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Abstract:  
 
 

The application of infrared spectroscopy and pattern recognition to the problem of 
discriminating edible oils by type is the subject of this research project.  Previously published 
studies on this topic were generally limited to a small number of samples spanning five or six 
varieties of edible oils obtained from a single manufacturer over a limited production year range.  
In this study, infrared spectra obtained from 95 samples spanning 20 edible oils collected from 
supermarkets in the greater Newark, DE metropolitan area over a three year period were 
investigated using the three major types of pattern recognition methodology: mapping and display, 
clustering, and discriminant development.  The edible oils could be partitioned into four distinct 
groups based on their degree of saturation and the ratio of polyunsaturated fatty acids to 
monounsaturated fatty acids.   Edible oils assigned to one group could be readily differentiated 
from those assigned to other groups, whereas infrared spectra within the same group more closely 
resembled each other and therefore were difficult to accurately classify by type.  These analyses 
highlight the need for adulteration studies that span multiple sources for each type of edible oil.  
The supplier to supplier variation for edible oils (and possibly the seasonal variation within a 
supplier) is greater than within supplier variation. This work also demonstrates that previous studies 
(which rely on only one source for each type of edible oil) provide an overly optimistic estimate of 
the ability to classify edible oils or to detect low levels of adulterants by infrared or Raman 
spectroscopy. 
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CHAPTER I 
 

 

INTRODUCTION 

 

 

Edible oils are defined as a food substance other than a dairy product that is manufactured 

for human consumption from a fat or oil other than milk (Phillips, 2014). Edible oils are mainly 

composed of triglycerides (~ 95%), which are esters formed between glycerol and saturated, mono-

unsaturated or poly-unsaturated fatty acids.  The actual carboxylic acids depend upon the botanical 

origin of the edible oil (Gouilleux, Marchand, Charrier, Remaud, & Giraudeau, 2018).   If free fatty 

acids are present in edible oils, this is due to cell damages in the vegetable tissue that occur during 

harvesting, storage, transport or initial processing.  In addition, humidity and high temperature 

during storage of the edible oil can elevate the level of free fatty acids in these oils (Hammond, 

2003).  Triglycerides with poly-unsaturated fatty acids are prone to degradation by oxidative 

conditions, generating many degradation products including aldehydes, ketones and epoxides 

(Vaskova & Buckova, 2015).   

Edible oils are an important component of the human diet as they add flavor and color to 

the foods that we consume.  Edible oils also contain hydrophilic antioxidants (e.g., tocopherol, 

phenolic compounds, phytosterol), which aid in the metabolism of liposoluble vitamins  (Gouilleux 

et al., 2018).  The two essential fatty acids, omega-3 and omega-6, which cannot be synthesized by 

the human body are supplied by edible oils in the diet (Ng et al., 2018).  In addition to the two 
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essential fatty acid, edible oils provide energy (Hou, Wang, Su, Wang, & Nie, 2019).  Edible oils 

sold commercially include virgin olive oil, canola oil, corn oil, sesame oil, etc.  In addition to being 

an important source of micronutrients and fat, cold-pressed edible oils which are neither refined 

nor processed have garnered attention as they have been shown to have promise in the prevention 

of premature aging, cancer, skin disorder, atherosclerosis and neurodegenerative diseases (Casoni, 

Simion, & Sârbu, 2019).  

Edible oils are also used in oleochemical and pharmaceutical industries (Casoni et al., 

2019). In the oleochemical industries, edible oils serve as raw materials for the production of 

compounds and biofuels. With the increasing cost of petroleum derived products, edible oils have 

found their way into these industries for the production of plastics, pharmaceuticals, inks, 

adhesives, and coatings. The advantage of using plant oils is that waste with lower or no toxicity is 

generated (Salimon, Salih, & Yousif, 2012).  Greater demand in the use of edible oils for production 

of bioenergy and biofuel could create strong competition for edible oils being used as foods versus 

oleochemicals (Atadashi, Aroua, & Aziz, 2010).  

Edible oils are important economically.  In the Mediterranean region, extra virgin olive oil 

is considered to be one of the most valuable and profitable products.  For this reason, the protected 

designation of origin (PDO) label has been used to designate extra virgin olive oils that originate 

in this region against potential counterfeit oils (Lastra-Mejías et al., 2019).  Olive oil, an expensive 

edible oil that has health benefit, tops the list of the ten most adulterated foods (“Food Frauds: 10 

Most Adulterated Foods”, Monica Dybuncho, CBSN, January 22, 2013).  As food supply chains 

are becoming increasingly complex with global challenges and risks emerging daily, the problems 

associated with adulteration of edible oils conducted for purposes of economic gain by food 

producers, processors, retailers, distributors and manufacturers is gaining increasing attention from 

governments and regulatory organizations (Jeffrey C. Moore, Spink, & Lipp, 2012).  In a report 

commissioned by the Department of Homeland Security and funded by the National Center for 
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Food Protection and Defense, food fraud was defined as “ a collective term that encompasses the 

deliberate substitution, addition, tampering, or misrepresentation of food, food ingredients, or food 

packaging, or false or misleading statements made about a product for economic gain” (Spink & 

Moyer, 2011).  Similarly, the United State Pharmacopoeia (USP) Expert Panel on Food Ingredient 

Intentional Adulterants, has defined the intentional or economically motivated adulteration of food 

ingredients as “the fraudulent addition of nonauthentic substances or removal or replacement of 

authentic substances without the purchaser’s knowledge for economic gain of the seller”(Jeffrey C. 

Moore et al., 2012).  

Adulteration of food products is a well-known global issue with its associated economic 

and health burdens. It is unfortunate that (in this century) the techniques use by individuals or 

organizations to perpetrate this act is becoming more routine as improvements in food quality 

progress to the extent that some activities of these perpetrators  are undetected (Lastra-Mejías et 

al., 2019).  Individuals or organizations involved in food adulteration design fraudulent ingredients 

in a manner to evade existing quality assurance and quality control systems implemented by 

manufacturers.   

The problem of food adulteration is also complicated by the fact that current food 

protection systems are not developed to detect an infinite number of potential adulterants in the 

food supply and the number of potential adulterants in the food supply is increasing each year 

(Spink, 2011; Spink & Moyer, 2011). It is unfortunate that consumers of edible oils are deprived 

of the benefits which they hope to derive t from the products which they purchase and in addition 

may experience health related problems as a result of the adulterants used.  A practical example is 

the case of the Spanish toxic oil syndrome which was caused by counterfeit olive oil. The 

counterfeit olive oil was actually denaturalized rapeseed oil that contained aniline. The product was 

intended for industrial purposes, but it was labeled as olive oil for consumers. More than 20,000 

consumers that purchased the olive oil for its sensory, nutritional and health benefits suffered 
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serious illness and even death as a result of this single act (Torrecilla, 2010). The situation has made 

it clear to consumers of edible oils that they are vulnerable to attack by these illicit activities.  

