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Abstract: Abstract: The data collected in this study provides additional knowledge into 

the complex interplay between the neural, contractile and morphological variables that 

contribute to voluntary rate of torque development (RTD). Twenty younger (age: 23 ± 3 

years) and 17 older men (age: 74 ± 6 years) performed multiple explosive voluntary and 

involuntary isometric and maximal effort dynamic knee extensions. The RTD 

contractions were examined in 50 ms sequential time frames from the onset of torque to 

200 ms. Surface electromyography (EMG) was used to record and examine muscle 

activation in sequential 50 ms time frames from EMG onset and normalized to M-wave. 

Contractile properties were examined from evoked muscular twitch torque variables. 

Muscle size and quality were assessed using a diagnostic ultrasound. Individual isokinetic 

(ISK) and isotonic (ISOT) torque-velocity (T-V) slopes were collected to examine 

differences between younger an older men. After checking for normality, age differences 

in each sequential 50 ms RTD time frames, neural, contractile, and morphological 

variables were examined using either the Welch’s test or ANOVA. Multiple linear 

regressions were used to investigate the determinants of RTD across age and within each 

age group. There were significant reductions in a number of neural, contractile, and 

morphological variables in the older men. Additionally, older men had a significantly less 

negative T-V slopes in the ISK and ISOT conditions. Regression analysis revealed that 

the physiological determinants for each RTD time frame changed throughout the 

contraction across age (RTD0-50, neural & morphological; RTD50-100, neural, contractile & 

morphological; RTD100-150, contractile & morphological; RTD150-200, morphological), in 
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contractile; RTD50-100, contractile; RTD100-150, contractile; RTD150-200, neural & 

contractile). Additionally, Pearson correlation coefficient analysis shows multiple 

relationships between ISK and ISOT slope and physiological variables across age. In 

conclusion, neural, contractile and morphological variables largely accounted for RTD 

across age and within each age group. Further, these data suggest that the determinants of 

RTD are a blend of neural, contractile and morphological variables across age and in 

younger and older men. 
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CHAPTER I 
 

 

INTRODUCTION 

 

1.1 Introduction 

Age is associated with decreases in muscle mass, maximal strength and function, 

commonly known as sarcopenia (Cruz-Jentoft et al. 2010). However, rate of force 

development (RFD) has been shown to decline to a greater extent than max strength 

during the ageing process, and, therefore, has been suggested to be more functionally 

relevant to activities ranging from athletics to those encountered daily in the older 

adult population (Aagaard et al. 2007; Aagaard et al. 2002; Bento et al. 2010; Clark et 

al. 2013; Thompson et al. 2014; Thompson et al. 2013; Tillin et al. 2010). RFD 

analyses typically examine the initial portion of the contraction (i.e. first 200 ms 

following the onset of torque) (Aagaard et al. 2002; Jenkins et al. 2014). However, 

RFD achieved during different sequential time frames within 200 ms of force/torque 

onset (i.e. 0-50, 50-100, 100-150, 150-200) are influenced by different physiological 

characteristics within the neural and muscular systems (Andersen and Aagaard 2006; 

Folland et al. 2014). 
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Neuromuscular activation is an important component of maximum force production. 

The magnitude of force produced is reliant on the number and discharge rate of recruited 

motor units (MUs) (Maffiuletti et al. 2016). A MU, which consists of  

the motor neuron and all fibers innervated by that neuron, is considered the most 

fundamental aspect of force production (Duchateau and Enoka 2011; Piasecki et al. 

2016a). Each MU usually consists of similar muscle fibers that follow a specific 

phenotype (i.e. type I or type II) and are distributed across a muscle in a mosaic fashion 

(Edstrom and Larsson 1987). During contractions that require a high level of force 

production, MU are recruited from smallest to largest to meet the force demanded 

(Desmedt and Godaux 1978; 1977; Fling et al. 2009; Milner-Brown et al. 1973). Larger, 

later recruited MUs are associated with type II muscle fibers, which are more powerful 

and are essential in producing high levels of force (Lexell et al. 1988). 

 These high-threshold MUs are especially important for older adults during 

movements that require rapid force production, such as recovering from a fall (Maffiuletti 

et al. 2016). Similar to maximum force production, RFD is highly dependent on muscle 

activation (Del Balso and Cafarelli 2007; Folland et al. 2014). Specifically, the rate of 

muscle activation has been shown to be highly related to the early portion of RFD (i.e. < 

80ms)(De Ruiter et al. 2004). MU behavior during a rapid contraction is altered leading 

to reduced recruitment thresholds and firing rates to achieve a high level of force quickly 

(Desmedt and Godaux 1978; 1977; Folland et al. 2014; Klass et al. 2008). Older adults 

have been shown to have a slower RFD accompanied by a reduced MU firing rate when 

compared to younger adults (Klass et al. 2008). A reduction in available functional MUs 

has been related to a reduced force production leading to a reduced functional ability in 
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older adults (Doherty et al. 1993; Hunter et al. 2016). MU loss, especially the loss of high 

threshold MUs (i.e. Type II), leads to a restructuring of the remaining, surviving MUs 

(i.e. reinnervation of type II fibers by type I MUs) to compensate for the lost MU in an 

attempt to preserve strength (Campbell et al. 1973; Gilmore et al. 2017; McComas et al. 

1971; Power et al. 2013). This MU restructuring phenomenon is known as the 

remodeling process and has been linked to the age-related reduction in maximal strength 

(Ward et al. 2014). Due to the lower number of functional high threshold MUs, altered 

MU behavior, and atrophy of surviving muscle fibers associated with the aging process 

(Larsson et al. 1979; Lexell et al. 1988; Power et al. 2013), it is reasonable to suggest that 

the remodeling process could be an additional overlooked mechanism for reduced RFD 

observed in older adults. However, there is little evidence to explain how the number of 

available functional MUs influence rapid force production in the older adult population.  

Although muscle activation and available MU may be important determinants of 

strength and RFD, the intrinsic muscular and morphological variables have also been 

suggested to influence RFD (Andersen and Aagaard 2006; Folland et al. 2014). For 

instance, muscle fiber type has been shown to be strongly related to RFD (Andersen and 

Aagaard 2006; Hvid et al. 2010) where, a higher type II muscle fiber area and percentage 

has been associated with improved RFD (Hvid et al. 2010). This may be due to type II 

muscle fiber’s increased Ca2+ handling leading to an increased rate of cross-bridging 

resulting in an improved twitch force per action potential (Baylor and Hollingworth 2003; 

Straight et al. 2018). Additionally, morphological factors such as muscle size, quality and 

architecture may significantly influence RFD (Radaelli et al. 2014). For example, larger, 

better quality muscles with increased pennation angle have been suggested as a 
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mechanism for improved RFD during the later phase of an RFD contraction (Gerstner et 

al. 2017). 

 It has been suggested that neural and contractile components each play a 

crucial role in RFD. However, the investigation of both neural, contractile and 

morphological mechanisms may provide a better understanding of the underlying 

components that ultimately influences RFD in older adults. Previous research has 

suggested that the age-related decrease in RFD is associated with both neural and 

contractile mechanisms (Gerstner et al. 2017; Klass et al. 2008), and the determinants of 

RFD may change as a result of aging. Klass et al. (2008) observed a decreased motor unit 

discharge rate during RFD contractions in the older adults when compared to younger 

counterparts, suggesting the age related decline in RFD could be due to the slowing of the 

contractile properties as well as a reduction of MU discharge rate. Further, McNeil 2005 

found that older adults (i.e. > 80 years old) had a lower estimated motor unit number and 

lower max strength capacities when compared to younger adults. Additionally, previous 

studies have observed age-related changes in muscle morphology and architecture may 

lead to a reduced contractile capacities of the muscle leading to a decreased RFD 

(Aagaard et al. 2007; Gerstner et al. 2017; Roos et al. 1999). For example, Gerstner et al. 

(2017) observed that muscle quality, architecture and muscle activation play a significant 

role in the RFD, especially the later time periods (i.e. > 100ms). 

Although previous studies have investigated the age-related changes in RFD, no 

previous studies have examined the neural, contractile and morphological determinants of 

RFD to this extent. Additionally, the underlying mechanisms of age-related reductions in 

RFD are still unclear, and little evidence is available about how the underlying 
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mechanisms of RFD may change as a result of normal aging. It has been suggested that 

the early and late phases of RFD are determined by different physiological 

characteristics, however, there are some additional physiological characteristics that may 

influence RFD in the older adult population. Therefore, analyzing the neural, contractile 

and morphological determinants of RFD, simultaneously may provide an improved 

insight into age-related effects of RFD and may lead to improved interventions resulting 

in reduced functional ability loss and fall risk. 

1.2 Purpose of the Study 

Although previous research has examined the effects of age on RTD, the mechanisms of 

rate of torque development declines observed in older adults have not been completely 

elucidated. Therefore, the purpose of this investigation was three-fold: 1) to examine the 

effect of age on the neural, contractile and morphological determinants of rapid torque 

production; 2) to investigate how the determinants of RTD may change as a result of the 

aging process; and 3) to examine the effect of age on the torque-velocity curves.  

1.3Research Questions/ Hypotheses 

 This study has the potential to build upon previous information and provide further 

insight into the effects of age on RTD. The following four research questions have the 

potential to be answered by the present investigation.  

• Do the determinants of the rate of torque development change with age? 

o Hypothesis: The determinants of RTD will be different between older and 

younger adults 



6 

 

o Hypothesis: When made relative, neuromuscular function will be associated 

with the reduced RTD in older compared to younger adults. 

o Hypothesis: Evoked peak twitch torque will be lower in older compared to 

younger adults 

o Hypothesis: Evoked RTD will be lower in the old when compared to the 

younger adults 

o Hypothesis: Older adults will produce a lower amount of torque in maximal 

and rapid knee extensions. 

o Hypothesis: M-wave amplitude will be reduced in the older when compared to 

younger adults 

o Hypothesis: Muscle size will be lower in the older adults when compared to 

the younger adults 

o Hypothesis: Muscle quality will be reduced in older adults when compared to 

younger adults 

o Hypothesis: Muscle pennation angle will be greater in the younger adults 

compared to older adults 

• Does the number of functional motor units play a role in the rate of torque 

development? 

o Hypothesis: Older adults will have a lower motor unit number when compared 

to younger adults 

o Hypothesis: CMAP amplitude will be reduced in the older when compared to 

younger adults 
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o Hypothesis: SMUP will be larger in the older adults compared to the younger 

adults. 

• Does the force-velocity curve shift due to age? 

o If so, how does the curve shift and what are the differences between age 

groups? 

o Hypothesis: The force-velocity curves will be sifted to the downward and to 

the left. 

1.4 Significance of the study  

 This study has the potential to enhance our understanding of the effects of age on the 

determinants of RTD. Current literature has focused on investigating age group differences in 

RTD or various training methodologies to improve neuromuscular function in young and 

older adults, without first pin pointing the primary determinants of age related reductions in 

RTD. Previous research into the age related reduction in RTD has examined both neural and 

intrinsic contractile properties, however, to our knowledge, there has been no other study that 

has examined the neural, contractile, and morphological components of RTD in the older 

population this comprehensively. Additionally, no other study has examined how the 

determinants of RTD change due to the aging process. The proposed study could provide 

valuable information that could lead to improved training interventions to reduce the age-

related decline in RTD observed in the older adult population. 

1.5 Delimitations 

1. Approximately 30-40 males will be needed to complete this study 

2. Participants will be between the ages of 18-30 years old or 65 years and older  



8 

 

3. All participants will be healthy and free from any neuromuscular disease (self-

reported) 

4. The participants will perform both voluntary and evoked contractions and movements 

5. Only three of the 4 muscles in the knee extensor muscle group will be collected (i.e. 

vastus lateralis, rectus femoris, vastus medialis) 

1.6 Limitations 

1. Participants will respond to either a posted advertisement, informational 

announcement/email and chose to volunteer on a volunteer basis. Thus, the process of 

subject selection will not be truly random. 

2. Differences in motivation levels between participants may produce varying levels of 

effort during the voluntary contractions. 

3. This study will use a non-invasive method of collecting data, therefore external 

factors may produce an increased variability in the data collected.  

1.7 Assumptions 

1. Participants will provide accurate and honest information when completing the 

health and exercise history questionnaire. 

2. Participants will provide maximal voluntary effort on all voluntary contraction 

assessments 

3. The equipment used to acquire all signals are calibrated and will be functioning 

properly  

4. There will be no errors in the data collection, data analysis, data entry or statistical 

evaluation process 
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5. The samples of younger and older adults will be similar in terms of number and basic 

physical fitness level when compared to age-matched norms 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

The following literature review will include previous research studies that are 

relevant to the purpose of this study. Each study will be summarized and the results of the 

study will be provided along with the interpretations of the authors. The aim of this 

review of the literature is to focus on the age-related changes in the variables assessed in 

the methods section of the proposal. However, a few previous investigations have been 

included to highlight specific mechanisms related to the purpose of this proposed 

dissertation. After each section, there will be a brief summary of the articles.  

2.1. Neuromuscular Determinants of Rate of Torque Development 

2.1.1 Motor Unit Behavior During Rapid or Ballistic Contractions 

Desmedt and Godaux (1977) 

 In this original study, these authors are among the original authors to examine the 

neuromuscular response to a rapid force contraction. This study examined the differences 

in motor unit (MU) behavior in the tibialis anterior during a rapid and a controlled 

contraction in a group of younger males (age: 21 – 29 years old). 
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During rapid force contraction, a burst of MU activity was observed during the rapid 

contraction compared to a more organized recruitment of larger MUs to produce required 

force. Additionally, the authors observed that MU activation thresholds were lower and 

MU firing rates were higher during rapid force contractions. The authors suggest that this 

may be an important mechanism for the development of strength quickly. 

Desmedt and Godaux (1978) 

 A follow up study to the previous study examined the differences in motor unit 

behavior between a ballistic and ramp muscle contractions in different muscles. In 5 

young participants, 117 motor units were collected and examined during voluntary 

ballistic and ramp contractions in three different muscles. Muscles examined were the 

masseter, first dorsal interosseous and soleus in the same participant. Muscles were 

further characterized as fast (masseter and interosseous) and slow (soleus) contractors. In 

accordance with their previous studies, motor unit recruitment order was similar between 

contraction speeds and muscles. However, motor unit recruitment threshold was 

decreased to a greater degree in the fast contracting muscles (i.e. masseter and 

interosseous) compared with the slow contracting muscles. This result suggests that the 

motor unit behavior is muscle dependent, and the force produced by each type of muscle 

(i.e. slow vs fast) may be limited by the motor unit behavior.  

2.1.2 Age-Related Changes in Motor Unit Behavior 

Kamen et al. (1995) 

 This examined the age-related changes in maximal motor nueron activation is a 

potential limiting factor in the production of maximal strength contractions. Motor unit 
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data was collected from the first dorsal interosseous using a fine wire needle electrode. 

Results from the study showed that older adults produced a significantly lower discharge 

rate of approximately 20 impulses/s when compared to younger adults (p < 0.05) during 

maximal effort contractions. Additionally, force production was 19% lower in the older 

when compared to the younger adults (p < 0.01). The authors suggested that a reduced 

muscle activation observed in the older adults may be a significant mechanism for 

reduced maximum strength. 

Van Cutsem et al. (1998)  

 This study examined the effects of a three month dynamic training program on the 

neuromuscular adaptations in the tibialis anterior muscle when performing rapid force 

production contractions. Three females and 2 males (age: 18-22 years) performed 

engaged in a 12 week ballistic training intervention, consisting of five sessions per week 

performing ten sets of ten ballistic dorsiflexions with 30-40% of one repetition 

maximum. During the pre and post analysis, participants were required to complete two - 

three maximal voluntary isometric ramp and twenty –thirty voluntary ballistic 

contractions (performed as fast as possible). During each contraction, single motor units 

were collected and identified using the spike triggered averaging method and their 

recruitment threshold and discharge rates were recorded pre- and post-training. Similar to 

previous research, the motor unit recruitment order was not significantly different 

between ramp and ballistic muscle actions. However, the motor unit activation threshold 

was lower and firing rates were higher during rapid force contractions. Following the 

dynamic training protocol, participants produced an increased torque when compared to 

prior to the intervention, however there was no difference in muscular twitch force. The 
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authors also observed an increased motor unit firing rate of additionally recruited motor 

units, suggesting that following a ballistic training program, neural characteristics are 

likely the cause of the increased the speed of force production.  

Connelly et al. (1999) 

 The purpose of this study was to investigate the age-related changes in motor unit 

behavior in the tibialis anterior muscle in young and older adults. Contractile 

characteristics were examined by maximal voluntary contractions (MVC), interpolated 

twitch, and evoked twitch contractions. Motor unit behavior was analyzed from 

intramuscular EMG of the right tibialis anterior muscle. The older adults produced a 

significantly lower MVC torque compared to the younger adults (p < 0.01). There was no 

statistical difference between voluntary activation between the age groups. The older 

adults possessed a greater time to peak tension, lower half relaxion rate and a longer 

contraction duration when compared to younger adults. Motor unit firing rates in the 

older adults were shown to be significantly lower at each of the contraction levels (i.e. 10, 

25, 50, 75 and 100% intensity) when compared to the younger adults. The lower firing 

rates observed in the older adults could be due to the reduction of higher threshold motor 

units that may be due to the remodeling process. Additionally, the reduction in motor unit 

firing rates are observed to be related to the reduction in muscle strength and slower 

contractile properties of the muscle. The authors suggest that this could be related to the 

remodeling of the neuromuscular system observed in the older adults. 
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Scaglioni et al. (2003) 

 The primary aim of the study was to examine the effects of age on the electrical 

and mechanical properties of the motor units activated by the H-reflex and the correlated 

motor response. The study was done on the tibialis anterior. The peak-to-peak amplitude 

and duration (peak-to-peak time) of the soleus Maximal H-reflex (Hmax) and maximal 

M-wave (Mmax) were collected for each participant. Hmax was normalized to Mmax to 

examine the propotion of motor units activated by the Ia afferents and minimize the 

influences of other peripheral factors. H wave latency was examined as well. Twitch 

torque associated with Hmax and Mmax variables included: Peak torque (Pt), highest 

tension related to Hmax (Pth), Compound action potential at Mmax (Ptm). Twitch forces 

at Mmax were twitch contraction time (CT), time to maximal twitch tension, twitch half 

relaxation time (HRT), time to recover half of maximal twitch tension and mean rate of 

twitch tension development (Pt/CT). Results show that Mmax was lower (p < 0.001), 

peak-to-peak duration was longer (p < 0.01) in the older compared to the younger adults. 

The peak twitch amplitude elicited from Mmax was lower in the older than the younger 

adults. When CT and peak twitch torque were combined, they accounted for the lower 

Pt/CT observed in the older adults. Hmax amplitude was significantly reduced in the 

older compared with the younger adults. The H wave latency was significantly longer in 

the older compared to the younger adults. The MatHmax was significantly higher in the 

older compared to the younger adults. The slope of the regression analysis showed that 

the older adults had a significantly higher mechanical response to electrical stimulation 

compared to the younger adults. Peak twitch was lower in the older compared to the 

younger. Pth-m (i.e. an index of mechanical contributions of MatHmax to Pth). There is 
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an increased mechanical influence of MatHmax during the aging process. The authors 

suggested that the reflex response was mainly attributable to the muscle phenotype in the 

young and neural age-related changes in the older adults. The authors continue to suggest 

that the increased reflex ratio observed in the older adults may suggest motor unit 

remodeling. Further, the reduction in the reflex mechanical efficiency and neural 

excitability decline observed in the older adults could lead to a reduced functional ability. 

Kamen and Knight (2004) 

 The purpose of this study was to examine the age-related changes in motor unit 

discharge rate during and following a resistance training protocol in younger and older 

adults. Results of the study describe a 28% reduction in maximal isometric knee extensor 

force production in younger and older adults. During the resistance training protocol, 

muscle force was improved as early as the second testing session in both the young and 

the older adults. Motor unit discharge rates were observed to improve in association with 

increased muscular force. Vastus lateralis motor unit discharge rates were significantly 

lower during submaximal (i.e. 50%) (p = 0.02) and maximal (i.e. 100%) (p = 0.005) in 

the older adults when compared to the younger adults. Motor unit discharge rate was 

improved following the first week of the training intervention, although not statistically 

significant. However, an increased motor unit discharge rate was increased at 100% 

MVC (p = 0.04) when all four sessions were pooled. From these data, the authors 

suggested that the increase in muscle strength in the beginning phase of the training 

intervention relied heavily on the increase in maximal motor unit discharge rate.   
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Klass et al. (2008) 

This study sought to examine the relationship between rate of torque development 

and motor unit firing rates in the young and the older adults during submaximal rapid 

force contractions of the dorsiflexors. Statistical analysis revealed that older adults had a 

26% (p < 0.01) reduction in time to peak torque when performing rapid contractions. This 

decrease in time to peak torque was accompanied by a 48% (p < 0.01) reduction in 

absolute rate of torque development and 33% (p < 0.01) reduction in relative peak rate of 

torque production. Muscle activation was closer to maximal during the rapid torque 

contraction in the older (p < 0.05). Older adults possessed a reduced twitch force and a 

reduction in maximal rate of torque production. Motor unit discharge frequencies were 

faster in both groups compared to maximal torque contractions, however, older adults 

motor unit discharge frequency was lower than the younger adults (p < 0.05). 

Additionally, recruitment threshold assessed during ramp contractions were significantly 

reduced in the older adults compared to the younger adults (p < 0.001). The authors 

suggest that the motor unit behavior (i.e. motor unit discharge rate) and contractile speed 

characteristics may be an important limiting factor in rate of torque development 

contractions.   

Ling et al. (2009) 

 The purpose of this study was to examine the effect of age on motor unit 

characteristics (i.e. motor unit behavior). Motor unit size and firing rate was determined 

during submaximal knee extension at 10%, 20%, 30% and 50% of the max strength 

value. Statistical analysis revealed that maximal strength was lower in the older adults (p 
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< 0.0001). Additionally, there was a significant difference in motor unit size and firing 

rate starting at approximately 60 years of age. Further, the older adults that were ≥ 75 

years old possessed greater single motor unit action potential area in the younger adults 

compared to the younger adults. The older adults possessed a increased firing rates during 

all contraction levels compared to the younger adults. The authors suggest that the older 

adults have an altered motor unit activation method allowing them to produce the same 

level of force as their younger counterparts.  

Fling et al. (2009) 

 The purpose of the study was to examine the relationship between motor unit size 

and recruitment threshold during isometric contractions between younger and older 

adults. Motor unit behavior was examined through needle and global EMG recordings 

during the isometric contractions. Isometric contractions were performed in the tibialis 

anterior and the first dorsal interosseous. The isometric contractions were performed in a 

gradual ramp-like manner up to 50% of maximum voluntary contraction strength. 

Interestingly, maximal force production was not significantly different between the 

young and the older adults. Macro EMG amplitude was significantly larger in the older 

compared to the younger adults. Specifically, motor units recruited up to 30% of 

maximum strength were significantly larger than those recruited by the younger adults to 

the same intensity. Additionally, the relationship between motor unit size and recruitment 

threshold was similar between the young and older adults. The larger EMG amplitudes 

observed in the older adults indicate that the older adults are undergoing the process of 

remodeling. Although the motor unit size may be enlarged due to the remodeling process 
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in the older population, the recruitment order of smaller to larger motor units associated 

with increased force production seems to still be intact. 

Dalton et al. (2010) 

 The purpose of this study was to examine the age-related changes in motor unit 

behavior in the upper arm muscles in young and older adults. Contractile properties in the 

muscles were examined by administering evoked twitches. Additionally, voluntary 

strength (MVC) was assessed in both the elbow flexors and extensors. Additionally, 

maximal voluntary activation was assessed through the interpolated twitch technique. 

Motor unit behavior was examined by needle electrodes inserted into each of the muscles 

of interest. MVC in both the flexor and extensor muscle groups were significantly lower 

in the older compared to the younger adults. Additionally, motor unit firing rates were 

significantly lower in the old than in the young throughout the contraction. The authors 

suggest that age significantly affected the motor unit firing rates in the older adults. This 

reduction in motor unit firing rates are not related to contractile speeds, suggesting that 

the reduction in MVC could be due to the reduced firing rates observed in the older 

population.  

Kallio et al. (2010)  

The purpose of this study was to investigate the age-related changes in H-reflex 

excitability and motor unit behaviors in younger and older adults. Intramuscular EMG 

was examined during isometric, concentric, and eccentric muscle actions. H-reflex 

excitability was examined by determining the H/M-wave ratio. Maximal muscle strength 

was also investigated. Results of the study show that there was a 12.3% reduction in 
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muscle strength in the old compared to the young. Older adults produced lower absolute 

and relative torque in all muscle actions (i.e. eccentric, concentric, isometric). Motor unit 

firing frequency was higher in the young than in the old. Additionally, H-reflex 

amplitude was higher in the young when compared to the old. Although the answer could 

not be derived from the data collected, the authors speculated that the reduction in the H-

reflex amplitude could be due to the increased inhibition in the older adults. The different 

motor unit behavior observed in the different contractions could be due to a different 

activation strategy adopted by the older adults to attain force requirements. 

Hourigan et al. (2015) 

 The purpose of this study was to investigate the neuromuscular transmission 

stability in younger and older adults. Motor unit behavior was evaluated using the 

decomposition based quantitative electromyography method. The muscles tested were the 

tibialis anterior and the vastus lateralis. The motor unit transmission stability was 

investigated by near fiber analysis of jiggle. Jiggle assesses the motor unit potential shape 

variability. Additionally, compound muscle action potential was assessed through 

electrically evoked contractions. The results of the study show that there was a significant 

increase in the near fiber jiggle (i.e. motor unit potential variability) in the tibialis anterior 

and the vastus medialis. There was a significant correlation between age and near fiber 

jiggle in both the tibialis anterior (r = 0.68) and the vastus medialis (r = 0.58). Further, 

there was a negative relationship between near fiber jiggle and motor unit number 

estimation, and a positive relationship with single motor unit action potential amplitude, 

motor unit potential duration, motor unit peak-to-peak voltage, and motor unit potential 

area. The authors suggest that the increased motor unit jiggle was due to the loss of motor 
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units and consequential remodeling process. The authors suggest that these data present 

evidence that near fiber jiggle could be an important measure to assess the progression of 

the remodeling process.  

