
WEBSITE FINGERPRINTING ATTACKS

By

WEIQI CUI

Bachelor of Science in Computer Science
Dalian University of Technology

Dalian, Liaoning
China
2014

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

May, 2019

WEBSITE FINGERPRINTING ATTACKS

Thesis Approved:

Dr. Eric Chan-Tin

Dissertation Advisor

Dr. Nohpill Park

Dr. Christopher Crick

Dr. Yanmin Gong

ii

Name: WEIQI CUI

Date of Degree: May, 2019

Title of Study: WEBSITE FINGERPRINTING ATTACKS

Major Field: COMPUTER SCIENCE

Abstract: Most privacy-conscious users utilize HTTPS and an anonymity network
such as Tor to mask source and destination IP addresses. It has been shown that
encrypted and anonymized network traffic traces can still leak information through
a type of attack called a website fingerprinting (WF) attack. The adversary records
the network traffic and is only able to observe the number of incoming and outgoing
messages, the size of each message, and the time difference between messages. In
previous work, the effectiveness of website fingerprinting has been shown to have an
accuracy of over 90% when using Tor as the anonymity network. Thus, an Internet
Service Provider can successfully identify the websites its users are visiting.

Mitigations to these attacks are using cover/decoy network traffic to add noise,
padding to ensure all the network packets are the same size, and introducing net-
work delays to confuse an adversary. Although these mitigations have been shown to
be effective, reducing the accuracy to 10%, the overhead is very high. The latency
overhead is above 100% and the bandwidth overhead is at least 40%. We introduce
a new realistic cover traffic algorithm, based on a user’s previous network traffic, to
mitigate website fingerprinting attacks. In simulations, our algorithm reduces the
accuracy of attacks to 14% with zero latency overhead and about 20% bandwidth
overhead. In real-world experiments, our algorithms reduces the accuracy of attacks
to 16% with only 20% bandwidth overhead.

One main concern about website fingerprinting is its practicality. The common as-
sumption in previous work is that a victim is visiting one website at a time and has
access to the complete network trace of that website. However, this is not realistic.
In our work, we aim to reduce the distance between the lab experiments with the
realistic conditions. We propose a new algorithm based on Hidden Markov Model to
deal with situations when the victim visits one website after another. After that, we
employ deep learning algorithm to handle the situations when the captured traces are
not perfect, such as partial traces, two-page traces or traces with background noise.

iii

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION . 1
1.1 Website Fingerprinting Defense . 2
1.2 Website Fingerprinting Assumptions 2

1.2.0.1 Traditional Machine Learning 3
1.2.0.2 Deep Learning . 4

II BACKGROUND . 6
2.1 Website Fingerprinting Attack Procedures 6
2.2 WF traces . 7
2.3 Classification . 7
2.4 Threat Model . 8
2.5 Closed World and Open World . 8

III REALISTIC COVER TRAFFIC TO MITIGATE WEBSITE FIN-
GERPRINTING ATTACKS . 10
3.1 Proposed Noise Algorithm . 10

3.1.1 Overview . 10
3.1.2 Implementation Details . 11
3.1.3 Example . 14

3.2 Experimental Setup . 17
3.2.1 Simulation . 17
3.2.2 Real Experiment . 19

3.3 Evaluation . 20
3.3.1 Simulation Results . 20
3.3.2 Real-World Experiment Results 24

3.4 Related Work . 25
3.5 Summary . 27

IV REVISITING ASSUMPTIONS FOR WEBSITE FINGERPRINT-
ING ATTACKS . 29
4.1 Background . 29
4.2 Analysis of Continuous Traces . 30

4.2.1 Algorithm description . 33
4.2.2 Results for Finding Split Point 38
4.2.3 Results for Website Prediction 40

4.3 Summary . 40

iv

Chapter Page

V MORE REALISTIC WEBSITE FINGERPRINTING USING DEEP
LEARNING . 42
5.1 Background . 42
5.2 Methodology . 43

5.2.1 Motivation . 43
5.2.2 Features . 44
5.2.3 Classification of Traces . 44
5.2.4 One-page Trace . 45

5.2.4.1 Scenario . 45
5.2.4.2 Head Detection Method 46

5.2.5 Two-page Trace . 46
5.2.6 Noise . 49

5.3 Simulation . 49
5.3.1 Dataset . 49
5.3.2 Deep Learning Model . 50

5.3.2.1 Implementation . 50
5.3.2.2 Hyperparameter Tuning 51

5.3.3 Classification of Traces . 52
5.3.4 Closed-world Evaluation . 53

5.3.4.1 One-page Trace . 54
5.3.4.2 Two-page Traces 55
5.3.4.3 Noise . 56

5.3.5 Open-world Evaluation . 58
5.3.5.1 One-page Trace . 58
5.3.5.2 Two-page Traces 59
5.3.5.3 Noise . 67

5.4 Real World Experiment . 67
5.4.1 Data Collection . 68
5.4.2 Results analysis . 69

5.5 Summary . 71

VI CONCLUSION AND FUTURE WORK 72

References . 75

v

LIST OF TABLES

Table Page

3.1 Cover traffic requests based on one recorded real web traffic trace.

The request content contains the number of responses to be sent from

the cover traffic server and is in the format < relativetime >: ± <

packet size >. 14

3.2 The parsed outgoing traffic train set. 15

3.3 The parsed incoming traffic train set. 16

3.4 Comparison of our algorithm’s accuracy and overhead with previous

mitigation schemes. We showed the lowest accuracy numbers for the

other schemes, regardless of algorithms used. The table is based from Juarez

et al. (2016). 25

4.1 Notations used in our algorithm. 30

5.1 Hyperparameter Tuning for CNN. 52

5.2 Decrease in accuracy when random noise is added. 57

vi

LIST OF FIGURES

Figure Page

2.1 Steps of launching and evaluating a website fingerprinting attack. . . 6

2.2 Our system model and experimental setup. 9

3.1 Cover traffic client and server. 13

3.2 Sample of recorded network traffic. The format is ¡timestamp¿:¡packet

size¿. Red indicates outgoing packets. 14

3.3 The accuracy using the Random Forest algorithm when introducing

different kinds of cover traffic. 21

3.4 The bandwidth overhead when introducing different kinds of cover traffic. 22

3.5 The accuracy using the Random Forest algorithm when considering

the incoming packet features or not. 23

3.6 The accuracy using the Random Forest algorithm when considering

the outgoing packet features or not. 23

3.7 The accuracy of the website fingerprinting attack for real-world exper-

iments with varying amounts of noise generated. Classifier used was

Random Forest. 24

4.1 State transition of website A. 31

4.2 Probability of each packet belonging to each website(the sum of three

states in each website) obtained from the HMM model (print every 20

point for clarity, best viewed in color). 31

vii

Figure Page

4.3 Probability of predictions for the corresponding website (probability of

website1 belonging to section1 and probability of website0 belonging

to section2) when moving the split point between section 1 and section

2 from left to right. See Figure 4.2 for the actual predictions. 32

4.4 Example when labeling block 1 and block 3. 32

4.5 Decrease on prediction accuracy of the first and second website when

the predicted split point is not accurate. 40

5.1 Two-page traces . 47

5.2 CNN model structure. The blue boxes are additions to our model when

compared to previously proposed models. 51

5.3 Accuracy for partial traces using k-NN algorithm in the closed-world

evaluation. 53

5.4 Head detection method VS original method for last n% traces in the

closed-world evaluation. 55

5.5 Closed-world evaluation on two-page traces (zero time and negative

time separated). 57

5.6 Open-world evaluation on partial one-page traces with binary classifi-

cation. 59

5.7 Open-world evaluation on first and second website in two-page traces 60

5.8 ROC curve on predicting first website with 10% overlapping traces. . 60

5.9 ROC curve on predicting second website with 10% overlapping traces. 61

5.10 Open-world evaluation on first website with binary classification and

Shannon entropy. 62

5.11 Open-world evaluation on second website with binary classification and

Shannon entropy. 62

viii

Figure Page

5.12 ROC curve of binary classification and Shannon Entropy in the open-

world evaluation on the first website with 10% overlapping traces. . . 63

5.13 ROC curve of binary classification, Shannon Entropy and Renyi En-

tropy in the open-world evaluation on the second website with 10%

overlapping traces. 63

5.14 Average time gap between the first and second website on different

percentage of overlapped traces. 65

5.15 Open-world evaluation on first website in two-page traces with time

gaps. 66

5.16 Open-world evaluation on second website in two-page traces with time

gaps. 66

5.17 Open-world evaluation of accuracy and overhead on traces with noise. 67

5.18 ROC curve of binary classification on first website with 10s and 20s

time gap. 69

5.19 ROC curve of binary classification with packet size and timestamp on

second website with 10s and 20s time gap. 70

5.20 Summary of best algorithms in one-page and two-page traces prediction. 71

ix

CHAPTER I

INTRODUCTION

Anonymous communication’s goal is to hide the relationship and communication con-

tents among different parties. Once two parties establish an anonymous communica-

tion between them, the contents are encrypted and routing information is hidden, thus

masking the source and destination IP addresses from third parties. Tor Tor (2017);

Dingledine et al. (2004) is one of the most popular low-latency anonymity-providing

network. It is used by millions of people daily Portal (2017). Tor protects users’

privacy through a telescoping three-hop circuit and encrypting the network traffic

using onion routing. Although Tor and many other privacy-enhancing technologies

such as HTTPS proxy hide the communication contents and network layer contents,

the network traffic itself may leak information such as packet size, inter-packet timing

information, and direction of the packets (from server to client or other way around).

A website fingerprinting (WF) attack is one where an attacker identifies a user’s

web browsing information by merely observing that user’s network traffic. The at-

tacker is not attempting to break the encryption algorithm or the anonymity protocol.

The only information available to the attacker is the metadata information such as

packet size, the timing information between packets, and the direction of the packet.

The success of this attack is measured by the number of websites correctly iden-

tified.The accuracy has been shown to be around 90%, thus violating any privacy

offered by HTTPS and anonymity services like Tor.

1

1.1 Website Fingerprinting Defense

Various defenses against website fingerprinting attacks Cai et al. (2012); Wang et al.

(2014); Nithyanand et al. (2014); Cai et al. (2014b,a) have been proposed. The de-

fenses include padding so that every packet has the same size, cover traffic to generate

enough noise to fool the adversary, or introducing network delays between network

packets. Although they have been shown to be effective, the overhead introduced by

these defenses is very high. The latency overhead is above 100% and the bandwidth

overhead is from 50% to over 100%.

We developed a new cover traffic algorithm that generates just enough noise to

mitigate website fingerprinting attacks. Our algorithm also has zero latency overhead

and lower bandwidth overhead than current schemes. Our algorithm generates “real-

istic” cover traffic; it collects the network traffic from a user, then uses that historical

network traffic data as training set to feed the cover traffic generation algorithm.

The generated noise thus will look exactly like a website that a user has previously

visited. This prevents website fingerprinting attacks and introduces little bandwidth

overhead.

1.2 Website Fingerprinting Assumptions

The first WF work was proposed by Hintz Hintz (2003). Researchers extracted impor-

tant features from the metadata and applied a variety of machine learning algorithms

to classify websites. Wang et.al Wang et al. (2014) utilized k-NN with a new weight

system, Panchenko et.al Panchenko et al. (2016) proposed the cumulative features

with Support Vector Machine(SVM) and re-evaluated the state-of-art techniques at a

internet scale. They showed high accuracy in predicting websites, however one main

concern in WF attack is its practicality which was detailed discussed in Juarez et al.

(2014). The previous WF work made limiting assumptions 1) Closed world: the WF

attack is tested in a fixed set of monitored websites; 2) Browsing behaviour: the

2

victim visits one website at a time; 3) the adversary can record the whole network

traffic trace from the beginning to the end for a website 1.