A variety of method based on chromatographic and spectroscopic techniques are available 

for the authentication of edible oils. Infrared spectroscopy and high performance liquid 

chromatography are the most common analytical detection procedures for authentication of food 

products (Jeffrey C. Moore et al., 2012). Vibrational spectroscopic techniques differ from 

chromatographic techniques in their approach to authenticate edible oils. In contrast to 

chromatography which tends to isolate the components of the oil prior to analysis, vibrational 

spectroscopic methods consider the resultant sample spectrum as an unequivocal “holistic” 

fingerprint of a given oil sample. The analysis of the these fingerprint spectra by pattern recognition 

methods is required for detection of adulteration and successful authentication of edible oils 

(López-Díez, Bianchi, & Goodacre, 2003).  Vibrational spectroscopy combined with multivariate 

analysis has the potential to discriminate between chemically similar edible oils (Baeten, Meurens, 

Morales, & Aparicio, 1996; Downey, McIntyre, & Davies, 2002).  Detection of edible oil 

adulteration can be performed by direct analysis of specific component using infrared spectroscopy. 

However, there are indications that some adulterants cannot be detected if minor components are 

removed under extreme conditions of refining (Aparicio & Aparicio-Ruı́z, 2000). Therefore, the 

pattern recognition approach has been employed for authentication of edible oils by vibrational 

spectroscopy. 

Spectroscopic methods possess attributes that are desirable for analytical techniques used 

in food quality assessment.  The attributes are speed, ease-of-use, minimal or no sample preparation 

and avoidance of sample destruction (Karoui, Downey, & Blecker, 2010).  Infrared spectroscopy 

has received more attention because of the introduction of Fourier-transform infrared spectroscopy 

(FTIR). FTIR has three competitive advantages over dispersive infrared spectrometer that were 

used prior to 1982.  The combination of Connes, Jacquinot’s and Fellgett’s advantages ensure that 
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FTIR has high wavelength precision, high optical throughput and high signal-to-noise compared to 

dispersive instrument.  Furthermore, the development of infrared sampling technique such as 

attenuated total reflection (ATR) has probably the most useful development in FTIR during the 

past fifteen years.  ATR is both simple and fast to use. To collect an infrared spectrum of an edible 

oil sample in ATR mode, the liquid is placed in contact with the surface of the crystal which is of 

high refractive index e.g., diamond.  

For vibrational spectroscopy, the success of the analysis for detecting adulterants in the 

edible oil will depend on the data analysis methods used.  Information in an infrared spectrum is 

captured by the positions, shapes and intensities of the bands.  The band positions contain 

information about the chemical structure whereas information about the concentration of the 

compounds giving rise to specific bands are contained in the band intensities which are described 

by the Beer-Lambert law.  The fact that edible oils contain hundreds of compounds explains the 

complex nature of their spectra which have overlapping bands.  Hence, there is a  need for the use 

of multivariate analysis to extract qualitative and quantitative information from the spectra (Karoui 

et al., 2010).  Principal component analysis is a powerful data reduction tool that has been used to 

qualitatively and quantitatively analyze IR spectra to detect the presence of adulterants. 

Qualitatively, principal component analysis and related methods have been used to group known 

samples and to classify unknown samples with similar spectroscopic properties and to 

quantitatively determine the degree of adulteration of the samples (J. C. Moore, Lipp, & Griffiths, 

2011).    

The application of FTIR spectroscopy and pattern recognition methods to the problem of 

discriminating edible oils by variety has been investigated.  Previously published studies on this 

subject were limited to approximately 30 samples spanning five or six varieties of edible oils 

obtained from a single manufacturer over a limited production year range (Jiménez-Carvelo, 

Osorio, Koidis, González-Casado, & Cuadros-Rodríguez, 2017; Lerma-García, Ramis-Ramos, 
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Herrero-Martínez, & Simó-Alfonso, 2010; Luna, da Silva, Ferré, & Boqué, 2013; Abdul Rohman 

& Che Man, 2011; A. Rohman & Man, 2010; Tay, Singh, Krishnan, & Gore, 2002; Vlachos et al., 

2006; Wójcicki, Khmelinskii, Sikorski, & Sikorska, 2015; Zhang et al., 2012).  In this study, FTIR 

spectra obtained from 95 samples spanning 20 varieties of edible oils collected from supermarkets 

in the greater Newark, DE metropolitan area over a three year period were examined using the three 

major types of pattern recognition methodology: mapping and display, clustering, and discriminant 

development.  The 20 varieties of edible oils could be partitioned into four distinct groups based 

on their degree of saturation and the ratio of polyunsaturated fatty acids to monounsaturated fatty 

acids.   Edible oils assigned to one group could be readily differentiated from those assigned to 

other groups, whereas FTIR spectra within the same group more closely resembled each other and 

therefore were difficult to classify by type.  These analyses highlight the need for adulteration 

studies of edible oils that span multiple sources within each oil variety of edible oil.  The supplier 

to supplier variation for edible oils (and possibly the seasonal variation within a supplier) is often 

greater than the within supplier variation. This work also demonstrates that previous studies (which 

rely on only one source for each type of edible oil) provide an overly optimistic estimate of the 

ability to classify edible oils or to detect low levels of adulterants by infrared or Raman 

spectroscopy. 
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CHAPTER II 
 

 

MATERIALS AND METHODS 

 

2.1. EDIBLE OIL SPECTRAL DATABASE 

Ninety-five edible oil samples (see Table 1) were purchased over a three year period from 

supermarkets in the Newark, DE metropolitan area.   Each sample represented a separate brand of 

edible oil or the same brand of edible oil manufactured in a different year.  All edible oil samples 

used in this study were stored in glass containers with plastic caps at room temperature prior to 

infrared analysis.  Some edible oils were associated with several brand names such as extra virgin 

olive oil (EVOO).  For EVOO, the brand names were robust extra virgin olive oil, rich robust extra 

virgin olive, mild bidley extra virgin olive oil and extra virgin olive gentile oil.  Extra light olive 

oil (ELOO) consisted of samples having the labels ELOO and extra light tasting olive oil, while 

olive oil was comprised of samples labeled as olive oil, classic olive and pure olive oil.  

