) increasing harvested area using the salvaged water; and, (ii) reducing pumping and 

conveyance costs, especially if the water sources (surface or ground) are located far from the 

application site. 

The potential water savings from adoption of IT and IT2 treatments can be extrapolated to the 

entire Lugert-Altus Irrigation District, using water release data from Lake Altus-Lugert. Total 

water releases were 65, 73, and 46 million m3 in 2015, 2016, and 2017, respectively (United 

States Army Corps of Engineers [USACE], 2018). The water delivery to the district is usually 

terminated around the end of August (Strawn, 1994), which coincide with the IT3 timing in this 

study. Thus, the IT3 treatment was used as the benchmark for estimating the potential water 

savings across the district in each study year and on average. The estimated water savings ranged 

from 11.6 to 24.0 million m3 for IT1 and from 9.2 to 12.4 million m3 for IT2 during the study 

years. The average potential water savings for IT1 was 17.2 million m3, about 1.75 times larger 

than the average saving of 9.8 million m3 for IT2 (Figure 2.5). 
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Figure 2.5. Potential water savings through adoption of earlier irrigation terminations in the 

Lugert-Altus Irrigation District. 

2.5 Conclusions 

The effects of variable irrigation termination (IT) dates on cotton yield, fiber quality and 

irrigation requirement were investigated in a field experiment in southwest Oklahoma during 

three growing seasons. Three weekly-spaced IT treatments were implemented in each year, with 

IT1 and IT3 treatments representing the earliest and the latest termination dates, respectively. The 

results showed a general increase in cotton yield with delaying of irrigation termination. 

However, the magnitude and statistical significance of this increase were largely dependent on the 

amount and distribution of late-season rainfall. A season characterized by hot and dry conditions 

during the months of August and September resulted in lint and seed yields that were 

significantly different amongst the IT treatments, whereas no difference was observed during a 

season with above normal rainfall. When averaged over the three seasons, lint yields were 

significantly different among all treatments. Seed yields for IT1 and IT2 were both similar to each 

other and significantly smaller than the yield of IT3. Late-season rainfall had a similar impact on 
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fiber quality. On average, micronaire, uniformity, and strength were significantly impacted by IT 

treatments. 

The relationships between cotton yield parameters and heat units accumulated from planting to IT 

and from physiological cutout to IT were positive, but weak and not significant, except in case of 

the seed yield and heat units from planting to IT. In contrast, strong positive relationships were 

found between cotton yield and root zone water content. The late-season soil matric potential can 

be monitored in the cotton root zone using soil moisture sensors and then used as a practical 

decision-making tool in optimizing IT management. When benchmarked against the latest IT 

treatment (IT3), the earlier treatments of IT1 and IT2 resulted in 28 and 16% reductions in 

applied irrigation amounts on average. However, these reductions were accompanied with similar 

percentages of declines in lint yield and value. Seed yield and micronaire were also impacted 

negatively, along with smaller declines in fiber length, uniformity, and strength. Additional 

research is needed to investigate the economic trade-offs between revenue losses from declined 

lint value and reductions in water and energy expenses when implementing earlier irrigation 

termination. Assuming all cotton producers within the major irrigation district in southwest 

Oklahoma adopt earlier IT practices, an average water savings of 17.2 and 9.8 million m3 can be 

achieved on a seasonal basis for IT1 and IT2 treatments, respectively. Future research should 

utilize long-term weather data in conjunction with additional tools such as crop growth models to 

further evaluate the effects of variable IT scenarios. 

 

 

 

  



31 
 

CHAPTER III 
 

 

VALIDATION AND APPLICATION OF AQUACROP FOR IRRIGATED COTTON IN THE 

SOUTHERN GREAT PLAINS OF U.S. 

 

3.1 Abstract  

Dwindling water resources and weather variability present two of the major limiting factors for 

irrigated cotton production in the southern Great Plains region. Under these conditions, there is a 

dire need to understand the trends and fluctuations in cotton yields in order to help producers to 

make better irrigation and crop management decisions. Crop models coupled with long-term 

weather data provide an opportunity for evaluating yield variabilities by simulating various 

possible scenarios. In this study, the AquaCrop model was calibrated and validated for cotton at 

two sites in the southern Great Plains. The AquaCrop model performed within acceptable 

accuracy for simulating canopy cover, soil water content, evapotranspiration and yield but 

accuracy was limited under dryland conditions. Overall, the results demonstrated that the 

AquaCrop model is a potential tool for evaluating irrigation and crop management of cotton in 

the southern Great Plains. The validated model was applied to study the effect of irrigation 

capacity and seasonal weather conditions on cotton yield at a site in the Southern High Plains 

aquifer region. The results revealed no significant increase in cotton yields at irrigation capacities 

higher than 0.3 l s-1 ha-1.  Furthermore, cotton yields for years exhibiting average weather 

conditions were similar for irrigation capacities ranging from 0.1 to 0.6 l s-1 ha-1. However, 
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cotton yields increased significantly with increase in irrigation capacity in years with warm 

growing season conditions. The results of this study highlights the importance of incorporating 

available weather platforms when making irrigation and crop management decisions.  

Keywords: Simulation; cotton;  irrigation; irrigation capacity; evapotranspiration; planting date; 

Great Plains.  

3.2 Introduction 

The southern Great Plains is one of the major cotton producing regions in the U.S. (Parton et al. 

2007). Furthermore, the states of Texas and Oklahoma, which form part of the southern Great 

Plains region, rank among the leading cotton producers in the country (Nair, Maas, Wang, & 

Mauget, 2013; Steiner et al., 2015). Cotton production in these two states contribute significantly 

to the economy of the region and country at large (Krueger, Yimam, & Ochsner, 2017). 

According to Steiner, Briske, Brown, and Rottler (2018), Oklahoma and Texas generated a 

combined revenue of approximately US$1.67 billion from cotton in the year 2012 alone. 

However, water availability and quality for irrigation have persistently been one of the major 

limiting factors for cotton production in the southern Great Plains region (Tolk & Howell, 2010; 

Steiner et al., 2018). 

The Ogallala aquifer, which is the major source of irrigation in the western part of the region, has 

been plagued by significant declines in its level, which has resulted in decreased well capacities 

and increased energy requirement for pumping (Gowda, Baumhardt, Esparza, Marek, & Howell, 

2007; Baumhardt, Staggenborg, Gowda, Colaizzi, & Howell, 2009; Handa, Frazier, Taghvaeian, 

& Warren, 2019). According to Evett et al. (2014), many of the irrigation wells in the southern 

Great Plains now have capacities of less than 16 l s-1, with pumping depths of up to 305 m. In the 

humid eastern areas of the region with more abundant water resources, droughts have frequently 

occurred affecting surface water resources and limiting cotton production (Krueger, Yimam, & 
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Ochsner, 2017; Steiner et al. 2018). Additionally, other areas in the region like southwest 

Oklahoma face irrigation challenges emanating from poor quality of water resources (Mittelstet, 

Storm, & Stoecker, 2015; Krueger et al., 2017). 

Water scarcity in the southern Great Plains has necessitated the need for water managers and 

producers to search for management strategies that maximize cotton yields while minimizing the 

irrigation input (Howell, Evett, Tolk, & Schneider, 2004; Baumhardt et al., 2009; Tolk & Howell, 

2010). Many strategies have been tested and implemented in the region. For instance, most 

producers have adopted more efficient irrigation systems throughout the southern Great Plains 

(Colaizzi, Gowda, Marek, & Porter, 2009). DeLaune, Sij, Park, & Krutz (2012) highlighted the 

growth of conservation tillage as a water conservation strategy in the region. However, the study 

indicated that little is known about its combined effects with various irrigation levels on cotton 

yield. The extensive shifting from corn to cotton and adoption of early maturing varieties in 

several areas of region have also been motivated by the desire to reduce water use (Howell et al., 

2004; Gowda et al., 2007). This is because cotton requires less water while producing an equally 

acceptable profit compared to corn (Howell et al., 2004; Tolk & Howell, 2010). While there has 

been significant efforts by researchers, water managers and producers to ensure irrigation 

sustainability in the region, several studies have stressed the need to seek additional management 

strategies that maximize cotton yield as water supplies continue to decline (Colaizzi et al., 2009; 

Tolk & Howell, 2010). 

Most of the previous irrigation studies for cotton in the southern Great Plains were based on a few 

years of field experiments (Howell et al., 2004; Marek & Bordovsky, 2006; Tolk  & Howell 

2010). According to Nair et al. (2013), the short duration nature associated with using the field 

experimentation approach limits robust statistical analyses for deriving sound conclusions. This is 

particularly true in the case of the southern Great Plains region, where growing season conditions, 

including rainfall and temperature, are highly variable from year to year (Baumhardt et al. 2009). 
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Hence, three to four years of field experiments might not result in solid conclusions to develop 

good recommendations for producers. Field experiments tend to be expensive, labor intensive and 

time consuming too (Liu, Wiberg, Zehnder, & Yang, 2007; Geerts & Raes, 2009). Additionally, 

Evett and Tolk (2009) highlighted that multiple scenarios cannot be addressed by 

experimentation, but this could be possible using crop models. As highlighted by Baumhardt et al 

(2009), crop models present an opportunity to capture climatic variability using long-term 

weather data. To emphasize the critical role crop models can play, Douglas-Manking (2018) 

listed simulation studies as one of the future research focus areas that would address the needs of 

decision makers as they work to ensure sustainability of land and water resources. 

Many of the cotton modeling studies conducted in the Ogallala aquifer region of the southern 

Great Plains assumed fixed planting dates in their long-term simulations, despite significant 

spatio-temporal variability in temperature within the region (Baumhardt et al., 2009; Nair et al., 

2013). Hence, the results may not reflect the dynamic planting decisions made by cotton 

producers. Deviations from the actual planting dates can have a major impact on model results, 

since cotton growth and yield are very sensitive to accumulated heat units. In addition, most of 

previous modeling studies in this region have used crop models such as DSSAT, GYOSSYM and 

Cotton2K (Baumhardt et al. 2009; Nair et al 2013). There is no known published study to the 

authors’ best knowledge, which has used the AquaCrop model in this region. Steduto, Hsiao, 

Raes, and Fereres (2012) highlighted that the AquaCrop model has less parameters that require 

calibration compared to the aforementioned models. This model also benefits from a simple 

graphical user interface, a key characteristic that allows its application by users outside the 

research community (e.g. managers and crop consultants). Finally, AquaCrop has been 

successfully validated and applied for cotton irrigation management in other regions of the world 

(García-Vila, Fereres, Mateos, Orgaz, & Steduto, 2009; Hussein, Janat, & Yakoub, 2011). 
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The main goal of this study was to evaluate the performance of AquaCrop in the southern Great 

Plains and to apply it to identify improved management practices for maximizing yield with 

limited water resources. More specific objectives were: i) to calibrate and validate the AquaCrop 

model using measured data collected from two different sites in the southern Great Plains; and, ii) 

to use the calibrated model to assess the effect of irrigation capacity and seasonal weather 

conditions on cotton yield at a site that relies on the Ogallala aquifer for irrigation supply. 

3.3 Materials and Methods 

3.3.1 Study Sites 

The measured data used for calibration and validation of AquaCrop model were collected from 

two sites in the southern Great Plains: the USDA-ARS Conservation and Production Research 

Laboratory (CPRL) at Bushland, TX (35° 11' 16'' N, 102° 05' 49'' W, 1170 m above MSL) and 

the Oklahoma State University’s Southwest Research and Extension Center (SWREC) near Altus, 

OK (34° 35' 33" N, 99° 20' 10" W, 416 m above MSL). The SWREC site is about 240 km to the 

southeast of CPRL. According to Shafer et al. (2014), the U.S. Great Plains has a distinct north-

south gradient in average temperature patterns, with hotter south and colder north mainly because 

of elevation differences. There is also an east-west precipitation gradient across the region. Thus, 

the SWREC site is warmer and wetter compared to the CPRL site. The CPRL is characterized by 

a semi-arid climate and receives average rainfall of 470 mm per annum (Marek et al., 2017). The 

SWREC exhibits a sub-humid climate characterized by hot and dry summers and receives an 

average annual rainfall of 638 mm (Masasi, Taghvaeian, Boman, & Datta, 2019). Figure 3.1 

demonstrates the locations of the two study sites along with a map of normal precipitation. Table 

3.1 presents long-term climatic parameters for the cotton growing season months (May-

November) at both sites obtained from PRISM (2019). 
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Figure 3.1. The location of the study sites in Oklahoma and Texas. The base map is the 30-year 

average annual precipitation. 

Table 3.1. 30-year average temperature and rainfall data for May-November at the Conservation 

and Production Research Laboratory (CPRL) and Southwest Research and Extension Center 

(SWREC). 