The first assumption is addressed in recent research work Lu et al. (2010); Panchenko

et al. (2011); Gong et al. (2012); Wang and Goldberg (2013); Cai et al. (2012); Wang

et al. (2014); Cai et al. (2014b); Panchenko et al. (2016); Oh et al. (2017a) where

they deployed WF test under the open world model. The second assumption has

been explored in Wang and Goldberg (2016). They tried to find the end of the first

website and the start of the second website(the split point) when the clients visits

the website one after another. They achieved the accuracy of 92% in finding the split

point when there is a time gap between the first and second website. However, their

accuracy falls 66% and 32% to when the time gap is zero and negative. Even though

they didn’t test the accuracy of the split traces, the low accuracy in finding the split

point will definitely have a negative impact in website predicting. Another limitation

of Wang and Goldberg (2016) is that it could not directly predict the websites in

the network traffic trace recorded. It attempted to find the split point first and used

previous WF approaches for predicting the websites, which leads to a higher cost in

time.

1.2.0.1 Traditional Machine Learning

We propose a new algorithm Cui et al. (2019) based on machine learning to deal with

assumptions mentioned above. In the second assumption when the user visits more

than one websites at a time, we consider the case when the victim visits two pages

one after the other (continuous visits). We propose a new algorithm based on Hidden

Markov Model to split and detect traces with two continuous pages. We show that

our algorithm gives a higher accuracy in finding the split point in two continuous

websites (80% compared to 63% in previous work). This is also the first time that

1Note that we used trace, network trace, website, and webpage interchangeably

3

the accuracy in directly predicting websites in continuous traffic traces is tested and

shown.

1.2.0.2 Deep Learning

Recently deep learning has been shown outperforming traditional machine learning

techniques in many areas such as image recognition He et al. (2016), speech recog-

nition Song (2015). Besides, DL doesn’t require manually feature extraction. The

effectiveness of using DL in WF attack has been explored in Rimmer et al. (2017);

Sirinam et al. (2018); Oh et al. (2017b). However, they all built and evaluated on

integrate one-page traces. Our goal is to explore whether we can use deep learning to

handle the situations when the captured traces are not perfect, such as partial traces,

two-page traces or traces with background noise. In this study, we won’t distinguish

between continuous or overlapped traces. We emphasize that the goal of this study

is to improve the performance of WF attack in the real world instead of building a

better DL model. The contribution of this work are summarized as follows.

• We propose a CNN-based classification to distinguish between one-page and

multiple page traces. From the best of our knowledge, Wang et.al Wang and

Goldberg (2016) is the only one that investigate this before with k-NN based

method. We compared our work with them on the same dataset and found that

our model achieves an accuracy of 85% over their 68.6%.

• We evaluate the DL model on partial traces and improve the performance on

traces missing the head part by adding the head detection. With 10% of packets

missing in the beginning of the trace, the accuracy is increased from 22.12% to

86.35%.

• We developed the method to predict both websites in a two-page traces. We

first time show the TPR, FPR in the open-world on two-page trace prediction.

4

We employed Ren-yi entropy in the open-world evaluation and proved that

it’s a better algorithm to calculate the prediction confidence from probability

distribution obtained than Shannon entropy. Besides the packet size, we found

that timestamp is an important feature for the second website prediction and

the accuracy is improved 14% by adding the sequence of packet timestamp to

the training model.

• For traces with background noise, we found that 10 noise packets per second

has the ability to fully disturbing the DL model which causes more than 70%

reduction in accuracy.

• To investigate in a more realistic setting, we collect the largest testing dataset

with multi-page traces which is based on 118 monitored websites and 17, 700

unmonitored websites. We also collect the corresponding training dataset with

balanced amount of monitored and unmonitored traces. We first time launch bi-

nary classification with DL algorithm in WF attack and proved the effectiveness

of this approach in two-page prediction.

The rest of the document is organized as follows. In chapter II, we review the back-

ground of website fingerprinting. In chapter III we introduce our WF mitigation

algorithm. In chapter IV, we revisit assumptions in WF attack and propose two new

algorithms to deal with the situations without these assumptions. We employ deep

learning to handle more complicated situation and outlined the work in chapter V.

5

CHAPTER II

BACKGROUND

2.1 Website Fingerprinting Attack Procedures

Website fingerprinting has been shown to be a serious threat against privacy mech-

anisms for anonymous web browsing. Researchers have proposed different scenarios

for website fingerprinting. The attack and resulting experiment vary from each other;

however, they all follow similar steps. A website fingerprinting attack and analysis

can be divided into six steps: 1) collect data, 2) extract features from data, 3) select

algorithm, 4) build model based on 1) to 3), 5) evaluate real network traffic trace,

and 6) evaluate results. Figure 2.1 shows an illustration of all the steps of a web-

site fingerprinting attack. The last right-most block contains the measurements to

evaluate the effectiveness of an attack.

Figure 2.1: Steps of launching and evaluating a website fingerprinting attack.

When setting up an experiment for a website fingerprinting attack, the first step

is to perform data collection. A network traffic recording tool such as wireshark

or tcpdump is used. Before running any scripts to automatically collect data, the

configuration of the browser should be set to match the assumptions, such as disabling

6

all plug-ins to avoid background noise and clearing the browser cache. The automated

script will then visit websites in a certain order. The time taken to collect data

depends on the number of instances recorded for each website and the size of the

website list. Features extracted from the recorded network traffic traces will be used

for training. Each network trace is composed of a list of features. The features can

be treated as attributes in a machine learning context. A classification algorithm is

applied to these features to build the attack model. Different websites correspond to

different classes. Different network traffic traces are then collected to evaluate the

performance of the model. A 10-fold cross validation is often employed to reduce the

bias in the evaluation process.

2.2 WF traces

A WF trace is a record of network traffic packets during users’ visits to the websites.

So, one WF trace could contain only one visit to a website or multiple visits to

websites like we open several websites nearly at the same time. Each WF trace, in

our experiments, consists of a sequence of pairs of packet size and its timestamp:

< timestamp : ±packet size > where the sign indicates the direction of the packets,

positive as incoming and negative as outgoing.

2.3 Classification

Previous work Hintz (2003); Sun et al. (2002); Bissias et al. (2006); Liberatore and

Levine (2006); Lu et al. (2010); Herrmann et al. (2009); Panchenko et al. (2011);

Gong et al. (2012); Wang and Goldberg (2013); Cai et al. (2012); Wang et al. (2014);

Panchenko et al. (2016); Wang and Goldberg (2016); Spreitzer et al. (2016); Hayes

and Danezis (2016) have achieved a classification accuracy of around 90% in both the

open and closed world settings. A closed world is where the set of training packet

traces are the same as the testing set. An open world setting is where there is a small

7

set of monitored/sensitive packet traces among a larger set; the goal is to detect if a

packet trace belongs to one of these monitored websites.

To perform classification, various features have been used such as number of out-

going and incoming packets, total size of incoming and outgoing packets, and cumu-

lative size of packets. If the Tor network is used, some features that have also been

considered include the Tor cells before and after. Various algorithms have also been

used such as k-nearest neighbors (K-NN), support vector machine (SVM), random

decision forests, edit distances, Jacard index, and Naive Bayes.

2.4 Threat Model

The threat model is a local adversary that can see all the network traffic from a

user. The adversary cannot decrypt the contents of the network packets but can

observe the metadata such as packet sizes, direction of the packets, and the timings

of packets. The adversary can also look at the IP headers to determine the source

and destination IP addresses and port numbers. The victim is using an anonymous

service such as a VPN or Tor Tor (2017). Figure 2.2 illustrates the model and shows

where the adversary is located. The goal for the adversary is to guess the website or

webpage from only the encrypted network packet trace.

2.5 Closed World and Open World

The WF attack experiments can be built based on two different scenarios: closed

world and open world. The closed world model is used when complete information

is available. The assumption in a closed world model is that an attacker knows the

metadata information for a list of websites. The website visited by a victim is in

the list known by the attacker. It is a strong assumption which is used to simplify

the threat model, implementation of the experiment, and evaluation of the success of

the attack. Since the closed world scenario is the more basic model, most research

8

Figure 2.2: Our system model and experimental setup.

work Hintz (2003); Sun et al. (2002); Bissias et al. (2006); Liberatore and Levine

(2006); Herrmann et al. (2009); Panchenko et al. (2011); Wang and Goldberg (2013);

Cai et al. (2012); Juarez et al. (2014); Cai et al. (2014b,a); Spreitzer et al. (2016)

include an analysis of results in this closed world model.

In an open world model, a website being fingerprinted can be either from the list

or not in the list. The attacker keeps track of a small list of monitored websites. Once

a website fingerprint is obtained, the attacker attempts to determine if that website

is part of the list of monitored websites or not. More recent research work Lu et al.

(2010); Panchenko et al. (2011); Gong et al. (2012); Wang and Goldberg (2013); Cai

et al. (2012); Wang et al. (2014); Juarez et al. (2014); Cai et al. (2014b); Panchenko

et al. (2016); Wang and Goldberg (2016); Oh et al. (2017a) deployed their website fin-

gerprinting experiments under the open world model and identified whether a website

is from the list of monitored sites.

9

CHAPTER III

REALISTIC COVER TRAFFIC TO MITIGATE WEBSITE

FINGERPRINTING ATTACKS

3.1 Proposed Noise Algorithm

3.1.1 Overview

Our proposed algorithm to generate cover traffic is novel since it generates real-

istic noise rather than random noise or random padding. The noise generated is

learned from the network traffic generated by the user’s webbrowser. The informa-

tion recorded is the network traffic trace without the payload contents: each incoming

and outgoing packet’s size, and the time interval between packets and “train” of pack-

ets. A train is a set of incoming packets with size of MTU (Maximum Transmission

Unit) with the last packet size less than MTU. Usually an outgoing web request is

following by one or more trains of incoming packets. Replaying this recorded network

traffic will simulate that user’s browsing habit. Our hypothesis is that if the cover

traffic generated is similar to what the user usually does, this will provide a better

noise in preventing website fingerprinting and also reduce the bandwidth overhead

since this would be traffic that the user usually generates anyway. It has already been

shown that if a client visits several webpages at the same time Wang and Goldberg

(2016), then it is hard for an adversary to identify the webpage visited.

Instead of replaying the web requests to the actual servers which would use up

resources on these servers, we set up our own simple webserver. Our algorithm can

be implemented as a plugin for Firefox (Tor Browser Bundle). It will send a web

10

request padded to a certain packet size to our webserver through the Tor network.

The request will contain the total size of data that the server has to send back and the

time that the data should be sent. Both the client plugin and webserver do not have

to send any content; only pad the packets to the specified packet size. The generated

network traffic will be transferred over the Tor network; a local adversary will not be

able to determine which packet is noise.

The algorithm will first record traffic of a web page, then parses the recorded traffic

trace. Packets are put into two sets based on whether they are incoming packets or

outgoing packets. For each set, packets are organized by trains of packets. For each

train, the size and timestamp of each packet is recorded. Trains of packets are listed

in order by the timestamp of the first packet in the train.

Figure 3.2 shows an example sample of a recorded network traffic. The only

information recorded is the relative time between packets and the packet sizes. Both

incoming and outgoing packets are recorded. The format of the sample shown in

the figure is as follows: < timestamp >: ± < packet size >. The actual time is

not relevant; only the time difference between two packets is used. This is the time

difference between the current packet’s timestamp and the next packet’s timestamp.

The packet size is the TCP-level packet size. A red packet size indicates an outgoing

packet.

3.1.2 Implementation Details

The cover traffic needs to have two features: 1) it should customize total packet size

so that the cover traffic can be controlled, 2) it should have similar packet distribu-

tion with the real web traffic so that it cannot be filtered out easily. Modern web

pages usually contain multiple resources, such as html text, CSS files, javascript files,

and images. Modern web browsers support multiple parallel connections to a website.

From a typical web page network traffic, we can see that a web browser sends multiple

11

requests to download multiple resources in parallel. Considering these web page fea-

tures, we separate web page traffic into segments based on requests. We define two

parameters: 1) MaxNumberOfRequest and 2) MinTimediffBtwRequests. MaxNum-

berOfRequest denotes the maximum number of web requests and MinTimediffBtwRe-

quests denotes the minimum time interval between two web requests. Combining

these two parameters, we can separate a network traffic trace into request segments.

We scan the recorded traffic trace, find two consecutive outgoing packets which have

a time interval greater than MinTimediffBtwRequests, then use these two packets as

the delimiter of two request segments. If we get a higher number of request seg-

ments than MaxNumberOfRequest, the algorithm will adjust the requested segment

time interval threshold accordingly to get exactly MaxNumberOfRequest number of

request segments. To further control the distribution of incoming packets, we sepa-

rate incoming packets into segments inside the request segment. We define two other

parameters: 1) MaxNumberOfResponse and MinTimediffBtwResponses. These two

parameters work the same as for outgoing packets.