Watanabe et al. (2016)  

The purpose of this study was to examine the effects of age on motor unit firing 

rates in the older adult’s vastus lateralis during a moderate to low force production levels. 

Motor unit behavior was examined using a multichannel grid and further decomposed to 

examine individual motor unit firing rates non-invasively. Motor unit firing rates in the 

older adults were significantly lower during submaximal isometric contraction compared 

to the younger adults. Maximum strength was significantly related to the motor units 

recruited at lower levels (i.e. < 20% of MVC) in the older adults (r = 0.884, p < 0.0001). 

The authors suggest that age significantly effects the motor unit firing rates at 

submaximal levels of force production.   

Piasecki et al. (2016)  

Refer to section 2.1.4 Age-Related Changes in Motor Unit Number 

2.1.3 Age-related Changes in Voluntary Muscle Activation 

Hakkinen et al. (1995) 

 The main objective of this study was to examine the influence of age on voluntary 

and electrically evoked muscle force production. The study consisted of 3 groups of men: 

young men (mean age: 29 years old), middle-age (mean age: 49.6 years old) and older 

(mean age: 67.2 years old. Unilateral and bilateral maximal voluntary strength and 



21 

 

strength development was examined in the knee extensors. Rate of force development 

was examined in consecutive 100 ms time window from the beginning of force 

production to 500 ms following onset. Additionally, relative rate of rise of force 

production was examined at 30, 60 and 90% of maximal force. Relaxation time was 

determined from the time it took to relax from an 85% contraction to 10% contraction. 

Muscle activation was examined from the vastus medialis, rectus femoris and the vastus 

medialis. EMG during max force and every 100 ms from onset of contraction to 500 ms 

were collected and analyzed. Maximum uni- and bilateral twitch force was determined 

and maximal muscle activation was collected during an evoked contraction at the top of a 

maximal contraction. Younger adults possessed a significantly higher uni- and bilateral 

maximal force production compared to the older adults. EMG from the three quadricep 

muscles were not significantly different between groups for the maximal voluntary uni- 

and bilateral knee extension. The rate of force development was significantly greater in 

the young compared to the middle and older age adults. Further, middle aged adults 

produced a greater rate of force development than the older aged group. The rate of 

relaxation was greater in the young compared to the middle and older adults following 

both uni- and bilateral knee extension. Additionally, the time to relative force were lower 

in the young than the middle-age, and were both shorter than the older adults. Twitch 

forces elicited in the young were greater than those for the middle and older age groups. 

However, middle and older age groups were not significantly different. Muscle activation 

was greater in the younger compared the to the older adults in the unilateral plus evoked 

contraction. The authors suggest that age significantly influences the maximal voluntary 

and evoked force, rate of force development and relaxation ability. The authors attribute 
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the reduction in muscle performance to reduced peripheral muscle function and neural 

activation as a result of the aging process.  

Hakkinen et al. (1996) 

 Refer to section 2.2.2 Age-Related Changes in Skeletal Muscle Size, Quality and 

Architecture 

Doherty and Brown (1997) 

 The purpose of this study was to investigate the age-related effects on contractile 

and muscle activation properties of the thenar motor units. Results of the study showed 

that older adult’s motor units produced a smaller twitch force compared to the younger 

adults. When the single motor unit action potential size was normalized to the max M-

wave, older adults possessed significantly larger single motor units when compared to 

younger adults (P < 0.05). Further, the authors found a significant increase in twitch 

contraction time (p < 0.01) and half relaxation time (p < 0.01). The authors suggested that 

the elongated duration of the twitch indicated that this was an adaptation to achieve a 

high level of force with a diminished motor unit firing rate. Additionally, the authors 

suggest that the increased motor unit twitch force and slower motor unit contraction 

speed is an adaptation to the reduced motor unit numbers commonly observed in older 

adults.  

Hakkinen et al. (1998) 

The purpose of this study was to investigate the age related changes in muscle, 

maximal and explosive force production in the leg extensors between middle and older 
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adult men and women. During maximal power movement (jumping with 50% 1RM 

weight), older adults (i.e. average age: 67 – 70) possessed a lower muscle activation 

when compared to the middle aged adults. Muscle size was greater in the middle age than 

the older adults. When compared together, the middle aged adults has a significantly 

better uni- and bilateral isometric knee extension production compared to the older 

adults. Muscle size of the quadricep femoris was significantly correlated with muscle 

strength in the men, but not the women. Together, the specific force (force per unit of 

muscle mass) was greater in the young compared to the correlated older counterparts. 

Further, maximal rate of force development (i.e. within the first 500 ms) was significantly 

greater in the younger adults compared to their respective older counterparts. Maximal 

strength and rate of force development was significantly related in the older group. 

Additionally, older adults had a lower muscle activation compared to the middle aged 

adults when performing an isometric knee extension. During the maximal jumping 

movements, the younger adults had significantly greater muscle activation in the first 500 

ms of the movement compared to the older adults. The authors suggested that older adults 

experience a reduced neural input to the muscles and reduced muscle size that could lead 

to the decrease in muscle function, reduced strength and power production capacity.  

Izquierdo et al. (1999) 

 The purpose of this study was to investigate the age-related differences of 

maximal strength, isometric-time curves, and force-velocity curves during a concentric 

and stretch shortening cycle movement in the upper and lower body in middle and older 

aged adults. Statistical analysis revealed that the younger group produced significantly 

more force than the middle and older groups, with the middle aged group producing 
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significantly more force than the older group. Maximal force and the amount of force 

produced during the first 500 ms were greater in the young than the old and middle and 

older groups. Jump performance was better in the young compared to the middle and 

both the young and middle age groups performed better than the old group. There was a 

high antagonist muscle activation during isometric knee extension in the older compared 

to the younger adults. When the middle and older groups were combined, rate of force 

development was significantly related to max strength. The older adult group had 

significantly worse balance scores than the younger adults and RFD capabilities were 

significantly related to balance ability. The authors suggest that explosive force declines 

at a faster rate than maximal force production capabilities. Additionally, the authors 

suggest that the age-related reduction in RFD could be due to reduced neuromuscular 

activity that can lead to declines in balance performance.  

Aagaard et al. (2002) 

 This study sought to examine the effect of resistance training on contractile and 

neural mechanisms for rate of torque development. Fifteen young men participated in a 

heavy-resistance training protocol consisting of 38 sessions lasting a total of 4 weeks. 

Contractile and neural physiological mechanisms were analyzed during 0-30, 0-50, 0-

100, and 0-200 time frames were assessed pre- and post-training protocol. The authors 

observed an increased isometric muscle strength (p < 0.001) and the rate of torque 

development (p < 0.01-0.05) following the training protocol. Contractile rate of force 

development increased by 17-26% after the resistance training program. Specifically, 

contractile rate of force development was increased in the early (i.e. 0-50 ms) and later 

time frame (i.e. 0-100) by 23-36% and 17-20%, respectively. Rate of force development 



25 

 

and muscle activation amplitude are suggested to be linked, therefore, a rise in rate of 

force development is associated with a parallel increase in muscle activation, especially 

at the initial portion of a rapid force contraction. Additionally, rate of muscle activation 

(p < 0.01 – 0.001) was significantly increased during the initial portion of the rapid 

contractions (i.e. 0-100). The authors further suggested that the increased muscle 

activation variables may be responsible for the increases in rate of force production in the 

initial portion of the rate of force contraction (i.e. 0-50).  

Scaglioni et al. (2003)  

Refer to section 2.1.1 Motor Unit Behavior During rapid or Ballistic 

Contractions 

De Ruiter et al. (2004) 

 This study sought to examine the ability to produce torque and muscle activation 

at three different knee angles during fast voluntary isometric knee extension. Participants 

were characterized as individuals who possessed a voluntary activation of 90% or higher 

were included in the study. Each participant performed rapid voluntary knee extensions at 

three different knee angles (i.e. 30, 60 and 90 degrees). Additionally, evoked contractions 

were administered at the same knee angles to examine the contractile influence on rapid 

torque production. Evoked and voluntary knee extensions were not significantly different 

at each knee angles (p = 0.86). However, the time to peak rate or torque development was 

significantly longer in the voluntary condition compared to the evoked condition with in 

the first 40 ms. The authors also observed that surface EMG was positively related torque 
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production (r2 = 0.76) when compared to the evoked condition, suggesting that the initial 

portion of the rate of torque development is highly dependent on muscle activation.  

Barry et al. (2005) 

 The purpose of this study was to examine the age-related changes in 

electromyographic activity during the initial phase of a rapid force development 

contraction and adaptations following a progressive resistance training intervention. Rate 

of torque development (RTD) was calculated in time windows of 0-30, 0-50, 0-100 and 

0-200 ms after torque onset and peak RTD was calculated as the highest mean torque 

developed during the full 200 ms time window. Additionally, rate of electromyography 

rise (RER) was calculated during 0-30, 0-50 and 0-75 ms following EMG onset. The root 

mean square (RMS) was calculated in time windows of 0-30, 0-50 and 0-100 ms relative 

to EMG onset. Additionally, the older adults produced a lower rate of EMG rise 

compared to the younger adults. Older adults produced a 23.2% lower MVC (p = 0.205) 

and a 51.2% reduction in peak RTD and RTD during each time window (p < 0.01). 

Following the resistance training protocol, older adults improved their RTD during the 

200 ms time window (p < 0.01). There was a significant EMG RMS increase in the 0-50, 

0-100 window for the older adults (p < 0.05-0.01). The increased RER produced by the 

older adults following the training protocol was significant for all time frames (p < 0.01). 

However, the degree of improvement of the older adults was not as great as the younger 

adults. The authors suggest that there may be an age-related reduction in the 

neuromuscular performance that leads to the reduced magnitude of improvement of the 

EMG variables following the resistance training program. 



27 

 

Van Cutsem and Duchateau (2005) 

 In this investigation, the authors investigated the influence of prior muscle activity 

on ballistic contraction performance. Seven young participants (Age: 22-44; male: 6; 

female: 1) performed three maximal voluntary contractions (MVC) using the dorsiflexors 

and plantarflexors. Motor unit’s recruitment threshold and firing rates were identified and 

recorded during ramp MVC and rapid MVC. Results of the study discovered that prior 

muscle activity reduces the rate of torque development (p < 0.001) when compared to 

starting the contraction from rest. When a ballistic contraction was performed from rest, 

motor unit firing rates were elevated when compared to the contraction performed from 

pre-activation (p < 0.05 – 0.001). Additionally, the authors observed that the higher 

threshold motor units were not recruited during the preactivation condition, suggesting 

that preactivation effect the total motor unit pool. The authors indicated that the muscle 

activation prior to the ballistic contraction can greatly influence the rate of torque 

development and the motor unit discharge rate.  

Del Balso and Cafarelli (2007) 

 This study sought to examine the changes in muscle activation following a short-

term exercise training. Twenty healthy young sedentary adults volunteered and were split 

into a control and training group. The training group participated in a 4 week isometric 

training protocol of the plantar flexor muscles. The authors examined motor unit 

excitability and maximal muscle activation during low submaximal contractions (10% of 

MVC). Following the 4 week training protocol, MVC was increased along with an 

increase in RTD. However, due to the short duration of the training protocol, there was 
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no training induced muscular hypertrophy. The elicited an increase in MVC and RTD 

was accompanied with an increase in muscle activation and rate of muscle activation (p < 

0.001). Further, the authors observed a 49% increases in rate of muscle activation and 

60% muscle activation was evident within the first three days (p < 0.002). The authors 

suggest that the voluntary RTD performance were dependent on the rate at which the 

muscle was activated at the beginning of the rapid contraction. Further, motor unit 

behavior (i.e. recruitment threshold and firing rate) may be responsible for the increased 

rapid force production as opposed to contractile hypertrophy.   

de Ruiter et al. (2007) 

 The authors sought to investigate how much contractile and muscle activation of 

the knee extensors influence the rate of isometric knee extension and maximal jumping 

performance. Eleven male volleyball players (age: 20 ± 2 years) volunteered to 

participate in this study. Muscle activation and rate of torque development during the first 

40 ms and maximal rate of torque development were examined at a knee angle of 120º. 

Additionally, squat jumps and countermovement jump performance at a knee angle of 

approximately 120º was determined. Results showed that voluntary initial torque was 

highly dependent on muscle activation (r2 = 0.83). Additionally, the electrically evoked 

contractions were not significantly related to the early portion of the rate of torque 

development contraction (i.e. 40 ms). The authors suggested that the neural activation of 

the muscle groups was such a strong determinant of early rate of force development that 

contractile determinants may be less significant in the early phase of the rate of force 

development contraction.  
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Cannon et al. (2007) 

 The purpose of this study was to examine the age-related changes in muscle 

strength, hypertrophy, voluntary activation and muscle activation between younger and 

older women. Additionally, the authors examined the lean tissue cross-sectional area 

(LCSA) and lean tissue volume (LMV) prior to and following the resistance training 

protocol. Prior to the resistance training protocol, maximal muscle strength was higher in 

the young compared to the older adults (p < 0.05). Following the resistance training 

protocol, muscle strength improved in both the young and older adults, while the 

magnitude of difference was not significantly different. Voluntary activation was not 

significantly different prior to the training protocol, however following the training 

intervention, voluntary activation improved in both age groups but did not reach 

statistical significance. Following the training protocol, muscle activation was 

significantly higher but not different between age-groups. The authors suggest that 

regular physical activity may decrease the rate of neuromuscular age-related decline 

usually observed in the older populations. The authors further suggested that the 

improvements in muscle activation were located peripherally because of the increase in 

muscle activation but no change in voluntary activation following the resistance training 

program.  

Klass et al. (2008) 

 Refer to section 2.1.1 Motor Unit Behavior During Rapid or Ballistic 

Contractions 
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Clark and Taylor (2011)  

The purpose of this study was to examine the age-related effects on 

neuromuscular activation and muscle performance in middle, older, and older mobility 

limited (OML) adults. Results showed that the older adults produced significantly less 

power (-23%) during a 70% leg press than the middle aged adults, and the OML 

performed worse than the middle and older age groups. OML adults produced a 

significant lower amount of rate of EMG rise when compared to the middle and older age 

adults. There was no significant difference between the middle age and older adults. 

Further statistical analysis revealed that rate of EMG rise was significantly related to leg 

press acceleration (r = 0.80, p < 0.0001), power (r = 0.73, p < 0.0001) and functional 

ability tests in the middle and older adults (p = 0.02). The authors suggest that the muscle 

activation rate was related to muscle function and functional ability in older adults. 

Additionally, the age-related slowing of muscle activation rate could be an indicator of 

future functional ability declines.  

Clark et al. (2013) 

 This study’s purpose was to examine the age-related changes in neuromuscular 

activation and the effects of these age-related changes in neuromuscular activation on the 

muscle strength, power and functional ability in older adults. Results following the 

second visit (i.e. 2.5 years later) displayed a 28% decreased in rate of EMG rise (p < 

0.004) and a 16.5% lower leg press power (p < 0.01). Additionally, the reduced rate of 

EMG rise was strongly related to the loss of power accounting for 61% of the variance (p 

< 0.001). Muscle size was reduced (p < 0.05) at the follow up visit. The authors also 
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found that there was a 9% reduction in neuromuscular activation, measured by rate of 

EMG rise, per year. The authors suggested that the reduction in motor unit behavior may 

be the factor leading to the reduced EMG rise observed in this study. Additionally, the 

authors suggested that the reduction in rate of EMG rise may be an important mechanism 

for the reduction in muscle power associated with aging.  

Jenkins et al. (2014) 

 The purpose of this study was to examine the age-related differences in rate of 

torque development and rise in muscle activation in younger and older adults. 

Additionally, the authors examined if the age-related differences were still present after 

normalizing to maximum torque produced during a maximal RTD contraction and rate of 

EMG rise was normalized to maximal M-wave amplitude. Voluntary rate of torque 

development and rate of EMG rise were calculated at similar increments during the rapid 

torque contraction (i.e. 0-30, 0-50, 0-100 and 0-200 ms after torque and EMG onset). 

Additionally, evoked RTD was examined at similar time frames (i.e. 0-30, 0-50, 0-100 

ms after torque onsets). Normalized RTD was determined by the proportion of peak 

torque and peak evoked twitch torque, then examined at 10%, 20%, 30%, 40%, and 50% 

of peak voluntary torque and evoked contractions. Normalized rate of EMG rise was 

determined by expressing the evoked EMG signal as a proportion of the maximal M-

wave. Statistical analysis revealed that absolute values for RTD were significantly lower 

in the older adults in peak RTD and all RTD time frames (p < 0.001 – 0.037). 

Additionally, absolute rate or EMG rise, M-wave amplitude, evoked rate of EMG rise, 

and normalized EMG rise was lower in the older adults compared to the younger adults 

(p ≤ 0.05). However, when normalized to max strength and EMG, the age differences in 
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RTD and EMG rise disappeared. The authors suggested that the elimination of age-

related differences in RTD and rate of EMG rise following normalization suggests that 

the reductions in RTD and rate of EMG rise were due to a decrease in muscle strength 

and M-wave amplitude.  

Thompson et al. (2014) 

 The purpose of this study was to examine the age-related effects on rate of muscle 

activation, maximal and rapid strength characteristics of the plantar flexors in young, 

middle, and older men. Results from the study show that the older adults had a 

significantly reduced peak force (p < 0.001) and rate of force development (0 < 0.028) 

compared to the other, younger groups. Further, the older adults performed worse on the 

rate of force development variables compared to the younger groups. However, there was 

no significant reduction in the normalized rate of EMG activation between the groups, in 

fact, the middle aged men possessed a greater normalized rate of EMG activation than the 

younger and the older groups. Relative RFD was significantly reduced in the older 

compared to the younger adults. The authors suggest that the lower relative RFD and the 

non-significant differences in rate of EMG rise between young and older adults suggest 

that the older adults were suffering from a reduction in type II muscle fiber. The authors 

also suggested that there may be an age related change in muscle morphology, 

architecture or quality leading to the reductions in relative RFD. 

Wu et al. (2016) 

 The primary purpose of this study was to investigate the age-related changes in 

neuromuscular and mechanical characteristics factors in the knee extensor and flexor 
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muscle groups. Statistical analysis revealed that the older adults produced significantly 

reduced maximal voluntary muscle force compared with the older adults. Additionally, 

there was a significant age-related reduction in rate of torque development (60%, p < 

0.01). Muscle thickness was significantly greater in the young than in the older adults, 

however there was no significant differences between fascicle length between the young 

and older adults. Neuromuscular activation was significantly lower in the old when 

compared to the younger adults (p < 0.05). Additionally, older adults had a lower median 

frequency compared to the younger adults. The authors suggested that muscle activation 

and muscle architecture may be important mechanisms for age related RTD and 

maximum muscle strength observed in older adults.  

Gerstner et al. (2017a) 

 The purpose of this study was to examine the age-related differences in rate of 

torque development (RTD) during an early (i.e. 0-50ms) and late (i.e. 100-200ms) time 

intervals from torque onset. Additionally, the authors sought to examine the contributions 

of neural and contractile mechanisms that may influence the RTD during the two 

different time windows in older and younger adults. Specifically, ultrasonography was 

used to assess muscle fascicle length (FL), pennation angle (PA), muscle size (mCSA) 

and muscle quality (EI; echo intensity). Additionally, absolute and normalized RTD and 

muscle activation during sequential 50ms time windows (i.e. 0-50, 50-100, 100-150 and 

150-200) after onset of torque. Results showed that older adults were able to produce a 

lower amount of torque at peak (p < 0.05), 100 ms (p< 0.05) and 200 (p < 0.05) after 

onset. Additionally, EI (p < 0.05) was lower and PA was higher (P < 0.05) in the old 

compared to the younger adults. Further, older adults had a lower EMG value during the 
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100-150ms (P < 0.05) and 150-200ms (p < 0.05) windows. There were significant 

relationships between normalized RTD 100-200 and EI, EMG 100-150 and EMG 150-

200. However, there were no significant relationships between the normalized RTD 100-

200 and PA and FL. The authors suggest that the age-related reductions observed in the 

older adults could be a important mechanism for the reduction in RTD seen through the 

aging process. Additionally, this study provides additional evidence that the neural and 

muscular systems that are subject to decline during the aging process can influence RTD. 

2.1.4 Age-Related Changes in Motor Unit Number 

Campbell et al. (1973) 

 The purpose of this study was to investigate the age-related changes in motor unit 

number estimates. In this study, M-wave amplitude and peak twitch torques were 

examined. The older adults possessed an increased motor unit size and a lower number of 

functioning motor units. The authors suggest that the findings show that advancing age 

increases the reduction of functional motor units. These changes in motor unit behavior 

and number indicate that older adults undergo a process of motor unit remodeling to 

compensate for the age-related reduction in functional motor units. This compensatory 

process attempts to maintain muscle function throughout life.   

Doherty et al. (1993) 

 The main objective of this study was to examine the age-related effects of motor 

unit decline and muscle strength in younger and older adults. Using the spike triggered 

averaging method, the authors observed a 47 % decline in motor units in the older 

compared to younger adults (p < 0.001). Additionally, the older adults possessed a greater 
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single motor unit amplitude compared to the younger counterparts (p < 0.01). Further, 

older adults possessed significantly lower muscle strength compared to younger adults (p 

< 0.05 – 0.001). The authors suggested that the decreased motor unit number may be a 

primary mechanism for the reduction in muscle strength observed in the older adults.  

McNeil et al. (2005)  

This study’s purpose was to examine the age-related differences in motor unit 

number estimation and muscle strength in young, old and very old men. Statistical 

analysis observed a decrease in maximal voluntary peak torque (p < 0.05), time to peak 

torque (p < 0.05) and motor unit firing rate in the old and very old men. Additionally, 

older adults produced a greater muscle activation at a lower contraction intensity when 

compared to younger adults (p < 0.05). Further, there was a decline in motor unit number 

in the older and very old adults compared to their younger counter parts. The authors 

suggested that the reduced motor unit number could be a mechanism for the increased 

weakness and functional decline observed in the very old adults. 

Power et al. (2010)  

The purpose of this study was to investigate the motor unit numbers in healthy, 

active older adults with age-matched non-active older and recreationally active younger 

adults. Motor unit number was estimated through the spike-triggered averaging method in 

each group. The active older adults produced 25% lower isometric dorsiflexion torque 

than the age-matched and younger active adults (p < 0.003, ES = 0.482). Voluntary 

activation, assessed through the interpolated twitch method, showed that all participants 

were able to activate the muscle to 99% or above. Evoked twitch torque was 23% lower 
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(p < 0.010, ES = 0.348) than the young adults. Additionally, a larger single motor unit 

potential was observed in the age-matched old compared to the younger adults (p < 

0.021, ES = 0.539). Active older adults possessed a greater motor unit number compared 

to the age-matched older (p = 0.050, ES = 0.256) and the age-matched old possessed a 

smaller motor unit number than the younger active younger adults (p < 0.009, ES = 

0.497). The authors suggested that the despite the lower twitch force observed in the 

active old group, chronic physical activity may be able to reduce the age-related decline 

in functional motor unit loss. 

Kaya et al. (2013)  

The purpose of this study was to examine the age-related differences in motor unit 

number would effect the maximal strength production. The authors used the MUNIX 

method to examine the motor unit number estimation in younger and older adults. Results 

of the study found that the older adults possessed a lower motor unit number and a lower 

muscle strength. The authors suggested that the age-related reduction in muscle strength 

may be due to a reduced number of motor units.  

Mau-Moeller et al. (2013)  

The purpose of the study was to examine the underlying neural mechanisms of 

strength and rate of strength development in the quadriceps during the aging process. 

Rate of torque development was assessed in sequential 50 ms time frames from onset to 

200 ms after onset of torque production. Voluntary activation was assessed through the 

interpolated twitch technique examining the electromyography and maximal M-wave of 

the quadriceps. Additionally, H-reflex was assessed to examine the motor neuron 
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excitability via the Ia afferents. Muscle twitch force was used to examine the contractile 

components of the muscle. Results of the study discovered an age-related reduction in 

muscle strength, voluntary activation and normalized EMG amplitude. The reduction in 

muscle activation during the initial (i.e. 50 - 100ms), middle (i.e. 100-150ms) and late 

(i.e. 150 – 200ms) in the elderly was correlated with the reduction in RTD. However, the 

older adults produced a greater muscle activation in the middle (i.e. 100-150ms) and later 

(150-200ms) phases of the RTD when compared to the younger group. Additionally, the 

M-wave latency was longer in the older compared to the younger adults. The resting 

twitch responses were significantly lower in the older compared to the younger adults. 

The authors suggested that the reductions in RTD observed in the older adults might be 

due to the interplay between the neural and muscular systems. Age-related changes in the 

neural determinants may be more relevant to rapid torque development.  

McKinnon et al. (2015)  

This study sought to investigate the effect of age on motor unit properties and 

muscle strength and power in younger and older adults. The motor unit number analysis 

used in this study was decomposition-based quantitative electromyography. Similar to 

previous research motor unit number was lower (p < 0.05) and single motor unit action 

potentials (p < 0.05) were larger in the older compared to younger adults. Older adults 

produced a reduced maximum isometric strength (p < 0.05) and muscle power (p < 0.05) 

compared to younger adults. The authors suggest that the reductions in muscle strength 

and power may not be solely due to muscle atrophy but may be due to the complex 

process of the remodeling process.  
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Piasecki et al. (2016) 

 This study examined the age-related effects on motor unit number and 

organization in younger and older adults. The older adults possessed a smaller vastus 

lateralis (VL) and a reduction in maximal strength. Additionally, the older adults 

possessed a significantly larger single motor unit potential and lower number of motor 

units compared to the younger adults. Further, there was a significant lower muscle fiber 

count in the older adult compared to the younger adults. There was an increased 

variability at the neuromuscular junction examined by the enlarged jiggle value. The 

authors state that the majority of the motor units in the VL and were enlarged and less 

stable suggesting that these data could lead to future functional ability limitations.  