 CPRL SWREC 

Month Tmin (°C) Tmax (°C) Rain (mm) Tmin (°C) Tmax (°C) Rain (mm) 

May 9.7 26.6 57 14.7 28.4 95 

June 14.9 31.2 79 19.6 32.9 112 

July 17.1 33.0 63 21.9 35.5 55 

August 16.6 31.9 79 21.2 34.8 66 

September 12.2 28.3 51 16.7 30.5 72 

October 5.6 22.4 43 10.1 24.4 72 

November -0.7 15.7 19 3.6 17.6 36 

Tmin is minimum air temperature; Tmax is maximum air temperature 

In addition to differences in climatic conditions, the two sites differ in their source of irrigation 

water. The CPRL lies within the Southern High Plains of the Ogallala aquifer region. Previous 

studies have highlighted that cotton production in this region is limited by rainfall and growing-

season length in terms of available heat units (Peng, Krieg, & Hicks, 1989; Baumhardt, Schwartz, 

Marek, & Bell, 2018; Mahan & Payton, 2018). On the other hand, the SWREC is within the 

Lugert-Altus Irrigation District, which draws water from Lake Altus- Lugert and delivers the 

water through a network of open canals. 
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3.3.2 Soil, Crop, and Climate Data 

The soils at CPRL are deep, well-drained Pullman silty clay loam soil (fine, mixed, Superactive, 

Thermic Torrertic Paleustoll) and the SWREC has Hollister silty clay loam (fine, Smectitic, 

Thermic Typic Haplusterts). CPRL soil parameters were determined through laboratory analyses 

and obtained from published data (Heng et al. 2009; Masasi, Taghvaeian, Gowda, & Marek, 

2019), whereas soil properties for SWREC were obtained from a combination of USDA-NRCS 

Web Soil Survey database and field sampling, which indicated the presence of a hardpan at 0.65 

m below the surface. Table 3.2 presents the soil water content limits at saturation (Sat.), field 

capacity (FC), and wilting point (WP), as well as the saturated hydraulic conductivity (Ksat) for 

different soil layers at both sites. 

Table 3.2. Soil parameters at the Conservation and Production Research Laboratory (CPRL) and 

Southwest Research and Extension Center (SWREC). 

Site Layer (m) 
Water content (m3 m-3) 

Ksat (mm d-1) 
Sat. FC WP 

CPRL 

0.00-0.18 0.42 0.33 0.18 66.0 

0.18-0.74 0.44 0.33 0.18 18.0 

0.74-1.35 0.43 0.35 0.20 6.6 

1.35-2.30 0.46 0.30 0.16 200.0 

SWREC 

0.00-0.30 0.41 0.30 0.21 176.6 

0.30-0.65 0.41 0.32 0.24 28.9 

0.65-0.75 0.00 0.00 0.00 0.00 

0.60-1.10 0.39 0.33 0.24 18.6 

1.10-2.00 0.39 0.33 0.23 18.6 

Cotton was planted in four adjacent fields at the CPRL site, each covering an area of 4.7 ha 

(Adhikari et al., 2017). Each field was equipped with a precision weighing lysimeter (9 m2 

surface area and 2.3 m deep) located at the center of the field for monitoring evapotranspiration 

(ET), as well as two access holes for monitoring soil water content (SWC) using a field calibrated 
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neutron probe. Two fields (east side) contained irrigated treatments and the other two fields (west 

side) were under dryland cropping in the years cotton was cultivated at CPRL. Fertilizer 

applications were optimized based on pre-season soil tests conducted every year. Weeds were 

controlled using herbicides. The irrigated fields were irrigated at full and deficit (50%) levels 

using a linear-move system, fitted with drop hoses placed 1.52 m apart and 1.5 m above ground 

(Howell et al., 2004). Full irrigation referred to replenishing the soil profile back to field capacity 

when SWC approached maximum allowable depletion (Marek et al., 2017). Deficit irrigation 

treatments were irrigated on the same dates as the full irrigation treatments, and this was achieved 

by reducing the nozzle size of the linear move system in those fields. Crop data including height, 

leaf area index (LAI), and seed cotton yield were also measured at each field. Canopy cover was 

estimated from LAI measurements based on the following empirical equation: 

𝐶𝐶𝐶𝐶 = 1 − 𝑒𝑒(−𝜒𝜒∗𝐿𝐿𝐿𝐿𝐿𝐿)         (1) 

where χ is the extinction coefficient and was taken as 0.77 after Farahani, Izzi, and Oweis (2009) 

and García-Vila et al. (2009). 

At SWREC, cotton was planted under three irrigation regimes that differed in irrigation 

termination date (Masasi et al., 2019). The total amount of seasonal irrigation depended on the 

termination date, targeted for August 16, August 23, and August 30. Each irrigation event 

supplied approximately 76 mm of water via siphon tunes and furrows. All crop management 

practices, including fertilizer application, pests and weed control were optimized to ensure 

differences in seed cotton yield were a result of irrigation treatments. Only crop yield was 

measured at this site.  

Measured crop data for AquaCrop calibration and validation were collected during six years at 

CPRL, including 2000, 2001, 2002, 2003, and 2010. Data were available on all irrigation levels 

(full, deficit, dryland), in 2000, so this year was selected for model calibration and the remaining 
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years for model validation. At SWREC, yield data were collected in three years of 2015-2017 and 

were used in model validation. Table 3.3 summarizes the agronomic and irrigation information 

for both sites during each of the study years. 

Table 3.3. Agronomic information for each study year and treatment at the Conservation and 

Production Research Laboratory (CPRL) and Southwest Research and Extension Center 

(SWREC). 

Treatment Planting Date Harvest Date Seeding Rate 

(seeds m-2) 

Variety Irrigation 

(mm) 

CPRL 

2000/Full 5/17/2000 11/14/2000 21.0 PAYM2145 485 

2000/50% 5/17/2000 11/14/2000 21.0 PAYM2145 249 

2000/Dryland 1 5/16/2000 10/18/2000 12.4 PAYM2145 0 

2000/Dryland 2 5/16/2000 10/18/2000 17.3 PAYM2145 0 

2001/Full 5/17/2001 10/22/2001 19.8 PAYM2145 402 

2001/50% 5/17/2001 10/22/2001 19.8 PAYM2145 216 

2001/Dryland 1 5/17/2001 10/22/2001 17.3 PAYM2145 0 

2001/Dryland 2 5/17/2001 10/22/2001 17.3 PAYM2145 0 

2002/50% 5/22/2002 11/12/2002 16.0 PAYM2145 271 

2003/Dryland 6/16/2003 11/07/2003 18.5 PAYM2145 0 

2010/Full 1 5/26/2010 10/25/2010 20.3 PAYM2145 293 

2010/Full 2 5/26/2010 10/25/2010 20.3 PAYM2145 281 

SWREC 

2015 T1 6/04/2015 11/12/2015 16.6 DP1044B2RF 380 

2015 T2 6/04/2015 11/12/2015 16.6 DP1044B2RF 456 

2015 T3 6/04/2015 11/12/2015 16.6 DP1044B2RF 532 

2016 T1 5/28/2016 11/21/2016 10.1 DP1044B2RF 304 

2016 T2 5/28/2016 11/21/2016 10.1 DP1044B2RF 380 

2016 T3 5/28/2016 11/21/2016 10.1 DP1044B2RF 456 

2017 T1 5/25/2017 11/01/2017 9.4 DP1044B2RF 228 

2017 T2 5/25/2017 11/01/2017 9.4 DP1044B2RF 228 

2017 T3 5/25/2017 11/01/2017 9.4 DP1044B2RF 304 
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The weather data used for the CPRL simulations were obtained from onsite measurements at a 

research-grade weather station located adjacent to the research fields. These data included 

rainfall, solar radiation, maximum and minimum air temperatures, relative humidity, and wind 

speed. Data quality assurance and quality control methods (QA/QC) were carried out before using 

the data (Marek et al. 2017b). Three years (2015-2017) of weather data for SWREC simulations 

were obtained from the Oklahoma Mesonet network for Altus station, which is located within the 

borders of the same Research Center and about 700 m south of the research plots. The daily ETo 

was calculated using the FAO Penman-Monteith equation (Allen, Pereira, Raes, & Smith, 1998). 

3.3.3 AquaCrop model 

The AquaCrop model simulates crop yield in response to water supply, agronomic management 

and environmental conditions (Steduto et al. 2012). The underlying principles and main 

algorithms in AquaCrop are presented in Steduto et al. (2012) and Raes, Steduto, Hsiao, and 

Fereres (2009), respectively. The crop grows in the model by developing canopy, accumulating 

biomass (B) and finally yield in daily time steps (Steduto et al. 2012; Vanuytrecht et al. 2014). 

Contrary to other crop modeling approaches that make use of leaf area index, AquaCrop utilizes 

canopy cover (CC) as the most important crop parameter (Steduto et al., 2012). CC represents the 

source for actual transpiration (Tr) that is translated in a proportional amount to biomass (B) 

based on the concept of normalized water productivity (WP*) (Steduto et al., 2012). Water stress 

limits or delays the CC development through stress coefficients in the model. These coefficients 

describe the impact of water stress on canopy development and ultimately transpiration. Tr is 

simulated in the model by using the following equation: 

𝑇𝑇𝑟𝑟 = 𝐾𝐾𝑆𝑆(𝐾𝐾𝐶𝐶𝑇𝑇𝑇𝑇,𝑥𝑥𝐶𝐶𝐶𝐶
∗)𝐸𝐸𝑇𝑇𝑜𝑜                                                                                                         (2) 
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where KS is the stress coefficient, CC* is the canopy cover adjusted for micro-advective effects, 

KcTr,x is the crop coefficient for maximum crop transpiration, and ETo is reference 

evapotranspiration.  

Biomass is estimated as a product of WP* and the ratio of Tr and ETo, throughout the growing 

season as presented by equation 3 (Steduto et al., 2012). 

𝐵𝐵 =  𝑊𝑊𝑊𝑊∗ × ∑( 𝑇𝑇𝑇𝑇
𝐸𝐸𝑇𝑇𝑜𝑜

)         (3) 

Finally, the crop harvestable yield (Y) is estimated as a product of B and the harvest index (HI). 

HI is defined as the ratio of yield to aboveground dry biomass. 

𝑌𝑌 = 𝐵𝐵 × 𝐻𝐻𝐻𝐻           (4) 

3.3.4 AquaCrop Calibration and Validation 

The AquaCrop model has several default parameters for cotton that are generally conservative 

and applicable for diverse environments, varieties and management practices (Raes et al. 2012). 

Steduto et al. (2012) highlighted that the conservative parameters in the model should serve as a 

starting point, and can be adjusted with good data sets if there is a clear need. Most of the non-

conservative parameters that require adjustment to account for specific characteristics of the 

studied variety and environment are related to crop phenology (Steduto et al., 2012; Li, Yu, & 

Zhao, 2019). These parameters include time from planting to flowering, canopy senescence and 

maturity. The length of the growth cycle (planting to maturity) is highly sensitive for cotton in 

AquaCrop (Li et al. 2019). 

In this study, AquaCrop was first run with the default cotton crop-file (in growing degree-days) to 

determine if it was able to satisfactorily predict cotton yield. This process was carried out for all 

treatments at CPRL and SWREC. Based on calculated statistical indicators, the results of the 
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initial simulation runs informed whether there was a need for calibration of certain non-

conservative parameters for each site. In case of unsatisfactory performance, the default 

parameters were accepted. Otherwise, cotton growing cycle, times from planting to emergence, 

maximum canopy cover (CCx), maximum rooting depth, and canopy senescence, and the duration 

of flowering were adjusted while tracking the canopy cover development and cotton yield. Table 

3.4 presents the default parameters for cotton in AquaCrop. 

Table 3.4. Default cotton parameters used in the AquaCrop model. 

Parameter Units Value 

Base temperature °C 12 

Cut-off temperature °C 35 

Canopy cover per seedling at 90% emergence  cm2 6 

Canopy growth coefficient % GDD-1 0.624 

Canopy decline coefficient % GDD-1 0.247 

Sowing to emergence GDD 12 

Sowing to maximum canopy cover   GDD 1156 

Maximum canopy cover  % 98 

Maximum transpiration coefficient (KcTr,x) unitless 1.10 

Sowing to flowering GDD 502 

Length of flowering GDD 709 

Sowing to max rooting depth GDD 956 

Sowing to senescence GDD 1601 

Sowing to maturity °C 1956 

Normalized Crop Water Productivity, WP* g m-2 35 

Canopy expansion function   

P-upper fraction of TAW 0.20 

P-lower fraction of TAW 0.70 

Shape unitless 0 

Stomatal closure function   

P-upper unitless 0.75 

Shape unitless 3 

Early canopy senescence function   
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P-upper unitless 0.7 

Shape unitless 3 

Evaluation of AquaCrop performance was based on the accuracy of the model in simulating the 

following measured parameters at each site: CC, SWC, ET and seed cotton yield at CPRL and 

seed cotton yield at SWREC. Yang J, Yang Y, Liu, and Hoogenboom (2014) highlighted that a 

combination of several statistics should be used to evaluate model performance since there is no 

single statistic that is more robust over others. In this study, the coefficient of determination (R2), 

root mean-square error (RMSE), coefficient of agreement (d), Nash-Sutcliffe Efficiency (NSE), 

and the Prediction Error (Pe) were used for AquaCrop validation: 

𝑅𝑅2 = � ∑ (𝑀𝑀𝑖𝑖−𝑀𝑀�)(𝑆𝑆𝑖𝑖−�̅�𝑆)𝑛𝑛
𝑖𝑖=1

�(∑ (𝑀𝑀𝑖𝑖−𝑀𝑀�)2𝑛𝑛
𝐼𝐼=1 ∑ (𝑆𝑆𝑖𝑖−�̅�𝑆)2𝑛𝑛

𝑖𝑖=1

�

2

       (5) 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 =  �1
𝑛𝑛
∑ (𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑖𝑖)2𝑛𝑛
𝑖𝑖=1         (6) 

𝑑𝑑 = 1 − ∑ (𝑆𝑆𝑖𝑖−𝑀𝑀𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (|𝑆𝑆𝑖𝑖−𝑀𝑀�|+|𝑀𝑀𝑖𝑖−𝑀𝑀�|)2𝑛𝑛
𝑖𝑖=1

        (7) 

𝑁𝑁𝑅𝑅𝐸𝐸 =  1 − ∑ (𝑀𝑀𝑖𝑖−𝑆𝑆𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (𝑀𝑀𝑖𝑖−𝑀𝑀�)2𝑛𝑛
𝑖𝑖=1

         (8) 

𝑊𝑊𝑒𝑒 =  (𝑆𝑆𝑖𝑖−𝑀𝑀𝑖𝑖)
𝑀𝑀𝑖𝑖

× 100         (9) 

where Mi and Si are the measured and simulated parameters, respectively, n is the number of 

measurements, and M̅ and 𝑅𝑅 are the mean values of Mi and Si, respectively. Values of R2, d and 

NSE close to unity indicate good performance of the model. Values of R2 larger than 0.5 and d 

larger than 0.65 are generally considered as indicating acceptable model performance (Moriasi et 

al., 2007; Willmott, 1984). Additionally, RMSE and Pe values near zero demonstrate a good 



44 
 

match between the simulated and measured data. The RMSE can be normalized by dividing it by 

the mean of measured data to give a normalized root mean square (NRMSE). Jamieson, Porter, 

and Wilson (1991) considered excellent, good, fair, and poor calibration categories for NRMSE 

ranges of <10%, 10-20%, 20-30%, and >30%, respectively. 