To control the overall cover traffic size, we define another parameter CoverTraf-

ficLoadRatio. The total cover traffic size will be the total packet size of network

traffic multiplied by CoverTrafficLoadRatio. Since we separate the network traffic

trace into segments, the size of cover traffic segments will be the size of corresponding

traffic segments multiplied by CoverTrafficLoadRatio. This is equivalent to s from

Section 3.1.1.

So far, we have parsed the recorded real web traffic, our next step is to generate

the cover traffic. To do that, we have a cover traffic client agent running on the user

side. This client agent connects to a cover traffic server, sends requests to the server

and receives responses from the server. Figure 3.1 shows how our cover traffic is

generated. The first step we need to do is to parse the recorded real traffic trace. As

we can see from the sample traffic trace, the only information recorded is the time of

12

Figure 3.1: Cover traffic client and server.

packets and the packet sizes. Both incoming and outgoing packets are recorded. The

format of the sample shown in the figure is as follows: ¡timestamp¿:¡packet size¿. We

use negative packet sizes for outgoing packets and positive packet sizes for incoming

packets.

The content of a request contains the following information: relative time to send

back segments of responses and total packet size of each segment. Table 3.1 shows

a list of requests sent to the cover traffic server. These requests are generated by

parsing one recorded web traffic network trace. Each cover traffic request will be sent

at a certain time (“Time to Send”) and will be of certain size (“Total Size”). The

request content shows the number of responses to be sent back by the server, along

with the time and packet size of each response. Since all requests and responses are

encrypted, no actual content is sent; the content of both the request and response

can be filled with random data.

From Table 3.1, the client agent sends a total of nine requests to the cover traffic

server. The first request is sent at time 0 (relative time), the size of the request is 703

bytes and the request content is “Response=0:676,354:18,756:91”. We add padding

13

Cover Traffic Request Time to Send (ms) Total Size (bytes) Request Content
1 0 703 Response=0:676,354:18,756:91;
2 7,320 4,149 Response=0:784,872:325;
3 9,190 8,087 Response=0:325,569:1045,1065:645,2000:325,6109:211;
4 19,196 1,0628 Response=0:217,380:108,657:942,1101:4581,1444:942,1920:8442;
5 27,094 703 Response=0:676,312:109;
6 29,434 148 Response=0:676;
7 30,395 358 Response=0:18;
8 31,166 197 Response=0:91;
9 38,185 543 Response=0:108;

Table 3.1: Cover traffic requests based on one recorded real web traffic trace. The
request content contains the number of responses to be sent from the cover traffic
server and is in the format < relativetime >: ± < packet size >.

Figure 3.2: Sample of recorded network traffic. The format is ¡timestamp¿:¡packet
size¿. Red indicates outgoing packets.

to the request content if its size is less then the expected request size. When the cover

traffic server receives this request, it will send back 676 bytes of data at time 0. The

time is relative to when the server receives the request. At time 0, that means the

server just received the request. At time 354 ms, the server sends a response packet

of size 18 bytes and at time 756 ms, the server sends a packet response of size 91

bytes. The contents of the response packet the server sends back to the client are

filled with random characters. At time 7, 320 ms, the client agent sends the second

request to the server.

3.1.3 Example

Taking the packet traces from Figure 3.2 as the example, the following two tables are

built. Table 3.2 shows the parsed outgoing packets set, denoted as TS out. Table 3.3

shows the parsed incoming packets set, denoted as TS in. Most webbrowsing network

traces have a higher number of incoming packets than outgoing packets. Moreover,

14

Traffic Train ID Time and Packets
1 83:565
2 116:565
3 5025:565
4 5075:565
5 5130:1130
6 5560:565

Table 3.2: The parsed outgoing traffic train set.

the size of the incoming packets is higher than outgoing packets, which are usually

web requests for a URL resource (such as jpg, html, etc...). This is typical of web

traffic and is reflected in the tables. Generating noisy cover traffic works as follows.

1. Randomly select one traffic train from TSout and TSin each, denoted as Tout

and Tin respectively. The total size of Tout is Sout and the total size of Tin is

Sin.

2. Construct a cover traffic request with size Sout.

3. Send this request to the noise server.

4. The server will reply back with data of size Sin in WTin milliseconds. WTin is

the time difference between the first packet of Tin and the first packet of the

next traffic train after Tin in the incoming traffic train set.

5. Wait for some time WTout, where WTout is the time difference between the first

packet of the chosen outgoing traffic train Tout and the first packet of the next

outgoing traffic train.

6. Repeat steps 1 to 5 until the total incoming traffic from the noise server is equal

to the size of all the incoming packets of the recorded traffic trace.

As an example, let’s suppose outgoing traffic train 3 is selected from TSout and

incoming traffic train 8 is selected from TSin. Our algorithm will create a new cover

15

Traffic Train ID Time and Packets
1 516:565
2 4904:565 4905:1448 4905:1448 4907:1448 4907:1448 4908:1448

4931:705
3 4956:565
4 4981:1130
5 5017:565 5018:1448 5018:1448 5019:1448 5020:1448 5022:1448

5022:1448 5024:1448 5024:1448
6 5042:1448 5044:651
7 5073:1448 5073:1448 5074:1448 5075:1448 5075:1448 5079:1448

5079:1448 5098:422
8 5130:1448 5130:1448 5133:1448 5155:476
9 5367:565
10 5388:1448 5388:1448 5391:1448 5395:988
11 5479:565
12 5505:1130

Table 3.3: The parsed incoming traffic train set.

traffic request to send to the noise server. The request will ask the server to send back

data of size 1448 + 1448 + 1448 + 476 = 4820 bytes with a time of 5367− 5130 = 237

milliseconds. The request contains only total size of data to be sent and the time.

For example, the server only needs to send padded data with size 4820. The lower

level network interface will determine how to send each packet – if the MTU is 1448,

packet size will be 1448 + 1448 + 1448 + 476. The outgoing packet will be of size

565 bytes. Since the actual contents of the packet is small, the rest of the packet is

padded. To simplify the example, we ignore packet headers. When the noise server

receive this cover traffic request, it will send back data of size 4820 bytes and sleep

for 237 milliseconds before responding to next request. At the same time, the client

side waits for 55 milliseconds, which is the time difference between the first packets of

the outgoing traffic train 4 and outgoing traffic train 5 from Table 3.2. This process

is repeated until the sum of all the incoming packet sizes from the server is equal to

the recorded traffic trace. The reason for waiting on both client and server sides is

to ensure that the generated noise traffic is well distributed to look more realistic.

16

This generated cover traffic can achieve better performance in terms of obfuscating

the overall traffic collected by a website fingerprinting attacker.

The user can choose as a parameter, the size of the cover traffic s. Since the

cover traffic mimics the websites that the user has previously visited, the bandwidth

used will be doubled. To minimize the bandwidth overhead, each train size could be

reduced by a factor of s. If the factor s is 0.5, the incoming train will thus have a

total packet size of 0.5×Sin in time WTin. This reduces the bandwidth overhead and

generates fewer packets.

We emphasize that the cover traffic is only between the client’s webbrowser and

the cover traffic webserver through Tor. The only data sent are padded data so that

the packets are of a certain pre-determined size. The cover traffic generated will look

realistic as it is traffic that was generated by the user. This recorded network traffic

is only stored locally on the browser.

We expect our algorithm to effectively mitigate website fingerprinting attack since

it has already been shown that cover traffic is effective. We expect that our algorithm

will have lower bandwidth overhead since the amount of noise generated can be mod-

ified. Moreover, there is no extra latency added as no padding or network delay is

introduced. Our algorithm only generates cover traffic to another website.

3.2 Experimental Setup

3.2.1 Simulation

We utilized the dataset provided by Panchenko et al. (2016), which consists of 1, 125

webpages and 40 instances of each webpage. Each instance contains the timestamp

of each packet along with the packet sizes (negative packet sizes indicate outgoing

packet). We implemented the noise generation algorithm described in Section 3.1.

Due to the new data generated by our noise generation algorithm, we could not

re-use the authors Panchenko et al. (2016) SVM algorithm. Instead we use the stan-

17

dard Weka wek (2019) tool and experimented with different classification algorithms:

Support Vector Machine (SVM), decision tree (REPTree in Weka), neural network

(Multi-layer perceptron), linear regression, and random forest.

The six classification features used in our experiments are similar to those used

in Panchenko et al. (2016). The first four features are: total size of outgoing packets,

total size of incoming packets, total number of outgoing packets, and total number of

incoming packets. The remaining two features are the sampled cumulative represen-

tation of packet size. There are two ways to calculate the cumulative packet size: c

is the cumulative size of packets size where an outgoing packet has a negative packet

size and a is the cumulative size of packets size where both outgoing and incoming

packet sizes are denoted as positive numbers. The number of samples used n can be

varied and will be taken at equidistant points in the packet trace. For example, if

there are 75 packets and n = 100, a sample is taken every 0.75 packet. To determine

the packet size of the 0.75th packet, the linear interpolation is calculated. If the 0th

packet size was 10 and the 1st packet size was 20, the cumulative packet size for 0

is 10 and the cumulative packet size for 1 is 20 + 10 = 30. The 0.75th packet size is

thus (0.75 ∗ (30− 10)) + 10 = 25.

We compared our proposed cover traffic algorithm with the basic cover traffic

scheme. The latter works as follows. When a user visits a website, the basic scheme

will randomly pick another website to also visit. As shown by Wang and Goldberg

(2016), having two simultaneous website visits significantly lowers website fingerprint-

ing accuracy.

The original dataset contained 1, 125 webpages, many from the same website. We

filtered out webpages of the same website and used 91 websites as our base training

dataset 1. The dataset Panchenko et al. (2016) contained timestamps and packet

sizes. Merging the original website packet trace with the noise packet trace is relative

1Note that since each webpage is a unique website, we used webpage and website interchangeably
from now on.

18

straightforward. Since there are 40 instances of each website, we randomly picked

one instance as the noise data to merge with the original packet trace.

We considered two different basic cover traffic algorithms. The first one always

picks the same webpage (but possibly different instances). The second one randomly

picks from a set of 10 webpages different from the 91 previously selected. The second

case provides a more diverse set of webpages and noise to be added.

Our noise generation algorithm “learning” dataset consists of a further 10 web-

pages where the packet traces are recorded. For each of the original 91 webpages, we

ran our algorithm to generate one packet trace of noise and merge that trace with

the original webpage packet trace.

3.2.2 Real Experiment

We collected network traffic data for the top 100 web sites listed from Wikipedia

on April 17, 2017. After we removed duplicates (e.g. google.com and google.co.uk)

and adult websites, we were left with 75 websites. For each website, we recorded 20

instances of network traffic through Tor without noise and 20 instances of network

traffic through Tor including traffic from the noise server. Each network traffic trace’s

duration was two minutes. We used Wireshark version 1.6.7 to capture packets at

the TCP level and TorBrowser version 6.5.2 as the web browser. The computers used

were Dell Optiplex with Intel i5 and 4GB of RAM. We note that Wireshark cannot

differentiate whether a packet is from the noise server or from the webserver. All the

traffic looks like it originates from the Tor network. The following steps outline how

we record the network traffic of a website.

1. Launch Wireshark to record network traffic

2. Launch TorBrowser and visit a webpage

3. Launch cover traffic client agent (only for the experiments with noise)

19

4. Wait 2 minutes

5. Save network traffic to file

6. Shut down Wireshark and TorBrowser

The cover traffic server is deployed on a different machine from the client. The

cover traffic client agent runs Tor version 0.2.2.35; all the cover traffic are forwarded

to the noise server through the Tor client. The noise traffic consists of the the net-

work traffic trace of the top 10 web pages; in reality, this would be the traffic trace

of websites visited by the user. Each time the cover traffic client needs to generate

noise, it will randomly pick on these ten traces and sends requests and receives re-

sponses from the noise server as described in Section 3.1.2. In our experiments, we set

MinTimediffBtwRequests to 500 milliseconds, MaxNumberOfRequest to 10, MaxNum-

berOfResponse to 10 and MinTimediffBtwResponses to 200 milliseconds. Figure 2.2

illustrates how our experiments are set up.