Gilmore et al. (2017)  

The purpose of this study was to investigate the differences in motor unit number 

estimations between younger (age = ~ 25) and very old (age = ~ 85) adults. Muscle 

activation (EMG RMS), torque, voluntary activation, compound muscle action potential 

(CMAP), motor unit number estimate (decomposition-enhanced spike-triggered 

averaging) were collected to examine the physiological differences between age groups. 

Additionally, the motor unit number estimation was collected during a contraction a 30% 

EMG RMS and 50% EMG RMS. The results show that the younger adults were 

significantly stronger than the younger adults. There was no significant difference 

between voluntary activation between the two groups. The older group possessed smaller 

CMAP amplitudes. Further analysis revealed that the older adults possessed significant 

fewer motor unit numbers at each contraction level. The authors suggest that the older 
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adults suffered from a reduction in motor units and have undergone age-related collateral 

reinnervation.  

Piasecki et al. (2018)  

The purpose of this investigation was to examine the effect of age on motor unit 

size and number in young, older, sarcopenic and non-sarcopenic adults. Motor unit 

behavior was assessed through surface and intermuscular EMG. Muscle strength was 

examined in each group. The compound muscle action potential (CMAP) was examined 

from the stimulation of the femoral nerve. Motor unit number estimation was achieved 

through spike triggered averaging. Muscle size decreased in each group from the young 

possessing a greater muscle size than the non-sarcopenic, pre-sarcopenic and sarcopenic 

older adult men. Younger men possessed a greater muscle strength value that the non-

sarcopenic old (-34%), pre-sarcopenic (-39%), and sarcopenic (-49%) old. The 

intramuscular motor unit potentials were smaller in the non-sarcopenic (-26%) and pre-

sarcopenic (-41%) when compared to the young. Additionally, the sarcopenic motor unit 

action potentials were smaller in the sarcopenic compared to the non-sarcopenic. Motor 

unit number estimation was significantly lower in the non-sarcopenic, pre-sarcopenic and 

sarcopenic old compared to the younger adults. The authors suggest that the loss of motor 

units begin before the onset of sarcopenia. This is confirmed by the enlarged motor unit 

action potentials in the non-sarcopenic older men compared to the pre-and sarcopenic old 

men. The authors indicate that the reduction and inability to recover motor units can 

indicate a difference between sarcopenic and non-sarcopenic muscle. The authors go on 

to suggest that the remodeling process is a survival mechanism that can lead to the onset 

of sarcopenia. 
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2.1.5 Age-Related Changes in Sensory-Motor Function 

Taylor (1984) 

 The purpose of this study was to examine the effects of aging on nerve conduction 

variables in adults. The results of the study found that the reduction in sensory and motor 

conduction velocity and sensory amplitude begin to decline at an increasing rate from the 

fifth decade on. The authors suggest that the loss of nerve axons seem to effect the 

sensory nerves before the motor nerves. The age-related decline in the motor nerve 

function is thought to be attenuated due to the collateral sprouting during the remodeling 

process.  

Bouche et al. (1993) 

 The main purpose of this study was to examine the age-related effect on 

peripheral nerve function in younger and older adults. Results of the study showed that 

sensory nerve conduction velocity was decreased in participants older adults beginning 

around 60 years old. Additionally, participants who were 80 years old experienced 

declines in sensory and motor nerve conduction velocities. The reduction in sensory 

nerve function suggests that sensory nerve function may decline before the motor nerve.   

Resnick et al. (2000) 

 The purpose of this study was to examine the relationships between peripheral 

nerve function and functional ability. Peripheral nerve disability was significantly related 

to poor balance ability, usual and fast gait speeds in women. Additionally, age was 

associated with reduced peripheral nerve function. The reduction in usual and fast gait 
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speeds became more apparent as age increased. The authors suggest that there is an 

association between peripheral nerve function and reduced functional ability in older 

adults. 

Rivner et al. (2001) 

 The purpose of this study was to examine the relationship between age and height 

on nerve conduction. Participants in the study ranged in age from 20 – 95 years old. The 

peroneal motor, ulnar motor, palmar motor and sural sensory nerve function were 

examined. The motor nerve function was analyzed by the compound action potential 

(CMAP) and the sensory nerve function was assessed by analyzing the sensory nerve 

action potential (SNAP). Additionally, nerve conduction velocity was examined. 

Statistical analysis revealed that nerve conduction velocity was inversely related to age in 

the sural, peroneal motor, and ulnar motor nerves, however, there was a small positive 

relationship between age and distal latencies of the same nerves. Age only accounts for 

approximately 10% of the variability in nerve conduction velocity. Height explained for 

more of the variability in nerve conduction velocity (~7%) than age alone, and when age 

and height were combined, the accounted variability was improved. Approximately 16% 

of the variance in SNAP was accounted for by age and adults older than 60 years old 

possessed a lower number of high amplitude SNAP. Additionally, when height and age 

are combined, height and age account for about 22% of the variance in sensory sural 

nerve amplitude. The authors suggest that these data indicate an age-related reduction in 

peripheral nerve function. 

 



42 

 

Resnick et al. (2001) 

  The purpose of this study was to examine the age-related effects on peripheral 

nerve function. Additionally, the authors examined if peripheral nerve functional decline 

was associated with diabetes independent of age. Participants who participated in the 

study ranged in age from 65 – 85 years old. Sensory nerve function was examined by 

measuring vibration perception threshold (VPT). Results of the study show that there is 

an age-related decline in peripheral sensory nerve function in older adults. The younger 

old adults (i.e. 65-74 years old) had 56% of participants score normal, as opposed to 43% 

for middle old (i.e. 75-84 years old) and 20% for the oldest group (i.e. ≥ 85 years old). 

Further, the older adult population had a significant percentage of adults possessed a 

severe peripheral nerve dysfunction (31%. p < 0.001). Regression analysis revealed that 

increasing age was significantly associated with increased risk of developing peripheral 

nerve dysfunction. The authors suggest that the results presented provide additional 

evidence for the age-related decline in peripheral nerve. 

Scaglioni et al. (2003) 

 Refer to section 2.1.1 Motor Unit Behavior During Rapid or Ballistic 

Contractions 

Gregg et al. (2004) 

 The purpose of this study was to examine the existence of peripheral arterial 

disease (PAD), lower extremity disease (LED) and peripheral neuropathy (PN) in the 

United States adult population ≥ 40 years of age. Peripheral neuropathy was assessed by 

self-reporting touch sensation on the foot. The participant indicated when they felt the 
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pressure from a monofilament in three different places on the foot. The monofilaments, 

each have a different weight and stiffness, was pushed against the skin until it bent. There 

was an increase in PN prevalence from 8.1% in the younger adults (i.e. 40-49 years old) 

to 34.7% in the older (i.e. ≥ 80 years old) groups of adults. PN was more prevalent in 

men (18.2%) than women. PN and PAD were seen to be linked in the participants where 

PN was 23.1% higher in those adults with PAD than those without PAD (14.2%) (p > 

0.05). The authors suggest that it is difficult to compare results to previous studies due to 

the different methodological approaches, however, the study’s results could provide a 

baseline for future research.  

Tong et al. (2004) 

 The purpose of this study was to examine the influence of age on peripheral nerve 

function in healthy adults. Additionally, the authors sought to examine if other 

physiological or anthropometrical measures influence peripheral nerve function over 

time. Peripheral nerve function was assessed at two different time points separated by 

approximately 5.4 years.  Peripheral nerve function variables included onset latency, peak 

latency, and baseline to peak amplitude, sensory nerve action potential (SNAP) amplitude 

distal latencies and conduction velocities were examined in the median and ulnar nerves. 

Results of the study showed that there SNAP amplitude decreased 1.75 – 2.3 µV, peak 

latencies were longer by 0.06 – 0.11 ms, conduction velocity decreased by 0.71 – 1.1 m/s 

and onset latencies were longer by 0.043 – 0.072 ms at the follow up assessment (i.e. ~5 

years). Additionally, statistical analysis revealed that the change in peripheral nerve 

function is not linear over time. There was a 0.13 m/s decline in conduction velocity per 

year. Further analysis indicated that the rate of change between the nerve function 



44 

 

variables were significantly different, suggesting that the nerve function changes at 

different rates across time.  

Lauretani et al. (2006) 

 The purpose of this study was to examine the effect of age on peroneal nerve 

function in older and younger adults. Compound muscle action potential (CMAP) was 

assessed to examine the motor nerve amplitude. Nerve conduction velocity was examined 

by the dividing the length of the fiber and the time for the stimulus to travel from one 

point to the next. Muscle size and density was examined in the calf. Additionally, 

plantarflexion strength was assessed to determine muscle strength for each participant. 

Results of the study showed that there was a negative relationship between age and nerve 

conduction velocity. CMAP, muscle size and muscle density were lower as age 

increased. The age-related reduction in CMAP, muscle size and muscle density decline 

was faster for the women than the men. Additionally, a smaller CMAP was associated 

with a high probability of having a lower muscle density. The authors suggest that the 

reductions in muscle volume and density could be primarily due to the reduction in the 

number of motor axons, leading to a reduction in continual stimulation of those fibers. 

Saeed and Akram (2008) 

 The purpose of this study was to examine the effects of age, sex, height, weight, 

and BMI on the sensory sural nerve function. Participants who were included in the study 

ranged in ages from 40 – 70 years of age. Results of the study showed that age was 

significantly related to sural nerve conduction velocity (r = -0.401, p < 0.05). 

Additionally, the results of a regression analysis revealed that there was a reduction of 2.4 
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m/s in nerve velocity per ten years. Although insignificant, there was a relationship (r = 

0.361, P > 0.05) between sensory latency and age. The authors suggest that the reduction 

in conduction velocity and increased latency could be due to a reduction in myelination 

of the peripheral nerves.  

Strotmeyer et al. (2009) 

 The purpose of this study was to examine the effects of sensory-motor nerve 

function on muscle strength in older adults. Muscle strength in the quadriceps and ankle 

were measured for muscle strength. Sensory nerve function was assessed with 

monofilament touch sensitivity and vibration threshold. Additionally, motor nerve 

function was assessed in the peroneal nerve by assessing the nerve amplitude and 

conduction velocity. Results of the study showed that those older adults who had low 

sensory vibration thresholds and low motor nerve conduction amplitude were also 

associated with low quadriceps and ankle strength compared to those with high levels of 

peripheral nerve function. Further analysis revealed that monofilament insensitivity, 

vibration threshold, and motor nerve amplitude each contributed to the reduction in 

quadriceps strength. Monofilament and motor nerve amplitude were also independent 

predictors of ankle strength. The author suggest that the reduction in quadricep and ankle 

strength may be due to the relationship it has with sensory and motor nerve function 

declines in the older adults. 

Thakur et al. (2010) 

 The purpose of this study was to examine the age-related effects on nerve 

function in younger and older adults. Motor nerve function was assessed by examining 



46 

 

the compound muscle action potential (CMAP). Sensory nerve function was assessed by 

examining the sensory nerve action potential (SNAP). Statistical analysis revealed that 

the older adults had a lower CMAP amplitudes were smaller in the bilateral median, right 

ulnar, right tibial, le tibial, and bilateral common peroneal nerve (p < 0.05). CMAP 

durations were shorter in the right median, right ulnar, le ulnar, right tibial, le tibial, le 

common peroneal nerve (p < 0.05). Older adults had a smaller CMAP latencies compared 

to the younger adults (p < 0.05 – 0.01). SNAP amplitudes were lower in the older adults 

in the bilateral median nerve, right ulnar and right radial nerves (p < 0.05 – 0.01). SNAP 

durations in the older adults were shorter when compared to the younger adults (p < 0.05 

– 0.01). SNAP latencies were longer in the older adults compared to the younger adults 

(p < 0.05). The authors suggest that these data provide evidence of reduced sensory and 

motor nerve function in older adults.  

Werner et al. (2012)  

The primary aim of this study to examine the age-related changes in peripheral 

sensory nerve function in healthy adults. The study examined the distal median and ulnar 

nerves of the dominant hand of each participant. Additionally, the study had a 

longitudinal component to it where participants were examined at two or more time 

points over a 9 year span following baseline assessments. Peripheral nerve function 

variables included sensory nerve action potential (SNAP) amplitude, peak latency, onset 

latency and sensory conduction velocity (SCV). Results of the study show that onset and 

peak latencies increased over time and conduction velocities and amplitude declines with 

age (p ≤ 0.002). The rate of reduction in conduction velocity was 0.41 m/s per year for 

the median sensory nerve and 0.29 m/s per year for the ulnar sensory nerve. The 
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reduction in amplitude was 0.70 m/s µV per year for the median nerve and 0.89 µV per 

year for the ulnar sensory nerve. The authors suggest that there is a significant change in 

peripheral nerve function with advancing age and that nerve function may differ between 

nerves. 

Ward et al. (2014b) 

 The purpose of this study was to investigate the effects of peripheral nerve 

function on muscle power in older men. This longitudinal study examined older adults 

peripheral nerve function and muscle power over a 2 year span. Nerve function was 

examined in the peroneal motor nerve. Sensory nerve function was examined by 

monofilament touch perception and sural sensory nerve. Results of the current study 

found that a lower motor nerve amplitude (p < 0.05) and sensory nerve (p < 0.05) and 

monofilament sensitivity (p < 0.05) was associated with muscle power. A lower sensory 

and motor amplitude was associated with a 1.4 – 1.8 fold aging effect. Additionally, 

insensitivity of 1.4 – 10-g monofilaments was associated with 2.2 – 3.4 year aging effect. 

Insensitivity to the smaller monofilament (1.4-g) was a significant predictor of reduced 

power production. The authors suggest that poor sensory nerve function was related to a 

reduced muscle power production in the older adults, and could lead to a reduced 

functional ability.  

Ward et al. (2015) 

 The purpose of this study was to examine if sensorimotor function is a 

determinant for the reduction in strength associated with the aging process. This 

longitudinal study examined the isokinetic strength and sensory nerve function over a 



48 

 

span of 6 years. Peroneal motor nerve conduction velocity and amplitude were assessed. 

The sural sensory nerve function was assessed by monofilament and vibration detection. 

Results of the study show that poorer sensory and motor function predicted the lower 

strength and power capabilities. Additionally, a lower initial sensory function predicted 

lower strength in men and women and a faster reduction in strength in women. The 

authors suggested that poor nerve function (i.e. sensory and motor) was able to predict 

declines in strength and rate of decline in strength. 

Palve and Palve (2018) 

 The purpose of this study was to examine the influence of aging on peripheral 

nerve function and determine the point where significant changes are apparent in younger 

and older adults. Peripheral nerve function was completed on the median, peroneal and 

tibial nerves in adults aged 18-60 years old. The distal motor latency (DML), motor nerve 

conduction velocity (NCV), and compound muscle action potentials (CMAP) were 

collected for the motor nerves. For the sensory nerves, sensory nerve action potential 

(SNAP) and sensory nerve conduction velocity (SNCV) were examined in the sensory 

nerves. Late responses were examined in H-reflex studies and the F-wave in the median, 

peroneal and tibial nerves. Results of the study show that with advancing age there was a 

significant increase in latency, smaller amplitude and slower conduction velocity in the 

sensory median nerve and the common peroneal nerve. The motor peroneal and tibial 

nerve showed a lower amplitude, longer latency, slower conduction velocity, and a 

greater H-reflex response (tibial nerve) with advancing age. There was significant 

negative correlations between tibial motor and sensory nerves with age. Additionally, H-

reflex was positively associated with aging. The authors suggest the results provide 
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additional evidence that the older adults possess lower number of nerve fibers, smaller 

nerve diameter and change in fiber membrane properties. The authors also suggested that 

age significantly influences peripheral nerve function and delayed responses in multiple 

peripheral nerves. 

2.1.6 Summary of the Neural Determinants of Rate of Force development 

The aging process has been associated with changes in the neuromuscular system 

and has been linked to reductions in muscle strength (Piasecki et al. 2016), power (Clark 

et al. 2013) and functional ability (Izquierdo et al. 1999). Previous research has suggested 

that the body experiences the process of remodeling to compensate of the reduction in 

functional motor units to maintain muscle strength and function (Scaglioni et al. 2003). 

When performing a ballistic contraction, motor unit recruitment decreases and firing rates 

increase to provide adequate stimulation to produce elevated levels of force quickly (de 

Ruiter et al. 2007; Del Balso and Cafarelli 2007; Desmedt and Godaux 1978; 1977; Van 

Cutsem et al. 1998). During the aging process, high threshold motor units are 

preferentially lost, and the corresponding muscle fibers begin to atrophy. However, to 

preserve strength, the adjacent surviving lower threshold motor units begin to reinnervate 

those recently denervated fibers, commonly known as the remodeling process (McNeil et 

al. 2005). Although this process is a protective mechanism to preserve strength and 

function, it is associated with functional limitations. The rate of decline in motor unit 

number increases with advancing age and can lead to a reduction in muscle strength, 

power, functional ability and sarcopenia (Piasecki et al. 2018). 
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Motor unit number estimation (MUNE) is an assessment that non-invasively 

examines the surviving motor units in the neuromuscular system (Campbell et al. 1973). 

Although there are many methods used to examine MUNE in older adults, most studies 

have the same trend in common, a reduction in MUNE associated with advancing age 

(Doherty and Brown 1993; Gilmore et al. 2017; Kaya et al. 2013; McKinnon et al. 2015; 

McNeil et al. 2005; Piasecki et al. 2016). Additionally, older adults have larger, low 

threshold motor units thought to be caused by the collateral sprouting and reinnervation 

of recently vacated muscle fibers (Piasecki et al. 2016). For example, Piasecki et al. 

(2016) found that older adults had significantly larger single motor unit potentials 

(SMUP) and smaller compound action potential (CMAP) than younger adults in the 

vastus lateralis. The increased SMUP is thought to be due to the reinnerevation of 

neighboring high threshold fibers, and the decreased CMAP is thought to be due to the 

reduction in number of fibers or available motor units (Doherty and Brown 1997). Due to 

the remodeling process, older adults are left with fewer larger, low threshold motor units 

that can precede the diagnosis of sarcopenia (Piasecki et al. 2018).   

 The remaining remodeled motor units have been shown to have an altered 

morphology, behavior and variability (Hourigan et al. 2015; Klass et al. 2008; Piasecki et 

al. 2016). Specifically, older adult motor units have been shown to have a lower 

discharge rate and reduced recruitment threshold when compared to younger adults 

during maximal contractions (Connelly et al. 1999; Dalton et al. 2010; Fling et al. 2009; 

Kallio et al. 2010; Kamen and Knight 2004; Kamen et al. 1995; Watanabe et al. 2016). 

This reduction in recruitment threshold and increased firing rate has been suggested to be 

the result of the remodeling process (Kamen et al. 1995; Ling et al. 2009). Klass et al. 
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(2008) observed the motor units recruited during a maximal RFD contraction had a 

significantly lower firing rate compared to the younger adults. Additionally, the altered 

motor units exhibit changes in the motor unit action potential shape and size. Previous 

research has observed larger single motor unit potential (SMUP) resulting in an increased 

force production per SMUP in older adults (Fling et al. 2009; Ling et al. 2009; Power et 

al. 2010). The larger SMUP is thought to be due to collateral sprouting of the surviving 

motor unit to include the more powerful neighboring muscle fibers leading to the 

increased force production per SMUP (Ling et al. 2009; Power et al. 2010). However, 

when maximally stimulated, older adults produce a reduced compound muscle action 

potential (CMAP) and lower corresponding twitch force (Fling et al. 2009; Scaglioni et 

al. 2003). The combination of increased SMUP and lower CMAP could be due to a lower 

number of functional high threshold motor units as a product of the remodeling process 

(Doherty and Brown 1997).  

 Muscle activation, assessed using electromyography (EMG), has been used to 

examine muscle activation. Previous research has shown that muscle activation during 

the initial phase of a rapid contraction is extremely important for producing high levels of 

force quickly (Aagaard et al. 2002; Hakkinen et al. 1998; Van Cutsem and Duchateau 

2005; Van Cutsem et al. 1998) and has been shown to be highly related to the early 

production of force (i.e. ≤ 80 – 100 ms) (Klass et al. 2008; Mau-Moeller et al. 2013). 

Although some older adults may be able to voluntarily activate their muscles to a similar 

degree (Cannon et al. 2007; Power et al. 2010), older adults produce lower EMG 

amplitude than younger adults during a maximal RFD contraction (Gerstner et al. 2017a; 

Hakkinen et al. 1996; Hakkinen et al. 1995). This reduction in EMG amplitude has been 
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related to RFD in older adults. This suggests that neural activation within a limited time 

frame may be a limiting factor in RFD performance in the older adults (Barry et al. 2005; 

Clark et al. 2011; Wu et al. 2016). Additionally, the rate of muscle activation (i.e. rate of 

EMG rise) has been shown to be slower in the older adults and associated with a reduced 

RFD capacity (Barry et al. 2005; Clark et al. 2011). Additionally, Clark et al. (2013) 

found that the rate of EMG rise was related to leg press power and was observed to 

decrease about 9% per year. This observation is in agreement with Klass et al. (2008) 

who observed the reduced RFD in the older adults was accompanied by a reduction in 

motor unit discharge rate in the initial phase of the contraction. Further, the reduction in 

rate of EMG rise was associated with a reduced RFD and muscle power, strength and 

functional ability in older adults (Clark et al. 2011). These age-related reductions in 

voluntary muscle activation amplitude and rate is extremely important because RFD has 

been linked to functional ability and a better quality of life (Clark et al. 2011).  However, 

other authors have observed no such age difference in rate of EMG rise. For instance, 

Thompson et al. (2014) found that there was a significant reduction in RFD in the older 

adults without a corresponding reduction in rate of EMG rise. Additionally, Jenkins et al. 

(2014) found differences in absolute rate of EMG rise and RFD, however when RFD and 

rate of EMG rise were normalized to max strength and EMG, the age differences 

disappeared. However, in Jenkins et al study, there was still a significant difference in M-

wave amplitude and max strength. Therefore, taken together, the impaired ability to 

activate the musculature may be a significant limiting factor in RFD observed in the older 

adults.  
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 Reduction in peripheral nerve function is another piece to the age-related changes 

in neuromuscular function. Age-related alterations to both sensory and motor peripheral 

nerve function has been observed to increase with advancing age (Bouche et al. 1993; 

Gregg et al. 2004; Palve and Palve 2018; Resnick et al. 2001; Resnick et al. 2000; Taylor 

1984). Previous research has shown a distinct decline sensory and motor nerve 

conduction velocity and amplitudes on the older adults (Rivner et al. 2001; Saeed and 

Akram 2008; Strotmeyer et al. 2009; Thakur et al. 2010; Tong et al. 2004; Ward et al. 

2015; Werner et al. 2012). Sensory nerve amplitudes have been shown to decline prior to 

motor nerves during the aging process (Taylor 1984). Further, declines in either sensory 

or motor nerve function could lead to have been linked to poor quadriceps strength and 

increased rate of strength decline (Ward et al. 2015). Specifically, motor amplitude has 

been shown to be reduced in older adults and is linked to a reduction in strength over 

time (Ward et al. 2015). It has been suggested that the reduction in motor nerve 

amplitude is due to the reduction in axonal availability (Lauretani et al. 2006). Previous 

research has shown that peripheral nerve function, mainly lower amplitudes, is related to 

muscle strength and power (Strotmeyer et al. 2009; Ward et al. 2015; Ward et al. 2014b).  

2.2 Contractile Determinants of Rate of Force Development 

2.2.1 Age-Related Changes in Muscle Phenotype and Function 

Larsson et al. (1979) 

 The purpose of this study was to investigate the age related changes in the 

mechanical properties in the quadriceps, muscle strength and movement speed. The 

authors discovered that there was a significant age-related reduction in muscle strength 



54 

 

and movement speed. The decline in muscle strength and knee extension velocity began 

around the age of 50 years old. Further, Type II muscle fiber area was reduced in the 

older compared to the younger adults. This age-related reduction in type II muscle fibers 

was significantly related to maximum muscle strength. The authors suggested that the 

age-related decrease in powerful type II muscle fibers was a primary mechanism for the 

reduction in muscle strength.  

Lexell et al. (1988) 

 In this cadaveric study, the authors sought to examine the effect of age on muscle 

fibers. Forty three previously healthy men were included in this study and separated into 

5 age groups: 20 (n = 9, mean age: 19, age range: 15-22 year old), 30 (n = 9, mean age: 

32, age range: 26-37 year old), 50 (n = 8, mean age: 51, age range: 49-56 year old), 70 (n 

= 9, mean age: 73, age range: 70-75 year old) and 80 (n = 8, mean age: 82, age range: 80-

83 year old). Muscle fiber size, number, area, proportion and distribution of type I and 

type II fibers were collected and recorded. Results of the study found that after the age of 

25 muscle area (p < 0.001), total number of fibers (p < 0.001) begins to decreased at an 

accelerated rate (p < 0.001). Additionally, there was a significant decrease in type II fiber 

size associated with age (p < 0.01). Age was shown to decrease the number of fibers that 

composed the whole muscle from 70% in the young and 50%. The authors suggested that 

the age-related atrophy of muscle is dependent on multiple complex reductions in muscle 

fibers and muscle fiber related variable (i.e. fiber size, and proportion). 
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Lexell and Downham (1991) 

 The purpose of this study was to examine the age-related changes in muscle fiber 

distribution and arrangement. Previously healthy males aged from 15-83 years old were 

included in this study and the fiber type distribution and arrangement was examined in 

the vastus lateralis muscle. In younger adults, fiber types are observed to be segregated, 

however, from the years of 30-60, there was considerable amounts of random fiber 

groupings. Above the age of 60, there was an excessive amount of random fiber 

grouping. The authors suggest that the muscle undergoes continual change (i.e. 

remodeling process) over the life span. 

Hakkinen et al. (1995) 

 Refer to section 2.1.3 Age-Related Changes in Voluntary Muscle Activation 

Connelly et al. (1999) 

 Refer to section 2.1.3 Age-Related Changes in Voluntary Muscle Activation 

Roos et al. (1999) 

 The purpose of this study was to investigate the age related changes in isometric 

voluntary and evoked contractile properties and motor unit behavior in the quadriceps in 

younger and older adults. Results of the study described a 48% (p < 0.05) decrease in 

muscle strength in the older adults. Further, there was no significant differences between 

voluntary muscle activation in the young and older adults. The slower contractile 

properties observed in the older adults shifted the force-time curve to the left (p < 0.05). 