3.3.5 AquaCrop Application 

After validation and calibration, the AquaCrop model was used to assess the impact of irrigation 

capacity (IC) and seasonal weather conditions on cotton yield at the CPRL site over a 33-year 

period from 1981 to 2013. Investigated ICs were 0.6, 0.5, 0.4, 0.3 and 0.1 l s-1 ha-1, representing a 

wide range of well discharges consistent with existing conditions in the Southern High Plains. 

The irrigation intervals corresponding to each IC were determined by assuming a center pivot 

system (the most common in the region) irrigated a full circle of 48.6 ha at an application depth 

of 25 mm and application efficiency of 85%. This resulted in fixed irrigation intervals of 6, 7, 9, 

14 and 27 days for ICs of 0.6, 0.5, 0.4, 0.3 and 0.1 l s-1 ha-1, respectively. These application 

scenarios are similar to actual irrigation managements implemented by local producers. Irrigation 

applications in the model were set to occur within 125 days after planting for all the simulation 

scenarios. Nair et al (2013) reported a similar length of irrigation season starting from 15 May to 

17 September, and indicated that this is an accepted average in the region. A dryland treatment 

(0.0 l s-1 ha-1) was also included in the analysis. Table 3.5 presents the total irrigation amounts 

applied under each IC. 
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Table 3.5. Total irrigation amounts applied under each irrigation capacity. 

Irrigation capacity (l s-1 ha-1) Total irrigation applied (mm) 

0.0 0 

0.1 100 

0.3 200 

0.4 325 

0.5 425 

0.6 500 

Planting dates were varied from year to year during the simulation period (33 years). Marek and 

Bordovsky (2006) highlighted that selection of planting dates for cotton in the Southern High 

Plains region is critical, and should be done when soil temperatures are adequate to allow for 

good emergence and rapid growth early in the growing season. In this study, the planting dates 

were determined following the approach developed by Esparza, Gowda, Baumhardt, Marek, and 

Howell (2007) for CPRL. In this approach, two independent estimates of minimum soil 

temperature are obtained based on minimum and maximum air temperatures. The planting date in 

each year was considered as the first day when both minimum soil temperatures reach 15.6 °C. 

This threshold was reported as the minimum soil temperature needed for supporting cotton 

seedling emergence (Esparza et al. 2007). 

Following the observations by Esparza et al. (2007) and Gowda et al. (2007) of common practices 

in the Southern High Plains region, the crop was terminated in the model when the average air 

temperature was equal to or lower than -2.2 °C or on 15 October, whichever happened first in 

each year. The weather data including maximum temperature, minimum temperature, mean dew 

point temperature and precipitation were obtained from the Parameter-elevation Relationships on 

Independent Slopes Model (PRISM) database. Wind speed and solar radiation data for the same 

period were compiled from onsite measurements at a research-grade weather station at CPRL. 

Analysis of the impact of growing season rainfall was investigated by sorting the 33 years of 
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seasonal rainfall data in descending order, and calculating the probability of exceedance (PE) 

following classifications by Smith (1992) and Jarihani, Sidle, Bartley, Roth, and Wilkinson 

(2017) for wet (PE < 20%), normal (PE = 20-80%), and dry (PE >80%) years. A fixed planting 

density of 21 seeds m-2 was adopted for the scenario analysis in this study. 

3.4 Results and Discussion 

3.4.1 AquaCrop calibration and validation 

The length of the cotton growth cycle in the default AquaCrop crop file was consistent with field 

observations at SWREC, but was too long for CPRL and extended to the following year for all 

treatments. This is mainly because the warmer conditions of SWREC are more similar to the 

conditions under which the default model was developed, while CPRL is temperature-limited. As 

such, the length of the growing cycle was adjusted from 1956 °C degree-days in the default 

model to 1696 °C degree-days (12 °C base temperature) in case of CPRL. The other growth 

stages were also calibrated based on the measured datasets from the full, limited (50%) and 

dryland treatments in CPRL during the 2000 growing season (Table 3.6). 

Table 3.6. Calibrated growth stages used in the AquaCrop model at the Conservation and 

Production Research Laboratory (CPRL). 

Parameter Units Value 

Canopy growth coefficient % GDD-1 0.835 

Canopy decline coefficient % GDD-1 0.757 

Sowing to emergence GDD 129 

Sowing to maximum canopy cover   GDD 951 

Sowing to flowering GDD 719 

Length of flowering GDD 723 

Sowing to max rooting depth GDD 1232 

Sowing to senescence GDD 1578 

Sowing to maturity °C 1694 
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3.4.1.1 Canopy cover (CC) 

The model performance statistics calculated for calibration and validation of CC simulations are 

presented in Table 3.7. During calibration, the 2000/50% achieved better agreement between 

measured and simulated CC followed by the 2000/Full and lastly the dryland treatments, in that 

order. The d values (0.59-0.84) indicated acceptable model accuracy in three of the four 

calibration simulations. Based on R2 and the d values, the 2000/Dryland 2 was the only treatment 

with unacceptable accuracy. RMSE values ranged from 16 to 25% during calibration. Low 

accuracy in the dryland treatments during calibration seemed to be a result of the rapid 

senescence in the late season due to water stress. During the validation process, the model 

achieved high accuracy in simulating CC particularly for irrigation treatments. Three of the four 

irrigated treatments attained RMSEs below 10%. In addition, the irrigated treatments attained R2 

and d values above 90% and RMSEs ranging from 5 to 25%, an indication of good agreement 

between measured and simulated CC. Similar to the calibration results, dryland treatments 

achieved reduced accuracy for CC simulations. Dryland treatments had R2, d and RMSE values 

ranging from 0.44 to 0.85, 0.69 to 0.88 and 9 to 12%, respectively.   

Table 3.7. Statistical measures for canopy cover simulation. 

Parameter Treatment R2 RMSE (%) d 

Calibration 2000/Full 0.84 24 0.73 

2000/50% 0.84 16 0.84 

2000/Dryland 1 0.50 23 0.68 

2000/Dryland 2 0.44 25 0.59 

Validation 2001/Full 0.99 6 0.99 

2001/50% 0.92 7 0.97 

2001/Dryland 1 0.44 12 0.69 

2001/Dryland 2 0.61 11 0.70 

2002/50% 0.98 25 0.75 

2003/Dryland 0.85 9 0.88 
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2010/Full 1 1.00 5 1.00 

2010/Full 2 1.00 5 1.00 

Overall, the validation of the model for simulating CC for all irrigated treatments resulted in R2, d 

and RMSE values of 0.93, 0.97 and 11%, respectively. These validation performance statistics are 

comparable to the findings of Tan et al. (2018) who achieved overall R2, d and RMSE values of 

0.89, 0.97 and 11%, respectively in their AquaCrop study for cotton. In addition, the overall 

performance statistics from this study are slightly better than the results by Qiao, Farahani, 

Khalilian, and Barnes (2016) who attained overall R2, d and RMSE values of 0.83, 0.85 and 18%, 

respectively. 

3.4.1.2 Soil water content (SWC) 

The measured and simulated SWC appeared to match better in Full irrigation treatments than in 

limited and dryland treatments. In the dryland treatments, AquaCrop underestimated SWC from 

mid- to late-season. This seemed to be a result of increased depletion of SWC in the soil profile 

due to overestimated simulated CC. Tan et al. (2018) suggested that deviations of simulated SWC 

might be a result of over-simplification of root development in the model, which considers time 

and maximum rooting depth. The maximum rooting depth at CPRL was adjusted from 2.0 to 1.8 

m following the observations of Baumhardt et al. (2009) at the site. Errors in the value of SWC 

depletion level threshold (p) may have been responsible for over- and under estimation of SWC 

too. Figure 3.2 shows the time series of soil water content for the treatments used for model 

validation.  
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Figure 3.2. Measured vs. simulated soil water content validation treatments. 
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 Performance statistics during model calibration and validation indicated acceptable 

model accuracy for simulating SWC. The RMSE ranged from 0.02 to 0.06 m3m-3 among all 

treatments. The overall RMSE for calibration and validation was 0.05 and 0.03 m3m-3, 

respectively. The NRMSE for SWC ranged from 11-20% and 6-19% for calibration and 

validation, respectively. These metrics indicate good and acceptable accuracy according to 

classifications by Jamieson et al. (1991). In addition, relatively high d values (0.65-0.95) were 

determined for both calibration and validation. Most R2 estimates showed strong goodness of fit 

except for 2001/Full and 2002/50%, which achieved 0.47 and 0.45, respectively. The statistical 

measures for SWC simulation for all treatments are presented in Table 3.8. 

Table 3.8. Statistical measures for SWC simulation. 

Parameter Treatment R2 RMSE (m3m-3) d 

Calibration 2000/Full 0.59 0.03 0.65 

2000/50% 0.72 0.06 0.85 

2000/Dryland 1 0.86 0.06 0.88 

2000/Dryland 2 0.75 0.05 0.87 

Validation 2001/Full 0.47 0.03 0.78 

2001/50% 0.81 0.04 0.84 

2001/Dryland 1 0.86 0.02 0.87 

2001/Dryland 2 0.60 0.02 0.81 

2002/50% 0.45 0.05 0.95 

2003/Dryland 0.89 0.03 0.86 

2010/Full 1 0.84 0.02 0.85 

2010/Full 2 0.87 0.02 0.87 

The SWC results for this study are similar to the findings of previous studies (Farahani et al., 

2009; Hussein et al., 2011; Qiao et al., 2016)). For instance, Qiao et al. (2016) determined overall 

R2, d and RMSE values were 0.76, 0.88 and 0.03 m3m-3, respectively, during model validation for 

cotton using AquaCrop. 
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3.4.1.3 Evapotranspiration (ET) 

The daily ET peaks simulated by the AquaCrop model generally corresponded with the measured 

values, particularly for the full irrigation treatments. However, the model tended to overestimate 

daily ET in the midseason for the 50% and dryland treatments (Figure 3.3). This appeared to be a 

result of overestimation of CC during the same period for these treatments.  

 

Figure 3.3. Measured vs. simulated ET for validation treatments. 
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The computed performance statistics for ET simulations are presented in Table 3.9. All indicators 

showed better model performance during calibration. For validation, all irrigated treatments 

attained acceptable accuracy. However, the model accuracy was low for simulating ET in dryland 

treatments as shown by the R2 below 0.5 in both 2001 and 2003. The average RMSE for full and 

limited irrigation treatments during validation was 1.3 and 1.9 mm, respectively. The dryland 

treatments achieved an average RMSE of 1.6 mm for validation. 

Table 3.9. Statistical measures for daily ET simulation. 

Parameter Treatment R2 RMSE (mm d-1) d 

Calibration 2000/Full 0.81 1.8 0.94 

2000/50% 0.68 1.9 0.88 

2000/Dryland 1 0.70 1.6 0.95 

2000/Dryland 2 0.64 1.8 0.82 

Validation 2001/Full 0.86 1.5 0.96 

2001/50% 0.73 1.8 0.91 

2001/Dryland 1 0.36 1.7 0.74 

2001/Dryland 2 0.37 1.6 0.74 

2002/50% 0.79 1.9 0.88 

2003/Dryland 0.34 1.5 0.72 

2010/Full 1 0.87 1.1 0.95 

2010/Full 2 0.86 1.3 0.99 

When considering seasonal ET, high R2 (1.00, 0.85) values were achieved for calibration and 

validation steps (Figure 3.4). Furthermore, d values of 0.99 and 0.91, and NSE of 0.88 and 0.56 

were determined for calibration and validation, respectively. Calibration and validation RMSEs 

for seasonal ET were 55 and 93 mm, which corresponded to NRMSE values of 10 and 17%, 

respectively, and this falls within the good performance category. These statistics are comparable 

with the findings of García-Vila et al. (2009) who determined d of 0.87 and 0.96 and RMSE of 95 
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mm and 62 mm for seasonal ET of cotton during the calibration and validation simulations, 

respectively.  

Figure 3.4. Observed and simulated seasonal ET for calibration (a) and validation treatments (b). 

3.4.1.4 Seed Cotton Yield 

When the default growth stages were used, the model significantly underestimated cotton yield, 

resulting in large Pe values ranging from -25 to -74% (Table 3.10). As explained earlier, the 

growth stages and the thermal time from planting to maturity specified in the default model were 

not suitable for CPRL, where cotton production is limited by temperature (Morrow & Krieg, 

1990; Tolk & Howell, 2010). As a result, cotton yield was largely underestimated for all 

treatments, and the overall RMSE was 1915 kg ha-1, and NRMSE of 76% when normalized. 

Thus, these results suggest poor performance by the default model for CPRL and the need to 

adjust the growth stages.   
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Table 3.10. Measured and simulated seed cotton yield with model prediction errors for default 

and calibrated models at CPRL. 