3.3 Evaluation

3.3.1 Simulation Results

Figure 3.3 shows the classification accuracy for varying amount of noise added to

original traces. Figure 3.4 shows the bandwidth overhead in % of the extra netwok

traffic generated. The two basic cover traffic algorithms are indicated by k = 1 for

adding the same one website as noise each time and by k = 10 for randomly adding

one of ten websites as noise. The x-axis indicates the amount of noise s added. When

s = 1.0, this means the whole packet trace is added as noise. When s = 0.5, only

half of the packet trace is added as noise, that is, every other packet is added as

noise to preserve the time intervals. For the basic cover traffic cases (k = 1 and

k = 10), we are “simulating” the noise generated; in a real-world setting, this would

be hard to achieve without controlling the server – in this case, the browser could

20

send random packets. We show different values of s to compare with our algorithm.

As more noise is added (s increases), the accuracy decreases, as expected. Similarly,

the bandwidth overhead also increases as more noise is added. Our proposed noise

generation algorithm achieves the same accuracy regardless of the amount of noise;

this is because we are generating realistic noise that can more effectively hide a user’s

real traffic rather than generating random noise. Our algorithm’s bandwidth overhead

is the same as the basic cases. However, even with s = 0.25, the overhead is 20% and

the accuracy is 14%. Since our proposed algorithm generates random packet traces

based on real recorded network traffic, we ran our experiments five times; the graphs

show the average of the five experiments. For these experiments, the training dataset

used in the Random Forest classification algorithm is the original 91 webpages and

the testing dataset is the new webpages with noise added.

Figure 3.3: The accuracy using the Random Forest algorithm when introducing dif-
ferent kinds of cover traffic.

Intuitively, accuracy should decrease as more noise is added. However, in Fig-

ure 3.3, we found that in our algorithm, s = 0.25 has a lower accuracy than s = 0.5.

We hypothesized that this could be due to the features being considered. Recall

that two of the five features are the total number of incoming packets and the to-

21

Figure 3.4: The bandwidth overhead when introducing different kinds of cover traffic.

tal size of incoming packets. When s is lower, the number of incoming packets is

lower. To verify our hypothesis, we re-ran our algorithms without considering these

two features of incoming packets. Figure 3.5 shows the result. It can be seen that

without these two features, accuracy decreases as noise generated increases, which is

expected. This shows that the attributes for total size of incoming packets and total

number of incoming packets help the website fingerprinting adversary in successfully

identifying the correct website (increase in accuracy). Without these two features,

our proposed algorithm performs even better as the accuracy is reduced to under 10%

when s = 1.0. Previous work Wang and Goldberg (2016) has shown that the number

of incoming packets is one of the most useful attributes in classification for website

fingerprinting. We also considered not including the incoming packet features; the

results are shown in Figure 3.6. The results are expected as well but the change in

accuracy is not as obvious as Figure 3.5 since the number of outgoing packets is about

the same regardless of the value of s.

22

Figure 3.5: The accuracy using the Random Forest algorithm when considering the
incoming packet features or not.

Figure 3.6: The accuracy using the Random Forest algorithm when considering the
outgoing packet features or not.

23

3.3.2 Real-World Experiment Results

We deployed our real-world experiments from May 13 to August 10. We visited 75

websites and collected data for 20 instances of each of the 75 websites. This was

our training dataset. We then repeated the experiments for the same websites and

number of instances for each website with cover traffic generated by the noise server.

This made up our testing dataset. Similar to the simulations, we used the Random

Forest classification algorithm to perform the website prediction. Figure 3.7 shows the

accuracy of website fingerprinting. When no cover traffic is generated, the accuracy

is 81.59%, which is close to the 90% obtained in previous research. However, when

generating 10% cover traffic, the accuracy decreases to 17.81% which shows that our

cover traffic algorithm is significantly impacting the adversary’s ability to perform

a website fingerprinting attack. When generating 20% and 30% cover traffic, the

accuracy obtained is 16.37% and 10.72% respectively. We also ran the k-nearest

neighbors classifier as this was used in previous research. The accuracy obtained is

similar to that obtained when using the Random Forest algorithm.

Figure 3.7: The accuracy of the website fingerprinting attack for real-world experi-
ments with varying amounts of noise generated. Classifier used was Random Forest.

Table 3.4 shows a comparison of our proposed algorithm with existing mitigation

24

Mitigation Accuracy (%) Latency Overhead (%) Bandwidth Overhead(%)
No Defense 91% 0% 0%

CS-BuFLO Cai et al. (2014a) 22% 173% 130%
Tamaraw Wang et al. (2014) 10% 200% 38%

WTF-PAD Juarez et al. (2016) 15% 0% 54%
Our Algorithm (simulation) 14% 0% 20%
Our Algorithm (experiment) 16% 0% 20%

Table 3.4: Comparison of our algorithm’s accuracy and overhead with previous mit-
igation schemes. We showed the lowest accuracy numbers for the other schemes,
regardless of algorithms used. The table is based from Juarez et al. (2016).

techniques. Our algorithm has comparable accuracy with the other schemes, zero

latency overhead, and lower bandwidth overhead. The table shows the lowest accu-

racy (best-case for the mitigation) regardless of the classification algorithm used. Our

algorithm has zero latency overhead since we are only introducing cover traffic. No

padding or delays are introduced.

3.4 Related Work

It has been shown that analyzing encrypted network traffic can reveal the websites

and webpages visited Hintz (2003); Sun et al. (2002); Bissias et al. (2006); Liberatore

and Levine (2006); Lu et al. (2010); Herrmann et al. (2009); Panchenko et al. (2011);

Gong et al. (2012); Wang and Goldberg (2013); Cai et al. (2012); Wang et al. (2014);

Nithyanand et al. (2014); Juarez et al. (2014); Cai et al. (2014b); Panchenko et al.

(2016); Wang and Goldberg (2016); Spreitzer et al. (2016); Hayes and Danezis (2016).

Since the payload is encrypted, only the metadata is available such as packet sizes,

number of packets, direction of packets, and time interval between packets. A training

dataset is built. Then, given a network traffic trace, machine learning techniques

are used to predict the website visited. Previous results have shown that websites

can be recognized with a high accuracy. More recent research results have looked

at anonymized network traces such as using Tor instead of a simple HTTPS proxy.

Although initial results showed that Tor provided adequate protection against website

fingerprinting, more advanced data parsing techniques show that websites can be

25

recognized with a fairly high accuracy even when the website trace is over Tor. The

consequences of website fingerprinting is censorship or prosecution by the government

if the user visits a forbidden website. It has been argued Perry (2011) that website

fingerprinting is not a practical attack due to the large number of webpages and the

false positive would be high. Website fingerprinting attacks have also been extended

to identify the webbrowser used Yu and Chan-Tin (2014), which could lead to user

identification and linking as most users utilize a unique webbrowser (based on fonts

installed, languages, plugins, etc...) Eckersley (2010); pan (2017).

Website fingerprinting is one type of network traffic analysis. There has been

other work on network traffic analysis Miller et al. (2014) and traffic analysis resistant

protocols Le Blond et al. (2013); Dyer et al. (2012); Mittal et al. (2011). Network

traffic analysis is usually performed for censorship Tschantz et al. (2016). Various

techniques to avoid censorship have been proposed, using traffic morphing Wright

et al. (2009a) to disguise the network traffic as VoIP Houmansadr et al. (2013b);

Moghaddam et al. (2012) or using other covert channels Fifield et al. (2012); Wang

et al. (2012); Holowczak and Houmansadr (2015). It has, however, been shown that

it is still possible to see through this obfuscation Wang et al. (2015); Houmansadr

et al. (2013a); Geddes et al. (2013).

Using cover/dummy/fake traffic to mask a user’s activities has been proposed

before Diaz and Preneel (2004). It has been shown that this mechanism can be coun-

tered or the cover traffic removed Mallesh and Wright (2007); Simon Oya and Pérez-

González (2014) to reveal the user’s activities. Cover traffic is useful to mask real web

search queries by performing many other unrelated and random search queries. Cover

traffic can also be used to make network traffic analysis harder by adding unrelated

network-level packets. Our algorithm generates realistic cover traffic making it harder

for website fingerprinting attacks to accurately guess the website from the observed

packet trace. Another scheme, Track Me Not Howe and Nissenbaum (2008), focused

26

on web search queries and generating fake web searches, but Peddinti and Saxena

(2010) has shown that web search queries obfuscation can still be analyzed.

Various website fingerprinting defenses have been proposed Panchenko et al. (2011);

Cai et al. (2012, 2014b); Nithyanand et al. (2014); Cai et al. (2014a); Wang et al.

(2014); Juarez et al. (2016). They all make use of some sort of padding, delaying

sending of packets, or adding cover traffic. Many of these defenses have high latency

and/or bandwidth overhead and have been shown to be somewhat effective in mit-

igating website fingerprinting attacks. Our proposed cover traffic defense has zero

latency overhead and lower bandwidth overhead while maintaining a high level of

effectiveness.

Traffic morphing Wright et al. (2009b) is another possible defense against website

fingerprinting attacks. It attempts to modify the shape and patterns of network traffic

such that it looks different. For example, Stegotorus Weinberg et al. (2012) attemps

to make Tor network traffic look like HTTPS. Similarly, Moghaddam et al. (2012);

Houmansadr et al. (2013b) attempt to morph Tor traffic to look like VoIP traffic

so that network traffic analysis or deep packet inspection will not allow Tor traffic

to be blocked or identified; VoIP traffic is usually allowed. However, Houmansadr

et al. (2013a); Geddes et al. (2013) have shown that these traffic morphing schemes

can be circumvented. We are not proposing to modify network traffic patterns. Our

algorithm generates realistic cover traffic to mask the original packet trace.

3.5 Summary

We showed that our proposed cover traffic (noise generation) algorithm mitigates

website fingerprinting attacks as effectively as current existing schemes. However, the

bandwidth overhead is only 20% for simulation and 10% for real-world experiments,

much lower than existing schemes. The latency overhead is also 0%. Our algorithm

can also be configured to utilize different amounts of bandwidth.

27

Recording user’s browsing session: We emphasize that the user’s webbrowsing

session only need to be recorded locally. This information is not shared. Moreover,

only the packet sizes and number of packets are recorded. The server and actual

contents are not recorded. The information sent to the noise server is only the number

of packets to send back and their size. The contents of the packets are random, not

actual contents. Since the packets are encrypted, an adversary cannot determine that

these packets are cover traffic. Since no actual contents are sent, our scheme does not

leak any information to an eavesdropper.

Using a dedicated noise server: The cover traffic could be sent to real webservers;

however, this would put extra strain on these servers. We, thus, decided to use a

dedicated noise server. Removing the noise server will mean only outgoing cover

traffic can be sent which could be filtered out by an adversary. Multiple noise servers,

such as using Amazon cloud, could be use if this scheme is deployed. Since Tor is

used, it cannot be determined whether the user is contacting a noise server.

We plan to expand this work in considering more webpages for both the training

dataset and our learning algorithm. A more detailed study on the different classifica-

tion algorithms and parameters used will also be performed. Further improvements

to our algorithm can be made, such as, if a user has multiple tabs open at the same

time, no noise is needed. This would reduce the bandwidth overhead.

28

CHAPTER IV

REVISITING ASSUMPTIONS FOR WEBSITE FINGERPRINTING

ATTACKS

4.1 Background

• Definitions. We first define some terms we use throughout the paper.

– Continuous Trace. When a trace consists of two pages, and the second

page starts when the first page ends, we call it a continuous trace. It has

the same meaning as when the two pages are separated with zero-time.

– Split Point. When a trace is composed of two pages, the first step is to

separate them before further detecting. The point where the second page

starts and the first page ends is the split point.

• Dataset. Based on the foreground dataset of RND-WWW from Panchenko

et al. (2016), our experiments in Section 4.2 randomly pick 100 website records

which contain 40 instances for each website from the original dataset. Each

instance is a trace containing the timestamped incoming and outgoing packets’

size in chronological sequence. Incoming packets are marked with a positive

sign, while outgoing packets are marked with a negative sign.