Older adults were weaker than the young and possessed a lower evoked twitch force and 
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slower contractile speeds. However, there was no age-related changes in motor unit firing 

rates at any contraction intensity. The main finding of the study was that stimulated 

twitch and voluntary forces were significantly lower in the older adults compared to the 

younger adults. The authors suggested that the changes in muscle strength is related to 

the reduction in contractile properties due to the non-significant differences in voluntary 

activation observed between the young and the older adults. 

Aagaard et al. (2002) 

 Refer to section 2.1.3 Age-Related Changes in Voluntary Muscle Activation 

Scaglioni et al. (2003) 

 Refer to section 2.1.1 Motor Unit Behavior During Rapid of Ballistic 

Contractions 

D'Antona et al. (2003) 

 The purpose of this study was to examine the underlying mechanisms of reduced 

force and shortening velocity in older and younger muscle fibers. Results show that there 

was a reduction in type II muscle fibers associated with aging. Additionally, type I 

muscle fibers were 16% more frequent in the old compared to only 9% in the young. 

There was a significant atrophy of type I (-22%) and type IIa (-12%) following the aging 

process. Older adult’s type I and type II muscle fibers produced significantly less specific 

strength compared to the younger adults, -22% and -16%, respectively. Shortening 

velocity of both fiber types (i.e. type I and type II) were slower in the older adults 

compared to the younger adults. The authors suggest that age effects the mechanical 
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properties of the muscle fibers. Specifically, the reduction in number of muscle fibers and 

the slowing of the muscle fibers observed in the older adults could lead to reductions in 

strength and muscle power.  

Baudry et al. (2005) 

 The purpose of this study is to examine the age-related reduction in contractile 

properties with an electrically evoked contraction in the tibialis anterior in younger and 

older adults. Twitch response following a maximal strength contraction was assessed and 

used to examine the contractile properties of the muscle between ages. Statistical analysis 

revealed that muscle strength (MVC) was greater in the young compared to the older 

adults (p < 0.05). There was an age-related reduction in the potentiated twitch torque 

following the maximal contraction observed in the old compared to the younger adults. 

This reduction in potentiated twitch force has been linked to an age-related change in 

muscle fiber (i.e. reduction in type II fibers). The authors suggest that the reduction in 

potentiated twitch force is linked to a reduction in muscle contractile performance.  

Andersen and Aagaard (2006) 

 The authors sought to examine the voluntary and evoked contractile components 

related to the rate of force development (RFD). Specifically, the authors examined the 

relationship of contractile components in multiple 10 ms time increments from the start 

of a explosive force contraction. Twelve young healthy sedentary males (Age: 23 ± 3 

years old) performed voluntary and evoked maximal rapid force contractions with the 

knee extensors. During the evoked contractions, peak twitch RFD (tRFD; determined as 

the peak slope of the rising phase of the twitch curve), twitch time to peak torque (TPT; 
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definded as the time between the onset of torque to peak torque), Peak torque (PT), half 

relaxation time (1/2RT; defined as the time from peak twitch torque to 50% peak twitch 

torque) and twitch peak torque (PT; defined as the time from onset to peak twitch 

amplitude torque). During voluntary RFD contraction, peak torque (MVC) was 

determined and contractile RFD was defined as the slope of the torque time curve during 

sequential 0-10 ms windows from 0 (onset) to 250 ms. Statistical analysis revealed that as 

the contraction continued the voluntary RFD relied more heavily on the MVC rather than 

the muscle twitch properties, and visa versa. Maximal muscle strength accounted 

approximately 80% of the variance in the later phase of the contraction (i.e. 150 – 250 

ms) and voluntary RFD was only moderately related to the contractile twitch properties 

in the earlier portion of the RFD contraction (i.e. < 40 ms). Moreover, the relationship 

between the contractile twitch characteristics and voluntary RTD became insignificant 

after 50 ms from contraction onset. The authors suggested that different portions of the 

RFD contractions are dependent on different physiological mechanisms. Additionally, the 

moderate correlation observed between the contractile twitch properties and voluntary 

RFD suggest that there may be another physiological mechanism that could account for 

the unaccounted variance in the early portion of the RTD contraction. 

Cannon et al. (2008) 

 The purpose of this study was to investigate the age-related changes in the 

contractile characteristics in younger and older adult women. Contractile properties were 

assessed through maximal voluntary and evoked twitch contraction force prior to and 

following a resistance training protocol. Max voluntary torque (MVC), peak twitch 

torque (PT), time to peak torque (TPT) and rate of torque development (RTD) were 
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collected prior to and following the resistance training protocol. Prior to the resistance 

training protocol, MVC (p < 0.05), PT (p < 0.05) and RTD (p < 0.05) were significantly 

lower in older compared to the younger women. Following the resistance training 

protocol, twitch properties remained unchanged and there was no significant group 

differences following the training protocol despite an increase in MVC. The authors 

suggested that there is an age-related reduction in contractile properties. Additionally, the 

changes in strength following the resistance training protocol without significant changes 

in twitch properties suggest that there was no contractile properties adaptations.  

Hvid et al. (2010) 

 This study examined the age-related effects of short-term immobilization on 

muscular function and fiber morphology. In a sample of twenty healthy younger (n = 11, 

24.4 ± 0.5 years old) and older (n = 9, 67.3 ± 1.3 years old) men, mechanical function and 

muscle morphology was assessed prior to and following a short-term immobilization and 

again after a retraining period. Maximal isometric muscle strength (MVIC), dynamic 

muscle strength (MVC), rapid force development (RFD), relative RFD (relRFD; absolute 

RFD ÷ MVIC), contractile impulse, and contraction time (CT; defined as the time to 

reach 1/6th, 1/2, and 2/3rds of MVC from contraction onset) were examined.  For the 

RFD variables, the slope of the torque-time curve during the 0-50 ms window and 0-100 

ms window was used as early and late phases of the RFD contraction, respectively.  

Muscle samples were harvested from the vastus lateralis following the immobilization 

and retraining protocols and variables examined were: fiber type cross-sectional area 

(CSA), fiber type percentage and percent area. Correlations and changes between age 

following the two different time points were examined. Statistical analysis demonstrated 
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a significant reductions in RFD in the older adults compared to the young prior to the 

interventions (40-43%, p < 0.05). Following the immobilization protocol, RFD was lower 

in the initial (i.e. 0-50) (36.2%, p < 0.05) and later (i.e. 0-100) (24.9%, p < 0.05) portion 

of the RFD curve in the older compared to the younger adults. Following the retraining, 

the RTD improved in both the young and the older men, however, RFD during the initial 

portion of the contraction remained reduced in the older adults from prior RFD. Type II 

muscle fiber area was lower in the old prior to immobilization (31.9%, p < 0.05). 

Following the immobilization protocol, type II area was significantly reduced (13.2%, p 

< 0.05). Further analysis observed a nonsignificant relationship between type II muscle 

fiber area and the initial phase of the RFD. The authors suggested that the retraining 

following the immobilization lead to a recapturing ability of the muscle fiber area in the 

young men, but not in the old. This suggests that older adults may be more at risk for 

decline in muscle function that can lead to a reduction in RFD. 

Mau-Moeller et al. (2013) 

 Refer to section 2.1.4 Age-Related Changes in Motor Unit Number 

Nilwik et al. (2013) 

 The purpose of the study was to examine the effects of age-related changes in 

muscle size and if the age-related reduction in muscle size is attributed to the changes in 

muscle fiber size. Fifty one participants (young; n = 25; Old; n = 26) volunteered to 

participate in this study. Results of the study found that there was a significant decrease 

in CSA with age. Additionally, the older adults possessed a smaller type II muscle fiber 

size (p < 0.001). The age differences in type II muscle fiber size fully explained the 
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differences in quadriceps size. The authors suggested that the reduced muscle size is 

mainly dependent on the reduction in type II muscle fiber size and can lead to a further 

loss of muscle fibers.  

Power et al. (2016b) 

 The main goal of this study was to examine the effects of age on the contractile 

function of a single muscle fiber from young, old and old master athletes. Results of the 

study showed that, even when normalized to fiber size, the muscle fiber biopsied from the 

older and the older masters athletes were weaker than the younger muscle fibers. On top 

of the reduction in strength, the older groups fibers possessed a slower shortening 

velocity compared the younger adults. The rate of force development was significantly 

lower in the older groups compared to the younger groups. The authors suggest that the 

observed reduction in muscle contractile performant is not negated by physical activity. 

McPhee et al. (2018) 

 The purpose of this study was to investigate the age-related effects and 

contributions of muscle size, specific force, muscle activation on weakness and 

sarcopenia. The results from the investigation showed that there was a 37% reduction in 

maximal muscle force (MVC), 25% decline in physiological cross-sectional area (PCSA), 

and in situ force was 83% lower in the older compared to the younger adults. Quadriceps 

volume was the primary predictor in the reduced MVC (76%, p < 0.001). There was not 

significant contribution from pennation angle (PA), voluntary activation (VA), moment 

arm length (MAL) or gender to the regression model. During the 5 year follow up 

assessments, MVC decreased by 12%, quadriceps volume was lower by 6%, PCSA was 
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reduced by 5%, and voluntary activation was 4% lower. Following the regression 

analysis, quadriceps volume remained the main determinant (51%, p < 0.001) for the 

reduction in MVC, however, voluntary activation accounted for an additional 21% (p < 

0.001) of the variance in max torque production.  There was no significant difference 

between fiber type percentage of type I or type II muscle fibers, however, the old 

possessed a significant reduction in type II muscle fiber area (26%, p < 0.001). Further 

analysis revealed, when all fibers were examined, older adults fibers (i.e. combination of 

type I and type II) was 15% lower and VL PCSA was smaller in the old compared to the 

younger adults. This result suggests that fiber atrophy accounts for over 50% of the 

reduction in muscle size. This leads to the older adults possessing less muscle fibers in 

the VL. The authors suggest that these data indicate that the reduction and loss of muscle 

fibers, especially the reduction in type II muscle fiber size, is primarily related to the age-

related reduction in force and weakness. 

2.2.2 Age-Related changes in Skeletal Muscle Size, Quality and Architecture   

Hakkinen and Hakkinen (1991) 

 The main goal of this study was to examine the effect of age on muscle size, 

maximal and explosive voluntary force production in women. Maximal force was 

determined as the highest force value achieved during the full isometric voluntary knee 

extension. The rate of force development (RFD) and rate of relaxation were also 

examined. Muscle cross-sectional area (mCSA) of the quadriceps femoris was 

determined. The younger and middle aged women had significantly larger mCSA, greater 

maximal force production, increased RFD, and shorter time to relative torque compared 
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to the older women. mCSA and maximal voluntary force were significantly related in all 

age groups. When force was normalized to muscle size, there were no significant 

differences in maximum voluntary force between any age group.  The authors suggest 

that because the significant differences in muscle strength disappeared when made 

relative to muscle size, the reduction in explosive force production may be more related 

to neural activation than muscular properties. However, the authors do not rule out the 

possibility that age-related atrophy of powerful type II muscle fibers could lead to the 

observed declines in maximum and explosive strength observed in the older women.  

Hakkinen et al. (1996) 

 The main objective of this study was to examine the influence of age on muscle 

cross-sectional area, maximal and explosive force production in knee extensor muscle in 

middle and older adults. Uni- and bilateral isometric maximal and explosive knee 

extension force was examined in both groups of adults. Voluntary peak torque, force-

time, and relaxation time were assessed and analyzed to determine group differences. The 

force time variable was assessed in consecutive 100 ms windows from force onset. The 

maximal rate of force development was examined in each age group and uni- and 

bilaterally. Muscle activation was assessed through surface EMG from the vastus 

lateralis, rectus femoris and the vastus medialis. Peak muscle activation was assessed 

during the 500 – 1500 ms window following the initiation of contraction. Additionally, 

muscle activation during consecutive 100 ms windows following the onset of the 

contraction was examined. Muscle cross-sectional area (mCSA) was assessed from all 

three of the quadriceps muscles tested. Statistical analysis revealed that the maximal 

voluntary bilateral and unilateral knee extension was greater in the middle aged group 
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compared to the older adults. mCSA was significantly larger for the middle aged group 

compared to the older group. Additionally, mCSA was significantly related to muscle 

maximum voluntary strength in the middle and the older adults. However, when force 

was made relative to mCSA, only the older women produced significantly less torque 

than the other groups. EMG was not significantly different in any group during maximal 

uni- or bilateral knee extension. The middle age group had a larger RFD within the first 

500 ms than the older groups during the unilateral, not in the bilateral knee extension. 

The authors suggest that the reduction in maximal strength and rate of rise in force could 

be due to the reductions in muscle size observed in the older population. The authors 

continue to suggest that the increased rate of decline in explosive force could be due to 

the age related reduction in fast twitch muscle fibers. 

Hakkinen et al. (1998) 

 Refer to section 2.1.3 Age-Related Changes in Voluntary Muscle Activation 

Frontera et al. (2000) 

 These authors sought to examine the changes in skeletal muscle function over a 

12 year longitudinal study. Each participant was assessed twice; once at the beginning of 

the study, and again at the end of the 12 years. Twelve older men voluntarily participated 

in the first testing session (age: 65.4 ± 4.2 years old) and only nine returned for the 

second session (age: 77.6 ± 4.0 years old) the study. Maximal isokinetic muscle strength 

and an index of local muscle endurance of the knee and elbow extensor and flexors were 

assessed at each time point. Computerized tomography (CT) scans of each of the muscle 

groups examined were used to determine the muscle cross-sectional area (mCSA). 
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Muscle biopsies were collected and analyzed to examine the percent distribution and area 

of type I and type II muscle fibers were calculated. Results from the study showed a 23.7 

– 29.8% decrease in muscle strength in the knee extensor strength, and 9 participants 

showed a reduction in elbow extension and flexion strength. Additionally, the 

participants showed a significand reduction in muscle strength at higher velocities. Local 

muscle endurance showed a decrease of 2.3% following the 12 year follow up 

assessment. mCSA was 12.5 – 16.1% ( reduced following the 12 years between testing 

sessions. The authors discovered that the loss of mCSA predicted 90% of the reduction in 

muscle strength produced at the second testing session. There was a significant reduction 

in type I fibers and capillary density following the 12 years of aging. From these results, 

the authors suggested that the mCSA was a significant contributor to the reduction in 

muscle strength associated with advancing age.  

Kent-Braun et al. (2000) 

 The main purpose of this study was to examine the effects of age and physical 

activity on muscle quality in young and older adults. Twenty three young (Males; n = 12, 

age: 33.7 ± 5.3; Females; n = 11, age: 29.4 ± 4.0) and 21 older (Males; n = 11, age: 72.2 

± 5.9; Females; n = 10, age: 73.2 ± 5.6) volunteered to participate in the study. Muscle 

size and composition was assessed with a magnetic resonance imaging (MRI) machine. 

Men possessed a larger total contractile and non-contractile composition when compared 

to women (p < 0.001 – 0.003). Younger adults possessed a larger contractile area and 

smaller non-contractile area when compared to older adults (p < 0.001). Statistical 

analysis observed a significant inverse relationship between non-contractile and physical 

activity in the older adult (r = -0.68, p < 0.01). These results suggest that the physical 
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activity levels in the older adults are related to the non-contractile components of the 

thigh. The results from this study found that older adults have a higher percentage of non-

contractile tissue and a lower muscle size compared to younger adults, suggesting that 

there is a reduction in muscle quality as a result of aging.  

Kubo et al. (2003) 

 The purpose of the study was to investigate the age-related differences in muscle 

architecture in young and older adults. Muscle architecture was examined by muscular 

ultrasound. Specifically, muscle architecture variables collected included muscle 

thickness, pennation angle and fascicle length. In the vastus lateralis, younger men had 

significantly greater absolute and relative muscle thickness compared to the older men. 

Younger adults had a significantly increased pennation angle compared to the older 

adults. Absolute fascicle length was lower in the young compared to the older men in the 

VL. Additionally, relative fascicle length was significantly longer in the older compared 

to the younger adults. The authors suggest that there is a significant effect of age on 

muscle architecture.  

Narici et al. (2003) 

 This study sought to investigate the effect of age on muscle architecture. Twenty 

healthy adult men (young: n = 14, age range: 27 – 42 years old; Older: n = 16, age range: 

70 – 81 years old) participated in this study consisting of analyzing anatomic cross-

sectional area (ACSA), muscle volume (VOL), resting muscle fascicle length (Lf), 

pennation angle (PA) and physiological muscle cross-sectional area (PCSA) of the 

gastrocnemius medialis (GM). Computerized tomography (CT) was used to measure 
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ACSA, PCSA was measured as the ratio between VOL and Lf, pennation angle and 

fascicle length were assessed with an ultrasonography machine. Results showed that there 

was a significant decrease in ACSA (19.1%, p < 0.005) and VOL (25.4%, p < 0.001) 

compared to younger adults. Additionally, Lf and PA were reduced in the older adult 

compared to the young by 10.2% (p < 0.01) and 13.2% (p < 0.01), respectively. Further 

analysis observed a significant relationship between ACSA and PA (p < 0.05) and a 

15.2% reduction in PCSA in the older adults (p < 0.05). The author suggested that the 

aging process significantly effects the muscle size and architecture. Additionally, the 

authors suggest that the reduction in the variable examined may lead to declines in 

muscle function which could lead to losses in functional ability.  

Morse et al. (2005) 

 The purpose of this study was to investigate the age-related changes in muscle 

architecture in the triceps surae (i.e. soleus, lateral and medical gastrocnemius) and the 

functional implications of the observed changes in younger and older men. Magnetic 

resonance imaging was used to examine the muscle volume of each participant. Muscle 

architecture (i.e. fascicle length and pennation angle) was assessed using a B-mode 

ultrasound machine. Statistical analysis revealed that the muscle volume of all three 

muscles were lower in the old compared to the young. Older adults possessed a 

significantly reduced pennation angle compared to the younger adults. In the older adults, 

only fascicle length was significantly shorter in the medial gastrocnemius when 

compared to the young. Physiological cross-sectional area was significantly smaller in the 

old compared to the young in the lateral and medial gastrocnemius. The authors suggest 

that the reduction in the physiological cross-sectional area (i.e. ratio of muscle volume 
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and fascicle length) is a natural mechanism for the maintenance of force per cross-

sectional area.  

Goodpaster et al. (2006) 

 The purpose of this study was to examine the are-related changes in muscle size, 

strength and quality over a 3-year longitudinal study. Body and muscle composition was 

analyzed using a DXA. Quadriceps strength and muscle quality (torque per unit of 

muscle mass) were examined isokinetically and isometrically, respectively. Strength was 

lost at a faster rate than muscle mass. Age was independently associated with strength 

decline in both men and women. Muscle quality was decreased over the three years in 

both men and women. Interestingly, there was no strength maintenance associated with 

an increase in lean mass. The authors suggest that the reduction in muscle mass is related 

to muscle strength and quality decline in older adults.  

Thom et al. (2007) 

 Refer to section 2.3 Age-Related Changes in the Force-Velocity Curve 

Hvid et al. (2010) 

 Refer to section 2.2.1 Age-Related Changes in Muscle Phenotype and Function 

Fukumoto et al. (2012) 

 The main purpose of this study was to examine the relationship between muscle 

echo intensity, muscle strength and body composition. Participants in the study ranged in 

age from 51 – 87 years old. Maximal knee extensor strength was used as muscle strength. 



69 

 

B-mode ultrasound assessments were completed to examine the muscle thickness, fat 

thickness and echo intensity of the rectus femoris. Body composition was assessed with a 

bioelectrical impedance analysis machine. EI and muscle thickness was significantly 

related to age and muscle strength. Age and BMI were also related to muscle strength. 

Further statistical analysis showed that EI and muscle thickness were independently 

related to muscle strength. Specifically, EI had a negative relationship with muscle 

strength. The authors suggest that muscle quantity and quality independently contribute 

to the age-related reduction in muscle strength and could be used to examine functional 

ability status in older adults. 

Stenroth et al. (2012) 

 This study examined the age related differences in Achilles tendon properties and 

triceps surae muscle architecture in vivo. One hundred healthy younger (n = 33; age: 24 ± 

2 years old) and older (n = 67; 75 ± 3 years old) volunteered to participate in this study. 

This study consisted of assessing Achilles tendon cross sectional area (CSA) and length, 

gastrocnemius medialis (GM) and soleus (SOL) anatomical CSA (ACSA), fascicle length 

(Fl) and pennation angle (PA) using a ultrasonographic machine. Additionally, max 

plantarflexion force was assessed. Statistical analysis observed an age related decrease in 

Achilles tendon stiffness (p < 0.01), lower muscle thickness in the SOL and GM (9%, p < 

0.05, 13%, p < 0.001), GM muscle size was 15% smaller (p < 0.01), smaller tricep surae 

muscle size (p < 0.05), shorter FL (p < 0.05) in older adults when compared to the 

younger counterparts. Plantarflexion max force was significantly associated with tendon 

stiffness (r = 0.580, p < 0.001). The authors suggest that older adult’s tendons may adapt 
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alongside the GM during the aging process. They further suggested that the tendon 

properties adapted to the reduced level of activity intensity observed in the older adults.  

Strasser et al. (2013) 

 The aim of this study was to examine the reproducibility and age differences in 

muscle size and architecture in young and older sarcopenic adults. Anthropometric, knee 

extension strength and hand grip strength measures were collected for each participant 

and used for future analysis. A 2 dimentional B-mode ultrasound was used to examine 

the muscle architecture of the rectus femoris, vastus intermedius, and vastus lateralis. 

From these images the authors analyzed the pennation angle and echo intensity of the 

muscle. Results showed that the older adults had a significantly reduced muscle strength 

and handgrip strength compared to the younger adults. All muscles assessed were thinner 

in the younger compared to the older adults. Pennation angles in the vastus lateralis were 

lower in the older adults compared to the younger adults.  Echo intensity was 

significantly greater in the old compared to the younger group. Muscle strength was 

significantly related to muscle thickness. Muscle strength was observed to be related to 

increased pennation angles in the young group. The authors suggest that the data shows 

that muscle thickness is a reliable method of monitoring sarcopenia.  

Thompson et al. (2013) 

 The purpose of this study was to examine the effects of age on maximal and rapid 

torque production. Participants were split into 3 groups; a young, middle-aged, and older 

group. Rate of torque development (RTD) was calculated in 4 different time intervals (0-

30, 0-50, 0-100 and 0-200 ms after torque onset). Additionally, relative RTD was 
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collected (10-50% of max torque) was assessed. PT, peak RTD and the later phase RTD 

(i.e. 0-100 and 0-200ms) variables were significantly reduced compared to the younger 

participants (p ≤ 0.05). Early phase RTD (i.e. 0-30 and 0-50ms) was lower for the older 

men when compared to the younger and middle aged men. Estimated thigh cross-

sectional area (eCSA) was also lower in the middle and older men compared to the 

younger adults (p = 0.001 – 0.016). The authors suggested that the reduction in eCSA and 

RTD variables observed in the older adults indicated that muscle mechanisms may be an 

important factor in the reduction in the age related declines in strength and RTD. 

Watanabe et al. (2013) 

 The purpose of this study was to examine the associations between muscle quality 

and strength in older adults. Participants in the study ranged in age from 65-91 years old. 

Echo intensity (i.e. based on the pixel intensity in the region of interest in the muscle) 

was determined based on the gray scale analysis. Maximum isometric torque of the knee 

extensors was completed to assess muscle strength. Statistical analysis showed that the 

echo intensity score was significantly related to muscle strength. Muscle thickness was 

negatively related to muscle strength. Echo intensity was shown to have a positive 

relationship with age and fat thickness. Echo intensity was negatively associated with 

muscle strength. The authors suggest that muscle quality (assessed by echo intensity) was 

independently related to muscle strength and the age-related changes in muscle quality 

(assessed by echo intensity) play a role in strength decline.  
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Nishihara et al. (2014) 

 The purpose of this study was to examine the echo intensity (EI) and motor 

functions in young and older adults. Each participant’s motor function was assessed by 

undergoing a battery of functional ability tests (i.e. normal and fast gait, TUG and 

maximum knee extension strength). Ultrasound images of the quadricep femoris (i.e. 

rectus femoris and vastus intermedius) were collected using a B-mode ultrasound 

machine. Muscle thickness and echo intensity was assessed from the same images. The 

older adults had a lower functional ability than the younger adults. The older adults also 

had a lower quadricep femoris thickness and a greater EI than the young in both rectus 

femoris and vastus intermedius. There was a significant positive correlation between 

rectus femoris thickness and muscle strength in both the young and the older adults. EI 

was negatively correlated with vastus intermedius and quadricep femoris thickness. The 

mean frequency in the region of interest (MFROI) of the rectus femoris was negatively 

correlated with quadricep femoris thickness. The authors suggest that the examination of 

the MFROI could provide valuable information about functional declines during the 

aging process.  

Rech et al. (2014) 

 Although this study did not examine the age-related differences in muscle quality, 

echo intensity and rate of torque development, the study highlights important 

relationships between skeletal muscle and rate of torque development. In this study 40 

older women volunteered to participate. This study examined muscle quality (specific 

tension = knee extensors peak torque ÷ muscle size), echo intensity (EI), muscle 
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thickness (MT), hand grip strength (HG), 30 second sit to stand test (30SS), usual gate 

speed (UGS), knee extension peak torque (PT) and rate of torque development (RTD) 

during different time frames (0-50, 0-100, 0-250, 0-300 ms). All muscle variables (i.e. EI, 

MT, CSA) were collected from the quadricep femoris using an ultrasound. Statistical 

analysis revealed a significant relationship between EI and 30SS (r = -0.505, p < 0.01), 

UGS (r = -0.347, p < 0.05) and isometric peak torque (r = -0.314, p < 0.05). Further, 

quadriceps EI was negatively associated with 30SS (r = -0.493, p < 0.01) and peak torque 

(r = -0.409, p < 0.01). However, the EI of the quadriceps femoris was found to be 

significantly related to RTD 0-100, 250, and 300 time frames. This suggests that the 

morphological characteristics may play an increased role in the later phases on the RTD 

contraction in the older adults. The authors suggested that EI might be a significant 

characteristic in functional performance and RTD in older adults. 