Adulterated edible oil samples were prepared to simulate adulteration of more expensive 

edible oils, for example, extra virgin olive oil or sesame oil through substitution or blending with 

less expensive oils (such as corn or canola oil), by mixing the appropriate volume of each edible 

oil to yield the adulterant mixture, e.g., 15% adulterated mixture of extra virgin olive oil by corn 

oil is prepared by mixing 850 L of extra virgin olive oil and 150 L of corn oil in a 15 ml sterile 

falcon tube using a Thermolyne MaxiMixPlus vortex mixer.   
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Table 1.  Edible Oil Database 

Edible Oil Type Oil ID  Group ID 
Number of 

Samples 

Number of 
Spectra 

*Tset/Pset 

EVOO 1 1 25 73/7 

ELOO 2 1 7 20/4 

Olive 3 1 8 23/3 

Avocado 5 1 2 6/3 

Peanut 6 1 4 12/3 

Corn 7 3 8 26/19 

Grapeseed 8 3 8 27/9 

Safflower 9 1 2 6/3 

Hazelnut 10 1 2 6/3 

Canola 13 2 9 27/9 

Canola-Vegetable 16 2 1 3/0 

Vegetable 17 3 4 11/3 

Canola-Sun-Soybean 18 2 1 2/7 

Sunflower 19 1 1 3/0 

Sweet Almond 23 1 2 6/0 

Almond 27 1 4 12/3 

Extra Virgin Sesame 28 2 3 9/6 

Toasted Sesame 32 2 1 3/0 

Walnut 33 4 2 6/4 
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Avocado-Olive-Flaxseed 34 1 1 3/0 

Total --- --- 95 284/86 = 370 

*Tset = training set. Pset = prediction set.  

FTIR spectra were collected for each edible oil sample in triplicate over the spectral range 

402 cm-1 to 3738 cm-1.  Above 3738 cm-1, there were no absorption bands in any of the samples, 

and 400 cm-1 is the cut-off for the DTGS detector.  Spectra were collected in attenuated total 

reflection (ATR) mode using a Thermo Scientific Nicolet iS50 FTIR spectrometer equipped with 

a deuterated triglycine sulfate (DTGS) detector.  Apodization was performed using the Happ-

Genzel function.    

To collect an infrared (IR) spectrum, a drop of an edible oil sample was deposited on the 

crystal of the ATR module, and 64 scans were then performed at 4 cm-1 resolution for each sample. 

Background was collected before running each sample. Isopropanol and cotton swabs were used to 

clean the ATR crystal after each sample collection. The diamond crystal absorbance region (~2700 

cm-1- 1900 cm-1) was zeroed out of each IR spectrum.  An infrared absorption spectrum of an edible 

oil is shown in Figure 2.1. 
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Figure 2.1.  An infrared absorption spectrum of olive oil with the diamond region zeroed out. 

 

2.2. PATTERN RECOGNITION ANALYSIS 

Pattern recognition methods were originally developed to solve the class 

membership problem.  In a typical pattern recognition study, samples are classified 

according to a specific property by using measurements that are indirectly related to the 

property of interest.  An empirical relationship or classification rule is developed from a 

set of samples for which the property of interest and the measurements are known.  The 

classification rule is then used to predict the property of samples that are not part of the 

original training set.  The set of samples for which the property of interest and 
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measurements are known is called the training set, whereas the set of measurements that 

describe each sample in the data set is called a pattern.  The determination of the property 

of interest by assigning a sample to its respective class is called recognition, hence the term 

pattern recognition. 

For pattern recognition analysis, the IR spectrum of each sample is represented by 

a data vector x = (x1, x2, x3, …… xj,….. xn) where xj is the absorbance at the jth wavelength.  

Such a vector can be considered as a point in a high dimensional measurement space.  The 

Euclidean distance between each pair of points is inversely related to their degree of 

similarity.  Points representing spectra of samples from one class will cluster in a limited 

region of the measurement space separate from the other samples.  Pattern recognition is a 

set of numerical methods for assessing the structure of the data space.   The data structure 

is defined as the overall relation of each sample to every other sample in the data set. 

In this section, the four major subdivisions of pattern recognition methodology are 

discussed: (1) data preprocessing, (2) mapping and display, (3) clustering, and (4) 

classification.  The procedures that must be implemented in order to apply pattern 

recognition methods to a data set are also enumerated.  Specific emphasis is placed on the 

application of these techniques to the problem of discrimination and authentication of 

edible oils by type. 

2.2.1 DATA PREPROCESSING 
 

The first step in any pattern recognition study is to convert the spectral data into 

computer compatible form.  Normally, the spectral data are arranged in the form of a table 

or data matrix: 
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The rows of the matrix represent the spectra, and each column is the absorbance of the 

sample at a specific wavelength.  It is essential that each column encodes the same 

information for all samples in the data set.  If variable 5 is the absorbance at 3000 cm-1 for 

the FTIR spectrum of sample 1, it must also be the absorbance at 3000 cm-1 for the IR 

spectrum of samples 2, 3,…, M.  Hence, alignment is crucial when spectra are translated 

into data vectors.   

The next step is scaling.  The objective is to enhance the signal to noise ratio of the 

data.  In the application discussed in this thesis, two scaling techniques have been applied 

to the data: normalization and autoscaling.  The procedures that should be used for a given 

data set, however, are highly dependent upon the nature of the problem under investigation.   

 Normalization involves setting the sum of the components of each data vector equal 

to some arbitrary constant.  For mid-IR data, the data vectors are normalized to unit length.  

This is accomplished by dividing each vector by the square root of the sum of the squares 

of the components comprising the vector.  Normalization compensates for variation in the 

spectra due to differences in the sample size or optical path length.  However, 

normalization can introduce dependence between variables because of closure that can 

have an effect on the results of the investigation.  Thus, one must take into account both of 

these factors when deciding whether or not to normalize data. 

 Autoscaling involves standardizing the variables such that each measurement has a 

mean of zero and a standard deviation of one, that is, 
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where origix ,  is the mean and si,orig is the standard deviation of the original measurement 

variable.  If autoscaling is not applied, the wavelengths with larger absorbance values will 

tend to dominate the analysis because their variance is generally larger. Autoscaling 

removes inadvertent weighing of the variables that otherwise would occur.  Thus, each 

wavelength will have an equal weight in the analysis.  Autoscaling affects the spread of the 

data by placing the data points inside a hypercube.  However, it does not affect the relative 

distribution of the data points in the high dimensional measurement space. 

2.2.2 MAPPING AND DISPLAY 

Chemists often use graphical methods to study data.  If there are only two or three 

measurements per sample, the data can be displayed as a graph or plot for direct viewing.  

By examining the plot, a chemist can search for similarities and dissimilarities among 

samples, find natural clusters, and even obtain information about the overall structure of 

the data set.  If there are n measurements per sample (n>3), a two or three-dimensional 

representation of the measurement space is needed to visualize the relative position of the 

sample points in n-space.  This representation must accurately reflect the structure of the 

data.  A popular approach to this problem is using a mapping and display technique called 

principal component analysis  (Du, 2019; Liu, Maljovec, Wang, Bremer, & Pascucci, 2017; 

Pořízka et al., 2018). 

Principal component analysis is the most widely used multivariate analysis 

technique in science and engineering.  It is a method for transforming the original 

measurement variables into new, uncorrelated variables called principal components.  Each 
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principal component is a linear combination of the original measurement variables.  Using 

this procedure, a set of orthogonal axes that represent the direction of greatest variance in 

the data is found.  (Variance is defined as the degree to which the data are spread in the n-

dimensional measurement space.)  Usually, only two or three principal components are 

necessary to explain all of the information present in multivariate data.  Hence, principal 

component analysis can be applied to multivariate data for dimensionality reduction, in 

order to identify outliers, display data structure, and classify samples. 