Parameter Treatment 
Measured 

(kg ha-1) 

Default Calibrated 

Simulated 

(kg ha-1) 

Pe 

(%) 

Simulated 

(kg ha-1) 

Pe 

(%) 

Calibration 2000/Full 4581 2023 -56 4372 -5 

2000/50% 2535 1114 -56 2565 1 

2000/Dryland 1 1036 469 -55 700 -32 

2000/Dryland 2 1022 455 -55 738 -28 

Validation 2001/Full 3568 1198 -66 4019 13 

2001/50% 2239 630 -72 1888 -16 

2001/Dryland 1 1081 493 -54 920 -15 

2001/Dryland 2 877 499 -43 930 6 

2002/50% 2507 1828 -27 1957 -22 

2003/Dryland 1132 846 -25 726 -36 

2010/Full 1 4882 1313 -73 4937 1 

2010/Full 2 4868 1285 -74 4842 -1 

Calibrating growth stages improved the performance of the model, particularly for the irrigated 

treatments. During model calibration, the Pe ranged from -5 to 1% and -32 to -28% for irrigated 

and dryland treatments, respectively. For validation, the Pe values ranged from -1 to 13%, -22 to -

15% and -36 to 6% for full irrigation, limited irrigation and dryland treatments, respectively. The 

RMSEs for calibration and validation were 244 and 321 kg ha-1, corresponding NRMSE of 12 

and 13%, respectively. Measured and simulated cotton yield showed good agreement with R2 of 

0.99 and 0.97 for calibration and validation, respectively (Figure 3.5). Similarly, the d and NSE 

values were high (> 0.90) during calibration and validation. Qiao et al. (2016) achieved similar 

goodness-of-fit statistics with RMSE, R2 and d values of (327, 265 kg ha-1), (0.91, 0.84) and 

(0.95, 0.92), respectively. Additionally, Hussein et al. (2011) also found high correlations 

between measured and simulated cotton yield using AquaCrop in Syria. The results from the 

current study are better than the findings of Tan et al. (2018), who attained RMSEs of (438, 1204 
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kg ha-1), R2 of (0.69, 0.10) and d-statistics of (0.82, 0.57) during calibration and validation, 

respectively.   

Figure 3.5. Measured and simulated cotton yield for calibration (a) and validation treatments (b) 

at CPRL. 

At the SWREC site, all simulations using the default model parameters resulted in prediction 

errors within ±20% as presented in Table 3.11. Pe values ranged from -20 to 15%, an indication of 

good model performance according to Steduto et al. (2012).  

Table 3.11. Measured and simulated seed cotton yield with model prediction errors at SWREC. 

Year Treatment Measured 

(kg ha-1) 

Simulated 

(kg ha-1) 

Pe 

(%) 

2015 T1 2343 2605 11 

2015 T2 2806 2730 -3 

2015 T3 3546 2853 -20 

2016 T1 4885 4500 -8 

2016 T2 4852 4500 -7 
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2016 T3 5131 4500 -12 

2017 T1 2838 3023 7 

2017 T2 2623 3023 15 

2017 T3 3587 3187 -11 

The statistical measures calculated for the SWREC site showed that the model was able to 

simulate seed cotton yield adequately with high R2 (0.90), d (1.00) and NSE (0.83). Furthermore, 

the RMSE of 419 kg ha-1 was determined, with a normalized value of 12%, an indication of good 

model performance according to Jamieson et al. (1991). The good performance of the default 

model suggests that the heat units available during the growing season were more adequate at 

SWREC than CPRL and closer to the climatic conditions where the default model was 

parameterized (Cordoba, Spain). Figure 3.6 shows the one to one plot for measured and simulated 

cotton yield at SWREC 

 

Figure 3.6. Measured and simulated cotton yield at SWREC. 
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3.4.2 AquaCrop application 

The results from the long-term simulations showed significant year-to-year variability of cotton 

yields for all ICs (Figure 3.7). Cotton yields ranged from 405 to 5514 kg ha-1 under irrigated, and 

from 132 to 5025 kg ha-1 under dryland conditions. These values correspond to approximately 

153 to 2095 kg ha-1 and 50 and 1910 kg ha-1 of lint yield for irrigated and dryland treatments, 

respectively when converted using an average lint percent of 38% reported by Willcutt et al. 

(2010). Baumhardt et al. (2009) found similar ranges of lint yields in the Southern High Plains 

region under dryland and variable IC levels when using a fixed planting date of 15 May. Esparza 

et al. (2007) and Gowda et al. (2007) attributed cotton yield variabilities in the Southern High 

Plains region to year-to-year variability in growing season conditions.  

 

Figure 3.7. Time series of cotton yield at different ICs for the thirty-three years simulated. 
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The long-term averages of cotton yield ranged from 1525 to 2333 kg ha-1, with the dryland and 

0.5 l s-1 ha-1 IC treatments achieving the lowest and highest yields, respectively. Baumhardt et al. 

(2009) reported similar findings with average yields of 1905, 2239 and 2363 kg ha-1 for dryland, 

0.4 and 0.5 l s-1 ha-1. Table 3.12 presents the long-term averages for cotton yields, that were 

achieved, and the relative yield reduction for each IC from the 0.6 l s-1 ha-1.  

Table 3.12. Long-term average cotton yields achieved at each IC and the percent yield difference 

from the 0.6 l s-1 ha-1 IC. Means followed by the same letter are not significant at the 0.05 level 

according to the LSD. 

Irrigation capacity (l s-1 ha-1) Yield (kg ha-1) Yield Difference (%) 

0.0 1525 a -34.3 

0.1 2004 b -13.7 

0.3 2201 bc -5.2 

0.4 2316 c -0.2 

0.5 2333 c 0.5 

0.6 2321 c 0.0 

All the irrigated ICs attained significantly larger cotton yields compared to the dryland treatment. 

No significant differences were observed for cotton yields amongst the 0.3, 0.4, 0.5 and 0.6 l s-1 

ha-1 ICs. These findings suggest that no significant increase of cotton yields may be achieved at 

ICs higher than 0.3 l s-1 ha-1 in the Southern High Plains of the Ogallala aquifer region. The long-

term average yield for the 0.1 l s-1 ha-1 was similar to that obtained by the 0.3 l s-1 ha-1 IC but was 

significantly lower than for 0.4 to 0.6 l s-1 ha-1 ICs. Similar to this study, Baumhardt et al. (2009) 

found no yield increases when irrigation capacity increased from 0.4 to 0.5 l s-1 ha-1. 

3.4.3 Effect of growing season rainfall on cotton yield  

When the thirty-three years of growing season rainfall amounts were classified, the resultant 

average seasonal rainfall for wet, normal and dry years were 449, 321 and 132 mm, respectively. 

Simulation results showed no significant differences in the cotton yields amongst all ICs during 
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the wet (p = 1) and normal (p = 0.871) years (Figure 3.8). In the dry season category, the average 

cotton yield under dryland cropping was similar to that of the 0.1 l s-1 ha-1 IC but was 

significantly lower compared to the 0.3 to 0.6 l s-1 ha-1 ICs. ICs from 0.3 to 0.6 l s-1 ha-1 attained 

statistically similar cotton yields in the dry season category. These results are in agreement with 

the findings of AbdelGadir et al. (2012) who determined a positive relationship between cotton 

yield and seasonal irrigation depth in dry years.  

 

Figure 3.8. Long-term average yields achieved at each IC in wet, normal and dry years. Means 

followed with same letter (s) in each rainfall category are not significant at the 0.05 level 

according to the LSD. 

The simulated high yields in the dry years under irrigated conditions appeared to be a result of 

availability of more heat units in those years. For instance, five out of the six years (1998, 2000, 

2001, 2011 & 2012) in the dry year category were relatively warm, and as a result, they attained 

relatively more heat units (> 1100 °C) for optimizing cotton yield under irrigation. However, due 
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to less water available for crop water use in the dry years, the warm conditions appeared not to be 

conducive for dryland cropping as this treatment attained a significantly lower yield. Peng et al. 

(1989) determined similar findings in the same study area; and highlighted that cotton yield 

correlates well to accumulated heat units when water availability was not limiting but no 

significant relationship exists under water stress.  

Since the results of this study showed the influence of seasonal weather conditions on the 

performance of each IC, the probability of exceedance (PE) curves of simulated yields were used 

to highlight the frequency of attaining various yield levels at each irrigation capacity. According 

to Gowda et al. (2007), this information helps producers to set realistic yield goals and to plan 

appropriate management practices. The PE curves generally showed lower yields under dryland 

cropping compared to all irrigated ICs at all PE values (Figure 3.9). Furthermore, the results 

showed minimal differences in cotton yields across irrigated ICs for PE values ≤ 15% and ≥ 38%. 

On the other hand, the PE curves showed clear yield differences amongst ICs in the range of 15% 

≤ PE ≤ 38%. These results suggest that the Southern High Plains experiences optimum 

environmental conditions for cotton production at most 38% of the time. Significant increases of 

cotton yields with higher ICs were observed within this range. For instance, the potential cotton 

yield with a probability of occurrence of one out four years (P = 25%), increased by 1278 kg ha-1 

from the 0.1 to 0.6 l s-1 ha-1 IC. On average (PE = 50%), potential cotton yields under irrigated 

cropping ranged from 1196 to 1298 kg ha-1, with the 0.3 l s-1 ha-1 achieving the largest average 

yield. 
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Figure 3.9. Probability of exceedance curves of simulated cotton yields for each IC. 

3.5 Conclusions 

The performance of the AquaCrop model was assessed for simulating cotton production at two 

sites in the southern Great Plains: the Conservation and Production Research Laboratory (CPRL) 

at Bushland, TX and the Southwest Research and Extension Center (SWREC) near Altus, OK. 

Due to limited heat units available at the CPRL site, the default crop file for cotton developed in 

in Cordoba, Spain produced poor predictions for yield. Thus, the model was calibrated by 

adjusting the cotton growth cycle and growth stages based on measured data collected at the site. 

All conservative parameters developed for cotton were used in this study. The results of 

calibration and validation at the CPRL site, showed satisfactorily performance of the model for 

simulating CC, SWC, ET and yield, with better predictions under irrigated treatments compared 

to dryland treatments. At the SWREC site, the accuracy of the default model was satisfactory for 

predicting yield and no adjustments to the model were done. This appeared to be a result of 
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similar climatic conditions between the SWREC site and Cordoba, Spain. Considering the few 

adjustments made to the non-conservative parameters of the default model at CPRL and none at 

SWREC, the validation results at both sites showed that the AquaCrop model is a potential tool 

for evaluating irrigation and crop management of cotton in the southern Great Plains. The 

calibrated model was applied to evaluate the effect of irrigation capacity and seasonal weather 

conditions on cotton yield at CPRL that relies on the Ogallala aquifer for irrigation supply. The 

results revealed no significant increase in cotton yields at irrigation capacities higher than 0.3 l s-1 

ha-1. The simulation results also showed a significant increase in cotton yields under irrigated but 

a decrease under dryland conditions, during warm years. The results from this study highlight the 

need for producers in the southern Great Plains particularly the Southern High Plains region of 

the Ogallala aquifer to incorporate available weather platforms for making irrigation and crop 

management decisions.  
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CHAPTER IV 
 

 

SIMULATING SOIL WATER CONTENT, EVAPOTRANSPIRATION AND YIELD OF 

VARIABLIY IRRIGATED GRAIN SORGHUM USING AQUACROP 

 

4.1 Abstract 

Use of models to simulate crop production has become important in optimizing irrigation 

management in arid and semi-arid regions. However, applicability and performance of these 

models differ across regions, due to differences in environmental and management factors. The 

AquaCrop model was used to simulate soil water content (SWC), evapotranspiration (ET), and 

yield for grain sorghum under different irrigation regimes and dryland conditions at two sites in 

Central and Southern High Plains. Prediction error (Pe), estimated as the difference between 

simulated and measured divided by measured, for SWC ranged from -17 to 4% in fully irrigated, 

-3 to -10% in limited irrigated and -16 to 25% in dryland treatments. The Pe of less than ±4%, -

5%, and 24% were attained for seasonal ET under fully irrigated, limited irrigated, and dryland 

conditions, respectively. Pe values for grain yield were within those previously reported and 

ranged from -10 to 12%, -12 to 7%, and 9 to 17% for fully irrigated, limited irrigated and dryland 

conditions, respectively. Overall performance of the AquaCrop model showed that it could be 

used as an effective tool for evaluating the impacts of variable crop and irrigation managements 

on the production of grain sorghum in the study area. Finally, the application of the calibrated 

model in the study area revealed that planting date has a significant impact on sorghum yield and 
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irrigation requirements, but the impact of planting density was negligible.  

Keywords: Simulation; irrigation; deficit irrigation; evapotranspiration; High Plains; planting 

date. 

4.2 Introduction 

Irrigation is crucial for the sustainable agricultural production in the Central and Southern High 

Plains of the Ogallala Aquifer region, where high evaporative conditions are coupled with erratic 

growing season rainfall (Yazar, Howell, Dusek, & Copeland, 1999). Guerrero, Wright, Hudson, 

Johnson, and Ammoson (2010) highlighted that irrigated agriculture is the major economic driver 

in this region. More than 70% of the agricultural production in economic value was reported to 

originate from irrigated crop production in the Texas High Plains (Terrell, Johnson, & Segarra, 

2002). According to Colaizzi, Gowda, Marek and Porter (2009) and Howell (2001), irrigation in 

this region resulted in doubled crop yields as compared to dryland production. Guerrero et al. 

(2010) reported a boost in revenues for producers due to this increased crop productivity. 