Wilhelm et al. (2014) 

 Similar to the previous study by Rech et al. (2014), this study examined the 

relationships between morphological characteristics and RTD in the older adult 

population. Although this does not describe any age-related changes, it does however 

provide evidence about how the morphological characteristics effect RTD and functional 

performance. Specifically, the authors examined the effects of whole quadriceps echo 

intensity (EI) on muscle power, strength and function. Fifty sedentary older men (age: 

66.1 ± 4.5 years) volunteered to participate in this study. The quadricepts echo intensity 

(QEI), knee extension one repetition maximum (1RM), peak isometric knee extension 

torque (PT), rate of torque development during 0-50 (RTD0-50) and 0-200 (RTD0-200) ms 

(RTD), muscle power (MP), 30 second sit to stand functional assessment (30SS), and 
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countermovement jump performance (CMJ) were collected and analyzed. Statistical 

analysis revealed that QEI was significantly related with 1RM (r = -0.657, p < 0.05), PT(r 

= -0.628, p < 0.05), RTD0-50 (r = -0.320, p < 0.05), and RTD0-200 (r = -0.501, p < 0.05). 

Specifically, QEI was more related to the later time point than the early RTD time point. 

The authors suggested that muscle EI may be a significant component on functional 

ability and muscular performance.  

   Fukumoto et al. (2015) 

 The purpose of this study was to examine the age-related changes in muscle 

quality in women. Muscle thickness and echo intensity were examined in the biceps 

brachii, quadriceps femoris, rectus abdominus external oblique, internal oblique and 

transversus abdominis by transverse ultrasound imaging. Specifically, the young-old (i.e. 

65-74 years old) and the old-old (i.e. 75-92 years old) had significantly thinner quadricep 

femoris values compared to the younger group. The old-old group possessed significantly 

thinner quadricep femoris values than the middle-aged group (p < 53-64). The younger 

group had significantly lower echo intensity scores compared to the middle, young-old, 

and old-old groups. The authors suggest that the data presented indicate that declines in 

muscle quality may occur prior to reductions in muscle quantity.  

Wu et al. (2016) 

 Refer to section 2.1.3 Age-related Changes in Voluntary Muscle Activation 

Gerstner et al. (2017a) 

 Refer to section 2.1.3 Age-related Changes in Voluntary Muscle Activation 
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Magrini et al. (2018) 

 The purpose of this study was to investigate the age-related differences in muscle 

size and strength, specific tension, echo intensity and functional performance in 

physically active younger and older adults. Additionally, the authors examined the age 

differences between the same variables listed above. Maximal isometric muscle strength 

(MVIC), a maximal functional ability test (i.e. maximal one repetition sit to stand test), 

muscle cross-sectional area (mCSA), specific strength (i.e. strength per unit of muscle 

mass), and muscle quality of the rectus femoris were collected and used for analysis. 

Statistical analysis revealed that MVIC was significantly related to mCSA in the older 

women. Additionally, there was a significant association between specific strength and 

echo intensity in the older adults and not in the younger adults. The authors suggested 

that the physical activity observed in the older adults may have maintained specific 

muscle strength (i.e. strength per unit of muscle mass). The authors go on to suggest that 

the significant relationship between specific strength and echo intensity in the older 

adults, but not in the younger adults, suggest that muscle quality assessed by echo 

intensity may be a more beneficial muscle quality test in the older than younger adults. 

2.2.3 Summary of the Contractile Determinants of the Rate of Force Development 

Previous research has shown that intrinsic contractile, fiber content and 

morphological variables significantly influence RFD (Gerstner et al. 2017a; Hakkinen et 

al. 1996; McPhee et al. 2018). One explanation for this relationship is that the later phase 

of a maximal voluntary RFD contraction is dependent on the contractile variables in the 

muscle. Specifically, muscle size and muscle strength has been shown to be highly 
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related, however maximal strength does not occur until well after 200ms from contraction 

onset (Aagaard et al. 2002; Andersen and Aagaard 2006; Hakkinen et al. 1998). Once the 

muscle is activated, it relies on the intrinsic contractile properties to produce force. 

However, with advancing age, these intrinsic contractile properties have been shown to 

degrade leading to a reduced RFD.  

The aging process has been associated with a reduction in muscle mass and 

function, which is partially due to the age related remodeling process (Frontera et al. 

2000; Lexell et al. 1988). Previous research has shown that older adults tend to lose 

powerful type II muscle fibers with advancing age (Larsson et al. 1979; Lexell and 

Downham 1991; Lexell et al. 1988). The reduction in type II muscle fibers has been 

associated with a reduction in muscle size, quality, strength, and power and contraction 

velocity (Larsson et al. 1979). The percentage of type II muscle fibers in a muscle is 

positively associated with maximal strength and RFD capabilities (Nilwik et al. 2013; 

Power et al. 2016b). Muscle fiber type has been associated with the rapid rise in force 

during a maximal RFD contraction (Hvid et al. 2010), therefore a reduction in the 

proportion of type II muscle fibers will have a significant effect on RFD.  

 In addition to the change in muscle fiber composition and organization, aging has 

been shown to influence the contractile properties in the muscle (Andersen and Aagaard 

2006). Directly simulating the motor nerve can provide valuable information about the 

contractile properties of the muscle without the influence of voluntary neural activation. 

Older adults have been shown to produce a greater force at lower evoked intensities 

(Baudry et al. 2005). However, the RFD achieved during an evoked contraction has been 

shown to be lower in the old than the young indicating significant reductions in the 
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contractile speed of the muscle (D'Antona et al. 2003; Hakkinen et al. 1995). Older adults 

also have a prolonged twitch duration and reduced relaxation time compared to younger 

individuals (Cannon et al. 2008; Mau-Moeller et al. 2013), further suggesting that older 

adult contractile properties are effected by the remodeling process (Connelly et al. 1999; 

Scaglioni et al. 2003). The increased force production per motor unit activated, increased 

contraction time and rate of half relaxation time has been suggested as a compensatory 

mechanism to counteract the decline in type II muscle fibers and to achieve required 

levels of force during the aging process (Cannon et al. 2008). 

Both the fiber type proportion and the intrinsic contractile properties of skeletal 

muscle play a significant role in the RFD contractions, however, the morphological and 

architectural structure of the muscle also plays a part in the development of force 

(Gerstner et al. 2017a; Roos et al. 1999; Strasser et al. 2013; Thom et al. 2007; Thompson 

et al. 2013; Wu et al. 2016). Muscle size and quality have been shown to be related to 

strength and RFD capabilities in the older adult populations (Fukumoto et al. 2012; 

Hakkinen and Hakkinen 1991; Kent-Braun et al. 2000; Kubo et al. 2003; Nishihara et al. 

2014; Stenroth et al. 2012; Watanabe et al. 2013). Specifically, older adults have been 

shown to have a lower amount of muscle mass and muscle quality, which is undoubtedly 

due to the remodeling process associated with advancing age (Goodpaster et al. 2006; 

Rech et al. 2014). Muscle size and quality are both negatively correlated with the RFD 

production and functional ability in older adults (Fukumoto et al. 2015; Magrini et al. 

2018; Rech et al. 2014; Wilhelm et al. 2014). Additionally, previous research has 

observed a smaller pennation angle and fascicle length in the older population was 

significantly related to RFD capabilities (Morse et al. 2005; Narici et al. 2003; Stenroth et 
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al. 2012), however other investigations only report a significant reduction in pennation 

angle and no age differences in fascicle length (Gerstner et al. 2017a).  

2.3 Age-Related Changes in the Force-Velocity Curve 

Harries and Bassey (1990) 

 The purpose of this study was to examine the relationship between muscle 

strength and movement velocity in a knee extension movement in young and older 

women. Seven different movement velocities were examined from 0 rad∕s-1 to 300 rad∕s-1. 

Maximum torque was examined at each movement velocity and used for statistical 

analysis. The younger adults were significantly stronger at every movement velocity 

compared to the older adults. As velocity increased torque decreased in a similar fashion, 

however the degree of decline was faster for the older adults compared to the younger 

adults. Average torque produced at the fastest angular velocity was significantly lower in 

the older group compared to the younger group. Additional analysis revealed that the 

influence of angular velocity on torque production was significantly different between 

age groups. The authors suggest that these data indicate that older women may be limited 

by their ability to produce force rapidly. Further, the authors suggest that the reduction in 

physical activity may lead to the reduction of high threshold motor units which may be an 

important factor contributing to the reduction in torque at high velocities.   

Lanza et al. (2003) 

 The purpose of this study was to examine the age comparison of torque 

production during isokinetic contractions and the torque-velocity and power-velocity 

relationships in the ankle dorsiflexors and knee extensors in younger and older adults. 
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Isometric knee extension and ankle dorsiflexion was assessed to determine muscle 

strength. During the isovelocity contractions each participant performed a series of 

contractions from 30°/s - 240°/s for the dorsiflexors and 60°/s - 400°/s for the knee 

extensors. Torque produced at peak isovelocity was used for statistical analysis. 

Statistical analysis revealed that younger adults produced significantly more isometric 

torque compared to the older adults in both the knee extensors and ankle dorsiflexors. 

Some participants in the older groups were unable to reach the target velocity, thus not 

producing any torque. This was especially relevant during the high velocity knee 

extension ~270°/s and ~ 210°/s. Young were able to reach target velocity faster than the 

older group. Across all velocities, the older adults produced less torque than the younger 

adults. Normalized torque developed at isovelocities (normalized to max strength), the 

older adults produce lower torque at all velocities compared to the younger adults. 

Specifically, at the highest velocity achieved, the older adults produced less torque than 

the younger adults. Further, older adults had an impaired ability to produce power at 

higher velocities when compared to the younger adults in the knee extensors. At the 

highest velocity achieved, the power produced was significantly lower in the older adults 

compared to the younger adults. The authors suggest that these data provide valuable 

information about the reduced capacity to produce torque and power at high velocities in 

older adults. The authors suggest that the results may be due to the reduction in the 

contractile properties due to the aging process. 

Petrella et al. (2007) 

 The purpose of this study was to examine the influence of age on the determinants 

of the force-velocity curve in younger and older adults. Body composition was assessed 
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using DXA and thigh lean mass was collected and used to determine specific strength and 

power. Each participant’s one repetition maximum load was determined and used to 

calculate the required loads that needed to be lifted for the load-power and load-velocity 

assessments. Muscle activation was assessed using EMG RMS at a specific knee angle 

during a sit-to-stand task. The EMG RMS was normalized to EMG RMS collected during 

the isometric strength testing. One repetition max strength, specific strength increased 

from week one to week 8 in both young and older adults. In the older adults, neural 

activation was significantly lower during the sit-to-stand task at week 8 compared to 

baseline. The load-power curve improved in the old and young group at week 8, and peak 

concentric velocity improved in the older adults. Interestingly, after the training protocol, 

there was no significant difference between the young and older adults in movement 

velocity at any load. The authors suggest that these results provide evidence that training 

at high velocities can lead to neuromuscular adaptations in older adults. These changes 

could be observed as early as 8 weeks of resistance training. 

Thom et al. (2007) 

 The purpose of this study was to examine the influence of muscle architecture on 

the age-related differences in torque-velocity and power-velocity relationships of the 

plantarflexors in the younger and older adult men. Muscle volume was assessed by 

magnetic resonance imaging. Muscle strength was measured isometrically and 

isokinetically. Muscle architecture was assessed by examining ultrasound images and 

analyzing the fascicle length. The physiological cross-sectional area (PCSA) was 

determined by the ratio between muscle volume and fascicle length. Results of the study 

showed that older adults possessed a lower muscle volume, smaller fascicle length and 
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smaller PCSA compared to the younger participants. Isometric strength and shortening 

velocity of the younger adults was greater than that of the older adults. The older adult 

produced significantly lower torque at all contraction velocities. The torque-velocity plots 

were significantly shifted to the left (i.e. lower torque at specific velocity) compared to 

the younger adults. Absolut peak power and optimum velocity at peak power were lower 

in the older adults. When peak power was normalized to muscle volume, the younger 

adults produced 72% higher peak power compared to the older adults. When torque was 

normalized to PCSA, older adults still produced less torque compared to the younger 

adults. When normalized to fascicle length max velocity produced by the older adults was 

~77% of the max velocity produced by the younger adults. Further analysis revealed that 

fascicle length accounted for less than 20% of the difference between young and older 

max velocity production. The authors suggest that muscle architecture is an important 

component in the torque- and power-velocity curves in the older adults. The authors also 

indicate that the intrinsic muscular properties may influence power production in the 

older adults.  

Yamauchi et al. (2010) 

 The purpose of this investigation was to examine the age-related difference in 

maximum force, unloaded velocity and power production in the leg muscles in young and 

older adults. Participants of the study ranged in ages from 18 – 82 years old. Muscle 

function was examined using a isokinetic dynamometer let press. The participants were 

instructed to press the force plate away from the starting position to full extension as fast 

and strong as possible. In order to examine the force velocity relationships, the 

dynamometer was set in an isotonic mode and the participant pressed against it to 
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examine the force power relationship. Results of the study show that there was a 

significant negative relationship between age and max force production. When max force 

was normalized to body weight, the negative correlations between age and max force 

increased. Max velocity nor normalized max velocity with body weight was not 

correlated with age. Max power and normalized max power to body weight was 

negatively related to age and was seen to decline with advancing age. The authors 

suggested that these data presented displayed a significant reduction in the force-

generating ability with advancing age. However, there was no age-related reduction in 

muscle shortening velocity. The authors suggest that the reduction in the force generating 

ability in the muscles could lead to the reduction in muscular power production 

associated with the aging process.  

Callahan and Kent-Braun (2011) 

 The main purpose of the study was to examine the age differences in and 

contributions of the force-velocity curve and the ability to maintain force during a 

fatiguing task in younger and older women. Maximal strength was assessed isometrically 

and dynamically. Voluntary activation was assessed by the interpolated twitch protocol to 

examine the central voluntary activation. Magnetic resonance imaging was used to 

determine the quadricep cross-sectional area (CSA). Peak strength was normalized to 

CSA to provide a relative strength value. Statistical analysis revealed that the older adults 

produced significantly less isometric torque compared to the younger adults. 

Additionally, the older adults were able to produce significantly less torque during the 

dynamic force-velocity assessment at each force increment. Specifically, there was a 

progressively increased decline in torque as velocity increased in the older adults. The 
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stimulated rate of torque development was not significantly different between age groups, 

however the half relaxation time was slower in the older adults. CSA was highly 

correlated with muscle strength in both age groups. However, CSA was not significantly 

related to the torque production during the dynamic contractions. The authors suggest 

that other physiological factors may be more important to the production of dynamic 

torque at high velocities.   

Pojednic et al. (2012) 

 The purpose of this study was to investigate the age-related relative importance of 

force- and velocity-based measures of muscle performance could explain power 

production in middle, healthy old and older mobility limited adults. Torque and power 

were assessed using an isokinetic dynamometer. The stair climb and chair rise functional 

assessments were used to examine functional ability. Computed tomography (CT) was 

used to examine the cross-sectional area (CSA) if the thigh. Results show that in the 

middle-aged adults, torque, not velocity, was positively associated with power 

production. In the older healthy adults, torque and velocity were associated with power. 

In the older mobility limited adults, velocity was associated with power production, not 

torque. Velocity production accounted for the chair rise and stair climb inter-individual 

variability across all subjects. Velocity production was only associated with chair rise 

performance in the older mobility limited older adults. The authors suggest that the data 

presented in the article indicates that velocity is an important determinant of power 

production. Further, the authors suggest that the neural and muscular mechanisms needed 

for velocity production may be compromised to a greater degree than those of force 

production.   
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Jenkins et al. (2015a) 

 The purpose of this study was to investigate torque, power, rate of velocity 

development and muscle activation during isometric and dynamic knee extension tasks in 

younger and older adults. Further, the authors intended to examine the effects of 

normalization on peak torque, rate of velocity development, and EMG amplitude in the 

vastus lateralis and rectus femoris muscles during isokinetic knee extension at 1.05 and 

3.14 rad·s-1.  Additionally, the authors sought to examine the percent decrease or increase 

in peak torque or mean power, respectively. Statistical analysis revealed that isometric 

peak torque was lower in the older compared to the younger adults. Additionally, peak 

torque was lower in both isokinetic velocities compared to the younger adults. The 

percent decrease of peak torque was greater in the older adults compared to the younger 

adults from 1.05 to 3.14 rad·s-1. Absolute mean power was greater in the younger at 1.05 

and 3.14 rad·s-1. Additionally, when mean power was normalized, the percent increase in 

mean power from 1.05 to 3.14 rad·s-1 was greater in the young compared to the older 

adults. EMG was greater during the isometric knee extension in the young compared to 

the older adults. The authors suggested that when peak torque and mean power were 

normalized to max strength, there were no more age differences. However, there still was 

significant differences in torque- and power-velocity relationships between the young and 

the older adults. The authors go on to suggest that there may be other physiological 

determinants to explain the magnitude of the percent differences.  
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Alcazar et al. (2017) 

 The purpose of this study was to investigate the reliability of force-velocity 

testing in the older adult population. The force velocity assessment began by instructing 

the participants to lift 40% of their body weight as fast as possible on a leg press 

machine. The load was then increased in 5 kg increments until the participant was unable 

to move the weight.  The velocity was recorded during each maximal effort contraction. 

The highest mean velocity was recorded for each of the repetitions. Additionally, 2 sets 

of three repetitions were performed at 60% of the max value. This was done to examine 

the reliability of power production. Results of the study showed that there was a 

significant relationship in force and velocity in all of the older participants. Max power 

was shown to explain a moderate amount of functional ability variability in the older 

adults. The results indicated that force-velocity assessments were reliable in the older 

populations.  

Alcazar et al. (2018) 

 The purpose of this investigation was to examine the force-velocity profile, 

muscle power, mental and physical function and quality of life in the older adults. 

Additionally, the authors examined the underlying mechanisms of the force velocity 

profile that may lead to a reduction in muscle power. Each participant performed a series 

of functional ability, mental and quality of life tests. Maximum power was assessed on a 

leg press machine. Muscle composition was assessed by the use of DXA. The study 

examined if force or velocity was the limiting factor in the production of power during 

the leg press exercise and determined that a reduction of either force production or 
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velocity production would lead to a reduction in maximum power. Results showed that 

relative max power was significantly related to physical function and health related 

quality of life score. Absolute max power was associated with cognitive function and 

frailty. Although, the authors observed force and velocity deficits in the participants, 

neither force nor velocity produced a significant reduction in max power production. 

However, when compared to the non-deficit group, the velocity and force deficit groups 

showed a significant harmful effect on maximum power. Additionally, when compared to 

the non-deficit group, the force and velocity deficit groups scored lower in physical 

functioning, health related quality of life and higher frailty scores. The main underlying 

mechanisms for the force deficit group were skeletal muscle mass and specific force (i.e. 

force produced per unit of muscle mass). However, there were no significant 

relationships between muscle mass and the velocity deficit group. The authors suggest 

that the results of the study indicate that muscle power deficits are caused by reductions 

in either force or velocity, and deficits in force or velocity were associated with lower 

cognitive, functional and physical quality.  

2.3.1 Summary of Age-Related Changes in the Force-Velocity Curve 

 As previously discussed, aging is associated with significant alterations in the 

neural and muscular systems leading to a reduction in force, velocity and power 

production (Harries and Bassey 1990). Because of these physiological changes observed 

during the aging process, previous research has shown an alteration in the force-velocity 

relationship in older adults (Alcazar et al. 2017; Alcazar et al. 2018; Callahan and Kent-

Braun 2011; Jenkins et al. 2015a; Lanza et al. 2003; Petrella et al. 2007; Pojednic et al. 

2012; Thom et al. 2007; Yamauchi et al. 2010). Muscle power has been shown to 
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decrease at a faster rate than just muscle strength along (Izquierdo et al. 1999). Therefore, 

it would be logical to examine the components that create power (i.e. force x velocity) 

(Alcazar et al. 2018).  

 Previous research shown that the force-velocity relationship shifts downward and 

to the left during the aging process (Lanza et al. 2003). Movement velocity between the 

young and the older adults have been shown to be significantly different (Jenkins et al. 

2014; Lanza et al. 2003; Pojednic et al. 2012). Specifically, at low isokinetic speeds, 

older adults are unable to produce the same amount of torque as their younger 

counterparts (Thom et al. 2007). The decline in torque production is even higher at high 

velocities, in fact some older adults are unable to move fast enough to produce torque 

(Frontera et al. 2000; Lanza et al. 2003). These observations in the older adults suggests 

that some age-related physiological mechanisms (i.e. contractile or neural) that may be 

limiting the torque production. Even though normalization can eliminate the age 

differences in strength and power production, Jenkins et al. (2015a)observed significant 

age differences in the magnitude of decline in strength and power production at each 

velocity tested between the young and older adults. This result could be due to the shift in 

fast twitch to slow twitch muscle fibers leading to a reduction in torque and power. 

 However, the specific contributions of force or velocity to the production of 

power are disputed (Pojednic et al. 2012; Yamauchi et al. 2010). Recently, Alcazar 

examined the reliability of an individualized force velocity profile in the older adults and 

found that it is an efficient method to determine either force or velocity deficits (Alcazar 

et al. 2017). Previous research has suggested that power production is dependent on the 

velocity characteristics of the muscles. On the other hand, others have suggested that 
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force is the limiting factor in power production in older adults. To end the dispute, 

Alcazar et al. (2018) found that deficits in either force or velocity can contribute to the 

reduction in power. However, an individualized force-velocity profile could be extremely 

beneficial to developing more efficient exercise programs aimed at improving power and, 

as a result, functional ability (Alcazar et al. 2018). 
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CHAPTER III 
 

 

METHODOLOGY 

 

3.1 Participants 

 Twenty young (18-35 yr old) and 17 older (65+ yr old) men volunteered for this 

investigation. All participants were independent and community dwelling individuals 

who were able to visit the laboratory for each testing session. This study was approved by 

the Oklahoma State University Institutional review board for human participant research. 

Prior to any testing, all participants completed an informed consent, pre-exercise health 

and exercise status survey. Further, participants completed a customized physical activity 

questionnaire to quantify what physical activities the participant engages in and the 

frequency of participation in those activities. Participants included in the study were free 

from any musculoskeletal dysfunctions or circulatory/edema pathologies involving the 

hip, knee, or ankle joints. Additionally, participants were free from any neurological 

disorders. All musculoskeletal and neurological disorders were self-reported. 
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3.2 Research Design 

 The study consisted of 3 separate visits to the lab each lasting approximately 90 

minutes. Each session was separated by at least 48 hrs within 7 ± 2 days. Participants 

were instructed to refrain from any lower body exercise 24-36 hours prior to each testing 

session. On the first visit, following the informed consent and completion of the required 

paperwork, each participant will complete a short familiarization session consisting of all 

of the movements required during that testing session. Then the participant completed the 

motor unit number estimation (MUNE) and evoked twitch assessments of the quadriceps 

muscle group. Then the participant’s motor nerve function was assessed. Following the 

MUNE, evoked twitch, and motor nerve assessments, participants performed a series of 

maximal voluntary isometric contraction (MVIC) and rapid (rMVIC) knee extensions. 

The muscles that were examined were the vastus lateralis (VL), rectus femoris (RF), and 

the vastus medialis (VM) on the right leg. On the second visit, participants completed a 

one repetition maximum (1RM) unilateral knee extension assessment on the right leg 

where the load that was lifted was adjusted in ~10 lb increments until a maximum load is 

reached.  On the third visit, ultrasound (US) assessments were performed to quantify the 

muscle size, quality and architecture. Following the US assessments, the participant’s 

height, and weight was measured. Following the anthropometric testing, participants 

completed an isokinetic assessment on the right leg. Below is a summary of each visit: 

1. First Visit (in order): 

a. Familiarization session 

i. Practice each movement required in the session 

b. MUNE and Evoked Twitch assessments 
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c. Motor nerve function 

d. Three MVIC knee extensions 

e. Three rMVIC knee extensions 

2. Second Visit (in order):  

a. 1 RM testing with load-controlled torque velocity curve 

3. Third Visit (in order): 

a. US assessment  

b. Height and weight 

c. Isokinetic 1RM knee extension 

3.3 Instrumentation and Procedures 

3.3.1 Ultrasonography 

 Ultrasound (US) images of the right thigh muscles including the vastus medialis 

(VM), rectus femoris (RF) and vastus lateralis (VL) muscles was obtained using a 

diagnostic US imaging device (GE Logic S8, Milwaukee, WI, USA) with a linear array 

probe (model ML6-15-D, 4-15 MHz, 50-mm field view). Participants were instructed to 

lay supine and on their left side on an adjustable padded plinth with their legs completely 

relaxed and knees bent at approximately 10°. Participants were required to rest for 5 

minutes prior to the collection of the US images. Panoramic US images of the right VM, 

RF, and VL were taken at 80%, 50% and 50% of the distance between the right anterior 

superior iliac spine (ASIS) and the medial femoral epicondyle, superior portion of the 

patella and lateral femoral epicondyle, respectively. During each panoramic US scan, the 

investigator placed the probe perpendicular to the skin and advanced the probe laterally 

along the skin above the muscles in a slow, consistent manner. During each scan, great 
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care was taken to limit muscle compression beneath the probe. A generous amount of 

water-soluble transmission gel was applied to the skin to enhance acoustic coupling 

(Wilhelm et al. 2014). Muscle cross-sectional area (mCSA) and echo intensity (EI) were 

optimized for image quality using musculoskeletal mode prior to all image acquisitions 

using a gain of 50 dB and a frequency of 12Hz. Depth was constant between each 

participants and muscles to keep the pixels per cm standard between participants. 

Panoramic US images were captured until two uniform scans with acceptable image 

quality were collected (Jenkins et al. 2015b). Additionally, panoramic US images of 

muscle architecture were collected. The US probe was placed on the skin in a similar 

fashion as the mCSA and EI measurement, however, the probe was oriented in line with 

the femur. Pennation angle (PA) of the VL was determined as the angle between the 

fascicle and the deep aponeuroses (Franchi et al. 2015). The US settings will be held 

constant between participants. 