Dimensionality reduction or data compression is possible with principal component 

analysis because of correlations between measurement variables. Consider Figure 2.2, 

which shows a plot of 15 samples in a two-dimensional space.  The coordinate axes of this 

measurement space are defined by the variables x1 and x2.  These two variables are 

correlated since fixing the value of x1 limits the range of values possible for x2.  If x1 and 

x2 were uncorrelated, the enclosed rectangle shown in Figure 2.2 would be completely 

filled by data points.  Because information can be defined as the scatter of points in a 

measurement space, correlations between measurement variables decrease the scatter or 

information content of the space.  The data points are restricted to a small region of the 

measurement space due to correlations between the measurement variables.  If the 

measurement variables are highly correlated, the data points may even reside in a subspace.  

This is shown in Figure 2.3.  Each row of the data matrix is an object and each column is 

a measurement variable.  Here x3 is perfectly correlated with x1 and x2 since x3 (third 

column) equals x1 (first column) plus x2 (second column).  Hence, the seven data points lie 

in a plane (or 2-dimensional subspace) even though each point has three measurements 

associated with it because x3 is a redundant variable.  
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Figure 2.2.  Seventeen hypothetical samples projected onto a 2-dimensional measurement 
space defined by the measurement variables X1 and X2.  The vertices, A, B, C, and D, of the 
rectangle represent the smallest and largest values of X1 and X2.  (Adapted from NBS J. Res., 1985, 
190(6), 465-476)   
 

Figure 2.3.  Six hypothetical samples projected onto a 3-dimensional measurement space.  
Because of strong correlations among the 3 measurement variables, the data points reside in a 2-
dimensional subspace of the original measurement space.  (Adapted from Multivariate Pattern 
Recognition in Chemometrics, Elsevier Science Publishers, Amsterdam, 1992) 
 

Variables that contain redundant information are said to be collinear. High 

collinearity between variables is a strong indication that a new coordinate system can be 

found that will be better at conveying the information present in the data than one defined 



19 
 

by the original measurement variables. The new coordinate system for displaying the data 

is based on variance.  (The scatter of the data points in the measurement space is a direct 

measure of the data’s variance.) The principal components of the data define the variance-

based axes of this new coordinate system. The first principal component is formed by 

determining the direction of largest variation in the original measurement space of the data 

and modeling it with a line fitted by linear least squares (see Figure 2.4) that passes through 

the center of the data. The second largest principal component lies in the direction of next 

largest variation.  It passes through the center of the data and is orthogonal to the first 

principal component.  The third largest principal component lies in the direction of next 

largest variation.  It also passes through the center of the data; it is orthogonal to the first 

and second principal component, and so forth.  Each principal component describes a 

different source of information because each defines a different direction of scatter or 

variance in the data. The orthogonality constraint imposed by the mathematics of principal 

component analysis also ensures that each variance-based axis will be independent.    

A measure of the amount of information conveyed by each principal component is 

the variance of the data explained by it, which is expressed in terms of its eigenvalue.   For 

this reason, principal components are arranged in order of decreasing eigenvalues.  The 

most informative or largest principal component is the first and the least informative or 

smallest is the last.  The amount of information contained in a principal component relative 

to the original measurement variables, i.e., the fraction of the total cumulative variance 

explained by the principal component, is equal to the eigenvalue of the principal 

component divided by the sum of all the eigenvalues.  The maximum number of principal 

components that can be extracted from the data is the smaller of either the number of 
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samples or the number of variables in the data set, as this number defines the largest 

possible number of independent axes in the data.  

 

 

Figure 2.4.  Principal component axes developed from the measurement variables a, b, and 
c. (Courtesy of Applied Spectroscopy, 1995, 49(12), 14A-30A) 
 

If the data are collected with due care, one would expect that only the larger 

principal components would convey information about clustering since most of the 

information in the data should be about the effect of interest.  However, the situation is not 

always as straightforward as implied.  Each principal component describes some amount 

of signal and some amount of noise in the data because of accidental correlation between 

signal and noise. The larger principal components contain information primarily about 

signal, whereas the smaller principal components describe primarily noise.  By discarding 

the smaller principal components, noise is discarded but so is a small amount of signal. 

However, the gain in signal to noise more than compensates for the biased representation 

of the data that occurs when plotting only its largest principal components.   
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Principal component analysis takes advantage of the fact that a large amount of data 

generated in scientific studies has a great deal of redundancy and therefore a great deal of 

collinearity. Because the measurement variables are correlated, 800-point spectra do not 

require 800 independent orthogonal axes to define the position of a sample point in the 

measurement space.  Using principal component analysis, the original measurement 

variables that constitute a correlated axes system can be converted into an orthogonal axes 

system, which dramatically reduces the dimensionality of the data since only a few 

independent axes are needed to describe the data.   Spectra of a set of samples often lie in 

a subspace of the original measurement space and a plot of the two or three largest principal 

components of the data can help one to visualize the relative position of the spectra in this 

subspace. 

2.2.3 CLUSTERING 

Exploratory data analysis techniques are often quite helpful in elucidating the 

complex nature of multivariate relationships.  In the preceding section, the importance of 

using mapping and display techniques for understanding the structure of complex 

multivariate data sets was emphasized.  In this section, some additional techniques will be 

discussed that also give insight into the structure of a data set.  These methods attempt to 

find sample groupings or clusters within data using criteria developed from the data itself: 

hence the term cluster-analysis.                                                   

Cluster analysis is based on the principle that distances between pairs of points (i.e., 

samples) in the measurement space are inversely related to their degree of similarity.  

Although several different types of clustering algorithms exist, by far the most popular is 

hierarchical clustering [46-48], which is the focus here.  The starting point for a hierarchical 
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clustering experiment is the similarity matrix, which is formed by first computing the 

distances between all pairs of points in the data set.  Each distance is then converted into a 

similarity value  

)3.2(1
maxd

d
s ik

ik −=  

where sik is the measure of similarity between samples i and k, dik is the Euclidean distance 

between samples i and k, and dmax is the distance between the two most dissimilar samples, 

which is also the largest distance in the data set.  These similarity values, which vary from 

0 to 1, are organized in the form of a table or square symmetric matrix. The similarity 

matrix is scanned for the largest value, which corresponds to the most similar point pair, 

and the two samples (comprising the point pair) are combined to form a new point located 

midway between the two original data points.  After the rows and columns corresponding 

to the original two data points are removed, the symmetry matrix is then updated to include 

information about the similarity between the new point and every other point in the data 

set.  The matrix is again scanned, the new nearest point pair is identified and combined to 

form a single point, the rows and columns of the two data points that were combined are 

removed, and the matrix is recomputed.  This process is repeated until all points have been 

linked.  The result of this procedure is a diagram called a dendogram, which is a visual 

representation of the relationships between samples in the data set (see Figure 4).  