• Hidden Markov Model. The Hidden Markov Model (HMM) is a Markov

process with unobserved states. It is a statistical tool to model sequences that

can be characterized by a process from a generated observable sequence Blunsom

(2004). Based on some training data, the HMM generates the probabilities of

the states in the dataset. The parameters of a HMM are of two types: transition

29

probabilities and emission probabilities. The transition probability indicates the

probability that a state changes to another state and the emission probability

is the probability of an observation within a state. The transition matrix and

emission matrix store the transition probability and emission probability of each

state respectively.

• Classification of single-page and two-page traces. An approach was devel-

oped to distinguish traces between one-page trace and two-page traces in Wang

and Goldberg (2016). The authors employed k-NN binary classification and

trained on two classes: a class of two-page traces (a network trace consisting of

two webpages), and a class of single-page traces (a network trace consisting of

only one webpage). The classification accuracy is 97%. Based on their results,

we assume it is capable to identify a trace with single page or two pages.

4.2 Analysis of Continuous Traces

Notation Definition

nwb the number of websites
nunique the number of packets with unique sizes in all

website traces
npAs

the number of a packet size p in website A {start}
state

ntotalAs
the total number of packets in website A {start} state

sblock the size of each block
pfinal a matrix of the probabilities of each packet belonging

to each class/website
ltrace the length of a trace

Table 4.1: Notations used in our algorithm.

In this section, we introduce our algorithm based on Hidden Markov Model to

detect two continuous websites with zero-time separated. We describe the details of

the algorithm first, followed by the experiments and evaluations of this algorithm.

The notations used in the algorithm are introduced in Table 4.1.

30

Figure 4.1: State transition of website A.

Figure 4.2: Probability of each packet belonging to each website(the sum of three
states in each website) obtained from the HMM model (print every 20 point for
clarity, best viewed in color).

31

Figure 4.3: Probability of predictions for the corresponding website (probability of
website1 belonging to section1 and probability of website0 belonging to section2)
when moving the split point between section 1 and section 2 from left to right. See
Figure 4.2 for the actual predictions.

Figure 4.4: Example when labeling block 1 and block 3.

32

4.2.1 Algorithm description

Our proposed algorithm can be divided into two steps: 1) Apply Hidden Markov

Model to get the probability matrix, 2) Label each block based on the probability

matrix and pick split point based on labels.

Step 1: Apply Hidden Markov Model to network traffic trace and obtain the prob-

ability of each class (website) that each packet belongs to (probability matrix).

To form states, we split each packet trace into three parts: 1) start which is first

20 packets in the network traffic trace, 2) middle which is the collection of packets

between start and end, and 3) end which is last 20 packets in the network traffic trace.

We then build our transition and emission matrices. The dimension of the transition

matrix would be (3× nwb)2.

We use website A as an example. Assume the length of a trace is ltrace; this is the

number of packets in website A. Figure 4.1 shows the state transition within website

A. For a packet from website A, it has 20
ltrace

probability to belong to A’s start state,

1− 40
ltrace

probability to belong to A’s middle state and 20
ltrace

probability to belong to

A’s end state. If a packet in A is in the start state, then for the next packet it has

a 20/ltrace
1−(40/ltrace)+(20/ltrace)

probability to stay in its current state and 1−(40/ltrace)
1−(40/ltrace)+(20/ltrace)

probability to change to the middle state. From analysis of the dataset, we find that

20
ltrace

= 0.9 or 9%, thus we set 20/ltrace
1−(40/ltrace)+(20/ltrace)

as 10% and 1−(40/ltrace)
1−(40/ltrace)+(20/ltrace)

as 90%. In a similar way, if A is currently in the middle state, then the next packet

could stay in the middle state with 90% probability or change to the end state with

a 10% probability. When the packet is in the end state, we set that A has an equal

probability of 1.0
nwb+1

to stay in the end state or change to any other website’s start

state. For the emission matrix, the dimension is (3×nwb)×nunique where nunique is the

number of unique length of packets in all website traces, where 3 indicates the three

states (start, middle, and end) for each website. For a packet size P in website A in the

start state, npAs
, the total number of packets in A start state is ntotalAs

. The emission

33

probability for P in A’s start state would then be
npAs

ntotalAs

. After applying forward

and backward propagation, we obtain the probabilities of each packet belonging to

each class/website as pfinal. For simplicity, we show the prediction for five websites

in Figure 4.2. The split point happens at packet number 389 and the network traffic

trace is composed of website 1 followed by website 0. The different colors of the lines

indicate different websites. A website’s different states are shown in the same color.

From the figure, we can see that the algorithm predicts website 1 with a probability

higher than any other website until about the split point where the algorithm predicts

website 0 with the highest probability.

Step 2: Find the split point.

The split point needs to be identified automatically. The main idea of this step

is to traverse each packet in a trace from left to right as a split point and measure

the probability of the website in two sections, section 1 and section 2, split by the

split point. Based on the example in Figure 4.2, Figure 4.3 shows the trend of the

ratio in section 1 and section 2. By moving the split point from left to right, the

probability of predicted website (website 1) in section 1 drops while the probability

of predicted website (website 0) increases in section 2. The split point 400 occurs at

the intersection of the two lines in Figure 4.3.

Instead of analyzing each packet, we decide to extract features from blocks to re-

duce the processing time. We divide the whole trace into several blocks with multiple

packets; the size of each block is sblock. Assume the length of a trace is ltrace, then a

trace is split into nblock = ltrace/sblock blocks. We name the block from left to right as

block 1, block 2, ..., block n. And we assume the split point is at the end of one of

the blocks.

First, we label each block to indicate whether the block is before or after the split

point. When labeling block m, we consider block 1 to block m to be section 1 and

block m + 1 to block n as section 2. The block m is labeled based on the ratio rs1

34

of the number of packets belonging to website X in section 1 and the ratio rs2 of the

number of packets belonging to website Y in section 2, where X and Y indicate the

website with the highest ratio in section 1 and section 2 respectively. We set a ratio

bottom line tblock for rs1 and rs2. When labeling the block, we use 0 to represent the

block is before the split point and 1 to represent the block is after the split point. If

rs1 > tblock, which indicates more than tblock section1 is composed of website X , and

label the block as 0. If rs1 < tblock and rs2 > tblock, label the block as 1. If rs1 < tblock

and rs2 < tblock, it indicates that this block does not provide valid information, then

this block won’t be labeled and recorded. When labeling every block, record the end

point of each block as a block index into point list.

We use the example in Figure 4.2 to illustrate the algorithm behind the labeling

process. Figure 4.3 and Figure 4.4 are based on this example. The trace contains

1, 800 packets and is divided into 9 blocks; the size of each block is 200 packets. The

split point between section 1 and section 2 moved from 200 to 1600.

We only list the process when labeling block 1 and block 3 as an example. For

a packet, we use the website with the highest probability as the prediction for the

packet. In this example we set tblock as 95%. When labeling block 1, section 1 contains

block 1 and section 2 is from block 2 to block 9; split point is 200. From Figure 4.2

we can see that the predicted website in section 1 is website 1 and from Figure 4.3,

the confidence of this prediction is close to 1, which means, rs1 is close to 100% thus

rs1 > 95%, then we label block 1 as 0, meaning block 1 is before the split point. For

labeling block 3, section 1 is composed of block 1, block 2 and block 3, and section

2 is from block 4 to block 9. For the first 600 packets in section 1, the probability

of website 1 is 67% which is less than 95%, then we label block 3 as 1 representing

block 3 is after the split point. Under the perfect condition, the split point should be

at the point when rs1 and rs2 meet which is in between 0 and 1 in the label list.

After labeling each block, we pick the split point based on the sequence of labels.

35

The expected list of labels is {0, 0, ..., 0, 1, 1, ..., 1}. However, when labeling block n,

if none of the highest ratio in section 1 and section 2 achieve the threshold tblock, the

label of this block will be missed. We propose an algorithm to find the split point and

is able to handle all these situations. The two main cases are classified by whether 1

is in the label list.

• label list contains 1s. If label list = (0, 0...0, 1, 1...1), that is the format we

expect. 0 represents the block is before the split point and 1 is the opposite.

Then the split point is after the last block labeled with 0.

If label list = (1, 1, 1...1, 0, 0.., 0, 1, 1, ..., 1), it shows that there is some noise at

the beginning of the trace as well as some at the end of the trace. However it

does not affect the process to find the split point since we only focus on the

changes in the trace. We will still assume the split point is after the block with

last 0.

• label list contains 0s only. The algorithm will check if enough information

is obtained first before making the decision. If blocks are continuously labeled

from the first to last block, then we assume that pattern for the probabilities of

the first website is clear and return the point after the last labeled block as the

split point. This means that the last block is section 2. Otherwise, the backup

algorithm will be applied.

The pseudo code of the algorithm is outlined in Algorithm 1. label list contains

the labels of blocks and point list is composed of the index of the corresponding

block. The condition in the algorithm is based on the sequence in the label list.

The comments on the right describe the specific situation when a label list is in that

condition. When no points satisfy the conditions or there is only one element in the

point list, we need a backup algorithm to pick the split point.

The main idea of the backup algorithm is to find the split point when the average

of the highest ratio of predicted websites in section 1 and section 2 is higher than

36

Algorithm 1 Main Algorithm to Find Split Point

1: procedure get changepoint(point list, label list)
2: if point list is not empty then
3: if 1 is in label list then
4: if label list[0] is 0 then .
label list = (0, 0...0, 1, 1...1)

5: Return point after last 0
6: else . label list = (1, 1...1, 0, 0...0, 1, 1...1)
7: if label list[0] is 1 then
8: Return point after last 0
9: else
10: Return backup algorithm
11: end if
12: end if
13: else . label list contains 0 only
14: if length(point list) is 1 then
15: Return backup algorithm
16: end if
17: if point list[0] is sblock and point list =

(1 sblock, 2 sblock, ..., n sblock) then
18: Return point list[n− 1] . return last

point in the point list
19: else
20: Return point list[0]
21: end if
22: end if
23: else . point list is empty
24: Return backup algorithm
25: end if
26: end procedure

37

any other point. Assume that point list = (1 sblock, 2 sblock, ..., n sblock), for split

point i − sblock, where i = 1, ..., n. The two sections split by this point i are called

section 1 and section 2. We denote the percentage of packets belonging in section

1 as r1i (that is, these packets are correctly marked in the correct section) and the

percentage of packets belonging in section 2 as r2i. The average ratio at point i−sblock

is avg(r1i, r2i) – the point with the highest average ratio among all points in the

point list is considered as the split point. The backup algorithm is rarely called in

our simulations.

4.2.2 Results for Finding Split Point

The values of sblock and tblock are selected as 200 and 95%. We used the dataset

foreground RND WWW and CUMUL features from Panchenko et al. (2016) and

randomly picked 100 distinct websites with 40 instances each from the dataset. For

each website, 20 instances are applied in training and the other 20 are used for testing.

Training dataset is then composed of 100 websites with 20 instances each. In order

to simulate the process of visiting one website after another, we picked two websites

randomly from the testing set 200 times and concatenated their network traffic trace

to form the test set. Since each website for the testing set has 20 instances, there are

4, 000 traces in total in the testing dataset.

We removed the packets with size of Maximum Transmission Unit (MTU) to

improve the accuracy. We also consider another threshold in addition to pfinal, that

is, if the highest probability of a packet belonging to every class is lower than the

threshold toriginal, where toriginal is set to 0.8 in the experiment, then that packet

will be ignored. Thus we only consider the predictions with high probability. We

found that by removing MTU and adding this new threshold value, the accuracy is

increased.