 One investigator (M.A.M.) performed all US scans. US image analysis was 

performed using Image-J software (National Institutes of Health, USA, Version 1.50i). 

Each image was individually calibrated from pixels to cm using the straight-line function 

in image-J. mCSA and EI of each of the quadriceps muscles (i.e., VL, RF, and VM) for 

the two images were analyzed by defining a region of interest that included as much 

muscle as possible, without including any bone or fascia, using the polygon function in 

the image-J software. EI was determined using computer-aided gray scale analysis using 

the standard histogram function and was measured in arbitrary units (au) with values 

ranging from 0 (black) to 255 (white). mCSA, EI, and VL PA values will be recorded, 

averaged and used for further analysis. 
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 The muscle mCSA for each of the quadriceps muscle were added together to 

create a composite mCSA (PmCSA) that was used for further analysis. Additionally, 

muscle quality (MQEI) was determined as a weighted value that took into account mCSA 

and EI of each muscle assessed. MQEI was determined as a weighted value by calculating 

the relative contribution of each muscle (VL, RF, VM) to the total quadricep mCSA and 

multiplying each muscle’s mCSA by the same muscle’s EI (Jenkins et al. 2018). The 

formula is below:  

���� = �� �	 ��
�
��������� ��
�� � �	 ��� + �� �� ��
�

��������� ��
�� � �� ���

+ �� �� ��
�
��������� ��
�� � �� ��� 

 

 Finally, a total mCSA (TmCSA) that accounted for each muscle’s EI (i.e., VL, 

RF, VM) was calculated by dividing the PmCSA and the MQEI. This, in theory, provides 

a better measure of muscle size accounting for the EI assessed physiological variables.  

3.3.2 Electromyography 

 Surface electromyographic (EMG) signals were collected from the VL, RF, and 

VM muscles using a signal acquisition system (MP150WSW, Biopac Systems, Inc.; 

Santa Barbara, CA, USA). In an effort to minimize skin impedance and optimize signal 

quality, the skin was shaved, abraded and cleansed with isopropyl alcohol prior to the 

placement of the surface electrodes (Beck and Housh 2008). Two pre-gelled surface 

electrodes (Ambu A/S, Baltorpbakken, Denmark) were placed on the skin directly over 

the muscle belly in line with the muscle fiber orientation in a bipolar fashion (Lieber and 
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Friden 2000) on each muscle. The surface electrodes were placed at a standardized 

percentage of thigh length from the anterior superior iliac spine (ASIS) to the knee joint 

space (VL: 66%, RF 50%, VM: 80%) to avoid the innervation zone of the each of the 

muscles (Hermens et al. 1999).  A reference electrode was placed on the center of the 

patella of the same limb.  

3.3.3 Voluntary Maximal Strength Assessment 

 For all voluntary isometric testing, participants were seated with straps securing 

the trunk, hips and left thigh on a calibrated isokinetic dynamometer (Biodex system 3; 

Biodex Medical Systems, Inc. Shurley, NY, USA). The participant’s lower right leg was 

secured to the dynamometer lever arm approximately 1 inch above the lateral malleolus. 

The axis of rotation of the dynamometer head was aligned with the lateral epicondyle of 

the right femur. Each participant’s hip angle was held constant at 120° between the thigh 

and the trunk. The lower leg was positioned at 90° of knee flexion. Participants warmed-

up by performing 2, 3 second contractions at 50% and 75% of their perceived effort with 

30 seconds of rest between contractions. Following the warm up and 2 minutes of rest, 2, 

3-4 second maximal voluntary isometric contractions (MVIC) of the knee extensors were 

performed and recorded with 2 minutes of rest between each contraction. For each MVIC 

contraction, the participants were instructed to kick out “as hard as possible” for the full 

3-4 second contraction. Max voluntary torque (MVT) was defined as the highest average 

instantaneous torque produced during any of the MVIC contractions.  
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3.3.4 Voluntary Rapid Strength Assessment 

Following the MVIC contractions and a 5 minute rest period, 2 rapid maximal 

voluntary isometric contractions (rMVIC) were performed separated by 1 minute of rest 

to reduce the effect of fatigue on performance. During the rMVIC, the participant was 

instructed to kick out “as hard and as fast as possible” and hold the contraction for 

approximately 3 seconds. The peak torque produced during the rMVIC was defined as 

the highest average instantaneous torque produced during the rapid maximal voluntary 

contraction (rMVT). Torque and EMG measurements were collected simultaneously and 

were averaged across the two rMVIC contractions. Torque was measured at 50, 100, 150, 

and 200 ms from onset of torque. The RTD during each of these time periods was defined 

as the change in torque divided by the change in time (Δtorque/Δtime). RTD was 

measured at seperate, consecutive 50 ms time windows following the onset of torque, 0-

50 (RTD0-50), 50-100 (RTD50-100), 100-150 (RTD100-150), and 150-200 (RTD150-200). The 

RTD was expressed in absolute terms. The EMG RMS was collected during each rMVIC 

contraction in consecutive 50ms time windows from EMG onset. Additionally, the rate of 

muscle activation (RER) was examined during the first 50 ms of each rMVIC and 

averaged between contractions. EMG measurements were normalized to M-wave and 

were expressed as a percentage of maximal muscle activation (%Mpp). Additionally, 

electromechanical delay (EMD) was assessed from the time difference from the onset of 

EMG to the onset of torque. For all MVIC and rMVIC contractions, participants were 

instructed to avoid any countermovement prior to the maximal effort voluntary 

contractions. If the torque produced during the second knee extension for both the MVIC 

and rMVIC was 10% higher than the first contraction, a third contraction were 
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completed. The two most similar, and best contractions were used for further analysis. 

However, none of the participants needed completed more than two attempts for each 

contraction. 

3.3.5 Motor Unit Number Estimation and Electrically Evoked Twitches  

Motor unit number estimation (MUNE) was collected using the incremental 

method. This method examines MUNE by obtaining the maximal compound muscle 

action potential (CMAP) and a single motor unit potential (SMUP) (McComas et al. 

1971; McComas et al. 1993). MUNE was quantified by dividing the maximal CMAP by 

the size of the mean surface-recorded SMUP. Formula is presented below: 

���� = �����

���� 

To collect each of these variables, transcutaneous electrical stimuli was delivered 

via a cathode-anode arrangement using high voltage (maximal voltage = 100 mA) 

stimulus from a constant-current electrical stimulation cart (Cadwell Sierra Summit, 

Cadwell Industries, Inc., Kennewick, WA, USA). The cathode probe (Cadwell 

Stimtroller Plus, Cadwell Industries, Inc., Kennewick, WA, USA) was pressed into the 

femoral triangle over the femoral nerve and the anode was a disposable surface electrode 

(40 x50mm, Technomed Medical Accessories, Amerikalaan 71, Netherlands) fixed over 

the right greater trochanter. Recording electrode (20x27mm, Cadwell Industries, Inc., 

Kennewick, WA, USA) was placed next to the surface EMG sensors (66% of the distance 

between the ASIS and lateral femoral epicondyle). The reference and the ground 

electrodes were placed on the quadriceps tendon and on the medial malleolus, 

respectively. The optimal stimulation probe position was determined by delivering single 



97 

 

low-voltage exploratory stimuli (20-30 mV) with the cathode probe. Probe location was 

selected based on visual inspection of the twitch force and the CMAP amplitudes. Once 

the optimal probe position was attained, the spot was marked and was used for all motor 

evoked twitches. The MUNE protocol consisted of several submaximal manual step-wise 

increases in stimulation from baseline (no M-wave produced). Any similar M-waves, 

indicative of alternation, were deleted from analysis using a cross-correlation of the 

difference between the current stimulation and the previous stimulation. Each stimulation 

was administered every 15 seconds to ensure neuromuscular recovery. MUNE was 

derived by the software included with the stimulation cart using the equation provided 

above. The CMAP, SMUP and MUNE values will be presented on the monitor and 

recorded.  

Following the MUNE protocol, additional step-wise increases in a single stimulus 

(a single square wave impulse) stimulation were delivered from baseline (no M-wave) 

until M-wave reaches a plateau. During each of the step-wise increases in electrical 

stimulation, torque, and EMG were simultaneously collected and recorded. Once the M-

wave plateau was achieved, two supramaximal single electrical (i.e. 120% of maximal 

M-wave stimulation, single square wave impulse at 100 Hz) stimulations were 

administered. The last maximal evoked twitch was used to examine the peak twitch 

torque (SGL PTT), rate of torque development during the first 50 ms of torque response 

(SGL RTD0-50), peak rate of relaxation (SGL pRR), and EMD (SGL EMD) of the 

quadriceps muscles. SGL PTT was defined as the highest torque achieved following 

torque onset and was examined as absolute (Nm) and relative to MVT (%MVT). SGL 

RTD0-50 was defined as the slope of torque production for the first 50 ms following torque 
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onset and was examined in absolute (Nm·s-1) and relative (nSGL0-50) to the single peak 

twitch torque (% PTT). The SGL pRR was defined as the steepest negative 50 ms slope 

following PTT and was examined in absolute (Nm·s-1) and relative (nSGL pRR) to single 

peak twitch torque (% PTT).  

Following the single step-wise increases in stimulation and short rest period, an 

additional two evoked contractions were administered with a doublet stimulus (200 ms 

duration square-wave impulse at 100 mA) to examine maximal muscle activation and 

maximal twitch torque. The mean M-wave peak-to-peak (Mpp) amplitude of the two 

stimulations was defined as the maximal M-wave (Mmax). Mmax was used for the 

normalization of the voluntary EMG variables. Variables collected from the doublet 

stimulations included the peak doublet torque (DBL PTT), doublet rate of torque 

development for the first 50 ms (DBL RTD0-50), and doublet peak relaxation rate (DBL 

pRR). The DBL PTT, DBL RTD0-50, and DBL pRR were analyzed the same as the singlet 

twitches. The doublet twitch responses were examined in absolute (Nm) and a 

normalized ratio of PTT to MVT (nDBL PTT). For DBL RTD0-50 and DBL pRR, the 

variables were expressed in absolute (Nm) and relative (nDBL RTD0-50 and nDBL pRR) 

to peak twitch torque (% PTT). The ratio of PTT and MVT in the nSGL PTT and nDBL 

PTT was used to isolate and examine the peripheral properties of the quadriceps muscle 

groups without central nervous system influence (Jenkins et al. 2017). 

3.3.6 One Repetition Maximum Assessments and Torque-Velocity Curves 

Each participant completed a 1 repetition maximum (1RM) knee extension on a 

calibrated isokinetic dynamometer set in isotonic mode. The participant was seated in the 

machine with their waist and torso secured to the seat and their knee flexed to 90°. From 
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this position, the participant was instructed to kick out against the padded lever arm of the 

dynamometer “as hard and as fast” as they can until the participant reaches the top of the 

range of motion (180° of knee extension). The weight was increased in a step-wise 

fashion from a low load (~20 lbs) to a maximal load where the participant is unable to 

extend the leg to the top of the range of motion. Each contraction was separated by a 2 

minute rest period to prevent the effect of fatigue on performance. The velocity produced 

during at each load was collected from the calibrated isokinetic dynamometer. Each 

participant continued the stepwise increase in load until they were unable to complete the 

full range of motion.   

Once a maximal load is achieved, a force-controlled torque-velocity curve was 

completed where each participant performed 4 different knee extensions with different 

loads. Participants were be instructed to lift a randomly assigned load “as fast and as 

hard” as they can at 5 different intensities (20%, 40%, 60%, 80%, and 100%) relative to 

the previously determined 1RM. The torque (Nm) and velocity (Deg/s) was collected 

from a calibrated isokinetic dynamometer set in isotonic mode.  

On a different testing session, a velocity-controlled torque-velocity curve was also 

be collected. Participants completed 4 different speeds of isokinetic knee extensions with 

two minutes of rest between each repetition on the same calibrated isokinetic 

dynamometer. Participant’s knee angle was positioned at 90° and strapped into the 

dynamometer. Then, the participants was asked to kick against the lever arm as “hard and 

as fast” as possible to move the lever arm to the top of the range of motion (180°). 

Participants performed 2 repetitions of each muscle action at 5 different speeds: slow 

(60°/sec), medium slow (180°/sec), medium (180°/sec), medium fast (240°/sec) and fast 
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(300°/sec). Isotonic torque-velocity relationships have been shown to be reliable and 

valid when using multiple loads (Alcazar et al., 2017). Loud verbal encouragement was 

provided during all the 1RM and force velocity curves assessments. 

3.3.7 Motor Nerve Function Assessments 

 The motor nerve function assessment was conducted on the right femoral nerve 

using an automated nerve conduction study device using the same stimulation cart 

detailed previously. For the femoral motor nerve function, a surface recording electrode 

(20x27mm, Cadwell Industries, Inc., Kennewick, WA, USA) was placed on the belly of 

the VL. The reference electrode (20x27mm, Cadwell Industries, Inc., Kennewick, WA, 

USA) was placed on the lateral portion of the patella. The same stimulation probe (kept 

identical to the evoked twitch and MUNE protocol) was placed in the femoral triangle, 

just lateral to the femoral artery over the femoral nerve. Motor nerve conduction velocity 

(CV) was assessed from the time difference between the electrical stimulus and the onset 

of CMAP.  

3.4 Signal Processing 

All toque and EMG signals were sampled simultaneously at 2 kHz with a data 

acquisition system (MP100WSW, Biopac Systems, Inc.; Santa Barbara, CA, USA), 

stored on a personal computer and processed off-line with a custom written analysis 

program (Labview v. 17.0, National Instruments, Austin, TX, USA). EMG signals were 

amplified (gain = 1000) using a differential amplifier (MP100WSW, Biopac Systems, 

Inc.; Santa Barbara, CA, USA) with a common mode rejection ratio of 110 dB min. The 

EMG signals were rectified, zero-meaned and digitally filtered using a zero-phase shift 
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4th-order Butterworth filter with a band pass of 10 – 499 Hz. To determine RER, the 

rectified EMG signals were linear enveloped by applying a zero-phase shift, 4th-order, 

low-pass Butterworth filter with a cut off frequency of 10 Hz (Beck and Housh 2008; 

Jenkins et al. 2014). EMG RER was calculated as the slope of the EMG-time curve in 

during the first 50 ms following EMG onset. EMG variables were expressed as absolute 

and relative to M-wave (%Mpp). The torque signals were zero-meaned, low-pass filtered 

using a zero-phase shift 4th-order Butterworth filter with a 15 Hz cutoff. All subsequent 

analyses were completed using these filtered signals. Torque and EMG onset were 

manually detected by the same investigator (M.A.M) from the filtered signals to provide 

a more accurate analysis of torque and EMG variables (Tillin et al. 2013).  

3.5 Statistical analysis 

 Descriptive statistics of the participants are displayed in a table as means ± 

standard deviations (SD). RTD values were expressed in absolute (Nm and Nm/s) terms 

to better examine age related adaptations. Statistical analysis will be performed using 

SPSS v. 22 (SPSS Inc., Chicago Illinois, USA), and the type-I error rate will be set a 

priori at 5%.   

 A 2 x 4 way mixed model ANOVA (group x RTD time window [RTD0-50, RTD50-

100, RTD100-150, RTD150-200]) was completed to examine the differences between age-

groups in the predictor variables (PmCSA, VL PA, MQEI, MUNE, EMG0-50, EMG50-100, 

EMG100-150, EMG150-200, nEMG0-50, nEMG50-100, nEMG100-150, nEMG150-200, nRER0-50, 

EMDV, SGL PTT, SGL pRR, SGL EMD, DBL PTT, DBL pRR, MVT, CMAP, SMUP, 

Motor CV).  Significant interactions were decomposed with follow up, multiple one-way 

ANOVAs. If the data was not normally distributed and/or spherical, a Welch’s test was 
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used to examine age differences for all variables. Pearson correlation coefficients were 

used to examine the relationships between the predictor variables and each RTD time 

frame collapsed across age. Additionally, separate correlations were run to examine the 

relationship between the predictor variables and each RTD time window in each age 

group. Following the Pearson correlation coefficients, stepwise multiple regression 

analysis was used to examine which of the predictor variables (PmCSA, VL PA, MQEI, 

TmCSA, MUNE, EMG0-50, EMG50-100, EMG100-150, EMG150-200, nEMG0-50, nEMG50-100, 

nEMG100-150, nEMG150-200, nRER0-50, EMDV, SGL PTT, SGL pRR, SGL EMD, DBL 

PTT, DBL pRR, nSGL PTT, nSGL pRR, nDBL PTT, nDBL pRR, MVT, CMAP, SMUP, 

Motor CV) independently explained a significant proportion of the total variance in RTD 

variables (RTD0-50, RTD50-100, RTD100-150, RTD150-200) across age and for each age group. 

Only variables that were significantly related to each RTD time window in across age and 

within each age groups were used in the regression analysis. This was done in an attempt 

to improve the statistical value of each stepwise regression. 

 For the torque-velocity curves, linear regression analysis was used to examine the 

line of best fit for the load controlled and the velocity controlled torque-velocity curves. 

Once the best fit is determined, separate one-way ANOVAs were used to examine the 

age differences in the slope for each of the force velocity curves (velocity controlled vs. 

load controlled). Following the one-way ANOVAs, Pearson’s correlation coefficients 

were used to examine the relationships between the predictor variables and the slope for 

each force-velocity curve across age. 
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CHAPTER IV 
 

 

RESULTS 

 

4.1 Descriptive Statistics 

 Twenty young men and seventeen older men completed all three testing sessions. 

Demographic data for the two age groups are presented in table 1.  Older men were 

significantly weaker when compared to the younger men (p ≤ 0.001). However, there 

were no significant differences in height or weight between ages (Table 1). 

Table 1. Demographic data for the Younger and Older men 
 Younger Men (n = 20)  Older Men (n = 17)  

 
 Mean ± SD   Mean ± SD   p-value 

Age (yrs) 23 ± 3  74 ± 6.2  ≤ 0.001* 

Height (cm2) 176.83 ± 7.29  175.39 ± 4.89  0.505 

Weight (kg) 87.49 ± 15.63  85.12 ± 13.86  0.754 

MVT (Nm) 259.97 ± 99.05   132.66 ± 22.38   ≤ 0.001* 

* = Significant differences to the 0.05 level 
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4.2 Effects of Age on the Rate of Torque Development 

 The two-way (2 × 4) mixed model ANOVA (age-group x RTD time window 

[RTD0-50, RTD50-100, RTD100-150, RTD150-200]) showed that the data was not spherical (p = 

0.002) or equally distributed. Specifically, RTD100-150 and RTD150-200 was not equally 

distributed (p = 0.005 and p = 0.030, respectively). Therefore, a Welch’s test was used to 

examine the age differences in RTD time window. Each obtained Welch’s F ratio was 

examined at the significance level of 0.05. The older adults produced significantly less 

torque during RTD0-50 (F(1,34.33) = 13.707, p = 0.001), RTD50-100 (F(1,34.33) = 15.550, p ≤ 

0.001), RTD100-150 (F(1,26.792) = 26.141, p = 0.001), and RTD150-200 (F(1,34.33) = 6.531, p = 

0.005) (Figure 1).  

 
Figure 1. Age differences in explosive force production during each 50 ms time periods. 

* = Significant relationship to the 0.05 level. 
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4.3. Effects of Age on the Neural, Contractile and Morphological Characteristics  

4.3.1. Neural Characteristics 

 The statistical analysis revealed that older adults had a slower Motor nerve CV 

(F(1,35) = 33.043, p ≤ 0.001), smaller aEMG50-100 (F(1,35) = 5.914, p = 0.020), aEMG100-150 

(F(1,32.027) = 7.999, p = 0.008), aEMG150-200 (F(1,35) = 4.234, p = 0.047), and larger 

nEMG50-100 (F(1,35) = 16.536, p = 0.001) amplitude. Additionally, older men had a higher 

nEMG0-50 (F(1,21.661) = 6.357, p = 0.020) and nEMG150-200 (F(1,35) = 14.186, p = 0.001). 

Older men had a lower MUNE (F(1,35) = 65.630, p ≤ 0.001) and a smaller CMAP (F(1,35) = 

45.584, p ≤ 0.001). Interestingly, there was no significant differences in SMUP (F(1,35) = 

0.043, p = 0.843), suggesting that the lower MUNE observed in the older men is due to 

the lower CMAP since MUNE is the ratio of SMUP and CMAP.   

4.3.2. Contractile Characteristics 

Further, older adults produced a lower SGL PTT (F(1,35) = 26.137, p ≤ 0.001), 

slower SGL RTD0-50 (F(1,35) = 21.317, p ≤ 0.001), slower SGL pRR (F(1,35) = 28.134, p ≤ 

0.001), and longer SGL EMD (F(1,24.321) = 6.615, p = 0.017) when compared to the 

younger adults (Figure 2, 4). For the doublet evoked contraction condition, the older men 

produced significantly lower DBL PTT (F(1,35) = 17.626, p ≤ 0.001) , reduced DBL RTD0-

50 (F(1,29.066) = 21.182, p ≤ 0.001), and slower DBL pRR (F(1,25.740) = 18.072, p ≤ 0.001) 

compared to the younger men (Figure 2, 4). When normalized, there were no longer any 

age differences in the DBL and the SGL twitch responses (Figure 3) between younger 

and older men, except for a significantly higher nDBL RTD0-50 (F(1,8.968) = 19.139, p = 

0.007) (Figure 5). Age-related differences in predictor variables are presented in table 2. 
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Figure 2. Age differences in absolute peak twitch torque from a single and doublet 

electrical stimulus in the younger and older men. * = Significant relationship to the 0.05 

level.  

 

 
Figure 3. Age differences in normalized peak twitch torque (PTT:MVT) following a 

single (SGL PTT) and doublet (DBL PTT) stimulus between younger and older men. * = 

Significant relationship to the 0.05 level.  
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Figure 4. Age differences in evoked twitch RTD from a single and a doublet stimulus 

between younger and older men. * = Significant relationship to the 0.05 level.  

 
Figure 5. Age differences in the normalized twitch variables in the younger and older 

men. * = Significant relationship to the 0.05 level.  

 

4.3.3 Morphological Characteristics 

 For the morphological determinants, Welch’s test revealed that the younger men 

possessed significantly larger PmCSA (F(1,23.836) = 39.226, p ≤ 0.001), better MQEI 

(F(1,32.896) = 43.915, p ≤ 0.001), TmCSA (F(1,21.478) = 45.948, p ≤ 0.001), and greater VL 
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PA (F(1,34.902) = 28.811, p ≤ 0.001). Group mean age differences in the morphological 

determinants are displayed in figure 6. 

 
Figure 6. Age differences in the morphological variables in the younger and older men. * 

= Significant relationship to the 0.05 level. 
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Table 2. Age differences in Strength, Morphological, Neural, and Contractile Variables  

  
Younger Men (n = 20) 

    Means ± SD 
 MVT (Nm) 259.97 ± 99.05 

Morphological   

 PmCSA (cm2) 66.04 ± 17.76 
 TmCSA (cm2/MQEI) 55.83 ± 22.14 
 MQEI (cm2/au) 46.83 ± 8.85 
 PA (˚) 13.88 ± 3.19 

Neural   

 MUNE (#) 261.43 ± 41.01 
 CMAP (µV) 18034.12 ± 4356.29 
 SMUP (µV) 70.10 ± 17.56 
 aEMG0-50 (mV) 171.68 ± 93.53 
 nEMG0-50 (%Mpp) 72.64 ± 44.83 
 nRER0-50 (%Mpp·s-1) 861.71 ± 484.83 
 aEMG50-100 (mV) 301.86 ± 130.43 
 nEMG50-100 (%Mpp) 121.35 ± 72.78 
 aEMG100-150 (mV) 261.65 ± 112.19 
 nEMG100-150 (%Mpp) 69.42 ± 35.42 
 aEMG150-200 (mV) 259.29 ± 93.65 
 nEMG150-200 (%Mpp) 86.42 ± 44.24 
 Motor CV (m/s) 67.20 ± 8.74 

Contractile   

 SGL PTT (Nm) 40.74 ± 11.77 
 SGL pRR (Nm·s-1) 385.72 ± 126.86 
 SGL RTD0-50 (Nm·s-1) 482.06 ± 189.58 

 SGL EMD (ms) 14.03 ± 5.99 

 nSGL TPT (PTT:MVT) 17.05 ± 5.89 

 nSGL pRR (%SGL PTT) 10.89 ± 2.42 

 nSGL RTD0-50 (%SGL PTT·s-1) 10.19 ± 6.32 
 DBL PTT (Nm) 47.24 ± 15.03 
 DBL pRR (Nm·s-1) 431.87 ± 178.93 
 DBL RTD0-50 (Nm·s-1) 628.98 ± 278.73 
 nDBL PTT (PTT:MVT) 19.59 ± 7.06 
 nDBL pRR (%DBL PTT) 12.01 ± 2.83 

  nDBL RTD0-50 (%DBL PTT·s-1) 8.44 ± 2.25 

*= Significant age difference to the 0.05 level between younger and older men from the mixed models ANOVA

†= Data violated assumptions of equality and sphericity, therefore, signifies significant age differences to the 0.05 level between younger and older men from the Welch’s test.
 

4.4 Relationships between neural, contractile, and morphological characteristics and 

the rate of torque development 
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4.4.1 Relationships between the determinant variables and each sequential 50 ms RTD 

time frame across age 

  When collapsed across age, RTD0-50 was positively related to PmCSA (p ≤ 

0.001), TmCSA (p = 0.003), MUNE (p = 0.001), aEMG0-50 (p = 0.017), SGL PTT (p = 

0.004), SGL RTD0-50 (p = 0.009) and SGL pRR (p = 0.012). RTD0-50 was negatively 

related to muscle quality (p = 0.023), SMUP (p = 0.011), nDBL PTT (p = 0.003) and age 

(p = 0.001) (Figure 7). During the 50-100 ms time frame, PmCSA (p ≤ 0.001), TmCSA 

(p ≤ 0.001), PmCSA (p ≤ 0.001), VL PA (p = 0.035), MUNE (p = 0.004), SGL PTT (p ≤ 

0.001), SGL RTD0-50 (p = 0.012), SGL pRR (p = 0.005), DBL PTT (p = 0.022), DBL 

RTD0-50 (p = 0.016) and DBL pRR (p = 0.005) were positively related to RTD50-100. 