Interpretation of the results is intuitive, which is the major reason for the popularity of these 

methods.  For example, the dendogram shown in Figure 2.4 suggests that the data set can 

be divided into two groups (cluster 1 = samples 18, 15, 25, 12, 14, 13, 16, 17, 21, 22, 23, 

20, 24; cluster 2 = samples 9, 11, 6, 10, 3, 19, 4, 1, 2, 5) or four groups (cluster 1 = samples 

18, 15, 25, 12, 14, 13, 16, 17; cluster 2 = samples 21, 22, 23, 20, 24; cluster 3 = samples 9, 
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11, 6, 10; cluster 4 = samples 3, 19, 4, 1, 2, 5).  Samples 7 and 8 are considered outliers by 

the dendogram.  

 

Figure 2.5.  Dendogram of a data set that can be divided into two or four clusters.  Samples 
7 and 8 are outliers. 
 
  

All clustering procedures yield the same results for data sets with well-separated 

clusters.  However, the results differ when the clusters overlap because of space distorting 

effects.  Single linkage favors the formation of large linear clusters instead of the usual 

elliptical or spherical clusters.  As a result, poorly separated clusters are often chained 

together.  Complete linkage, on the other hand, favors the formation of small spherical 

clusters. That is why it is a good idea to use at least two different clustering algorithms 

when studying a data set.  If the dendograms are in agreement, then a strong case can be 

made for partitioning the data into distinct groups.  If the cluster memberships differ, the 

data should be further investigated using principal component analysis or other mapping 
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and display techniques.  As a general rule, it is recommended that hierarchical methods be 

used in tandem with principal component or self- organizing maps to detect clusters in 

multivariate data.  Hierarchical methods are exploratory tools: the absolute validity of a 

dendogram is less important than insights and suggestions gained by the user about the data 

structure.  

2.2.4 CLASSIFICATION 
 
So far, only exploratory data analysis techniques, e.g., cluster and principal 

component analysis, have been discussed.  These techniques attempt to analyze 

multivariate data without directly using the information about the class assignment of the 

samples to develop projections of the data.  Although mapping and display techniques and 

cluster analysis are powerful methods for uncovering relationships in large multivariate 

data sets, they are often not sufficient for developing a classification rule.  However, the 

overall goal of pattern recognition analysis is the development of a classification rule that 

can accurately predict the class membership of an unknown sample.  In this section, 

classification methods will be discussed.  The focus will on a genetic algorithm for pattern 

recognition and feature selection. 

A block diagram of the pattern recognition GA is shown in Figure 2.6.  The GA 

builds a population of binary strings, each of which represents a possible solution, i.e., a 

set of wavelengths.  For a wavelength to be included in the subset, it is necessary for the 

corresponding bit in the string to be set at 1.  If the bit is set to 0, the wavelength will not 

be included. 
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Figure 2.6.  Block diagram of the pattern recognition GA. 

  

 During each generation, the strings are decoded yielding the actual parameter set, 

which is sent to a fitness function for evaluation.   The string is assigned a value by the 

fitness function, which is a measure of the quality of the proposed solution.  Solutions with 

high fitness values have a high probability of being selected for crossover.  The power of 

the GA arises from crossover, which causes a structured yet randomized exchange of 

information between solutions, with the possibility that good solutions can generate even 

better ones.  The new population of strings, which often yields better solutions to the 

problem, is evaluated using the fitness function.  This entire process (evaluation, selection, 

crossover, mutation, and adjustment of internal parameters) is repeated until a specified 

number of generations or a feasible solution has been found. 

The fitness function of the GA emulates human pattern recognition through 

machine learning to score the principal component plots and thereby identify a set of 

features that optimize the separation of the woods by sample type in a plot of the two largest 

principal components of the data.  To facilitate the tracking and scoring of the principal 

component plots, class and sample weights, which are an integral part of the fitness 

function, are computed (see Equations 2.4 and 2.5, where CW(c) is the weight of class c 
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and c varies from 1 to the total number of classes in the data set, and SWc(s) is the weight 

of sample s in class c).  The class weights sum to 100, whereas the sample weights in a 

class sum to a value equal to the corresponding class weight.   

 

 

 

Each principal component plot generated for each feature subset is scored using the K-

nearest neighbor (K-NN) classification algorithm (Pei, 1998 ).  For a given data point, Euclidean 

distances are computed between it and every other point in the principal component plot.  These 

distances are arranged from smallest to largest.  A poll is then taken of the point’s K-nearest 

neighbors.  For the most rigorous classification, K equals the number of samples in the class to 

which the point belongs.  (K, which is assigned by the user, usually varies with the class.)  The 

number of nearest neighbors with the same class label as the sample point in question, the so-called 

sample hit count (SHC), is computed (0 < SHC(s) < Kc), where Kc is the number of nearest 

neighbors to be calculated for each sample in class c.  It then becomes a simple matter to score a 

principal component plot (see Equation 2.6 where F(d) is the fitness of the feature set being scored, 

SHC(s) is the number of nearest samples with the same class label as sample s, and SW(s) is the 

weight of sample s.)   
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To better understand the scoring of the principal component plots, consider the 

hypothetical example of a data set with two classes having been initially assigned equal 

weights by the pattern recognition GA.  Class 1 has 10 samples, and class 2 has 20 samples.  

Therefore, K1 is 10 and K2 is 20.  At generation 0 (no children have yet been created), the 

samples in a given class will have the same weight.  Therefore, each sample in class 1 has 

a sample weight of 5, whereas each sample in class 2 has a weight of 2.5.  If sample 3, 

which is in class 1, has as its nearest neighbors 7 class one samples, then SHC/K1 = 0.7 and 

(SHC/K1)*SW(3) = 0.7*5 or 3.5.  By summing (SHC/Kc)*SW(s) for each sample point in 

the plot, the principal component map of the feature subset is scored. 

The fitness function of the GA is able to focus on samples and classes that are difficult to 

classify by boosting their weights over successive generations.  In order to boost, it is necessary to 

first compute the sample hit rate (SHR), which is the mean value of SHC/Kc over all feature subsets 

() produced in a particular generation (see Equation 2.7).  SHR, which is calculated over the entire 

population of solutions in a particular generation, provides consistent information about the 

difficulty in classifying a particular sample.   

 

Boosting is then performed in two steps.  First, the class-hit rate (i.e., average sample hit 

rate for all samples in a class) is computed (see Equation 2.8 where CHRg(c) is the class hit rate for 

class c during generation g, AVG is the average, and SHRg(s) is the sample hit rate for each sample 

in class c during generation g).  CHR like SHR provides consistent information about the difficulty 

in classifying a particular sample type.  Classes and samples with low hit rates will be weighted 

more heavily, that is, they will have more influence in the fitness calculation, than classes or 

samples that score well. 