The Ogallala aquifer, which covers parts of Texas and Oklahoma Panhandles, New Mexico, 

southwestern Kansas and southeastern Colorado is the main source of irrigation water in the 

Central and Southern High Plains (Howell, Copeland, Schneider, & Dusek., 1989; Yazar et al., 

1999). However, decades of pumping with limited recharge has resulted in severe depletion of the 

aquifer and its water levels have continuously declined in many parts of the region (Musick & 

Dusek, 1971; Howell, Schneider, & Evett, 1997; Yazar et al., 1999). Stone and Schlegel (2006) 

reported widespread declines of greater than 15 m in the eastern parts of Colorado and 

southwestern Kansas, which occurred from the times of predevelopment to the year 2003. 

Furthermore, McGuire (2017) reported water level declines of up to 71 m in some areas in the 

Central and Southern High Plains, from predevelopment to the year 2009. Because of these water 

level declines, well capacities in this region have significantly decreased, and producers in the 
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area are facing serious water challenges to meet crop water demands (Stone, Lamm, Schlegel, & 

Klocke 2008). 

One approach that can be utilized to ensure efficient management of the rapidly depleting water 

supply in arid and semi-arid regions such as the Central and Southern High Plains is to investigate 

strategies that optimize and enhance crop water use efficiency and profitability (Evett et al., 2012; 

Araya, Kisekka, & Holman, 2016). This can be achieved by studying water production functions 

(Barrett & Skogerboe, 1980). However, development of water production functions requires 

intensive data from field experiments. Saseendran, Ahuja, Nielsen, Trout, and Ma (2008) argued 

that field experiments generally face difficulties in representing all variabilities caused by time, 

location, climate, soil, and management practices. In addition, numerous studies including Liu, 

Wiberg, Zehnder, and Yang (2007), and Geerts and Raes (2009), have argued that field and/or 

controlled experiments meant to investigate the effect of different irrigation regimes on crop yield 

are very expensive, labor intensive and time consuming. 

Alternatively, crop models present a unique opportunity to provide decision support by 

simulating different crop and irrigation management scenarios for determining best management 

practices. With proper calibration, crop models have the potential to offer a cost effective and 

timely means to evaluate potential agronomic and water management strategies for water-limited 

areas, allowing better recommendations for producers. Utilizing their ability to perform integrated 

assessments of the factors affecting yield, crop models could be useful in deriving optimum 

irrigation applications for various crops. However, some of these models often require more 

specific crop data that may not be easily obtainable for performing simulations (García-Vila & 

Fereres, 2012). 

Unlike many complex crop models that require detailed and extensive input parameters, the 

AquaCrop model (Steduto, Hsiao, Raes, & Fereres, 2009) developed by the Food and 



66 
 

Agricultural Organization (FAO) of the United Nations was reported to balance between 

accuracy, simplicity, robustness, and ease of use (Hsiao, Heng, Steduto, Rojas-Lara, Raes, & 

Fereres, 2009). This water-driven model simulates crop biomass and harvestable yield in response 

to available water, and has a relatively low requirement of specific inputs (Heng, Hsiao, Evett, 

Howell, & Steduto, 2009; Steduto et al., 2009; Raes Steduto, Hsiao, & Fereres, 2012). The 

AquaCrop model has been successfully used for simulating the growth of many crops such as 

maize (Heng et al., 2009; Hsiao et al., 2009; Ahmadi, Mosallaeepour, Kamgar-Haghighi, & 

Sepaskhah 2015), cotton (Farahani, Izzi, & Oweis, 2009), sorghum (Araya et al., 2016), potato 

and sunflower (García-Vila & Fereres, 2012). Todorovic et al. (2009) highlighted the suitability 

of the AquaCrop model for applications in arid and semi-arid regions where water stress varies in 

intensity, duration, and time of occurrence. Farahani et al. (2009) parameterized the model for a 

cotton crop, and predicted evapotranspiration (ET) and yield with reasonable accuracy. Heng et 

al. (2009) successfully validated the AquaCrop model for maize crop in Bushland, Texas, and 

concluded its performance to be satisfactory and recommended its application for on-farm water 

management. Araya et al. (2016) applied the model for evaluating deficit irrigation management 

strategies at different planting dates for sorghum in southwest Kansas. Their study revealed that 

planting date had significant bearing on water productivity of grain sorghum, with late planting 

resulting in high water productivities. Furthermore, the results suggested that deficit irrigation 

management improved grain sorghum water productivity under optimum conditions. However, 

some of these studies have highlighted the insufficiency of the model under moderate to severe 

conditions (Hsiao et al., 2009; Ahmadi et al., 2015). 

Grain crops are very important in the Central and Southern High Plains because of their use in 

livestock production. The major crops cultivated in the region include corn, winter wheat, 

sorghum and cotton. Of these four crops, grain sorghum is relatively more drought tolerant, and 

Araya et al. (2016) reported its suitability in water-limited environments. Historically, grain 
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sorghum covered a significant portion of the irrigated area of the Central and Southern High 

Plains (Musick & Dusek, 1971). In recent decades, corn has become the dominant irrigated feed 

grain in the region, mainly due to advances in the genetics. However, as Bordovsky and Lyle 

(1996) pointed out, grain sorghum cultivation may increase and may become preferred over corn 

as the water supply continues to dwindle. Musick and Dusek (1971) identified the frequent 

agricultural droughts as the other major driver for grain sorghum cultivation, compared to other 

grain crops in this region. Therefore, grain sorghum could become more important in meeting 

food, feed, and fuel demands (Baumhardt, Tolk, Howell, & Rosenthal, 2007). Thus, more 

research is needed to bring about recommendations that optimize its yield response to water with 

the aid of crop models. 

The objectives of this study were i) to calibrate and validate the AquaCrop model for estimating 

soil water content, evapotranspiration, and yield of grain sorghum using measured data from two 

sites in the Central and Southern High Plains that were similar in climatic conditions, but 

different in planted varieties, management practices, and irrigation systems; and, ii) to use the 

calibrated model to assess the effect of variable planting dates and densities on grain yield and 

irrigation requirement in the study area. 

4.3 Materials and Methods 

4.3.1 Study Sites 

The data used in this study were collected from field research plots at two locations in the Central 

and Southern High Plains; the USDA-ARS Conservation and Production Research Laboratory 

(CPRL) at Bushland, TX (35° 11' 16''N lat.; 102° 05' 49''W long., 1,170 m elev. above MSL) and 

the Oklahoma Panhandle Research and Extension Center (OPREC) near Goodwell, OK (36° 35' 

21"N lat.; 101° 37' 3"W long.; 992 m elev. above MSL). The two study sites are located within 

the most agriculturally productive lands in the region. However, some of the largest declines in 
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the Ogallala aquifer have been recorded in the same region. Figure 4.1 shows the location of 

study sites and highlight the water level changes of the Ogallala aquifer from predevelopment 

(about 1950) to 2011. 

 

Figure 4.1. Locations of the study sites at USDA-ARS Conservation and Production Laboratory 

(CPRL) and Oklahoma Panhandle Research and Extension Center (OPREC). The base map 

shows water level changes (WLC) from predevelopment to 2011. 

The two sites have similar climatic conditions characterized as semi-arid as shown by the data in 

Table 4.1. The average annual precipitation at CPRL is approximately 470 mm (Tolk & Howell, 

2003; Marek et al., 2017), and the area generally experiences high wind velocities (Heng et al., 

2009). Similarly, the OPREC site is characterized by low precipitation with an annual average of 

about 440 mm, high temperatures, and frequent strong winds (Rogers & Elliott, 1989). However, 

the evaporative demand at the OPREC site is relatively higher than at CPRL as seen in Table 4.1. 
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Table 4.1. 30-year average (1981-2010) climatological data at USDA-ARS Conservation and 

Production Laboratory (CPRL) and Oklahoma Panhandle Research and Extension Center 

(OPREC) (NCDC, 2017). 

Site Parameter Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

 Tmax (°C) 9.8 10.4 12.4 17.0 21.7 26.6 31.1 32.5 31.4 28.0 22.2 15.6 

 Tmin (°C) -4.5 -4.8 -3.4 0.5 4.9 10.7 15.7 18.0 17.4 13.3 6.8 0.0 

 RHavg. (%) 62 60 57 53 57 56 57 62 62 61 59 62 

CPRL U2 (m/s) 3.2 3.5 3.7 3.7 3.6 3.5 3.2 2.9 3.0 3.1 3.3 3.3 

 Rs (MJ/m2) 11.0 14.0 18.6 22.7 24.8 25.7 25.5 22.5 19.5 15.3 11.8 10.5 

 P (mm) 12.6 11.6 29.9 24.4 49.0 71.9 57.7 64.6 42.9 42.8 14.7 14.5 

 ETo 

(mm/d) 

1.7 2.1 2.9 4.1 5.0 6.0 6.5 5.9 5.2 4.1 3.0 2.1 

 Tmax (°C) 10.0 11.1 17.2 21.1 26.1 32.2 34.4 32.8 28.9 22.8 16.1 9.4 

 Tmin (°C) -6.1 -5.6 0.0 4.4 9.4 16.1 18.3 17.2 13.3 6.1 -0.6 -6.1 

 RHavg. (%) 61 60 54 54 55 55 53 60 58 58 57 63 

OPREC U2 (m/s) 7.6 8.0 8.5 9.4 8.9 8.9 8.0 7.6 7.6 7.6 7.6 7.6 

 Rs (MJ/m2) 10.6 13.7 18.4 22.3 25.5 27.1 26.2 23.0 19.7 15.3 11.6 9.4 

 P (mm) 8.9 10.4 26.9 41.4 48.0 58.2 52.3 69.1 36.6 38.1 13.5 16.3 

 ETo 

(mm/d) 

2.4 2.8 4.5 5.8 7.2 9.2 9.6 7.9 6.7 4.9 3.4 2.2 

 

According to Marek et al. (2016a), soils at the CPRL site are Pullman clay loam (fine, mixed, 

thermic, superlative Torrertic Paleustoll) and soils at the OPREC are Gruver clay loam, formerly 

Richfield (fine, mixed, superactive, mesic Aridic Paleustoll) (Humphreys et al., 2003). Table 4.2 

presents the soil water content limits at saturation (Sat.), field capacity (FC), and wilting point 

(WP) as well as the saturated hydraulic conductivity (Ksat) for different soil layers determined 

though laboratory analyses and obtained from published data for CPRL (Heng et al., 2009; Marek 

et al., 2017) and OPREC (Gatlin, 2015).  
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 Table 4.2. Soil parameters at the CPRL and OPREC sites.  

Layer (m) Water content (m3 m-3) at Ksat (mm d-1) 

Sat. FC WP 

CPRL (Pullman clay loam) 

0.00-0.18 0.42 0.33 0.18 66.0 

0.18-0.74 0.44 0.33 0.18 18.0 

0.74-1.35 0.43 0.35 0.20 6.6 

1.35-2.30 0.46 0.30 0.16 200.0 

OPREC (Gruver clay loam) 

0.00-0.30 0.40 0.38 0.17 125.0 

0.30-0.60 0.41 0.39 0.20 125.0 

0.60-0.90 0.41 0.39 0.23 125.0 

0.90-1.20 0.43 0.41 0.20 100.0 

4.3.2 Agronomy 

Grain sorghum (Sorghum bicolor (L.) Moench) was planted at both sites. At the CPRL, three 

lysimeter fields (designated as NE, SE, & NW) each occupying an area of 4.73 ha and equipped 

with large (3 x 3 x 2.5 m) weighing lysimeters were used in the study. These fields are described 

in detail by Marek et al. (2017). The NE and SE fields had similar agronomic parameters in any 

given year, which included the variety, planting dates, planting density and the harvesting date. 

Table 4.3 reports agronomic information for each water supply level for all the growing seasons 

that were investigated at the CPRL. The sorghum hybrids grown differed in the duration to 

maturity. The DK-56 grown in the 1993 season was a medium-full whereas the DK-39Y grown in 

the 2005 and 2007 seasons was a short season hybrid (Howell et al., 2006). 
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Table 4.3. Agronomic information for the USDA-ARS Conservation and Production Laboratory 

site. 

Growing season/ 

Irrigation treatment 

1993/ 

Full 

1993/ 

50% 

1998/ 

Dryland 

2005/ 

Full 1 

2005/ 

Full 2 

2007/ 

Dryland 

Field NE SE NW NE SE NW 

Variety DK-56 DK-56 PIO-8699 DK-39Y DK-39Y DK-39Y 

Planting Date 27 May 27 May 24 Jun 22 Jun 22 Jun 6 Jun 

Planting Density (plants ha-1) 200,000 200,000 119,000 160,000 160,000 96,370 

Harvest Date 4 Oct 4 Oct 4 Oct 7 Nov 7 Nov 3 Oct 

Seasonal Rainfall, (mm) 263 263 422 165 165 192 

Irrigation (mm) 380 174 0 219 218 0 

Seasonal ETo (mm) 780 780 855 843 843 713 

 

Optimal fertilization and weed control were performed at the CPRL site in all the study years. 

Preseason soil tests established the nutrient status of fields and guided optimum fertilizer 

applications. Herbicides were applied to prevent weed infestations. Data for crop development 

were taken regularly by taking samples from 1.5 m2 areas in the fields. These data included crop 

height, leaf area index (LAI) and grain yield. The grain yield was measured by harvesting three 

adjacent 1.5-m2 plant sampling areas in the lysimeters and its moisture content was determined 

using the procedure outlined in Howell, Tolk, Evett, Copeland, and Dusek (2007). 