Further, negative relationships were observed between RTD50-100 and nEMG50-100 (p = 

0.026) MQEI (p = 0.002), nDBL PTT (p = 0.001), age (p ≤ 0.001), and SGL EMD (p = 

0.005) (Figure 8). For the 100-150 ms frame, positive relationships were observed 

between PmCSA (p ≤ 0.001), TmCSA (p ≤ 0.001), MUNE (p = 0.001), CMAP (p = 

0.009), EMG100-150 (p = 0.019), DBL PTT (p = 0.001), DBL pRR (p ≤ 0.001), DBL 

RTD0-50 (p ≤ 0.001), and motor nerve CV (p ≤ 0.001), and RTD100-150. Additionally, 

RTD100-150 was negatively correlated with age (p ≤ 0.001), nDBL PTT (p = 0.033), nDBL 

RTD0-50 (p = 0.043) and MQEI (p ≤ 0.001) (Figure 9). Finally, for the 150-200 ms time 

frame, there were significant positive relationships between RTD150-200 and PmCSA (p ≤ 

0.001), TmCSA (p ≤ 0.001), VL PA (p = 0.009), MUNE (p = 0.05), CMAP (p = 0.025), 

DBL pTT (p = 0.023), DBL RTD0-50 (p = 0.006) and DBL pRR (p = 0.032). Additional 

negative relationships were observed between RTD150-200 and nEMG150-200 (p = 0.007), 

MQEI (p = 0.002), nDBL PTT (p = 0.003), nDBL RTD0-50 (p = 0.040), and Age (p = 
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0.009) (Figure 10). Relationships between each RTD time frame and the predictor 

variables are displayed in Table 3. 

 
Figure 7. Significant relationships between predictor variables and torque produced 

during the first 50 ms of the explosive knee extension. * = Significant relationships to the 

0.05 level. ** = Significant relationships to the 0.01 level.  

 

 
Figure 8. Significant relationships between predictor variables and torque produced 

during the 50-100 ms of the explosive knee extension. * = Significant relationships to the 

0.05 level. ** = Significant relationships to the 0.01 level. 
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Figure 9. Significant relationships between predictor variables and torque produced 

during the first 100-150 ms of the explosive knee extension. * = Significant relationships 

to the 0.05 level. ** = Significant relationships to the 0.01 level. 
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Figure 10. Significant relationships between predictor variables and torque produced 

during the first 150-200 ms of the explosive knee extension. * = Significant relationships 

to the 0.05 level. ** = Significant relationships to the 0.01 level. 
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Table 3.  Relationship between Predictor Variables and RTD Time Windows 

Across Age (collapsed across age groups) 
  RTD Time Window (ms) 
   0-50 50-100 100-150 150-200 
 Age (yrs) -.532** -.553** -.631** -.351* 
 MVT (Nm) .502** .714** .828** .717** 

Morphological     

 PmCSA (cm2) .548** .717** .625** .546** 
 TmCSA (cm2/MQEI) .474** .664** .688** .586** 
 MQEI (cm2/AU) -.372* -.501** -.552** -.497** 
 PA (˚) 0.094 0.347 0.314 .424** 

Neural     

 MUNE (#) .541** .463** .544** .325* 
 CMAP (mV) 0.164 0.224 .425* .368* 
 SMUP (µV) -.415* -0.229 -0.032 0.085 
 aEMG0-50 (mV) .390* 0.187 0.013 - 
 nEMG0-50 (%Mpp) 0.251 - - - 
 nRER0-50 (%Mpp·s-1) 0.292 - - - 
 aEMG50-100 (mV) - 0.230 - - 
 nEMG50-100 (%Mpp) - -.367* - - 
 aEMG100-150 (mV) - - .382* - 
 nEMG100-150 (%Mpp) - - 0.032 - 
 aEMG150-200 (mV)    0.120 
 nEMG150-200 (%Mpp) - - - -.437** 
 Motor CV (m/s) 0.225 0.301 .605** .449** 

Contractile     

 SGL PTT (Nm/s) .465** .547** .515** 0.296 
 SGL pRR (Nm/s) .410* .456** .612** 0.227 
 SGL RTD0-50 (Nm·s-1) .424** .410* .606** 0.243 
 SGL EMD (ms) -0.14 -.398* -.355* -0.21 
 nSGL TPT (PTT:MVT) 0.058 -0.006 -0.095 -0.240 
 nSGL pRR (%SGL PTT) 0.123 0.095 -0.203 0.040 
 nSGL RTD0-50 (%SGL PTT·s-1) -0.101 -0.064 -0.281 -0.045 
 DBL PTT (Nm) 0.231 .376* .564** .374* 
 DBL pRR (Nm·s-1) .360* .456** .553** .352* 
 DBL RTD0-50 (Nm·s-1) 0.311 .392* .668** .444** 
 nDBL PTT (PTT:MVT) -.469** -.520** -.327* -.351* 
 nDBL pRR (%DBL PTT) -0.112 -0.301 -0.119 -0.281 

  nDBL RTD0-50 (%DBL PTT·s-1) -0.263 -0.271 -.335* -.339* 

** Correlation is significant at the 0.01 level  

* Correlation is significant at the 0.05 level  
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4.4.2. Relationships between the determinant variables and each sequential 50 ms RTD 

time frame within each age group 

 In the younger men, nEMG0-50 (p = 0.001), nRER0-50 (p = 0.05) were positively 

related to RTD0-50. However, VL PA (p = 0.018) and SMUP (p = 0.046) were negatively 

related to RTD0-50 (Table 4) (Figure 11). In the older men, MUNE (p = 0.023), nEMG0-50 

(p = 0.003), SGL PTT (p = 0.039) were positively related to RTD0-50. However, SMUP (p 

= 0.006), was negatively correlated with RTD0-50 (Table 5) (Figure 15).    

 For the RTD50-100 time frame, PmCSA (p ≤ 0.001), and TmCSA (p = 0.003) were 

positively related to RTD50-100 in the younger men. However, MQEI (p = 0.019), CMAP 

(p 0.017), SMUP (p = 0.017), nDBL PTT (p = 0.025) and nSGL PTT (p = 0.022) were 

negatively related to RTD50-100 in the younger men (Table 4) (Figure 12). Interestingly, In 

the older men SGL PTT (p = 0.037), SGL pRR (p = 0.033) were positively related to 

RTD50-100 (Table 5) (Figure 16). 

 Additionally, during the 100-150 time frame, nEMG100-150 (p = 0.01), DBL RTD0-

50 (p = 0.014), and TmCSA (p = 0.032) were positively related to RTD100-150 in the young 

men. Further, only nSGL PTT (p = 0.017) was negatively related to RTD100-150 in the 

younger men (Table 4) (Figure 13). Only nSGL pRR was negatively related to RTD100-

150. In the older men, only nSGL RTD0-50 was negatively related to RTD100-150 (Table 5). 

 For the 150-200 ms time frame, PmCSA (p = 0.026), TmCSA (p = 0.025) were 

positively related to RTD150-200 in the younger men. Additionally, both nSGL PTT (p = 

0.007) and nDBL PTT (p = 0.032) was negatively related to RTD150-200 (Table 4) (Figure 
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14). In the older men, motor nerve CV (p = 0.022), DBL RTD0-50 (p = 0.048), and DBL 

pRR (p = 0.029) were significantly related to RTD150-200 (Table 5) (Figure 17). 

Table 4. Relationship between Predictor Variables and RTD Time Windows in the 

Younger Men 

  RTD Time Window (ms)  
    0-50 50-100 100-150 150-200 

 MVT 0.253 .610** .764** .684** 

Morphological     

 PmCSA (cm2) 0.282 .718** 0.373 .495* 

 TmCSA (cm2/MQEI) 0.174 .632** .480* .498* 

 MQEI (cm2/AU) -0.089 -.520* -0.289 -0.372 

 PA (˚) -.524* 0.026 -0.204 0.283 

Neural     

 MUNE (#) 0.028 -0.055 0.153 -0.013 
 CMAP (mV) -.485* -.526* -0.159 -0.026 

 SMUP (µV) -.451* -.525* -0.217 -0.07 

 aEMG0-50 (mV) .371 - - - 

 nEMG0-50 (mV) .704** - - - 

 nRER0-50 (%Mpp·s-1) .444* - - - 

 aEMG50-100 (mV) - -0.101 - - 

 nEMG50-100 (%Mpp) - -0.112 - - 

 aEMG100-150 (mV) - - 0.376 - 

 nEMG100-150 (%Mpp) - - .558* - 
 aEMG150-200 (mV) - - - -0.245 
 nEMG150-200 (%Mpp) - - - -0.053 

 Motor CV (m/s) -0.213 - 0.424 0.108 

Contractile     

 SGL PTT (Nm/s) -0.006 0.131 0.169 -0.021 

 SGL pRR (Nm/s) 0.063 -0.091 0.347 -0.204 

 SGL RTD0-50 (Nm·s-1) 0.104 -0.033 0.364 -0.053 

 SGL EMD (ms) 0.275 -0.151 -0.041 -0.062 

 nSGL PTT (PTT:MVT) -0.396 -.508* -.528* -.582** 

 nSGL pRR (%SGL PTT) 0.042 0.343 -0.255 0.266 

 nSGL RTD0-50 (%SGL PTT·s-1) 0.036 -0.013 -0.044 -0.085 

 DBL PTT (Nm) -0.029 0.17 0.332 0.137 

 DBL RTD0-50 (Nm·s-1) 0.066 0.173 .540* 0.192 

 DBL pRR (%DBL PTT·s-1) 0.24 0.314 0.322 0.066 

 nDBL PTT (PTT:MVT) -0.388 -.500* -0.390 -.479* 

 nDBL pRR (%DBL PTT) 0.003 -0.310 0.099 -0.401 

  nDBL RTD0-50 (%DBL PTT·s-1) 0.211 -0.072 -0.199 -0.437 

** Correlation is significant at the 0.01 level   
 

* Correlation is significant at the 0.05 level 
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Figure 11. Significant relationships between the determinants and RTD0-50 in the younger 

men. * = Significant relationship to the 0.05 level. ** = Significant relationship to the 

0.01 level. 

 

 

 
Figure 12. Significant relationships between the determinants and RTD50-100 in the 

younger men. * = Significant relationship to the 0.05 level. ** = Significant relationship 

to the 0.01 level. 
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Figure 13. Significant relationships between the determinants and RTD100-150 in the 

younger men. * = Significant relationship to the 0.05 level. ** = Significant relationship 

to the 0.01 level. 

 

 

Figure 14. Significant relationships between the determinants and RTD150-200 in the 

younger men. * = Significant relationship to the 0.05 level. ** = Significant relationship 

to the 0.01 level. 
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Table 5. Relationship between Predictor Variables and RTD Time Windows in 

the Older Men 

  RTD Time Window (ms) 

   0-50 50-100 100-150 150-200 

 MVT (Nm) 0.381 .746** 0.153 0.391 

Morphological      

 PmCSA (cm2) 0.465 0.118 -0.047 -0.123 

 TmCSA (cm2/MQEI) 0.170 -0.149 -0.096 -0.024 

 MQEI (cm2/AU) 0.211 0.283 0.136 -0.068 

 PA (˚) -0.141 -0.128 -0.14 -0.034 

Neural     

 MUNE (#) .549* 0.148 -0.096 -0.166 

 CMAP (mV) -0.241 -0.036 0.099 0.284 

 SMUP (µV) -.636** -0.108 0.17 0.305 

 aEMG0-50 (mV) 0.274 - - - 

 nEMG0-50 (%Mpp) .673** - - - 

 nRER0-50 (%Mpp·s-1) 0.432 - - - 

 aEMG50-100 (mV) - 0.327 - - 

 nEMG50-100 (%Mpp) - -0.062 - - 

 aEMG100-150 (mV) - - 0.189 - 

 nEMG100-150 (%Mpp) - - 0.178 - 

 aEMG150-200 (mV) - - - 0.097 

 nEMG150-200 (%Mpp)    -0.411 

 Motor CV (m/s) -0.258 -0.266 -0.19 .550* 

Contractile     

 SGL PTT (Nm) .504* .510* 0.237 0.065 

 SGL pRR (Nm·s-1) 0.167 .518* 0.324 0.14 

 SGL RTD0-50 (Nm·s-1) 0.271 0.384 0.349 -0.013 

 SGL EMD (ms) -0.047 -0.304 -0.356 -0.009 

 nSGL PTT (PTT:MVT) 0.415 0.283 0.206 -0.072 

 nSGL pRR (%SGL PTT) 0.418 0.208 -0.209 0.092 

 nSGL RTD0-50 (%SGL PTT·s-1) -0.006 0.140 -.545* 0.257 

 DBL PTT (Nm) -0.307 -0.111 0.232 0.242 

 DBL RTD0-50 (Nm·s-1) -0.206 -0.097 0.084 .485* 

 DBL pRR (Nm·s-1) -0.47 -0.072 0.224 .528* 

 nDBL PTT (PTT:MVT) -0.478 -0.460 0.101 0.075 

 nDBL pRR (%DBL PTT) 0.044 -0.124 -0.005 0.021 

 nDBL RTD0-50 (%DBL PTT·s-1) -0.154 0.013 0.039 -0.062 

** Correlation is significant at the 0.01 level   
 

* Correlation is significant at the 0.05 level 
 

 



120 

 

 

 

Figure 15. Significant relationships between the determinants and RTD0-50 in the older 

men. * = Significant relationship to the 0.05 level. ** = Significant relationship to the 

0.01 level.  

 

 
Figure 16. Significant relationships between the determinants and RTD50-100 in the older 

men. * = Significant relationship to the 0.05 level. ** = Significant relationship to the 

0.01 level. 
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Figure 17. Significant relationships between the determinants and RTD150-200 in the older 

men. * = Significant relationship to the 0.05 level. ** = Significant relationship to the 

0.01 level. 

 

4.5 Determinants of Rapid Torque production 

 Each stepwise multiple regression only examined the physiological variables that 

were significantly related to each RTD time frame. The stepwise multiple regression 

model for RTD0-50 when collapsed across groups was significant (p ≤ 0.001). The primary 

physiological determinant for RTD0-50 was PmCSA, independently explaining 30.1% (R2 

= .301, p ≤ 0.001) of the variance in RTD0-50. However, EMG0-50 (p = 0.048), nDBL PTT 

(p = 0.028), and MUNE (p = 0.029) further explained 7.7%, 8.6% and 7.5% of the 

variance in RTD0-50, respectively. When the non-significant variables were entered into 

the regression analysis, TmCSA, SGL PTT, SGL RTD0-50, SGL pRR, and DBL pRR 

accounted for an additional 2.96% of the variance in RTD0-50. Altogether, the variables 

related to RTD0-50 accounted for a total of 58.6% of the variance in RTD0-50 (Figure 18, 

A.). In the younger men, the multiple regression model was significant (p = 0.001) and 

only nEMG0-50 uniquely explained 49.6% (R2 = .496, p = 0.001) of variance in RTD0-50. 

When the excluded physiological variables were included into the multiple regression 

model, VL PA, SMUP, nRER0-50 together accounted for an additional 10.8% of the 

variance in RTD0-50. Altogether, the significant and non-significant physiological 
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variables accounted for a total of 60.4% of the variance in RTD0-50 in the younger men 

(Figure 18, C.). Further, in the older men, the multiple regression model was significant 

(p = 0.001) and found that nEMG0-50 was the primary determinant accounting for 45.3% 

(R2 = .453, p = 0.003) of the variance in RTD0-50. Additionally, SGL PTT uniquely 

accounted for an additional 15.5% (p = 0.034) of the variance in RTD0-50. When the 

excluded variables were entered into the regression model, SMUP and MUNE non-

significantly (p ˃ 0.05) accounted for an additional 4% of the variance in RTD0-50. 

Altogether, the significant and non-significant variables accounted for a total of 64.8% of 

the variance in RTD0-50 in the older men (Figure 18, B.).  

 

Figure 18. Determinants of explosive torque production A) collapsed across age, in the 

B) older, and the C) younger men in the first 50 ms of the maximal, rapid contraction. 

Determinant variables that independently explained a significant proportion of the total 

variance in RTD0-50 are signified with an *. Only determinants that were significantly 

correlated with RTD50-100 in the collapsed, younger, and older groups 
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 The stepwise multiple regression model for RTD50-100 was significant collapsed 

across age (p ≤ 0.001). The primary physiological determinant for RTD50-100 was 

PmCSA, independently explaining 51.4% (R2 = .514, p ≤ 0.001) of the variance in RTD0-

50. In addition, nDBL PTT (p = 0.044) and DBL PTT (p = 0.025) further explained 5.6% 

(p = 0.044) and 6.2% (p = 0.025) of the variance in RTD50-100, respectively. When the 

non-significant variables were entered into the regression analysis, TmCSA, SGL PTT, 

SGL RTD0-50, MUNE, MQEI and DBL pRR accounted for an additional 4.3% of the 

variance in RTD0-50. Altogether, the variables related to RTD50-100 accounted for a total of 

67.4% of the variance in RTD0-50 (Figure 19, A.). In the younger men, the multiple 

regression model was significant (p ≤ 0.001) and PmCSA was the primary determinant 

that uniquely explained 51.5% (R2 = .515, p ≤ 0.001) of variance in RTD50-100. 

Additionally, CMAP significantly accounted for an additional 18.3% (p = 0.005) of the 

variance in RTD50-100. When the excluded physiological variables were included into the 

multiple regression model, TmCSA, SMUP, MQEI, nSGL PTT together accounted for an 

additional 8.0% of the variance in RTD50-100. Altogether, the significant and non-

significant physiological variables accounted for a total of 77.8% of the variance in 

RTD50-100 in the younger men (Figure 19, C.). Further, in the older men, the multiple 

regression model was significant (p = 0.033) and found that SGL pRR was the primary 

determinant accounting for 26.8% (R2 = .268, p = 0.033) of the variance in RTD50-100. 

Additionally, when the excluded variables were entered into the regression model, SGL 

PTT non-significantly (p ˃ 0.05) accounted for an additional 3.5% of the variance in 

RTD50-100. Altogether, the significant and non-significant variables accounted for a total 

of 69.7% of the variance in RTD50-100 in the older men (Figure 19, B.).  
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Figure 19. Determinants of explosive torque production A) collapsed across age, in the 

B) older, and the C) younger men in the 50-100 ms of the maximal, rapid contraction. 

Determinant variables that independently explained a significant proportion of the total 

variance in RTD50-100 are signified with an *. Only determinants that were significantly 

correlated with RTD50-100 in the collapsed, younger, and older groups.  

 

The stepwise multiple regression model for RTD100-150 was significant collapsed 

across age (p ≤ 0.001). The primary physiological determinant for RTD50-100 was 

TmCSA, independently explaining 47.3% (R2 = .473, p ≤ 0.001) of the variance in 

RTD100-150. In addition, DBL RTD0-50 (p = 0.004) further explained 11.5% (p = 0.044) of 

the variance in RTD50-100. When the non-significant variables were entered into the 

regression analysis, PmCSA, Motor Nerve CV, DBL PTT, DBL pRR, MUNE, MQEI and 

EMG100-150 accounted for an additional 6.5% of the variance in RTD100-150. Altogether, 

the variables related to RTD100-150 accounted for a total of 65.3% of the variance in 

RTD100-150 (Figure 20, A.). In the younger men, the multiple regression model was 
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significant (p = 0.001) and nEMG100-150 was the primary determinant that uniquely 

explained 31.2% (R2 = .312, p = 0.01) of variance in RTD100-150. Additionally, DBL 

RTD0-50 and TmCSA significantly accounted for an additional 27.9% (p = 0.003) and 

14.5% of the variance in RTD100-150, respectively. When the only excluded physiological 

variable, nSGL PTT, was included into the multiple regression model, an additional 2.6% 

of the variance was in RTD100-150 was explained. Altogether, the significant and non-

significant physiological variables accounted for a total of 76.2% of the variance in 

RTD100-150 in the younger men (Figure 20, C.). Further, in the older men, the multiple 

regression model was significant (p = 0.033) and found that nSGL RTD0-50 was the only 

primary determinant accounting for 29.7% (R2 = .297, p = 0.024) of the variance in 

RTD100-150 (Figure 20, B.).  

 

 
Figure 20. Determinants of explosive torque production A) collapsed across age, in the 

B) older, and the C) younger men in the first 100-150 ms of the maximal, rapid 

contraction. Determinant variables that independently explained a significant proportion 

of the total variance in RTD100-150 are signified with an *. Only determinants that were 

significantly correlated with RTD100-150 in the collapsed, younger, and older groups.  
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The stepwise multiple regression model for RTD150-200 was significant collapsed 

across age (p ≤ 0.001). The primary physiological determinant for RTD150-200 was 

TmCSA, independently explaining 34.4% (R2 = .344, p ≤ 0.001) of the variance in 

RTD150-200. When the non-significant variables were entered into the regression analysis, 

PmCSA, MQEI, Motor Nerve CV, DBL RTD0-50, nEMG150-200, VL PA, DBL PTT, and 

MUNE accounted for an additional 9.9% of the variance in RTD150-200. Altogether, the 

variables related to RTD150-200 accounted for a total of 44.3% of the variance in RTD150-

200 (Figure 21, A). In the younger men, the multiple regression model was significant (p = 

0.007) and nSGL PTT was the primary determinant that uniquely explained 33.9% (R2 = 

.339, p = 0.007) of variance in RTD150-200. When the excluded physiological variables, 

TmCSA, PmCSA, and nDBL PTT, were included into the multiple regression model, an 

additional 8.5% of the variance was in RTD150-200 was explained. Altogether, the 

significant and non-significant physiological variables accounted for a total of 42.4% of 

the variance in RTD150-200 in the younger men (Figure 21, C.). Further, in the older men, 

the multiple regression model was significant (p = 0.006) and found that Motor Nerve 

CV was the primary determinant accounting for 30.2% (R2 = .302, p = 0.024) of the 

variance in RTD150-200. Additionally, DBL pRR uniquely accounted for an additional 

21.4% (p = 0.009) of the variance in RTD150-200. When the non-significant physiological 

variable, DBL RTD0-50, was entered into the regression equation, an additional 0.3% of 

the variance in RTD150-200 was explained. Altogether, the significant and non-significant 

physiological variables accounted for a total of 51.9% of the variance in RTD150-200 

(Figure 21, B.). 
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Figure 21. Determinants of explosive torque production A) collapsed across age, in the 

B) older, and the C) younger men during the 150-200 ms of the maximal, rapid 

contraction. Determinant variables that independently explained a significant proportion 

of the total variance in RTD150-200 are signified with an *. Only determinants that were 

significantly correlated with RTD150-200 in the collapsed, younger, and older groups. 

4.6 Age related adaptations to the torque-velocity curves and relationship with the 

physiological variables 

 Out of the 37 participants, only 35 participants were examined. Two older men 

were excluded from the analysis because these participants were unable to produce torque 

at 300˚/s. The linear regression analysis revealed that the slopes for the load-controlled 

and velocity-controlled torque-velocity curves were best fit with a linear fit. Therefore, 

the statistical analysis revealed that the velocity controlled slope was significantly more 

negative in the younger men (F(1,34) = 25.349, p ≤ 0.001) when compared to the older men 

(Figure 22, B.). Similarly, for the load controlled condition, the younger men had a 

significantly more negative slope (F(1,34) = 13.805, p = 0.001) (Figure 22, A.).  
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Figure 22. Age differences in A) relative load-velocity and B) torque-velocity curve. * = 

Significant difference between slopes to the 0.05 level.   

  

The Pearson correlation coefficient revealed significant positive relationships 

between SLOPE-ISK and MQEI (p ≤ 0.001), nDBL PTT (p ≤ 0.001), nDBL RTD0-50 (p = 

0.004) across age (Figure 23). Additionally, significant negative relationships between 

the morphological, neural, and contractile variables across age. Data is presented in table 

6 and Figures 24-26.  For the load-controlled condition, significant positive and negative 

relationships were found between Slope-ISOT and neural, contractile and morphological 

variables (Table 6) (Figure 27). 

Table 6. Relationships between the velocity and load controlled torque-

velocity curve across age. 

   SLOPE-ISK SLOPE-ISOT 

Morphological    

 PmCSA (cm2) -.734** -.646** 
 MQEI (cm2/EI) .626** .436** 
 TmCSA (cm2/MQEI) -.747** -.449** 
 VL PA (˚) -.415* -.397* 

Neural    

 MUNE (#) -.582** -.369* 

Contractile    

 SGL PTT (Nm) -.544** -0.223 
 SGL RTD0-50 (Nm·s-1) -.495** -0.118 
 SGL pRR(Nm·s-1) -.529** -0.120 
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 DBL PTT (Nm) -.492** -0.204 
 DBL RTD0-50 (Nm·s-1) -.623** -0.180 
 DBL pRR (Nm·s-1) -.501** -0.108 
 nDBL PTT (PTT:MVT) .585** .420* 

  nDBL RTD0-50 (%DBL PTT) .470** 0.300 

** = Singificant relationship to the 0.01 level 

* = Singificant relationship to the 0.05 level 
 

 

 
Figure 23. Significant positive relationships between the determinant variables and 

SLOPE-ISK across age. ** = Significant relationship to the 0.01 level. 
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Figure 24. Significant negative relationships between SLOPE-ISK and the 

morphological variables. * = Significant to the 0.05 level. ** = Significant to the 0.01 

level.  

 

 

Figure 25. Significant negative relationship between MUNE and SLOPE-ISK across age. 

** = Significant to the 0.01 level. 
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Figure 26. Significant negative relationship between Twitch responses and SLOPE-ISK 

across age. ** = Significant to the 0.01 level. 
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Figure 27. Significant negative relationship between Twitch responses and SLOPE-ISOT 

across age. * = Significant to the 0.05 level.  ** = Significant to the 0.01 level. 
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CHAPTER V 
 

 

DISCUSSION 

 

The purpose of this investigation was three-fold: 1) to examine the effect of age on the 

neural, contractile and morphological determinants of rapid torque production; 2) to 

investigate how the determinants of RTD may change as a result of the aging process; 

and 3) to examine the effect of age on the torque-velocity curves. The results of this study 

suggest that the older men expressed reduced RTD throughout the explosive contraction, 

as well as, possessed altered neural, contractile and morphological variables compared to 

the younger men. A blend of physiological variables influenced RTD throughout the 

explosive contraction across age. Additionally, the primary physiological variables 

influencing RTD were different between the younger and older men throughout the 

explosive contraction. Finally, the older men possessed a significantly less negative 

torque-velocity slope in each condition compared to the younger men.  