=
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Second, class and sample weights are adjusted during each generation using a perceptron 

(see Equations 2.9 and 2.10 where CWg+1(c) is the class weight for c during the current generation 

g+1, CWg(c) is the class weight for c during the previous generation g, P is the momentum, CHRg(c) 

is the class hit rate for c during generation g, SW(s)g+1 is the sample weight for s during generation 

g+1, SW(s)g is the sample weight for s during generation g, and SHRg(s) is the sample hit rate for 

s during generation g.)  The user must set the momentum, P.   

During each generation, class and sample weights are updated using the class and sample 

hit-rates from the previous generation.  After a certain number of generations, the class weights 

become fixed.  Equation 2.9 is turned off, P is halved, and sample weights are renormalized using 

Equation 2. The GA then focuses on the troublesome samples; see Equation 2.10.   

 

 

  

  

 Boosting is crucial for the successful operation of the GA because it allows the 

values of the class and sample weights to change, thereby modifying the criteria for a good 

score.  This can helps to minimize the problem of convergence to a local optimum.  Hence, 

the fitness landscape of the GA changes as the population evolves towards a solution. 

 During each generation, the selection, crossover, and mutation operators are 

applied to the chromosomes to develop new and potentially better solutions.  The selection 

operator used by the pattern recognition GA is implemented by ordering the population of 

(2.10)        (s))SHR-P(1)s(SW)s(SW gg1g +=+

(2.9)         (c))CHR-P(1)c(CW)c(CW gg1g +=+

(2.8)         ): (s)(SHR(c)CHR csgg = AVG
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strings, i.e., the wavelength subsets, from best to worst fitness while simultaneously 

generating a copy of the same population and randomizing the order of the strings in this 

copy with respect to fitness.  A fraction of the population is then selected as per the 

selection pressure, which is usually set at 0.5.  The top half of the ordered population is 

mated with the top half of the random population, guaranteeing that the best 50% are 

selected for reproduction, while ensuring that every string in the randomized copy has a 

uniform chance of being selected due to the randomized selection criterion imposed on the 

strings in this population. 

 For each pair of strings selected for crossover, two new strings are generated using 

a variation of three-point crossover.  As in the case of simple three-point crossover, the 

length of each new string or solution is the same as the dimensionality of the data.  

However, the crossover operator used by the pattern recognition GA is not compelled to 

preserve order among exchanged string fragments.  This safeguards the loss of information 

or features in the population.  As a result, it becomes less likely for the population 

variability to fall below a critical value due to the additional degree of freedom provided 

by the reordering.  This variation of three-point crossover may also be useful in searching 

for good string arrangements.  If the current population has bad ordering, where features 

with a high synergism are spaced apart at great distances, simple crossover would probably 

destroy these important allele packets.  On the other hand, there is a chance to obtain good 

allele ordering, by using a crossover operator with a reordering algorithm embedded in it.   

 A mutation operator is applied to the new strings with the mutation probability 

usually set at 1%. This means that 1% of the new chromosomes (i.e., feature subsets) are 

selected at random for mutation.  A chromosome marked for mutation has a single bit 
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flipped, which is selected at random.  This allows the GA to explore other regions of the 

solution space.  If the GA finds a better feature subset through mutation, the optimization 

will continue in a new direction. 

 The resulting population of strings, both parents and children, are sorted by their 

fitness (see Equation 2.6), and the top  strings are retained for the next generation.  The 

new population can be expected to perform better on average than its predecessor because 

the selection criterion used for reproduction exhibits bias for the higher-ranking strings.  

However, the reproduction operators also assure a significant degree of diversity in the 

population, since the crossover points and reordering of exchanged string fragments of 

each chromosome pair is selected at random.  
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CHAPTER III 
 

 

RESULTS AND DISCUSSION 

 

 

Of the 370 IR spectra collected from 95 edible oil samples, 289 were assigned to the 

training set and 81 to the prediction set by random lot.   Because of the large number of classes, a 

hierarchical classification scheme was employed to discriminate the FTIR spectra of the 20 

varieties of edible oils in the training set. To implement this scheme, the average infrared spectrum 

of each variety of edible oil was computed.  The 20 average spectra were then analyzed using both 

principal component analysis and hierarchical cluster analysis.   Both the principal component plot 

and the dendogram of the average infrared spectra (see Figure 3.1) are in agreement and each 

indicates that dividing the 20 edible oils into four distinct groups is appropriate (see Table 3).  For 

this reason, we chose to partition the edible oils into four groups (see Table 2.1 and Figure 3.2).   
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Figure 3.1.  Principal component plot and dendogram (furthest linkage) of the average FTIR 
spectra of the 20 varieties of edible oils comprising the training set. 

 

 

 



34 
 

 

Figure 3.2.  Partitioning of the IR spectra of the 20 edible oils into four groups 

 

3.1 CLASSIFICATION OF EDIBLE OILS 

The 289 infrared spectra of 6921 points each, which comprises the training set, were 

subject to principal component analysis.  Figure 3.3 shows a plot of the two largest principal 

components of the 6921 features obtained from the 289 infrared spectra comprising the training 

set.  Each spectrum is represented as a point in the principal component plot.  The four groups of 

edible oils previously detected by cluster analysis are separated from each other in the plot.  Since 

this projection is made without the use of information about the class assignment of each infrared 

spectrum, the resulting separation is, therefore, a strong indication of real differences in the infrared 

spectral profile of these four groups.  
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Feature selection was the next step as the deletion of uninformative features from the 

infrared spectral profiles often ensures that discriminatory information about edible oil group is the 

major source of variation in the data.  Furthermore, feature selection can transform a difficult 

classification problem into a simple one.  However, the feature selection method employed should 

be multivariate in nature to ensure that crucial features are not discarded.  For these reasons, the 

pattern recognition GA was applied to the 289 training set spectra to identify wavelengths 

characteristic of each edible oil group by sampling key feature subsets, scoring their PC plots, and 

tracking those spectra and/or varieties of edible oils that were difficult to classify.  After 200 

generations, the pattern recognition GA identified 15 wavelengths whose PC plot (see Figure 3.4) 

displays four well separated clusters of infrared spectra on the basis of edible oil group.  The first 

principal component appears to differentiate the edible oils by their degree of unsaturation as the 

edible oils comprising the first cluster, i.e., the Group 1 edible oils (extra virgin olive, extra light 

olive, pure olive, peanut, avocado, safflower, hazelnut, sunflower, sweet almond, almond, and 

avocado-olive-flaxseed) have a greater degree of unsaturation than those edible oils comprising 

Group 2 (canola, canola-vegetable, canola-sun-soybean, extra virgin sesame and toasted sesame), 

and Group 2 edible oils possess a greater degree of unsaturation than Group 3 edible oils (corn, 

grapeseed, and vegetable).     
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Figure 3.3. Plot of the two largest principal components of the 289 IR spectra and 6921 points 
comprising the training set.  1 = Group 1, 2 = Group 2, 3 = Group 3, and 4 = Group 4 
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Figure 3.4.  Plot of the two largest principal components of the 289 infrared spectra comprising the 
training set and the 15 spectral features identified by the pattern recognition GA. 1 = Group 1, 2 = 
Group 2, 3 = Group 3, and 4 = Group 4 

 

 

A validation set of 81 infrared spectra was used to assess the predictive power of the 

principal component plot developed from the 289 infrared spectra comprising the training set and 

the 15 spectral features identified by the pattern recognition GA.  The 81 infrared spectra were 

mapped onto the PC plot developed from the 15 spectral features.  Figure 3.5 shows the validation 

set spectra projected onto the principal component plot.  Each projected validation set spectrum 

lies in a region of the principal component plot with infrared spectra from the same edible oil group.  