We analyze the accuracy of the split point from two metrics: 1) the related

38

deviance of the predicted split point from the real split point and 2) the accu-

racy of the split point. The related deviance is calculated by abs(predicted point −

real point)/ltrace. The lowest average related deviance we obtained when testing on

10 and 100 websites are 0.154 and 0.16 respectively, which means the performance

of the algorithm is stable when increasing the number of websites. If the predicted

split point is before the real split point, the first website loses partial data at the

end, and the second website receives extra data at the beginning. Figure 4.5 shows

the decrease in prediction accuracy under a closed world setting. The test dataset

is composed of 12 parts; each part contains 100 websites and 20 instances of each

website. The first 6 parts consist of cutting 30%/20%/10% traces at the beginning or

end of each trace, The second 6 parts are composed of adding 30%/20%/10% traces

at the beginning or end of each trace. It shows the effect on prediction accuracy for

the first and second website in a continuous trace when the predicted split point is

before or after the the real split point. For two continuous websites, the error on

the split point has a bigger effect on the second website. A 0.16 related deviation

means the average split point is between 0.84 to 1.16 on the x-axis in Fig 4.5. In

this area, it can detect the first website with a decreased accuracy of 15%. Since the

original accuracy in detecting one website with website fingerprinting using the k-NN

algorithm is about 90% (from figure 4.3), the accuracy to predict the first website is

thus around 90% − 15% = 75%. However, for the second website, the accuracy is

lower. To calculate the accuracy of the split point, we consider that the prediction is

correct if the block/point prediction is closest to the real split point. The number of

points/blocks is decided by ltrace/sblock, where sblock is selected as 200. For example, if

the length of the continuous traces is 3, 000 with the split point at packet number 425,

and point list = {200, 400, 600, 800, ..., 2800}, we consider the prediction is correct if

the predicted split point is 400. Among 4, 000 test traces, 3, 200 of them are predicted

with the correct split point. The split point accuracy is thus 80%.

39

Figure 4.5: Decrease on prediction accuracy of the first and second website when the
predicted split point is not accurate.

4.2.3 Results for Website Prediction

The ultimate goal of WF attack is to predict visited websites. The advantage of this

algorithm is that it can detect the website directly after finding the split point. We

still use toriginal to filter packets first and assume the packet belongs to website A if A

has the highest probability among all websites (known from pfinal). Then we calculate

the percentage of each website before and after the split point. The website with the

highest percentage is the predicted website. We trained on 100 websites and tested on

4, 000 instances. When considering websites with the top three highest probabilities,

the accuracy for the first website is 70.2% and the accuracy for the second website is

69.2%.

4.3 Summary

In summary, our “splitting” algorithm has three distinct advantages over Wang and

Goldberg (2016). First, it doesn’t require new training data, only based on original

40

website traces. Second, it has a higher accuracy of 80% in detecting split point

compared to 63%. Third, Wang and Goldberg (2016) didn’t predict websites for

real after finding the split point. From their description, they will reuse previous

WF attack approach on two split sections. However, in our algorithm, websites can

be predicted directly after finding the split point from the probability matrix and

predicted split point.

41

CHAPTER V

MORE REALISTIC WEBSITE FINGERPRINTING USING DEEP

LEARNING

5.1 Background

In this study, we mainly focus on two major types of neural networks that previous

work has shown to be promising for WF attacks: 1) CNN, a convolutional neural

network, and 2) LSTM, a recurrent neural network.

• Convolutional Neural Network (CNN). In Deep Learning, a CNN is an

algorithm consists of a group of convolutional layers: an input layer, hidden

layers and an output layer. Each hidden neuron only connected to a restricted

region called receptive field. And these receptive fields partially overlap with

neighborhoods. Thus CNNs can go deeper with less parameters when doing

feature extraction. CNN may have pooling layers to downsample from prior

layer. Such as max pooling, it uses the maximum value of a group of neurons

to do the downsampling. Due to the advantage of its good performance in

classification and its efficiencies on pre-processing, CNNs has been applied to

process image recognition and classification, object detection etc.

• Long-short term Memory network (LSTM). A LSTM, a special kind

architecture of a recurrent neural network (RNN), is developed to enhance the

ability of deal with long-term dependencies problem of RNN. Because of the

design of a LSTM, it can process data based on time series very well. In our

experiments, WF traces are time series data. Hence, LSTMs can be used to

42

analyse WF traces.

5.2 Methodology

Current WF techniques are usually developed under strong assumptions that each

traffic trace corresponds to an entire single webpage. However, the captured trace

may contain 1) one or more webpages, 2) a partial webpage, or 3) webpage with

background noise. In this section, we provide a detailed outline of our DL based

methodology on WF attacks with these realistic conditions.

5.2.1 Motivation

A systematic exploration of DL algorithms applied to WF attacks is provided in Rim-

mer et al. (2017). However, their experiments are still based on the assumption that

each trace contains an entire single webpage. Using traditional machine learning al-

gorithms, Wang and Goldberg (2016) classified network traces into either single-page

(corresponding to one web page) or two-page traces. The two-page traces could fur-

ther be split into zero-time (continuous traces), negative-time (overlapping traces),

and positive-time (non-overlapping traces) traces. For zero-time and negative-time

separated two-page traces, the accuracy to find the start of the second web page

known as split-point was only 66% and 32% respectively. The authors didn’t provide

further analysis after this, but the low accuracy in finding split-point will certainly

impact the final website prediction in a negative way. We aim to use DL methodology

to reduce the distance between research/laboratory work and the real world. Thus,

we assume collected traces may contain one or two webpages and also evaluate our

methodology under conditions of traces of partial webpages and traces composed of

webpages with background noise. We emphasize that the goal of this study is to im-

prove the performance of WF attack in the real world instead of building a better DL

model when compared to previous work Rimmer et al. (2017); Sirinam et al. (2018)

43

5.2.2 Features

The two types of features we used in the evaluation are listed as follows. Each of

them can be represented in a time sequence, and we treat these two types of features

as two different feature dimensions.

1. Packet-size. To increase the speed of convergence of gradient decent, we normal-

ize the data first. We divide each packet by the MTU (Maximum Transmission

Unit) which results in each packet size in the range of [−1, 1]. We keep only 2

decimal digits in the packet-size sequence.

2. Timestamp. We use inter-packets time interval instead of the absolute time,

that is the difference between each packet time-stamp and the trace’s start

time.

5.2.3 Classification of Traces

We attempt to distinguish between single-page traces and two-page traces first, since

approaches applied to these two types of traces are different in website detection.

1. One-page traces. This is the optimal situation when a victim visits one website

at a time and the attacker captures the whole trace of a single webpage. In

addition to evaluating traces with entire single webpage, we consider two more

situations: 1) when an attacker fails to capture whole traces that results in

missing the beginning (head) of trace or the end (tail) of traces; we classify this

as a partial trace, and 2) when there exists some brief background noise in the

network; for example, a process sending a keep-alive message while the user is

visiting a webpage.

2. Two-page traces. This situation occurs when a victim visits one website after

another. There are three different cases based on the time gap between the two

pages: 1) negative time gap (overlapped traces): visiting the second website

44

while the first one is still downloading, 2) zero time gap (continuous trace):

visit the second website right after the first one, 3) positive time gap: visit the

second website after visiting the first one. In Wang and Goldberg (2016)’s work,

after applying their time splitting method, they are able to split two-page trace

into single trace in case 3 with an accuracy of 88%. We will focus on the first

two cases in this study and aim to identify both pages under these situations.

One metric of DL in model training is that it can eliminate the need for feature

engineering such as feature design and feature tuning. Rimmer et al. (2017) proposed

to automate feature extraction through DL and the results showed that DL can

automate the feature engineering process and effectively create WF classifiers. Thus,

we use raw data as training input. For each trace, we keep the first N packets. For

traces with fewer than N packets, we pad 0 at the end of these traces. A trace

is composed of a sequence of “timestamp : packetsize” sorted by time. We will

perform a CNN-based supervised binary classification on this problem. The algorithm

takes traces as input and return a binary result 1 or 0 to indicate whether the trace

corresponds to single-page or two-page.

5.2.4 One-page Trace

5.2.4.1 Scenario

Current deep learning techniques assumed single complete webpage traces. We argue

that even though a victim visits one webpage at a time, an adversary may not be

able to capture the whole webpage trace. For example, if a victim closed the webpage

before it finished downloading, then the captured trace will miss the tail part. A

trace may also lose the head part (beginning) if an attacker started to collect packets

after the victim visited the webpage.

We thus have three scenarios: 1) one-page trace missing tail part, 2) one-page

trace missing head part, and 3) whole one-page trace. Since 3) has been well evaluated

45

in previous research work Rimmer et al. (2017); Sirinam et al. (2018), we focus on

scenarios 1) and 2), that is, partial traces. We won’t explore the traces losing both

head and tail in this study.

5.2.4.2 Head Detection Method

In closed-world settings, we performed a CNN-based classification training. The

model takes the first N packets of traces as input and return the predicted website

it belongs to. For traces with fewer than N packets, 0s are padded to the end of the

trace. After hyperparameter tuning, we tested the model on 1) and 2).

As expected, the prediction accuracy drops in cases 1) and 2) compared to 3).

We aim to distinguish between scenarios 1) and 2) first and apply different models

on different cases. We apply a head detection first which is a binary classifier based

on k-NN and adopt first k packets of a trace as features to recognize whether a trace

has the head part or not. For traces classified into 1), we reuse the basic model that

takes first N packets of traces as input. For traces classified into 2), we use the last

N packets of traces. The training model for this case is also built on traces with

last N packets instead of first N packets. For traces with length less than N , 0s will

be padded to the head of the trace. We will outline approaches used in open-world

settings in Section 5.2.5 for models trained on first and last N packets of traces. We

will show the efficiency of this approach in section 5.3.

5.2.5 Two-page Trace

In section 5.2.3, we showed that a two-page trace consists of two webpage traces that

are separated with positive, zero, and negative time gap. In this section, we aim to

predict two pages directly from the traces. Figure 5.1 shows an example of a two-

page trace with overlapping parts (negative-time separated). This trace was obtained

when a victim visited website2 while website1 was still downloading. The overlapped

46

Figure 5.1: Two-page traces

traces from C to D in the figure contains the mix of packets from the tail of website1

and the head of website2. Instead of using the whole trace, we extract information

from first N packets and last N packets. In an ideal situation, the first N packets of

the trace from point A to point B come from website1 and the last N packets from

point E to point F are from website2. In order to avoid including the overlapping

part, N should be chosen as low as possible. However, in one-page traces, increasing

N improves the model performance. The value of N thus needs to balance these two

aspects.

The intuition of this algorithm is from Rimmer et al. (2017) where they showed

that LSTM can classify traffic traces based solely on their first 150 Tor cells with

1000 instances of each website and achieve an accuracy of more than 90%. This

indicates that deep learning method can predict websites based on a small fraction of

the network trace with enough webpage instances. We expect that the tail of the trace

also provides enough information for website detection. We note that two webpages

visited simultaneously causing a nearly 100% overlap is beyond our consideration.

In a closed-world evaluation, we construct two classification DL models training

on the first N and last N packets to predict the first and second website in traces

respectively. For the open world, we use the following solutions to distinguish between

monitored and unmonitored websites.

47

• Prediction Confidence Approach. We reuse the model trained in the closed-

world settings and use an indicator of the prediction confidence. For an input

trace, if the calculated confidence is higher than a certain threshold, we consider

to trust the model and classify the trace as a monitored website. Otherwise,

the trace is classified as an unmonitored website. By varying the threshold, we

are able to balance the True Positive Rate and False Positive Rate. The two

indicators we evaluate are Shannon entropy and Renyi entropy.

1. Shannon Entropy:

H(X) = −
N∑
i=1

pilog2pi (5.1)

where pi is the probability of the test trace belonging to class i. The entropy

achieves maximum value log(n) if pi comes from a uniform distribution that

all outcomes are equally likely.

2. Renyi Entropy:

Hα(X) =
1

1− α
log(

N∑
i=1

pαi) (5.2)

It has similar properties as the Shannon entropy: it is additive and has

maximum as log2(n) for pi = 1/n Maszczyk and Wlodzislaw (2008). The

difference is that the additional parameter α controls its sensitivity to the

probability distribution. Renyi entropy increasingly weighs more on events

of highest probabilities as α approaches infinity and considers nearly all

possible events as α approaches 0.

We use H(X)/log(n) as a threshold to limit the value between 0 and 1. The

higher the entropy value, the less confidence the classifier gets. Hence, we

classify the trace as a monitored website if the corresponding entropy is less

than the threshold or as an unmonitored website otherwise.