At the OPREC, sorghum was grown in rotation with corn and winter wheat under no-till 

management practices. Sorghum was grown in a wheat stubble in all the study years. Each 

treatment occupied an area of 0.35 ha. Table 4.4 highlights some of the agronomic data for the 3-

year study period (2014-2016). These data include plant varieties, planting and harvesting dates, 

planting density, seasonal rainfall and seasonal irrigation applications. Optimum fertilization and 

weed control were ensured in all the study years so that yield responses could be attributed 

largely to water supply (irrigation and rainfall), and hence, these were considered as non-limiting 
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factors in the AquaCrop model simulations. Fertility requirements and fertilizer applications were 

based on soil tests. At this site, yield data were obtained by harvesting two center rows in each 

plot. 

Table 4.4. Agronomic information for the Oklahoma Panhandle Research and Extension 

Center site. 

Growing 
season/ 
Irrigation 
Treatment 

2014/ 
 
 
Full 

2014/ 
 
 
75% 

2014/ 
 
 
50% 

2015/ 
 
 
Full 

2015/ 
 
 
75% 

2015/ 
 
 
50% 

2016/ 
 
 
Full 

2016/ 
 
 
75% 

2016/ 
 
 
50% 

Variety PIO-
84G62 

PIO-
84G62 

PIO-
84G62 

PIO-
84G62 

PIO-
84G62 

PIO-
84G62 

SP-
73B12 

SP-
73B12 

SP-
73B12 

Planting 
Date 

 
6 Jun 

 
6 Jun 

 
6 Jun 

 
1 Jun 

 
1 Jun 

 
1 Jun 

 
8 Jun 

 
8 Jun 

 
8 Jun 

Planting 
Density 
(plants ha-1) 

 
154,440 

 
154,440 

 
154,440 

 
154,440 

 
154,440 

 
154,440 

 
154,440 

 
154,440 

 
154,440 

Harvest 
Date 

 
15 Oct 

 
15 Oct 

 
15 Oct 

 
15 Oct 

 
15 Oct 

 
15 Oct 

 
29 Oct 

 
29 Oct 

 
29 Oct 

Seasonal 
Rainfall 
(mm) 

 
270 

 
270 

 
270 

 
296 

 
296 

 
296 

 
229 

 
229 

 
229 

Irrigation 
(mm) 

 
384 

 
288 

 
193 

 
320 

 
237 

 
160 

 
293 

 
222 

 
151 

Seasonal 
ETo (mm) 

 
891 

 
891 

 
891 

 
800 

 
800 

 
800 

 
886 

 
886 

 
886 

 

4.3.3 Irrigation Management 

At CPRL, each lysimeter field was designated one irrigation treatment. The NE and SE fields 

were irrigated by a 10-span, 457 m linear move irrigation system (Howell et al., 1997; Marek et 

al., 2017). The system was fitted with drop hoses placed 1.52 m apart and 1.5 m above ground 

(Howell et al., 2007). To avoid pressure variation along the lateral, each spray head was equipped 

with a 100-kPa pressure regulator. Irrigation applications were scheduled to ensure the level of 
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soil water content in the root zone was maintained between field capacity and a Management 

Allowed Depletion (MAD) of 50% (Howell et al., 1997). Each lysimeter included a tipping-

bucket rain gauge to measure irrigation and precipitation events (Marek et al., 2016a), and the 

irrigation depths were derived from associated changes in the lysimeter storage. Thus, an 

irrigation efficiency of 100% was assumed. In the 1993 season, the sorghum in the NE field was 

fully irrigated, whereas the SE field received 50% of the fully irrigated treatment. In 1998 and 

2007, sorghum was grown under dryland conditions in the NW field. Both the NE and SE 

sorghum grown in 2005 received full irrigation. Full irrigation in this study referred to 

replenishing the soil water content to field capacity when it approached MAD (Marek et al., 

2017). Deficit irrigation treatments occurred on the same dates as the full irrigation and were 

achieved by reducing the nozzle size of the linear move system in those fields. Experienced 

scientists and technicians managed all agronomic and irrigation operations to ensure lysimeter 

representativeness of surrounding fields (Marek et al., 2017)  

At OPREC, the experimental design was a randomized complete block design with three 

irrigation treatments (Full, 75% and 50% of the Full), replicated four times. During the 3-year 

study period at OPREC, sorghum was irrigated using a subsurface drip irrigation system, with 

drip tapes buried 0.30 m below the soil surface, and drip lines spaced at 1.53 m apart. Irrigation 

scheduling was based on fully replacing daily crop ET for the Full irrigation treatment. In each 

zone, a flow meter was used to measure irrigation applications. Two deficit irrigation treatments 

received 75% and 50% of the amount of water applied to the Full irrigation treatment. The 

Aquaplanner program (www.Aquaplanner.net) was used to schedule irrigation in 2014 and 2015, 

whereas the Oklahoma Mesonet irrigation-scheduling tool was utilized for the 2016 season 

(Murley, 2016). The Aquaplanner program computes daily soil water status by closing a water 

balance that includes initial soil moisture, effective precipitation, applied irrigation and crop ET. 

The Oklahoma Mesonet irrigation-scheduling tool calculates short crop reference ET using the 

http://www.aquaplanner.net/
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ASCE standardized Penman-Monteith equation based on various measured weather variables. 

Crop ET is then estimated from the calculated reference ET and the appropriate crop coefficients, 

determined from both local calibrations and general recommendations of FAO56 (Allen, Pereira, 

Raes, & Smith, 1998). The tool uses the calculated crop ET to estimate the timing and depth of 

irrigation.  

4.3.4 Evapotranspiration and Soil Water Content 

Monitoring of evapotranspiration (ET) and soil water content (SWC) was conducted only at the 

CPRL site. ET was measured at every 15-min interval and then summed to obtain daily values 

using large precision weighing lysimeters (9 m2 surface area and 2.3 m deep) located at the center 

of each field. Marek (1988) outlined the design specifications of the precision-weighing 

lysimeters, and their calibrated accuracy was reported to be 0.04 mm (Evett et al., 2016). Daily 

ET values were calculated as the difference between lysimeter mass losses (from evaporation and 

transpiration) and lysimeter mass gains (precipitation, irrigation, and dew) divided by lysimeter 

area (Evett et al., 2016). The performance of AquaCrop in modeling crop ET was assessed 

through comparing simulated and measured values on daily and seasonal scales. 

The SWC was measured periodically at 0.2-m depth increments beginning with the 0.1-m depth 

using a neutron probe and access tubes installed within the lysimeters (Howell et al., 2007). The 

probe was field-calibrated for the Pullman soil (Howell et al., 2007). The measurements were 

taken at different soil depths to 2.3 m. However, only neutron probe readings taken within the 

root zone depth (1.8 m) were considered for comparisons since the simulated values represented 

this depth. The measured SWC from each access tube was calculated as the average of the 

neutron probe readings within the top 1.8 m. The root zone values were averaged among the 

access tubes within each lysimeter and used as the measured SWC on each day of measurement. 

4.3.5 AquaCrop Model Description 
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The detailed background and principles behind the AquaCrop model are presented in Steduto et 

al. (2012) and Raes et al. (2012). Unlike other crop models that simulate leaf area index (LAI), 

AquaCrop utilizes canopy cover (CC) from crop emergence until senescence. CC forms the basis 

for estimating crop transpiration (Tr) in the model. The AquaCrop model separates Tr and soil 

evaporation while simulating the daily water balance. Tr is proportional to canopy cover in the 

absence of crop stress. However, the presence of water stress triggers leaf senescence, and 

ultimately reduces Tr.  Biomass (B) production is simulated as a function of Tr in the model and is 

estimated as a product of the normalized water productivity (WP*) and the ratio of Tr and 

reference ET (ETo), throughout the growing season as presented by equation 1 (Steduto et al., 

2009). 

𝐵𝐵 =  𝑊𝑊𝑊𝑊∗ × ∑( 𝑇𝑇𝑇𝑇
𝐸𝐸𝑇𝑇𝑜𝑜

)         (1) 

Water productivity (WP) is normalized for evaporative demand on a daily basis throughout the 

growing season and is obtained by dividing Tr by ETo (Vanuytrecht et al., 2014).  Finally, the 

crop harvestable yield (Y) would then be estimated as a product of B and the harvest index (HI) 

as shown in equation 2 (Hsiao et al., 2009). 

𝑌𝑌 = 𝐵𝐵 × 𝐻𝐻𝐻𝐻          (2) 

HI, defined as the ratio of grain yield to aboveground dry biomass, is affected by environmental 

conditions. 

4.3.6 AquaCrop Model Input Data 

The AquaCrop model data requirements include climatic and management data for the crop, soil, 

field and irrigation (Raes et al., 2012). The climatic input data for the CPRL site consisted of a 

21-year dataset (1990-2010) recorded at a research-grade weather station located adjacent to the 
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lysimeter fields (Howell et al., 1997). The weather station, managed by the Texas High Plains ET 

Network, collected hourly weather data and was maintained following the ASCE-EWRI 

specifications. This station was situated over a well-watered, mowed reference grass plot (Marek 

et al., 2017). Twenty-one years (1997-2017) of weather data for the OPREC site were obtained 

from an Oklahoma Mesonet station (McPherson et al., 2007) located at OPREC near the test 

plots. These weather data (rainfall, maximum and minimum temperature, wind, radiation, and 

humidity) were used to create climatic input files for the AquaCrop model and the ETo was 

estimated using the FAO Penman-Monteith equation (Allen et al., 1998). Soil parameters (Table 

4.2), field conditions and irrigation applications presented in Tables 3 and 4 were used in the 

calibration and validation of the model for each study site. Since fertilization was optimal at all 

sites, soil fertility was set as non-limiting in the model for all simulations. A maximum rooting 

depth of 1.8 m was used for the CPRL site. Several studies at CPRL including Baumhardt et al. 

(2007) have observed rooting depth for grain sorghum of 1.8 m in Pullman soils. For the OPREC 

site, a 1.0 m maximum rooting depth was estimated using soil water extraction patterns observed 

by soil moisture sensors. A subsurface drip irrigation system was used at OPREC, and this 

appeared to be the cause of the smaller depth compared to that determined at CPRL. All 

simulations were started one day after a significant rainfall before planting, and thus, the initial 

SWC was assumed to be at field capacity. 

4.3.7 AquaCrop Model Calibration 

The AquaCrop model was calibrated using the 1993/Full irrigation treatment at the CPRL-NE 

field. Since previous studies have emphasized correct calibration of canopy development to be 

central for good prediction of transpiration and biomass (Farahani et al., 2009; Vanuytrecht et al., 

2014), calibration initially focused on ensuring sound prediction of the canopy development 

curve for the 1993/Full treatment. The initial canopy cover (CCo) was estimated using the seeding 

rate option in the model. The model default value for canopy cover per seedling at 90% 



77 
 

emergence (cco) was used. The maximum canopy cover (CCx) was estimated from the leaf area 

index (LAI) measured at the calibration treatment following the equation used by Araya et al. 

(2016):  

𝐶𝐶𝐶𝐶𝑥𝑥 = 1 − exp (−𝑘𝑘 ∗ 𝐿𝐿𝐿𝐿𝐻𝐻)        (3) 

where k is an extinction coefficient and was taken as 0.416 after Araya et al. (2016). 

Estimates of dates from sowing to emergence, CCx and maturity were inputted in the model to 

give initial approximations of canopy expansion and senescence rates. The canopy growth 

coefficient (CGC) and canopy decline coefficient (CDC) were adjusted through trial-and-error 

iterations as described by Raes et al. (2012) so that canopy development could closely match the 

measured values. The CDC and CGC were estimated as 0.016 and 0.986 % GDD-1, respectively 

(Table 4.5). Although the threshold values for canopy expansion (pupper and plower) were default, 

the curve shape indicating response to water stress for canopy expansion was calibrated from a 

convex to a linear function to give a better representation of the high sensitivity of leaf expansion 

of grain sorghum to water stress as reported by Wani, Albrizio, and Vajja (2012). Other water 

stress parameters that affect stomatal conductance (KSsto) and accelerated canopy senescence 

(KSsen) and their shapes were left default. Similarly, default values of the maximum crop 

transpiration coefficient (KcTr,x), normalized crop water productivity (WP*) and a reference 

harvest index (HIo) were used. KcTr,x and WP* generally exhibit conservative characteristics (Raes 

et al., 2012), hence the choice. For HIo, the same default value was determined from field 

measurements by Howell et al. (2007). The AquaCrop model was run in growing degree-days 

(GDD), calculated in degrees Celsius from the temperature data. The most important default and 

calibrated crop parameters used for the simulations are given in Table 4.5. 
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Table 4.5. Default and calibrated (italicized) crop parameters used in the AquaCrop model. 