This result suggests that the proposed hierarchical approach to the discrimination of the 20 varieties 
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of edible oils which involves dividing the oils into four groups is consistent with the structure of 

the data. 

 

 

 

Figure 3.5.  Projection of the 81 validation set spectra on the plot of the two largest principal 
components of the 289 infrared spectra comprising the training set and the 15 spectral features 
identified by the pattern recognition GA.  Training set: 1 = Group 1, 2 = Group 2, 3 = Group 3, and 
4 = Group 4.   

Validation set: 1 = Group 1, 2 = Group 2, 3 = Group 3, and 4 = Group 4 
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The next step was to discriminate the edible oils by type within each group.  The pattern 

recognition GA was applied to the 170 infrared spectra comprising the training set for Group 1 (see 

Table 2.1).  The IR spectra of extra virgin olive oil, extra light olive oil, and pure olive oil could 

not be differentiated using the pattern recognition GA as the triglyceride fraction of these three oils 

is identical.  For this reason, infrared spectra of extra virgin olive oil, extra light olive oil, and pure 

olive oil were merged into a single class.  Figure 3.6 shows a plot of the two largest principal 

components of the 170 infrared spectra comprising the training set and the 12 spectral features 

identified by the pattern recognition GA. Each infrared spectrum is represented as a point in the 

principal component plot with the identity of the edible oil designated for each point.  The 29 

infrared spectra comprising the validation set for the Group 1 edible oils were projected onto the 

principal component plot of the 170 infrared spectra and the 12 spectral features identified by the 

pattern recognition GA (see Figure 3.7).  All 29 infrared spectra comprising the validation set were 

correctly classified, i.e. each validation set sample was projected onto a region of the principal 

component plot containing infrared spectra of the same edible oil type.      
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Figure 3.6.  Plot of the two largest principal components of the 170 infrared spectra comprising the 
training set and the 12 spectral features identified by the pattern recognition GA. 1 = EVOO, 2 = 
ELOO, 3 = Olive Oil, 5 = Avocado, 6 = Peanut, 9 = Safflower, 10 = Hazelnut, 23 = Sweet Almond, 
and 27 = Almond. 
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Figure 3.7.  Projection of the 29 validation set spectra onto the plot of the two largest principal 
components of the 170 infrared spectra comprising the training set for Group 1 and the 12 spectral 
features identified by the pattern recognition GA.  Training set: 1 = EVOO, 2 = ELOO, 3 = Olive 
Oil, 5 = Avocado, 6 = Peanut, 9 = Safflower, 10 = Hazelnut, 23 = Sweet Almond, and 27 = Almond.  
Validation set: 1 = EVOO, 2 = ELOO, 3 = Olive Oil, 5 = Avocado, 6 = Peanut, 9 = Safflower, 10 
= Hazelnut, 23 = Sweet Almond, and 27 = Almond.   

 

 Figures 3.6 and 3.7 indicate that within-class variability is greater than class variability for 

sweet almond, peanut, and hazelnut.  In previously published studies, workers have focused their 
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efforts on within supplier sample variation in presenting a best case scenario for classification.  In 

this study, we considered sample variation within a supplier and between suppliers in the 

classification of edible oils, which would explain the results that we obtained for sweet almond, 

hazelnut, and peanut.  

For the Group 2 edible oils (Canola, Canola-Sunflower-Soybean, Canola-Vegetable blend, 

Extra Virgin Sesame, and Toasted Sesame), the pattern recognition GA identified 18 spectral 

features.  Figure 3.8 shows a plot of the two largest principal components of the 49 infrared spectra 

comprising the training set and the 18 spectral features identified by the pattern recognition GA.  A 

validation set of 17 infrared spectra was used to assess the predictive power of the principal 

component plot developed from the 49 infrared spectra and 17 spectral features.  The 17 infrared 

spectra were mapped onto the principal component plot developed from these 18 spectral features.  

Figure 3.9 shows the validation set spectra projected onto this principal component plot.  Each 

projected validation set spectrum is located in a region of the principal component plot containing 

infrared spectra with the same class label.  The results for the Group 3 edible oils are summarized 

in Figures 3.10 and 3.11.   
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Figure 3.8.  Plot of the two largest principal components of the 49 infrared spectra comprising the 
training set and the 17 spectral features identified by the pattern recognition GA. 13 = Canola, 16 
= Canola-Vegetable blend, 18 = Canola-Sunflower-Soybean, 28 = Extra Virgin Sesame, and 32 = 
Toasted Sesame. 
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Figure 3.9.  Projection of the 17 validation set spectra onto the plot of the two largest principal 
components of the 49 infrared spectra comprising the training set for Group 2 and the 17 spectral 
features identified by the pattern recognition GA.  Training set: 13 = Canola, 16 = Canola-
Vegetable blend, 18 = Canola-Sunflower-Soybean, 28 = Extra Virgin Sesame, and 32 = Toasted 
Sesame.  Validation set: 13 = Canola, 16 = Canola-Vegetable blend, 18 = Canola-Sunflower-
Soybean, 28 = Extra Virgin Sesame, and 32 = Toasted Sesame.   
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Figure 3.10.  Plot of the two largest principal components of the 64 infrared spectra comprising the 
training set and the 10 spectral features identified by the pattern recognition GA.  7 = Corn Oil, 8 
= Grapeseed Oil, and 17 = Vegetable Oil. 
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Figure 3.11.  Projection of the 31 validation set spectra onto the plot of the two largest principal 
components of the 64 infrared spectra comprising the training set for Group 3 and the 10 spectral 
features identified by the pattern recognition GA.  Training set: 7 = Corn Oil, 8 = Grapeseed Oil, 
and 17 = Vegetable Oil. 

Validation set: 7 = Corn Oil, 8 = Grapeseed Oil, and 17 = Vegetable Oil. 