• Binary Classification. This method is widely used in WF attack with classic

48

machine learning algorithm but haven’t been evaluated in DL approach as far

as we know. The training set is composed of nmweb × ninst + nunweb where

nmweb is the number of monitored websites, ninst is the number of instances

of each monitored website and nunweb is the number of unmonitored websites.

We balance the amount of nmweb × ninst and nunweb to be equal in the training

set. The unmonitored websites are randomly chosen. For an input trace, the

classifier will return a binary decision (0 or 1) to indicate whether it belongs to

a monitored website or an unmonitored website.

All the models mentioned above are built on packet-size. We are wondering if

adopting the sequence of timestamp has a positive effect on classifying. Hence, we

add corresponding timestamp of each packet as another dimension’s features to the

training data besides the packet size sequence and evaluate the classifier performance

again.

5.2.6 Noise

In this study, we evaluate how our DL model is robust to noise. We add noise packets

to the original traffic every n seconds to simulate traces with noise. By varying n, we

can see how much noise our model is able to deal with.

5.3 Simulation

The goal of the simulation is to verify the methodology proposed in Section 5.2. From

the simulation, we are also able to compare performance among different solutions.

5.3.1 Dataset

In our simulation, we adopt the subset of dataset collected in Rimmer et al. (2017)

for the experiments. We use the TCP layer packets directly. In the closed world, we

use Alexa top 100 as monitored website domain and there are 93 out of 100 websites

49

qualified with at least 1280 (1024 instances for training and 256 instances for testing)

valid instances each in the dataset. For the open world, besides the closed-world

dataset, we randomly picked 119040 unmonitored websites with one instance each.

The training data in the open world is formed with 93 × 1024 = 95232 monitored

website traces with or without 95232 unmonitored website traces. The test data then

consists of the rest in the dataset, which is 93 × 256 monitored website traces plus

23808 unmonitored website traces.

5.3.2 Deep Learning Model

5.3.2.1 Implementation

We use Python deep learning libraries Keras Chollet et al. (2015) as the frontend and

Tensorflow Abadi et al. (2015) as backend in the implementation. The performance

of various DL algorithms for WF was shown in Rimmer et al. (2017). Among CNN,

LSTM and SDAE (Stacked Denoising AutoEncoder), CNN has the least time cost

with the best accuracy in the closed-world evaluation and has closed TPR (80.11%)

and FPR (10.53%) with SDAE (TPR:80.25%, FPR 9.11%) which performs best in

the open world. Hence, we choose CNN as our main DL algorithm. Rimmer et

al.Rimmer et al. (2017) provided us their source code to reproduce their experiments

and results. We adopted their LSTM and CNN model to compare with our CNN

model. We built the model for one-page trace first before dealing with other scenario

(one-page partial trace, two-page trace, trace with noise). We followed the deep

learning techniques in Rimmer et al. (2017); Sirinam et al. (2018); Oh et al. (2017b)

to improve our model. Figure 5.2 shows the structure of our CNN model. The basic

block consists of one convectional layer with activation function, followed by max

pooling and dropout layer. In Figure 5.2, we mark the difference between our model

and Rimmer et al. (2017)’s model in color. First, we normalize the data and add

a dropout layer right after this to minimize overfitting. Instead of ReLU (Rectified

50

Figure 5.2: CNN model structure. The blue boxes are additions to our model when
compared to previously proposed models.

Linear Unit), PReLU (Parametric ReLU) is chosen as the activation function in our

model since PReLU doesn’t map all negative values to zero like ReLU and performs

better from our testing. We considered using doubled convolutional layer in a basic

block which is inspired by Oh et al. (2017b); however the performance turned out

similar but with higher time cost and more complicated network due to the doubled

convolutional layer in each block.

5.3.2.2 Hyperparameter Tuning

Hyperparameter tuning is a basic process in machine learning classification. It is

a process to improve the model performance as well as balancing the trade-off be-

tween the performance and overfitting. The amount of hyperparameter and required

training data in deep learning are considerably greater than classic machine learn-

ing algorithms. Hence, it is difficult for us to conduct an exhaustive search due to

the limitation of computational resources. Besides, our goal is to demonstrate the

effectiveness of our method instead of building a perfect deep learning classifier.

Yosinski et al. (2014) pointed out the transferability property in CNN. They

51

Table 5.1: Hyperparameter Tuning for CNN.

Hyperparameter Search Space Value
Input Length [1000...5000] 3000
Learning Rate [0.001...0.05] 0.023

Batch Size [64...256] 512
Training Epochs [10...50] 45

Dropout rate [0...0.5] 0.18
Activation [ReLU, PReLU] PReLU
Optimizer [Adam, RMSProp] RMSProp

Pooling Layers [Average, Max] Max
Filter [16...128] [32,256]

Kernel Size [1...20] 15

showed that “the transferability of features decreases as the distance between the

base task and target task increases, but that transferring features even from distant

tasks can be better than using random features”. Thus, instead of using random

features first, we initialize our model with their parameters and get a rough domain

of the search space.

We use Talos built in Keras automating the process of hyperatmeter tuning. We

perform a two-step selection of hyperparameters for our model. First, we select top-n

best parameters for one layer based on loss function from top to the bottom and use

them as the initial parameters for the optimization in the next layer. When all layers

are set, we select the best combination of hyperparameters. All models in this paper

use this same tuning steps. The search space and final value of the best parameters

for one single trace are listed in Table 5.1.

5.3.3 Classification of Traces

We performed a CNN-based binary classification to distinguish between one-page and

two-page traces as depicted in Section 5.2.3. We picked N = 3, 000 and used signed

packet size as features. The model trained on one-page trace is labeled as 0 and the

52

Figure 5.3: Accuracy for partial traces using k-NN algorithm in the closed-world
evaluation.

two-page trace is labeled as 1. Since we did not limit the domain of the one-page

trace to monitored website domain, we use the same model for the closed-world and

open-world evaluation in this step. The model achieves an accuracy of 85%.

Wang Wang and Goldberg (2016) also developed an approach based on k-NN to

solve this problem. We strictly followed their published code, and evaluated on our

dataset to make a fair comparison. Their method achieves an accuracy of 68.60%

from this evaluation.

5.3.4 Closed-world Evaluation

We evaluate the performance of our model and Rimmer et al. (2017)’s model on

single traces first. We trained and tested on the same dataset (closed-world data in

Section 5.3.1) for both models. The results show that our model achieves an accuracy

of 97% compared to 95% for Rimmer et al. (2017). Thus, we use our CNN model

evaluation in this section.

53

5.3.4.1 One-page Trace

We removed the head (beginning) or the tail (end) of a trace to simulate partial

traces, as mentioned in Section 5.2.4, to create the test data. We also varied the

size of the partial traces by changing the percentage of missing packets from the

traces. Figure 5.3 shows the accuracy when testing on traces with 10% or 20% missing

packets on the head or tail of the trace. When n = 100%, it indicates that an attacker

captures the entire trace. Last n% traces in the figure corresponds to capturing the

last n% packets (or having (100− n%) packets missing at the beginning). The figure

demonstrates how the classification accuracy decreases as n decreases. When missing

the last 20% of packets, the classification accuracy decreases to 86.93% from 97%.

When missing the first 20% of packets, the accuracy decreases to 8.28%. It has already

been shown that the head part (beginning) of a trace carries more information. We

introduced our method to deal with this situation in Section 5.2.4, and we now present

the results of our approach. The k-NN model we used to detect whether the trace

missing head (label 0) or tail (label 1) takes first 10(after tuning from 10, 20, 30, 50)

packets’ sizes of a trace as features. It achieves an accuracy of 94.95% in classifying.

For traces missing head, we trained another model the same as the previous CNN

model except based on last 3000 packets.

Figure 5.4 shows the accuracy of our method compared to the original model. Al-

though the accuracy is lower when n = 100, the accuracy is respectively 86.35% and

71.55% when 10% and 20% of the packets are missing at the beginning. This is com-

pared to 22.12% and 8.28% when using the original model. This shows that the last

n% packets also carry information to identify the website and the poor performance

previously is due to the model used.

54

Figure 5.4: Head detection method VS original method for last n% traces in the
closed-world evaluation.

5.3.4.2 Two-page Traces

We have described our method to predict each webpage in the two-page traces in

Section 5.2.5. We want N to be as large as 3000 where the model performs best,

however it will have a higher probability to include packets from overlapped traces.

After balancing the model performance and avoiding overlapped traces, we set N to

200. Rimmer et al. (2017) showed that LSTM has a great performance on one-page

trace classification based solely on 150 Tor cells, so we will take LSTM as a comparison

in two-page traces evaluation.

Test data. To form the test data two-page traces, we merge two single traces from the

test dataset (see Section 5.3.1) and sort by time, as shown in Figure 5.1. We merge-

insert website2 to website1 from point c. After obtaining the timestamp timec of the

packet from website1 at point c and the start timestamp timestart w2 of website2, we

reset each packet’s timestamp in website2 as timestamp − timestart w2 + timec, and

then sort packets in website1 and website2 based on the new timestamp.

Results. We reproduce Rimmer et al. (2017)’s LSTM model and select the length

of trace to 200 to make a fair comparison with CNN. By increasing the percentage p

of overlapped traces (the length of the overlapped traces is equal to p ∗ lfirst, where

55

lfirst is the length of the first website), we are able to test if our model is robust

to large amount of overlapped packets. When p = 1, website1 and website2 are

fully overlapped, we won’t consider this case in our evaluation (see section 5.2.5).

When p = 0, it’s corresponding to a continuous visit that website2 is visited right

after website1 finishes loading. The results are depicted in figure 5.5 for LSTM and

CNN model applied to predict first and second website. As expected, prediction

on the first website is more accurate than the second one. However, the model

performance on the second website is still acceptable with 70% compared to Wang

and Goldberg (2016)’s work (34% accuracy to find the split point between website1

and website2). We varied p from 0 to 0.8 and found that the model performance is

stable and isn’t impacted by the amount of overlapped traces. It shows that N is

small enough to avoid overlapped traces while maintaining an efficient model. The

results also demonstrate that CNN performs better than LSTM on both website

prediction considering prediction accuracy. We attempt to improve the performance

of the model on the second website by adding the timestamp as another dimension

of the feature. Instead of using the raw timestamp, we calculate the relative value

which is represented by (timestamp − tstart), where tstart is the start timestamp of

the trace. We successfully improve the accuracy for the second website from 72.35%

to 81.61% when testing on traces with 50% overlapping through this new model.

5.3.4.3 Noise

Our goal is to identify the number of noise packets per second which is necessary

for the accuracy to decrease. The attacker in this case captured traces with random

noise in it without knowledge of the noise.

• Test data. Assume that the start timestamp of a trace is tstart and the end

is tend. To insert random noise m packets/second (p/s), we draw m numbers

m1,m2...,mj, ...mm from [0, 1] uniformly first. Then use tstart + i + mj where

56

Figure 5.5: Closed-world evaluation on two-page traces (zero time and negative time
separated).

Noise Accuracy Decrease in accuracy Overhead

10p/s 25.71% 71.29% 56.4%
5p/s 54.97% 42.03% 28.2%
2p/s 80.81% 16.19% 14.5%
1p/s 89.89% 7.11% 5.2%

Table 5.2: Decrease in accuracy when random noise is added.

i is from 0, 1, ..., (tend − tstart) as the noise packet’s timestamp. For each i, j is

from 1, 2, ...,m Then we merged the generated noise packets with the original

trace to get the test data. The noise is thus randomly spread out in the whole

trace. It is easy to understand that with the same number of noise packets, the

more their timestamp compact together, the less they impact the predicting

performance. They only affect a certain part of the trace and information from

unaffected parts are still valuable. We attempt to insert the noise constantly

crossing the whole trace in order to get the conservative prediction accuracy.

• Results. We listed the noise frequency, the predicting accuracy, the decrease in

accuracy compared to traces without noise, and the noise overhead in Table 5.2.

The overhead is calculated by the nnoise/npacket, where nnoise is the number of

57

noise packets and npacket is the number of packets from original traces. The

accuracy drops fast at first and starts to fall slower from 5p/s. Like in traditional

machine learning algorithm, noise also has a strong effect in disturbing the DL

model.