Parameter Units Value 
Base temperature °C 8 
Cut-off temperature °C 30 
Canopy cover per seedling at 90% emergence  cm2 3 
Canopy growth coefficient % GDD-1 0.016 
Canopy decline coefficient % GDD-1 0.986 
Sowing to emergence GDD 121 
Sowing to maximum canopy cover   GDD 921 
Maximum canopy cover  % 90 
Maximum transpiration coefficient (KcTr,x) unitless 1.07 
Sowing to flowering GDD 1040 
Length of flowering GDD 305 
Sowing to max rooting depth GDD 1315 
Sowing to senescence GDD 1420 
Sowing to maturity °C 1773 
Normalized Crop Water Productivity, WP* g m-2 33.7 
Canopy expansion function   
P-upper fraction of TAW 0.15 
P-lower fraction of TAW 0.70 
Shape unitless 0 
Stomatal closure function   
P-upper unitless 0.75 
Shape unitless 3 
Early canopy senescence function   
P-upper unitless 0.7 
Shape unitless 3 

4.3.8 AquaCrop Model Validation 

Validation of the AquaCrop model was performed using five and nine treatments from CPRL and 

OPREC, respectively. The five CPRL treatments were 1993/50%, 1998/Dryland, 2005/Full 1, 

2005/Full 2 and 2007/Dryland. The OPREC treatments included all full, 75% and 50% from the 

2014, 2015 and 2016 growing seasons. The model was validated based on its ability to simulate 

CC, ET, SWC and grain yield. The measured CC data were only sufficient in the 1993/Full and 

1993/50% treatments at CPRL. Additionally, only measured yield data were available for the 

OPREC site. Model accuracy and performance was evaluated by means of graphical 

representations and statistical performance parameters:  Prediction Error (Pe), Root Mean Square 
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Error (RMSE) and Nash-Sutcliffe Efficiency (NSE). These parameters were useful in drawing 

comparisons between the measured and simulated values for SWC, ET and yield, and they were 

calculated as: 

𝑊𝑊𝑒𝑒 =  (𝑆𝑆𝑖𝑖−𝑀𝑀𝑖𝑖)
𝑀𝑀𝑖𝑖

× 100         (4) 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 =  �1
𝑛𝑛
∑ (𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑖𝑖)2𝑛𝑛
𝑖𝑖=1         (5) 

𝑁𝑁𝑅𝑅𝐸𝐸 =  1 − ∑ (𝑀𝑀𝑖𝑖−𝑆𝑆𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (𝑀𝑀𝑖𝑖−𝑀𝑀�)2𝑛𝑛
𝑖𝑖=1

         (6) 

where Mi and Si are the measured and simulated values, respectively, n is the number of 

measurements, and M̅ is the mean value of Mi. 

The Pe and RMSE provide an indication of the deviation of the simulated values from the 

measured values with estimates approaching zero indicating better performance of the model and 

good agreement of the measured to the simulated values (Ahmadi et al., 2015; Araya et al., 2016). 

For grain yield prediction, Xie, Kiniry, Nedbalek, and Rosenthal (2001) highlighted that RMSE 

less than 0.8 Mg ha-1 is considered acceptable. NSE compares the variances of the relative 

magnitude of the residuals and the measured data (Moriasi et al., 2007). Values of NSE range 

between -∞ to 1.0 (inclusive). Values ranging from 0.0 to 1.0 represent acceptable model 

performance, whereas those ≤ 0.0 indicate unacceptable performance (Marek et al., 2017). 

4.3.9 AquaCrop Model Application 

The calibrated model was applied to assess the effect of variable planting dates and planting 

densities on grain yield and irrigation requirement in the study area. The range of planting dates 

and planting densities were determined following consultations with producers and local water 

managers. Twenty-one years (1997-2017) of weather data, obtained from the Oklahoma Mesonet 
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at the OPREC site were used. Ideally, at least 30 years of climate data is recommended, however, 

the Oklahoma Mesonet was only commissioned in 1994, with the earlier years having significant 

missing data. Simulations were done for a fully irrigated crop; with irrigation triggered at a MAD 

of 55%, following the FAO56 guidelines for grain sorghum. Field management practices such as 

tillage and fertilizer application that are common in the Oklahoma Panhandle for grain sorghum 

were used for the simulations. Table 4.6 presents the nine management scenarios that were 

simulated. 

 Table 4.6. Planting dates and planting densities for each management strategy.   

 Strategy Planting Date Planting Density 
(seeds ha-1) 

S1 25-May 135,908 
S2 10-Jun 135,908 
S3 25-Jun 135,908 
S4 25-May 160,618 
S5 10-Jun 160,618 
S6 25-Jun 160,618 
S7 25-May 185,329 
S8 10-Jun 185,329 
S9 25-Jun 185,329 

An early maturing grain sorghum hybrid was used in strategies with the latest planting date (S3, 

S6 and S9) to be consistent with local practices. The differences in final grain yield and total 

seasonal irrigation requirement among the nine scenarios were analyzed using the analysis of 

variance. 

4.3 Results and Discussion 

4.4.1 Canopy Cover 

The simulated CC for both 1993/Full and 1993/50% treatments was smaller than measured CC 

earlier in the growing season, but their trends closely matched during mid- and late-seasons 

(Figure 4.2). The RMSEs for the 1993/Full and 1993/50% for CC were 12 and 11%, respectively. 
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Additionally, the NSE were 0.85 and 0.89, respectively. These metric values show acceptable 

performance of the model to simulate canopy cover under irrigated conditions. 

 

Figure 4.2. Simulated and measured canopy cover for the 1993/Full (calibration) and 1993/50% 

treatments. 

4.4.2 Soil Water Content 

The simulated SWC generally followed the trend of the measured values throughout the growing 

season as shown in Figure 4.3. The model prediction of SWC in irrigated treatments was better 

than in dryland treatments, particularly during the mid-season. However, the model 

underestimated SWC late in the season for the two fully irrigated treatments in 2005. Even 

though there were some soil water response after irrigation and precipitation, the model restricted 

SWC below field capacity in these treatments. In a simulation study of wheat on various loamy 

soils in Western Canada, Mkhabela and Bullock (2012) pointed out that the AquaCrop model did 
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not allow SWC to remain above the field capacity for consecutive days, and suspected this 

occurrence to cause underestimation, particularly when the soil had high water content. 

The model made excellent SWC predictions in the 1993 deficit irrigation treatment with slight 

overestimations towards the end of the growing season. Overestimation of SWC at the end of the 

growing season could have been a result of relatively faster canopy senescence by the model 

compared to field conditions. Farahani et al. (2009) reported similar findings for deficit irrigation 

treatments. For the 1998 and 2007 dryland treatments, the model overestimated SWC throughout 

the growing season, except for two-single measurements late in the season. Similar findings were 

reported in several studies when the model was used for simulating SWC for various crops and 

soil types. Iqbal et al. (2014) investigated winter wheat grown in a loamy soil and highlighted that 

the model significantly overestimated SWC up to the mid-season under dryland conditions. 

Furthermore, Hsaio et al. (2009) observed overestimations of SWC in water stressed treatments, 

and highlighted that this could be a result of the simplification of the model, which assumes that 

drainage is zero when SWC is at or below FC. 
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Figure 4.3. Time series of simulated and measured soil water content at the USDA-ARS 

Conservation and Production Laboratory site. 
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The Pe values for SWC determined at different days of the growing season for validation 

simulations ranged from -17 to 4% in fully irrigated, -3 to 10% in limited irrigated and -16 to 

25% in dryland treatments. The Pe for the calibration simulation varied from -2 to 4% and the 

RMSE was 0.01 m3 m-3. The RMSEs ranged from 0.01 to 0.04 m3 m-3 for the validation 

simulations (Figure 4.3). The normalized RMSE expressed as a percentage of the average of all 

measured SWC for this study was 9%. Mkhabela and Bullock (2012) found similar RMSE values 

ranging from 0.03 to 0.05 m3 m-3 for soil water content simulated for grain wheat, with a 

normalized value of 12%. Mebane, Day, Hamlett, Watson, and Roth (2013) found RMSE values 

ranging from 0.02 to 0.10 m3 m-3 for SWC simulations for a dryland maize crop, and a study by 

Ahmadi et al. (2015) determined a range between 0.01 and 0.04 m3 m-3 for irrigated maize under 

different irrigation levels. Therefore, the accuracy of simulated SWC determined from this study 

seemed satisfactory, and in agreement with results reported in the literature. 

Although a low R2 (0.56) was achieved for the calibration simulation, high R2 values ranging 

from 0.77 to 0.97, were attained for SWC during the validation period for full and limited 

irrigated treatments, respectively, an indication that the model could explain well the variance in 

measured SWC. The dryland treatment for the 1998 season had a relatively high R2 (0.74). 

However, the 2007 dryland had the least R2 of 0.17. Overall, the validation results from irrigation 

treatments were better than those reported in Mkhabela and Bullock (2012), who achieved R2 

values ranging from 0.51 to 0.86. These results further suggest that the AquaCrop model could be 

utilized for forecasting soil water extraction for irrigated crops, which is key in irrigation 

scheduling. 

4.4.3 Evapotranspiration 

The AquaCrop model tended to overestimate daily ET for 1993/50%, especially in the early 

stages of the growing season (Figure 4.4). However, the measured and simulated daily ET 
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followed a close trend in both of the 2005 Full irrigation treatments throughout the growing 

season. Whilst 2007/Dryland treatment had a combination of under and overestimation of daily 

ET, the 1998/Dryland treatment overestimated daily ET in most parts of the growing season. ET 

temporal trends in the dryland treatments appeared to follow rainfall distribution and 

overestimation of CC, with more ET after rainfall events. The RMSE for daily ET was 1.5 mm d-1 

for both full irrigation treatments, 1.9 mm d-1 for the limited irrigation (50%) treatment, and 2.6 

and 1.9 mm d-1 for the 1998 and 2007 dryland treatments, respectively. 

In the study by Mebane et al. (2013), ET overestimation by the AquaCrop model was attributed to 

errors in estimating soil hydraulic parameters including field capacity and wilting point. Soil 

hydraulic parameters used in this study for the CPRL site were obtained from field measurements 

reported by Heng et al. (2009), but their representativeness and measurement errors were not 

reported. These parameters were assumed uniform for all the CPRL fields and could have partly 

resulted in ET simulation errors. Thus, the argument by Mebane et al. (2013) underscores the 

need to use accurate soil parameters as these could have an impact on the simulated ET. Heng et 

al. (2009) found similar trends in ET when the AquaCrop model was applied for simulating maize 

ET at the CPRL site. They attributed the initial daily ET peaks to the high input temperature and 

wind data used, which was argued to result in high atmospheric evaporative demand. These 

climatic parameters are used as input in the model for estimating reference ET. In this study, the 

soil water content at planting was close to field capacity for all the simulations. It therefore seems 

likely that a combination of high atmospheric evaporative demand and high SWC could have 

caused the high ET in the initial phases of the growing season. This argument concurs with the 

results by Marek et al. (2016b) that used the Soil and Water Assessment Tool (SWAT) model for 

the same site. They attributed overestimation of ET earlier in the growing season to increased 

available water content due to occurrence of rainfall events in some years. 
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Figure 4.4. Simulated and measured daily ET at the at USDA-ARS Conservation and Production 

Laboratory site. 
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The simulated seasonal ET in the irrigated treatments closely approximated the measured values. 

The Pe values for irrigated treatments used in validation varied from -5 to 4% (Table 4.7). 

Table 4.7. Measured and simulated seasonal ET with model prediction errors. 

 Site name Growing 

season 

Irrigation 

Treatment 

Seasonal ET (mm) Pe (%) 

Measured Simulated 

 1993 Full 634 564 -11 

 1993 50% 570 547 -5 

CPRL 1998 Dryland 341 420 24 

 2005 Full 1 516 539 4 

 2005 Full 2 542 539 -1 

 2007 Dryland 441 368 -17 

The error in simulated seasonal ET was larger under dryland conditions in this study with Pe 

values of 24 and -17% for the 1998 and 2007 growing seasons, respectively. These findings agree 

with earlier studies which found low accuracy with the AquaCrop model when simulating severe 

water-stress treatments (Katerji, Campi, & Mastrorilli, 2013; Paredes, de Melo-Abreu, Alves, & 

Pereira, 2014; Ahmadi et al., 2015). As previously explained, the AquaCrop model simulates 

transpiration and soil evaporation as a function of CC. Paredes et al. (2014) reported the lack of 

emphasis by model developers to highlight the importance of CC parameterization as a requisite 

for accurate simulations. Pereira, Paredes, Rodrigues, and Neves (2015), similarly, recognized the 

importance of accurate parameterization of CC in the model to achieve accurate estimates of ET, 

SWC, biomass and yield. However, sufficient LAI measurements were not available for severely 

stressed treatments for rigorous CC parameterization in this study. This could have had a negative 

impact on the ET simulation results especially for the dryland treatments where crop growth 

depended on availability of soil moisture from rainfall events. 

Despite the relatively large deviation of simulated seasonal ET under dryland conditions, overall, 

the RMSE and NSE for seasonal ET with all validation simulations was 51 mm and 0.63, which 
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indicated that the model results were acceptable. The RMSE expressed as a percentage of the 

measured seasonal average ET was 11%, and this falls within the good performance category 

(Ahmadi et al., 2015). The coefficient of determination (R2) between the measured and simulated 

seasonal ET was relatively high (0.68) as displayed by the one to one plot (Figure 4.5). The 

seasonal ET simulation results from this study indicated that the AquaCrop model can be useful 

for making irrigation management and water conservation decisions, as water resource managers 

and decision makers are more interested in the seasonal crop water use (as opposed to daily ET) 

for planning purposes. 

 

Figure 4.5.  A 1:1 plot of the simulated and measured seasonal evapotranspiration for the USDA-

ARS Conservation and Production Research Laboratory site. 

4.4.4 Grain Yield 

The measured and simulated grain yield data are presented in Table 4.8 along with their 

respective Pe values for each growing season and treatment. Total estimates of ETo and applied 

water from irrigation (I) and precipitation (P), simulated seasonal ET and simulated transpiration 

(T) during the growing season are also provided to assist with analyzing yield variabilities. 
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Table 4.8. Measured and simulated sorghum grain yield with model prediction errors. 