 

 

3.2 ADULTERATION STUDIES 

 

Adulteration studies were performed to simulate adulteration of olive oil through 

substitution with less expensive edible oils such as almond, hazelnut, corn and canola by mixing 



47 
 

the appropriate volume of each edible oil to yield the desired adulterant mixture.  In the first study 

(see Figure 3.12), the pattern recognition GA was applied to a training set consisting of 11 almond 

oil spectra and the 56 EVOO spectra.  The validation set consisted of 31 spectra of adulterated 

EVOO with the adulterant mixtures varying from 95% EVOO to 60% EVOO using almond oil as 

the adulterant.  In the second study (see Figure 3.13), the training set consisted of 62 infrared spectra 

(56 spectra of EVOO and 6 spectra of hazelnut oil), and the validation set contained 31 spectra of 

EVOO and adulterated EVOO with the adulterant mixtures varying from 95% to 60%  EVOO using 

hazelnut oil as the adulterant.   Both almond oil and hazelnut oil as adulterants of EVOO could not 

be accurately detected by FTIR (see Figures 3.12 and 3.13).  Both almond oil and hazelnut oil are 

in the same edible oil group as EVOO.  This begs the questions as to the capability of FTIR to 

discriminate edible oils in the same group.  
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Figure 3.12.  Projection of the validation set spectra onto the principal component plot of the 67 
spectra (11 almond oil and 56 EVOO) comprising the training set and the two spectral features 
identified by the pattern recognition GA.  Training set: 100 = EVOO and 0 = Almond.  Validation 
set: 95 = 5% adulteration by almond, 90 = 10% adulteration by almond, 85 = 15% adulteration by 
almond, 80 = 20% adulteration by almond, 70 = 30% adulteration by almond, 60 = 40% adulteration 
by almond, and 0 = Almond. 
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Figure 3.13.  Projection of the validation set spectra onto the principal component plot of the 62 
spectra (6 hazelnut oil and 56 EVOO) comprising the training set and the four spectral features 
identified by the pattern recognition GA.  Training set: 100 = EVOO and 0 = Hazelnut.  Validation 
set: 95 = 5% adulteration by hazelnut, 90 = 10% adulteration by hazelnut, 85 = 15% adulteration 
by hazelnut, 80 = 20% adulteration by hazelnut, 70 = 30% adulteration by hazelnut, 60 = 40% 
adulteration by hazelnut, and 0 = Hazelnut. 
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Adulteration studies were also performed on olive oil using adulterants from different 

edible oil groups.  In one study, the pattern recognition GA was applied to a training set consisting 

of 9 ELOO and 24 corn oil spectra with the validation set consisting of 12 corn oil spectra, 3 ELOO 

spectra and 45 adulterant mixtures of ELOO and corn oil.   Figure 3.14 summarizes the results of 

this study.  In a second study, the training set consisted of 9 ELOO, 24 corn oil and 27 canola 

spectra and the validation set contained 3 canola, 3 ELOO, 12 corn oil, and 32 adulterant mixtures 

of ELOO, canola and corn oil.   Both canola and corn oil are in a different edible oil group from 

ELOO.  Furthermore, these two oils can be discriminated from ELOO using FTIR. 
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Figure 3.14.  Projection of the validation set spectra onto the principal component plot of the 33 
spectra (24 corn oil and 9 ELOO) comprising the training set and the 13 spectral features identified 
by the pattern recognition GA.  Training set: 2 = ELOO and 7 = Corn.  Validation set: 95 = 5% 
adulteration by corn, 90 = 10% adulteration by corn, 85 = 15% adulteration by corn, 80 = 20% 
adulteration by corn, 70 = 30% adulteration by corn, 60 = 40% adulteration by corn, 2 = ELOO 
and 7 = Corn. 
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Figure 3.15.  Projection of the validation set spectra onto the principal component plot of the 60 

spectra (24 corn oil, 27 canola oil and 9 ELOO) comprising the training set and the 13 spectral 

features identified by the pattern recognition GA.  Training set: 2 = ELOO, 7 = Corn and 13 = 

Canola.  Validation set: 90 = 5% adulteration by corn and 5% adulteration by canola, 80 = 10% 

adulteration by corn and 10% adulteration by canola, 70 = 15% adulteration by corn and 15% 

adulteration by canola, 60 = 20% adulteration by corn and 20% adulteration by canola, 20 = 60% 

adulteration by corn and 20% adulteration by canola, 15 = 70% adulteration by corn and 15% 

adulteration by canola , 10 = 80% adulteration by corn and 10% adulteration by canola, 5 = 90% 

adulteration by corn and 5% adulteration by canola, 2 = ELOO, 7 = Corn and 13 = Can 
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CHAPTER IV 
 

 

CONCLUSIONS 

 

A hierarchical classification scheme has been developed to differentiate FTIR 

spectra of edible oils by type.  The 20 edible oils investigated in this study were divided 

into 4 groups by cluster analysis.  FTIR spectra of edible oils in the same group were more 

similar to each other than infrared spectra from different groups.  Edible oils assigned to 

Group 1 could be readily differentiated from those assigned to Groups 2, 3, 4, and 5, 

whereas FTIR spectra of edible oils within the same group more closely resembled each 

other and therefore were more difficult to classify by type.  For example, corn and canola 

oil (Groups 2 and 3) which previous workers have shown can be readily detected as 

adulterants in extra virgin olive oil (Group 1 oil) by FTIR spectroscopy, can be readily 

differentiated from extra light olive oil using the hierarchical based classification scheme 

described in this study.     

Adulteration of extra virgin olive oil by less expensive grades of olive oil such as 

Grecian olive oil cannot be detected by FTIR spectroscopy because of the similarity of the 

triglyceride profile of extra virgin olive oil and that of other grades of olive oil.  

Furthermore, adulteration of extra virgin olive oil by almond or hazelnut oil (both of which 

are in the same group as olive oil) is a difficult analysis problem as shown by the 
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adulteration studies performed here. Although other workers have previously reported that 

PLS using all the wavelengths in the spectrum has the potential to detect hazelnut 

adulteration in extra virgin olive oil, the training set used was restricted to a single source 

of extra virgin olive oil and hazelnut oil.  The reported PLS results may represent a best 

case scenario as the training set does not take into account within-supplier and between-

supplier variability.  Clearly, the hierarchical classification scheme formulated in this study 

affords the analyst the means to realistically assess the difficulty associated with detecting 

the presence of a particular adulterant in a specific variety of edible oil using FTIR 

spectroscopy.   

 These analyses also highlight the need for edible oil classification and 

adulteration studies that span multiple sources within each oil type.  The supplier to 

supplier variation for edible oils (and possibly the seasonal variation within a supplier) may 

be greater than the within supplier variation. This work also indicates that previous studies 

(which rely on only one source for each type of edible oil) provide an overly optimistic 

estimate of the ability to spectroscopically classify edible oils or to detect low levels of 

adulterants. 
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