The data collected in this study could provide information about the importance of 

certain physiological variables required to express high levels of torque quickly in rapid 

movements (i.e., fall recovery, balance perturbations, and quick athletic movements) 

(Aagaard et al. 2007; Aagaard et al. 2002; Bento et al. 2010; Clark et al. 2013; Thompson 

et al. 2014; Thompson et al. 2013). 
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The results of the study are in accordance with those of Mau-Moeller et al. (2013) 

where older adults produced significantly less torque during each 50 ms time frame. 

Additionally, the results from the current study corresponds well with Folland et al. 

(2014) in that different physiological variables influence voluntary RTD at different time 

frames. 

However, the current study built on these prior studies and included measures of 

motor unit number estimates, additional evoked twitch responses, and morphological data 

to provide a more comprehensive examination of the physiological determinants 

necessary for high voluntary RTD across age. The data from the current study show that 

different physiological variables influence different phases of RTD during an explosive 

contraction across age, as well as, in the younger and older men. Additionally, these data 

reveal significant age differences in the slope of the torque-velocity curves and what 

physiological variables are related to the slope of the curve. The data collected in this 

study provides additional knowledge into the complex interplay between the neural, 

contractile and morphological variables that contribute to voluntary RTD. Further, these 

data suggest that the determinants of RTD are a blend of neural, contractile and 

morphological variables across age and in younger and older men. 

5.1. Neural Determinants of the Rate of Torque Development 

 Previous research has shown that muscle activation during the initial phase of a 

rapid contraction is extremely important for producing high levels of torque quickly 

(Aagaard et al. 2002; Hakkinen et al. 1998; Van Cutsem and Duchateau 2005; Van 

Cutsem et al. 1998) and has been shown to be highly related to the early production of 
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torque (i.e. ≤ 80 – 100 ms) (Klass et al. 2008; Mau-Moeller et al. 2013). The results of 

the current study provide additional evidence that a reduction in early phase RTD (0-50 

ms) could be highly dependent on peripheral muscle function and neural activation 

(Haikkenen et al. 1996, Aaggard et al. 2002). In accordance with previous research 

(Gerstner et al. 2017a; Hakkinen et al. 1996; Hakkinen et al. 1995), absolute muscle 

activation was lower in the older compared to the younger men and normalized muscle 

activation (%Mwave peak-to-peak) was also significantly related to RTD (Folland et al. 

2014). However, muscle activation amplitude was only a significant determinant of the 

early phase of RTD across age and in the younger and older men accounting for 7.7%, 

45.3% and 49.6% of the variance in RTD0-50, respectively. This result is similar to 

previous research suggesting that muscle activation is a key physiological variable for 

early RTD (Andersen and Aagaard 2006; De Ruiter et al. 2004; de Ruiter et al. 2007; 

Folland et al. 2014). Additionally, Mau-Moeller et al. 2013 suggested that a reduction in 

EMG amplitude may be an indicator of reduced neural drive to the muscle. The older 

men in the current study had a lower CMAP and aEMG0-50 amplitude than the younger 

men. In addition, nEMG0-50 was a significant determinant of early RTD suggesting that 

neural drive could be a limiting factor leading to a reduced RTD0-50 (Mau-Moeller et al. 

2013). Although muscle activation is a primary determinant in RTD, the age-related 

reduction in viable motor units may be another limiting factor for RTD.  

This is highlighted by the significant reduction in motor unit number in the older 

men. Surprisingly, MUNE was associated with each consecutive 50 ms RTD time frame 

across age, suggesting that possessing more viable motor units is associated with 

increased RTD throughout each 50 ms time frame during the the first 200 ms of an 
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explosive voluntary contraction. However, since MUNE is the ratio of the CMAP and 

SMUP, the reduced MUNE observed in the older men was most likely due to a lower 

CMAP because the SMUP was not different between age. Although not a significant 

predictor, SMUP was negatively related to the torque produced during the first 50 ms of 

the explosive contraction across age. After further examination, SMUP was negatively 

related to RTD0-50 in the older men suggesting that the increase in SMUP is linked to a 

reduced RTD0-50. Previous research has suggested that an elevated SMUP may be an 

indication of skeletal muscle remodeling (McNeil et al. 2005) or a shift in skeletal muscle 

fiber composition. The remodeling process is thought to be a survival method to 

compensate for the reduction of functional motor units to maintain muscle strength 

(Power et al. 2016a). An elevated SMUP has been attributed with lower threshold motor 

units rennervating larger, more powerful muscle fibers leading to an increased SMUP 

(Power et al. 2016a; Scaglioni et al. 2003). Although the SMUP was not significantly 

elevated in the older men, the CMAP was significantly lower compared to the younger 

men. Because high threshold motor units are preferentially lost and lead to fiber atrophy, 

a smaller CMAP or elevated SMUP could be related to a higher predominance of Type I 

muscle fibers, which in turn, can lead to a reduction in muscle strength, power, and RTD 

(Fling et al. 2009; Ling et al. 2009; Power et al. 2010). This result may provide evidence 

of a reduced ability to maintain viable, high threshold motor units or an inability to 

reinnervate neighboring, recently vacated type II muscle fibers (Piasecki et al. 2018). 

Although MUNE was not a significant determinant of RTD, a reduced MUNE could lead 

to a reduction in RTD (Power et al. 2016b). Therefore, the data from the current study 
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suggests that possessing and maintaining a high number of viable motor units could lead 

to a maintained RTD through the aging process. 

Motor nerve function is another piece of the neural puzzle that is associated with 

significant age-related alterations in neuromuscular function. Age-related alterations to 

motor nerve function has been observed to increase with advancing age (Bouche et al. 

1993; Gregg et al. 2004; Palve and Palve 2018; Resnick et al. 2001; Resnick et al. 2000; 

Taylor 1984). Previous research has shown a decline in motor nerve conduction velocity 

in older adults (Rivner et al. 2001; Saeed and Akram 2008; Strotmeyer et al. 2009; 

Thakur et al. 2010; Tong et al. 2004; Ward et al. 2015; Werner et al. 2012) could play a 

significant role in rapid force production. Similar to previous research (Ward et al. 2015; 

Ward et al. 2014a), the results of the current study suggests that a reduction in motor 

nerve conduction velocity was associated with a reduced strength and RTD in the later 

phase (100-200 ms) of the explosive contraction. This result is somewhat surprising in 

that it was not associated with the early phase RTD. Nevertheless, a reduced motor nerve 

conduction velocity may be an integral part of the reduction in RTD across age.  

5.2. Contractile Determinants of the Rate of Torque Development 

 Previous research has suggested that the intrinsic contractile properties of the 

muscle can significantly influence RTD across the age span (Gerstner et al. 2017a; 

Hakkinen et al. 1996; McPhee et al. 2018). The results from the current examination are 

similar to previous research in that the older men possessed degraded contractile 

properties compared to the younger men (Petrella et al. 1984, Roos et al. 1999, Klass et 

al. 2008, Aagaard et al. 2007, Mau-Moeller et al. 2013). Specifically, the older men in the 
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current study possessed reduced peak twitch torques, slower evoked RTD and slower 

peak rate of relaxation in response to a single and doublet stimulus.  

The older men were able to produce significantly less evoked peak twitch torque 

in response to a single and doublet stimulus when compared to the younger men. 

Additionally, the SGL PTT was significantly related to voluntary RTD in each 50 ms 

time frame from the beginning of the contraction to 150 ms. Additionally, the DBL PTT 

was significantly related to voluntary RTD in each 50 ms time frame from 50 ms to 200 

ms. Along with muscle activation, SGL PTT was a significant determinant of voluntary 

RTD0-50 in the old, but was not a significant determinant of voluntary RTD at any time 

point in the younger men. Coupled with the neural determinants, this result suggests that 

the older men may rely on muscle activation amplitude and contractile capacity of the 

muscle in the early phase RTD. The results of the current study are similar to those of 

Mau-Moeller et al. 2013 who also found that contractile properties were altered in the 

older adults and were related to RTD suggesting that changes in contractile properties 

play a significant role in rapid torque production. Further, Dalton et al. 2010 found that 

older adults possessed significantly reduced peak twitch torques in the leg muscles when 

compared to younger adults. Therefore, in combination with the altered neural 

physiological variables and smaller muscle size, the reduction in PTT observed in the 

older men could be a result of altered contractile properties of the muscle.  

The normalization of the peak twitch torque to the maximal strength could 

provide additional evidence about neural contribution to RTD. Previous research has 

suggested that the nDBL PTT provides unique information about the contribution of the 

central nervous system to muscular strength (Jenkins et al. 2017). The absolute DBL PTT 
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provides peripheral information without the influence of the central nervous system, 

therefore when DBL PTT is normalized to maximal strength, the ratio could provide 

information about neural and contractile contribution to muscle strength (Jenkins et al. 

2017). Therefore, in theory, an increased ratio (e.g., lower PTT relative to MVT) 

indicates an increased neural contribution to muscular strength (Cannon et al. 2008; 

Jenkins et al. 2017). Interestingly, when collapsed across age, nDBL PTT was a 

significant determinant of the early phase RTD. The older men had a larger nDBL PTT 

compared to the younger men and nDBL PTT was a significant determinant of early 

phase RTD across age. This result provides additional evidence that the early phase of 

RTD is highly dependent on neural contribution across age (Jenkins et al. 2017).  

Although absolute and normalized PTT provides valuable intrinsic contractile 

information, the evoked rate of torque development may provide additional unique 

information about the age related reduction in voluntary RTD. The results from the 

current study are in accordance with previous studies (Dalton et al. 2012; McNeil et al. 

2007) in that older men produced significantly lower twitch RTD in response to a single 

and doublet stimulus. The two different stimuli provide different contractile information. 

For instance, the DBL stimulus provides two stimuli that, in theory, acts to fully activate 

the motor unit pool, drive the motor units to a high/maximal firing rate, removing the 

muscle slack leading to a better examination of force transfer (Herda et al. 2013). In 

contrast, the SGL stimulus examines the contractile capability of the resting muscle 

including overcoming the muscle slack (Herda et al. 2013). When collapsed across age, 

the SGL RTD0-50 was related to voluntary RTD during the first three voluntary RTD time 

frames (i.e., 0-50, 50-100, 100-150 ms), whereas the DBL RTD0-50 became increasingly 
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related to the voluntary RTD from 50 ms and on. These results suggests that the increased 

relationship between the SGL RTD0-50 and voluntary RTD in the earlier time frames 

could be increasingly dependent on the slack that is taken up. Although not statistically 

significantly different between ages, SGL EMD was negatively related to the 50-150 ms 

time frame suggesting that the take up of slack may influence the voluntary RTD after the 

first 50 ms of an explosive contraction.   

It is interesting to note that DBL RTD0-50 was a significant determinant of 

voluntary RTD during the 100-150 ms time frame across age, as well as in the younger 

men. However, when age was separated, only the SGL PTT was was a significant 

determinant of voluntary RTD in the first 50 ms in the older men, not in the younger 

men. This result is similar to those of Folland et al. 2014 and Andersen et al. 2006, where 

the maximal contractile capacity of the muscle is significantly related to and a 

determinant of the later phase of voluntary RTD in the young. The reduced evoked RTD 

observed in the older men indicates a slower contractile speed when compared to the 

younger men (D'Antona et al. 2003; Hakkinen et al. 1995). There is a significant 

relationship between the muscle fiber size, fiber type and the rate of torque development 

in response from an electrical stimulus (Harridge et al. 1996). Additionally, Type II 

muscle fibers have been shown to have a faster shortening velocity and higher force 

production compared to the Type I muscle fibers (Harridge et al. 1996). The slowing of 

the contractile properties in the older adults in the current study could be an indication of 

the age-related loss of type II muscle fibers and atrophy of remaining, viable type II 

muscle fibers (Larsson et al. 1979; Wilder and Cannon 2009). Therefore, a reduction in 
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fast-twitch contractile properties could have a significant influence on muscle 

performance and RTD across age (Hvid et al. 2010; Korhonen et al. 2006). 

Similar to the results of previous research (Dalton et al. 2012; Wilder and Cannon 

2009), the older adults in the current study had a significantly slower relaxation rates 

when compared to the younger men. Additionally, the SGL and DBL pRR were related to 

each 50 ms time frame of the voluntary RTD contraction across age. When examined 

further, SGL pRR was significantly related and was a significant determinant of RTD 

during the 50-100 ms time frame in the older, not the younger men. Additionally, DBL 

pRR was a determinant of RTD150-200 in the older, not the younger men. The reduced peak 

relaxation rates in response to an electrical stimulus in older men has been associated to 

the age-related alterations in skeletal muscle function (Wilder and Cannon 2009). One 

explanation for the reduced peak relaxation rate in the older men in the current study 

could be due to the alteration in Ca2+ sensitivity and handling (Baylor and Hollingworth 

2003). A study by Lamboley et al. (2015) found that physically active older adults 

possessed significantly lower proportion of type II muscle fibers and both type I and type 

II muscle fibers had a significantly lower amount of stored Ca2+ compared to the younger 

adults. Further, the viable type II muscle fibers in the older adults had a significantly 

altered Ca2+ sensitivity and a reduced specific tension (fCSA/Force) compared to the 

younger men (Lamboley et al. 2015). In another recent study, Straight et al. (2018) 

observed that older adults had a significantly reduced Ca2+ response in both type I and 

type II muscle fibers, and this reduction in Ca2+ sensitivity was significantly related to a 

reduction in muscle strength and power in the older adults.  
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The results of the current study suggests that the contractile properties 

significantly influence RTD across age. In the combination with the previous studies 

highlighted, the results from the current study suggest that the age related reduction 

motor unit number, lower muscle activation amplitude, lower PTT, slower evoked RTD 

and a slower evoked pRR could provide indirect evidence of altered contractile properties 

and function in the older men. Although the neural and contractile determinants provide 

important information related to voluntary RTD across age, morphological variables may 

provide additional insight into the age-related reduction in RTD. 

5.3. Morphological Determinants of the Rate of Torque Development 

 Both neural activation, and intrinsic contractile properties of skeletal muscle play 

a significant role in RTD contractions, however, the morphological and architectural 

structure of the muscle also plays a part in the development of torque (Gerstner et al. 

2017a; Roos et al. 1999; Strasser et al. 2013; Thom et al. 2007; Thompson et al. 2013; 

Wu et al. 2016). Muscle size and quality have been shown to be related to strength and 

RFD capabilities in older adults (Fukumoto et al. 2012; Hakkinen and Hakkinen 1991; 

Kent-Braun et al. 2000; Kubo et al. 2003; Nishihara et al. 2014; Stenroth et al. 2012; 

Watanabe et al. 2013; Wilhelm et al. 2014).  

 Specifically, older adults have been shown to have a lower amount of muscle 

mass and worse muscle quality, which is undoubtedly due to the remodeling process 

associated with advancing age (Goodpaster et al. 2006; Rech et al. 2014). The results of 

the current study are similar to previous research showing that muscle size, quality and 

VL pennation angle were significantly different between the younger and older men 
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(Fukumoto et al. 2015; Magrini et al. 2018; Rech et al. 2014; Wilhelm et al. 2014). 

Additionally, the absolute muscle size (PmCSA) was significantly smaller in the older 

men compared to the younger men. Muscle quality, assessed as the weighted total EI, 

was significantly higher in the older men suggesting a lower muscle quality compared to 

the younger men. When mCSA was corrected for EI, the age differences were increased 

between younger and older men. Interestingly, muscle size and muscle quality were 

significant determinants in each of the 50 ms time frames when collapsed across age. 

However, when examined further, bigger muscle size and better muscle quality were a 

significant predictor of RTD from 50 ms and on in the younger men, but not in the older 

men. This result is different from previous research that observed muscle size was 

significantly related to the later phase RTD and a determinant of maximal strength in 

older adults (Gerstner et al. 2017, McPhee et al. 2018). Nevertheless, the data collected 

from the current study suggests that a greater muscle size is related to higher RTD in the 

early time frames. The reduction in muscle size is primarily due to atrophy of muscle 

fibers (Type I and Type II), but older adults have been shown to have smaller muscle 

fiber areas and lower number of Type II muscle fibers (McPhee et al. 2018), which could 

lead to smaller muscles and lower RTD (Callahan et al. 2015; McPhee et al. 2018). 

Additionally, the lower MUNE observed in the older men could be linked to the 

reduction in the total number of muscle fibers existing in the older men, and could also 

lead to reductions in muscle strength and RTD (McPhee et al., 2018, Piasecki et al., 

2016). Further, the EI corrected muscle size (PmCSA/EI for each muscle) was a 

significant predictor for later phase RTD across age suggesting larger, better quality 

muscles are associated with a higher voluntary RTD across age. However, the lack of 
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relationship between muscle size and quality in the older men may suggest that altered 

neural activation and intrinsic contractile properties may influence RTD to a greater 

extent than muscle size and quality (Callahan and Kent-Braun 2011). Nevertheless, our 

data suggests that possessing a greater muscle size and better quality muscle is important 

for maintenance of RTD through the aging process.  

 Additionally, previous research has observed a smaller pennation angle in the 

older population and was significantly related to RFD capabilities (Morse et al. 2005; 

Narici et al. 2003; Stenroth et al. 2012). The results of the current study revealed that the 

older men had a significantly smaller pennation angle when compared to the younger 

men. Additionally, the VL pennation angle was significantly related to RTD in the last 50 

ms time frame across age. These data suggest that the increased VL pennation angle is 

associated with an increased torque produced during the 150-200 ms time frame of an 

explosive contraction. The later RTD time frame is close in time to the maximal torque 

production, therefore a larger VL pennation angle is associated with higher torque 

production later in the contraction (Gerstner et al. 2017b). This is in agreement with 

previous research in that a wider VL pennation angle is associated with higher torque 

production (Gerstner et al. 2017b).  

5.4. Age-related changes to and the Relationships between the Physiological variables 

and the Torque-Velocity curves 

As previously discussed, aging is associated with significant alterations in the 

neural contractile and morphological systems leading to a reduction in RTD, however, 

these physiological variables may play a significant role in the torque and velocity 
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production (Harries and Bassey 1990). Because of these physiological changes observed 

during the aging process, previous research has shown an alteration in the force-velocity 

relationship in older adults (Alcazar et al. 2017; Alcazar et al. 2018; Callahan and Kent-

Braun 2011; Jenkins et al. 2015a; Lanza et al. 2003; Petrella et al. 2007; Pojednic et al. 

2012; Thom et al. 2007; Yamauchi et al. 2010). The inability to produce torque or high 

velocities or relative loads could be an important non-invasive indicator of age-related 

changes in neuromuscular function (Jenkins et al. 2015a; Reid et al. 2014). The results 

from the current study reveal that the older men had a significantly less negative slope 

compared to the younger men in the SLOPE-ISK and SLOPE-ISOT torque-velocity 

conditions.  

In accordance with previous research (Lanza et al., 2003, Thom et al., 2007), the 

older men in the current study produced a SLOPE-ISK that was shifted down and to the 

left suggesting that older men produced less average torque at the same absolute 

velocities as the younger men. As previously discussed, older adults suffer from age-

related reduction in type II muscle fiber number and smaller muscle fibers which could 

contribute to the less negative slope observed in the older men (Doherty et al. 1993; Gür 

et al. 2003; McPhee et al. 2018). Several negative relationships between SLOPE-ISK and 

the physiological variables indicate that the age-related changes in neuromuscular and 

morphological variables could lead to the less negative slope observed in the older men 

(Gerstner et al. 2017a; Wilhelm et al. 2014). Similar to research by Callahan and Kent-

Braun (2011), the SLOPE-ISK was significantly related to contractile properties, 

specifically the SGL and DBL pRR across age in the current study. This result suggests 

that calcium handling (discussed previously) could play a significant role in the torque 
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velocity slope. This result is in accordance with those of Straight et al. (2018), who found 

that absolute and relative knee extension performance was significantly lower in the older 

adults compared to the younger adults and discovered a significant relationship between 

reduced knee extension performance and reduced muscle fiber Ca2+ sensitivity in the 

older adults (Straight et al. 2018). Further, SGL and DBL RTD0-50 were significantly 

lower in the older men and were related to the less negative SLOPE-ISK across age, 

which may be an indicator of an age-related altered contractile function at the muscle 

fiber level leading to reduced performance at the whole muscle level (Callahan and Kent-

Braun 2011; Callahan et al. 2015; Straight et al. 2018). The age-related alteration in 

muscle fiber function could explain the reduction in torque produced at each isokinetic 

velocity (Valour et al. 2003). As previously discussed, muscle fiber atrophy and 

preferential loss of Type II muscle fibers account for the age-related muscle atrophy 

(McPhee et al. 2018), potentially leading to a slower movement velocity observed in the 

older men (Gür et al. 2003; Korhonen et al. 2006). Additionally, the negative relationship 

between MUNE, PmCSA, and TmCSA could provide more evidence of a reduction in 

muscle size, muscle function, or composition could lead to a less negative SLOPE-ISK 

across age (Gerstner et al. 2017a; Gür et al. 2003).  

Previous research has suggested that assessment of the torque-velocity curve in an 

isotonic mode may be more advantageous to examine physical function across age 

(Alcazar et al. 2017). For the SLOPE-ISOT condition, the less negative slope suggests 

that the older men were unable to achieve the velocity that the younger men were able to 

at a low relative loads. However, the isotonic torque-velocity condition was normalized 

to maximal knee extension strength, as a result, the older men were able to move at a 
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faster velocity at a heavier relative load compared to younger men. Interestingly, only the 

morphological variables and the number of motor units were significantly related to the 

SLOPE-ISOT. This result suggests that muscle size, muscle quality, and the number of 

viable motor units in the knee extensors are essential to achieving a more negative slope 

in the isotonic condition (Gerstner et al. 2017a; Gür et al. 2003; Wilhelm et al. 2014).  

5.5 Limitations 

 One of the largest limitations to the current study was the low number of 

participants used for the stepwise multiple regression analysis. Traditionally, significantly 

more participants are needed for the study to have adequate power. However, due to the 

time commitment as well as the variables assessed, the number of participants were 

similar to other research within the kinesiology subject area.  

 Another limitation to this study was the use of all non-invasive variables, 

therefore external factors may have influenced the data. Using surface EMG and other 

equipment limits the results of the study to a point. Because of this, the results provide 

evidence that are indirect evidence of physiological mechanisms. Therefore, the study 

utilizes the term determinants because this allows the reader to understand that the results 

displayed in this study are in no way definitive.  

Another limitation would be the motivation level of each participant. Differences 

in motivation levels between participants may produce varying levels of effort during the 

voluntary contractions. Although this is inevitable, participants were verbally encouraged 

to give their best effort for the full duration of the study.  
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5.6 Future Research and Recommendations 

 This study provided important information about the determinants of RTD across 

the age span, as well as, within the age groups. This study revealed that the determinants 

of RTD were different between the age groups. A future study should examine these 

variables in different age groups from children to the very old adults. This could provide 

evidence of which physiological variables are most important to RTD at different ages.  

 Because this study has provided a more comprehensive insight into the 

physiological determinants of RTD across age and between age groups, it would be 

interesting to examine the effect of different exercise training programs on these 

physiological determinants and RTD. The rate of torque development and many of these 

physiological determinants have been linked to functional ability in the older adults, 

therefore, designing an exercise training program aimed at maintaining or improving 

these physiological determinants could lead to improved functional ability, longer 

independence, and increased quality of life in older adults. Due to the age of these 

individuals, it is essential to determine the most efficient and effective exercise training 

program that can lead to maintained physical function and overall successful aging. 

 The current study only examined age differences in the torque-velocity curves and 

the relationships of the curves with different neuromuscular variables. However, it is 

unknown if the power produced by older adults are either torque or velocity deficient. 

This could provide information to improve exercise training methodology in hopes of 

maintaining muscle power throughout the aging process. Additionally, the current study 

simply examined the relationships between the slopes from the isokinetic and isotonic 
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torque-velocity curves in younger and older men, therefore examining what physiological 

variables contribute to the torque produced at each isokinetic and isotonic velocity may 

lead to improved exercise training programs.  

 Only the torque-velocity slopes were examined in the current study, however it 

would be interesting if the % decline in torque produced at each isokinetic movement 

speed was correlated with any of the physiological variables assessed in the current study. 

This data could provide further information about changes in neuromuscular function 

across the age span. Additionally, these data could provide additional knowledge about 

how these variables relate to torque production at different movement speeds.  

5.7 Conclusions 

 This study has provided a more comprehensive and improved insight into the 

determinants of RTD across the age span, as well as, between age groups. In agreement 

to the results of Folland et al. (2014), the results suggest that high levels of RTD are 

determined by different physiological variables across the age span. However, the ability 

to achieve high muscle activation amplitudes, maintain a higher number of viable motor 

units, possess more powerful muscle fibers, and larger/better quality muscles could lead 

to maintaining a high level of RTD across the age span. Although functional ability was 

not directly assessed in the current study, possessing an improved RTD may lead to better 

maintenance of functional ability during the aging process (Thompson et al. 2013).  

The determinants are different between the younger and older men throughout the 

first 200 ms of a maximal voluntary RTD contraction. First, neural activation is an 

extremely important variable for producing a higher early phase RTD. Secondly, older 
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men have compromised intrinsic contractile properties when compared to younger men 

highlighted by the reduced contractile twitch performance. The altered intrinsic 

contractile properties were significantly related in the later time frames (100-200 ms) in 

the young and throughout the contraction in the older men. The morphological variables 

were significant determinants of RTD throughout the explosive contraction across age 

and the younger men.  

The older men had a drastically less negative slope for both the isokinetic and the 

isotonic maximal knee extension torque-velocity curves. Different physiological 

variables were related to the less negative slope in the isotonic and isokinetic torque 

velocity curves across age. These data suggests that the age-related changes in neural, 

contractile and morphological function could be a significant factor for the more positive 

torque-velocity slope in the older men. 
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