  Site 
name 

Growing 
season 

Irrigation 
Treatment 

ETo  I+P ET T Yield (Mg ha-1) Pe (%) 

(mm)  (mm) (mm) (mm) Measured Simulated 
 1993 Full 780  642 564 367 8.68 8.41 -3 
 1993 50% 780  437 547 351 8.26 8.01 -3 
 1998 Dryland 855  422 420 286 4.65 5.09 9 

CPRL 2005 Full 1 843  384 539 348 7.03 7.85 12 
 2005 Full 2 843  383 539 348 7.02 7.88 12 
 2007 Dryland 713  192 367 236 5.31 6.19 17 
 2014 Full 891  654 612 464 9.66 8.92 -8 
 2014 75% 891  558 594 451 9.44 8.91 -6 
 2014 50% 891  463 545 418 7.70 8.24 7 
 2015 Full 800  616 517 427 10.32 9.31 -10 

OPREC 2015 75% 800  533 505 421 10.30 9.23 -10 
 2015 50% 800  456 488 410 10.29 9.08 -12 
 2016 Full 886  522 558 434 8.88 8.80 -1 
 2016 75% 886  451 540 425 9.26 9.01 -3 
 2016 50% 886  380 489 388 8.51 8.39 -1 

 

At the CPRL site, the 1993/50% achieved an equally high yield as the 1993/Full treatment. This 

can be explained by a relatively low evaporative demand in the 1993 season as seen by the ETo in 

Table 4.8. Additionally, relatively high seasonal rainfall was received in that year, which 

increased the total water supply in both full and deficit irrigation treatments. Musick and Sletten 

(1966) reported that grain sorghum required between 508 and 610 mm of water supply to attain 

maximum yields on a Pullman soil. Similarly, Tolk and Howell (2008) reported an optimized 

yield-ET relationship at a total water supply of 500 mm in all the soils found in the study area 

including the Pullman soils. Furthermore, New (2004) reported an average water supply (rainfall 

+ irrigation + initial soil water) of 528 mm to attain optimum yields for grain sorghum in the 

Texas High Plains. The water supply (rainfall + irrigation) was 642 and 437 mm for the 1993/Full 

and 1993/50% treatments, respectively. The deficit irrigation treatment received water only 

slightly lower than previously stated rates, which might be the reason it also attained high yields. 

Possibilities are that the total water supply for the deficit irrigation treatment was within the water 
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supply range to obtain maximum yields, if the initial available soil water content was added to the 

sum of rainfall and irrigation applications. Howell et al. (1997) reported seasonal ET for fully 

irrigated sorghum from different studies, ranging between 549 to 619 mm. The full and 50% 

irrigation treatments for the 1993 season had measured seasonal ET values of 634 and 570 mm 

respectively. These values are within the range that results in optimum yield for a fully irrigated 

crop. 

The two 2005/Full treatments had lower yields compared to that of 1993. The 2005 growing 

season was characterized by significantly higher evaporative demand, yet the crop received less 

water than in 1993. This might have contributed to the lower yield achieved in 2005. The two 

dryland treatments in 1998 and 2007 had the smallest yields at CPRL. However, these yield 

measurements were close or above the upper limit of 5 Mg ha-1, reported by Wade and Douglas 

(1990) under dryland conditions and similar plant densities.  

At the OPREC site in 2014, the yield for the full and 75% irrigation treatments were similar but 

significantly different from the 50% treatment. Both the 2014/Full and 2014/75% treatments 

received water supply well above the reported requirement for optimum yield. However, water 

application for the 2014/50% was less than reported ranges considering the high ETo in that year. 

In addition, the timing of rainfall could have played a role in achieving lower yield. Most of the 

2014 rainfall was received earlier in the season, followed by a dry period around the middle of the 

season. The earlier rainfall resulted in pronounced vegetative growth (anecdotal records), which 

exacerbated the negative impact of the short dry period on yield. The AquaCrop model managed 

to simulate mild water stress during the dry period for the 2014/50% treatment. However, this 

mild stress did not result in a significant yield reduction and the simulated value was similar to 

that of the other two treatments. Based on the relative higher yield in the 2014/50% treatment, it 

appears that the mid-season mild stress enhanced HI, and this resulted in a higher simulated yield 

than expected. 
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In the 2015 season at OPREC, differences in the irrigation water supply had no impact on yield. 

In addition, the largest measured and simulated yields were achieved in this year, possibly 

because of the low evaporative demand and more in-season rainfall. In the 2016 season, the 50%, 

75% and full irrigation treatments attained similar grain yield despite the differences in water 

supply. It is likely that the sorghum variety that was grown in 2016 was more tolerant to water 

stress, hence the attained high yield. 

Steduto et al. (2012) reported that prediction of yield with less than 15-20% error is reasonable. In 

this study, the range of Pe for grain sorghum yield was -3 to 17% for the CPRL site and -12 to 7% 

for the OPREC site. These results are comparable to others found in literature. For instance, 

Araya et al. (2016) achieved Pe values ranging from -16 to 18% for grain sorghum yield using 

AquaCrop. In a malt barley study using AquaCrop for two contrasting rainfall years, Pereira et al. 

(2015) attained Pe values of -3% and +17% for dry and wet years, respectively. Bello and Walker 

(2016) obtained Pe values that varied between -10 and 16% under dryland, moderate, and full 

irrigation for pearl millet. The yield prediction accuracy in the current study was better than the 

results by Iqbal et al. (2014), who obtained a Pe of -43.2% in their dryland simulations of winter 

wheat yield. 

The NSE was 0.83, indicating that the model performance in simulating grain yield was 

acceptable. The RMSE was 0.70 Mg ha-1. Bello and Walker (2016) found a similar RMSE of 0.51 

Mg ha-1 for pearl millet using the AquaCrop model. Xie et al. (2001) achieved RMSEs of 0.36 

and 0.71 Mg ha-1 for grain sorghum yield using the ALMANAC and SORKAM models, 

respectively. RMSE less than 0.8 Mg ha-1 was considered acceptable and indicated that the model 

could be used for yield prediction (Xie et al., 2001). Kiniry and Bockholt (1998) obtained a mean 

RMSE of 0.73 Mg ha-1 using the ALMANAC model for several Texas environments. The one to 

one plot shown in Figure 4.6 indicates that the model closely simulated the grain yield with 

acceptable accuracy. The R2 of 0.91 with a slope and intercept of 1.42 and -3.33, respectively, 
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showed a good agreement between the simulated and measured yield. Overall, the model 

produced fair to good results in simulating grain yield as compared with past studies (Kiniry & 

Bockholt, 1998; Xie et al., 2001). 

 

Figure 4.6. Simulated and measured grain yield for all the study years at the two sites. 

4.4.5 AquaCrop Model Application 

The calibrated AquaCrop model was applied to run scenarios of variable planting dates and 

planting densities to assess their impacts on grain yield and irrigation requirement. The scenario 

analysis results showed no significant interaction between planting date and planting density over 

the 21-year study period. The planting density had no significant effect on grain yield or seasonal 

irrigation requirement at a significance level of 0.05. The 21-year average grain yield was 7.6, 7.8 

and 7.9 Mg ha-1 for planting densities of 135,908, 160,618 and 185,329 seeds ha-1, respectively. 

The average seasonal irrigation requirement ranged between 389 and 403 mm, an indication that 

no significant water savings may be achieved by considering only planting densities within the 

range used in this study. However, by adopting the 135,908 seeds ha-1 density, producers may 

benefit from cutting the cost of seed. On the other hand, significant differences were observed in 
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grain yield and seasonal irrigation requirement for different planting dates. This was clearly seen 

across the simulated strategies, as presented in Figures 4.7 and 4.8 below. 

  

Figure 4.7. Grain yield achieved by each strategy. 

 

Figure 4.8. Seasonal irrigation requirement achieved by each strategy. 
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Grain yield declined for later planting dates. The 21-year average grain yield was 8.5, 7.7 and 7.0 

Mg ha-1 for the 25-May, 10-June and 25-June planting dates, respectively, and this difference was 

statistically significant (p < 0.001). Baumhardt and Howell (2006) reported similar findings and 

their results showed attainment of greater yields in early-planted grain sorghum grown under full 

irrigation. The average seasonal irrigation followed the same trend as the grain yield. The 

respective average seasonal irrigation requirement for the 25-May, 10-June and 25-June planting 

dates was 445, 409 and 333 mm and the difference among treatments was statistically significant 

(p < 0.001). These results are consistent with those reported by Araya et al. (2016), who also 

reported lower irrigation requirements and higher water productivity with late planting for grain 

sorghum in Kansas. These results present an opportunity for producers in the study area to choose 

appropriate planting dates for grain sorghum that can work with their respective well capacities. 

However, future studies in the area should include economic analysis of each strategy so that 

producers are informed of the costs and benefits of each strategy. 

4.5 Conclusion 

The AquaCrop model was calibrated and validated for simulating evapotranspiration (ET), soil 

water content (SWC), and yield of variably irrigated grain sorghum, grown at two sites in the 

Central and Southern High Plains. The model produced better results for simulating daily and 

seasonal ET under irrigated as compared to dryland conditions. The model’s ability to simulate 

seasonal ET highlighted its potential for use in irrigation planning and formulating deficit 

strategies. For SWC, the model again performed better in irrigated treatments as compared to 

dryland treatments, particularly during the mid-season. AquaCrop underestimated SWC in fully 

irrigated treatments late in the season, and it generally overestimated under dryland conditions 

until mid-season. The model predicted grain yield with acceptable accuracy for all irrigation and 

dryland treatments, with errors similar to or smaller than those reported in previous studies. 

Overall, the model performed well considering the limited measured datasets that were used for 
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calibration. Therefore, the AquaCrop model can be used as a tool for evaluating the effects of 

different irrigation managements in the semi-arid and arid regions. The calibrated model was used 

to evaluate the effects of planting date and density on grain yield and seasonal irrigation 

requirements in the study area. Both grain yield and seasonal irrigation requirement were reduced 

significantly due to late planting but were not affected by planting density in the range that was 

used. 
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CHAPTER V 
 

 

CONCLUSIONS 

 

Water scarcity continues to be a threat for sustainable agricultural production and regional 

economies in many arid and semi-arid regions. There is an increasing need to strategize irrigation 

management under various climatic and environmental conditions to optimize water use in 

agriculture. To advance this vision, the present research used field monitoring and crop modeling 

to evaluate irrigation and crop management strategies for cotton and grain sorghum in the 

southern Great Plains of the U.S. The objectives of the research were to (1) investigate the 

impacts of irrigation termination date on cotton yield and irrigation requirement, (2) calibrate and 

validate a crop model for cotton and to apply the model to study the impact of irrigation capacity 

and seasonal weather conditions on cotton yield at a site that relies on the Ogallala aquifer for 

irrigation supply, and (3) calibrate and validate a crop model for variably irrigated grain sorghum 

by simulating soil water content, evapotranspiration and yield, and to apply the model to evaluate 

the performance of key water management scenarios. 

In the first study (Chapter 2), evaluation of the effects of irrigation termination timings for cotton 

showed a general increase in cotton yields by delaying irrigation termination, and minimal effects 

were found for most of the fiber quality parameters. Additionally, the study revealed significant 

reductions in irrigation requirement with earlier termination dates. However, this water 

conservation caused considerable declines in cotton yield and fiber micronaire. This study 
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recommended additional research to investigate the economic trade-offs between revenue losses 

from declined cotton lint value and reductions in water and energy expenses when implementing 

earlier irrigation termination of cotton. Furthermore, the study showed that monitoring 

technologies such as soil moisture sensors could be used as important decision-making tools for 

irrigation management and in implementing water conservation efforts. However, due to the cost 

of sensors and relative high sensor requirements per unit area under variable field conditions, the 

potential water savings and yield improvements may not offset the cost of these technologies. 

Thus, there is a need for further research towards the development of cost effective monitoring 

technologies to increase adoption by producers.  

In the second study (Chapter 3), the results showed satisfactory performance by the AquaCrop 

model for simulating cotton production in the southern Great Plains. When the calibrated model 

was applied to evaluate the effects of irrigation capacity and seasonal weather conditions at a site 

that relies on the Ogallala aquifer for irrigation supply, the results showed significant year-to-year 

variability of cotton yields across all the studied irrigation capacities (0 to 0.6 l s-1 ha-1). Yield 

variability appeared to be a result of the differences in accumulated seasonal heat units. 

Furthermore, the results revealed no significant increase in cotton yields at irrigation capacities 

higher than 0.3 l s-1 ha-1 in the Ogallala aquifer region. This study recommended the use of 

available weather platforms and data when making irrigation and crop management decisions. 

This is particularly important for the southern Great Plains region, where growing season 

conditions, including rainfall and temperature are highly variable.  

In the simulation study for grain sorghum (Chapter 4), the results indicated that the AquaCrop 

model could be used as an effective tool for evaluating the impacts of variable crop and irrigation 

managements on the production of grain sorghum in the Central and Southern High Plains of the 

Ogallala Aquifer region. Scenario analyses revealed a significant impact of planting date on grain 

sorghum yield and irrigation requirements but the impact of planting density was minimal. These 
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findings are important for producers as this gives them valuable information of the key variables 

to focus on when making irrigation and crop management decisions. This study demonstrated the 

potential of incorporating short-term field experiments with crop simulation models using long-

term historic climate data as a useful tool in ascertaining suitable irrigation management 

strategies. 

Overall, the three studies in this dissertation have shown the potential for enhancing water 

conservation in the southern Great Plains region through strategic crop and irrigation 

managements. However, the success of these strategies may depend on the uptake and adoption 

by the producers in the southern Great Plains region. There is need to find ways that increase 

adoption of irrigation management strategies by producers to enhance water conservation. Thus, 

further research is needed to explain the factors that influence producers’ adoption of water 

conservation practices. Such research may include investigating the socio-economic factors that 

impede the adoption of water management tools and technologies. This would require integrated 

management approaches through collaborations from all stakeholders in the water sector. Lastly, 

it is necessary to translate the results presented in this research in ways that make them policy 

relevant and useful to producers using appropriate language. 
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