5.3.5 Open-world Evaluation

5.3.5.1 One-page Trace

The open-world evaluation of state-of-art work Rimmer et al. (2017); Oh et al. (2017b)

uses the model built on monitored websites with a threshold which could measure the

prediction confidence. The main theory here is that if the model has a strong confi-

dence in prediction, then the input trace belongs to the monitored website, otherwise

it belongs to the unmonitored website. However, from our evaluation, we found that

binary classification (mentioned in Section 5.1 with N = 3, 000) has a better perfor-

mance on the whole traces which is a guarantee for partial traces testing, with the

Area Under Curve (AUC) of 97.5% compared to 91% of method with prediction con-

fidence. Hence, we pick binary classification with CNN (CNN has many advantages

than LSTM when N is not limited) as the open-world evaluation method for this

scenario. We also apply the head detection first and trained two models as in the

closed-world evaluation.

Since the amount of monitored and unmonitored instances are controlled to be

same in the test dataset, the accuracy of the model is valuable and can be calculated

as (1 +TPR−FPR)/2. We select the threshold as 0.5 from our validation and draw

Figure 5.6 to present the performance of the model on partial traces. The results

show that the model consistently performs best on first n% packets at around 94%

TPR with 4% FPR. For the last n% where traces miss head part, the accuracy tends

to slightly decrease with the reduction of n. However, the results are still promising

compared to the model without head detection applied where the accuracy falls to

58

Figure 5.6: Open-world evaluation on partial one-page traces with binary classifica-
tion.

20% for last 90% packets.

5.3.5.2 Two-page Traces

We have outlined the method used in open-world evaluation for two-page traces in

Section 5.2.5 and will discuss the performance of corresponding methods in this sec-

tion. The test data is formed following the pattern in two-page traces in closed-world

evaluation (Section 5.3.4.2). The number of traces from the monitored and unmoni-

tored websites are the same.

CNN and LSTM. Similar to the closed-world evaluation, we set N to 200 and

pad 0s to traces with length less than 200. We use the prediction confidence with

Shannon entropy to test the performance of CNN in this scenario and LSTM as a

comparison. The accuracy is defined the same as in Section 5.3.5.1 which is based

on TPR and FPR. It makes it simpler to demonstrate the results across different

percentage of overlapped traces together in this way. As shown in Figure 5.7, LSTM

and CNN perform with similar efficiency on the first website with an accuracy around

78%. However, CNN performs significantly better than LSTM on the second website

on whichever percentage of overlapped traces. Figure 5.8 and Figure 5.9 shows the

59

Figure 5.7: Open-world evaluation on first and second website in two-page traces

Figure 5.8: ROC curve on predicting first website with 10% overlapping traces.

60

Figure 5.9: ROC curve on predicting second website with 10% overlapping traces.

ROC curves when the first and second website have 10% overlapping traces and show

the same results.

Binary Classification and Prediction Confidence with Shannon Entropy.

Binary classification is another widely used method in WF open-world evaluation.

However, to the best of our knowledge, it has not been applied in DL algorithms.

We use the previously-built CNN as the basic model to launch this classification. We

assess the prediction accuracy for first and second website in Figure 5.10 and Fig-

ure 5.11 and compare the accuracy with the prediction confidence, using the Shannon

entropy, method. The thresholds used in binary classification and Shannon entropy

for the first website are 0.5, 0.07 and 0.5, 0.28 for the second website. We observe that

the binary classification outperforms the prediction confidence with Shannon entropy

significantly when predicting the first website. The accuracy is increased from 80%

to 95% and remain the same regardless of the different amount of overlapped traces.

It also slightly improves the performance on the second website. Figure 5.12 plots the

ROC curve of these two methods applied on the first website with 10% overlapped

traces. The AUC for the binary classification is 97.2%.

Improvement on the Second Website. When considering TPR and FPR,

the prediction on the first website in two-page traces has met our expectation. We

61

Figure 5.10: Open-world evaluation on first website with binary classification and
Shannon entropy.

Figure 5.11: Open-world evaluation on second website with binary classification and
Shannon entropy.

62

Figure 5.12: ROC curve of binary classification and Shannon Entropy in the open-
world evaluation on the first website with 10% overlapping traces.

Figure 5.13: ROC curve of binary classification, Shannon Entropy and Renyi Entropy
in the open-world evaluation on the second website with 10% overlapping traces.

63

wonder if it’s possible to improve the accuracy on the second website. We didn’t find

any improvement by adding the timestamp to the model in this scenario. We tried

to make progress from the prediction confidence method with only training on moni-

tored websites. We employed a new indicator called Renyi Entropy. We’ve introduced

this in Section 5.2.5 and mentioned that the similarities and differences between this

entropy with Shannon entropy are that it has similar properties but has an additional

parameter α to control weights on events with different probabilities. After tuning,

we set α = 0.5 and run the experiment with Renyi Entropy on the second website

prediction. We present the comparison of the ROC curve between the three discussed

approaches in Figure 5.13 under the condition of 10% overlapped traces. From the

results, we can see that this approach is better than both binary classification and

Shannon entropy. To show whether the results are significant, we employed McNe-

mar’s test. We compared Renyi Entropy (test 1) and Shannon Entropy (test 2). If

the trace is classified correctly, we call it positive, otherwise negative. Assuming b is

the number of test cases that are positive in test 1 and negative in test 2, and c is

the opposite. The test statistic is calculated by (b− c)2/(b+ c) and has a chi-squared

distribution with 1 degree of freedom. P-value is 0.0139 < 0.05, which shows the

significance of our improvement.

Evaluation on Time Gap. We draw figure 5.14 to illustrate the average time

gap on two-page traces with 0−80% overlapping. In fact, in the real world experiment,

it is very difficult to control the percentage of overlapped traces when collecting two-

page traces. A more straightforward and meaningful way is to set the visiting time

gap between the first and second website. Besides, the length of certain percentage

of overlapped traces is decided by the length of the original trace, if the original

trace is longer than 2, 000 packets, and we only take the first 200 packets as training

features, then the accuracy will stay the same until 90% overlapped traces. To make

it consistent with our real world experiment and obtain a clear insight about how

64

Figure 5.14: Average time gap between the first and second website on different
percentage of overlapped traces.

the accuracy is impacted by the time gap, we evaluate our model with various time

gaps between two websites and outline the results for the first and second websites in

Figure 5.15 and Figure 5.16.

We observe that binary classification still performs better than Shannon entropy

for the first website. However, the prediction confidence with Shannon entropy is

relatively stable with the change of time gap. Since the binary classification on the

first website has achieved an accuracy more than 90%, we won’t evaluate adding

timestamp as a second dimension and Renyi entropy here. For the second website,

we found that the efficiency of binary classification falls significantly compared to the

evaluation based on the percentage of overlapped traces. However, when adding the

timestamp for each packet besides the packet size to the binary classification model, it

outperforms all the other three methods. Also, for the prediction confidence approach,

the indicator of Renyi entropy is along with the previous performance that exceeds

Shannon entropy. We add timestamp as a new dimension of features to the prediction

confidence approach as well, but it doesn’t improve the predicting accuracy.

65

Figure 5.15: Open-world evaluation on first website in two-page traces with time
gaps.

Figure 5.16: Open-world evaluation on second website in two-page traces with time
gaps.

66

Figure 5.17: Open-world evaluation of accuracy and overhead on traces with noise.

5.3.5.3 Noise

We evaluate our trained model described in Section 5.3.5.1 with noise traces. It is a

binary classification model building on CNN using packet size as input. Figure 5.17

shows how the accuracy is affected by the increase of noise packets per second(p/s)

and the corresponding overhead. The overhead grows linearly while the decrease in

accuracy comes quickly at first and becomes relatively slow after 2p/s. When noise

is increased to 10p/s, the accuracy of 95% − 60% = 35% becomes less than 50%

which is an accuracy gained from a random decision in distinguishing monitored and

unmonitored website. It indicates that this amount of noise has the ability to fully

disturb the model.

5.4 Real World Experiment

In this section, we perform the two-page traces evaluation in the real world experi-

ment.

67

5.4.1 Data Collection

We design our website-traffic-traces-crawler based on the tor-browser-crawler Juarez

et al. (2014). By adding new features of concurrent visits, our crawler can visit 2 or

more websites at the same time or with a certain time gap between visits to different

websites. The crawler is built on Tor browser (version 7.0.6) and Tor process (version

0.3.1.7). We combine the crawler with the browser automation tool Selenium (version

3.6) to automatically open, load and close visits to websites. We allow 150 seconds

to finish loading a webpage in each visit. For recording network traffic traces, we use

a network traffic dump tool, “dumpcap”. To make the crawler easier to deploy, we

create a docker image with Docker 18.09.1. Then the docker image is dispatched and

loaded on our 24 virtual machines. Each of our virtual machines has 6 CPUs 2.50

GHz with 6 GB of RAM. The whole data collection process runs from Jan. 25 2019

to Feb. 14 2019.

Our process of collecting webpages traces is run in batches. For monitored web-

sites for training data, there are 100 batches. Each batch has 10 visits to every website

in our monitored 118 websites list. The monitored list is filtered from Alexa top 200

websites. We eliminate the same website with different domains like google.com,

goolge.hk, etc. In total, we collected 118 ∗ 1000 (1, 000 visits to each website) moni-

tored training WF traces where each trace only contains traffic data of one website.

Also for unmonitored websites training data, it has 1 batch and 1 visit in a batch.

That is, we collected one trace for each of 118, 000 websites that we randomly picked

from Alexa website list. We randomly split half of Alexa top 400, 000 websites (ex-

cluding top 200 websites) to be list A and another half to be list B. Therefore, both

lists A and B contain about 200, 000 websites each. List B is used for unmonitored

test data collection.

When we collect monitored test dataset, we visited one website first then visited

the second website after 10 or 20 seconds. The second website is randomly chosen

68

Figure 5.18: ROC curve of binary classification on first website with 10s and 20s time
gap.

from the monitored 118 websites list. We repeated this process for each website in the

list for 150 times. So there are 118 ∗ 150 test traces for 10 seconds gap and 118 ∗ 150

test traces for 20 seconds gap. Similar for collecting unmonitored test dataset, we put

a time gap of 10 seconds and 20 seconds between the two visits. The second website

here is randomly chosen from the Alexa top 17, 700 websites. These 17, 700 websites

are randomly chosen from list B. For each of the 17, 700 websites picked from list B,

we only did the process once. In total, we collected 17, 700 traces for 10s gap and

17, 700 traces for 20s gap.

5.4.2 Results analysis

In this section, we will present the results on predicting the first and second website

from collected two-page traces. We will launch the evaluation in the open-world

settings which is closer to the real world attack where there may be any possible

webpages. We use our model built in Section 5.3.2 and follow the method proposed in

Section 5.2.5. We pick the approaches with the best performance from the simulation.

Figure 5.18 shows the ROC curve of the prediction on the first website in two-page

traces using binary classification. The model achieves the best accuracy at 95%, and

69

Figure 5.19: ROC curve of binary classification with packet size and timestamp on
second website with 10s and 20s time gap.

there is no big difference between different time gap 10s and 20s. The results are

consistent with our simulation (Figure 5.12 and Figure 5.10). Figure 5.19 shows the

ROC curve for WF attacks on the second website based on CNN binary classification

with both packet size and timestamp features. As we can see in the figure, the results

of 20s time gap between the start of the first and second websites tends to be slightly

better for the 10 seconds gap considering both the TPR and FPR. The accuracy is

similar to the simulation thus validating the efficiency of our proposed approach. The

prediction accuracy for the second can’t be as good as the first website for two reasons.

First, the information extracted from the tail of the trace is limited compared to the

beginning of the trace. The model based on first N packets in classification always

outperforms the last N packets (see Figure 5.6). Second, the second website might

end before the first website finished loading. In this case, even though we found the

perfect split point between the first and second website, there’s still nothing that can

be done on the second website prediction since the second website is 100% mixed with

another website traffic (shown in Cui et al. (2018)). However, DL approach shows

potential in multi-page prediction with its strong ability in feature extraction based

on only a small part of the whole trace.

70

Figure 5.20: Summary of best algorithms in one-page and two-page traces prediction.

5.5 Summary

Our goal in this paper is to expand WF attack to a more realistic environment with

the help of DL algorithm. We investigate the settings when the captured trace is a

part of the entire traces, containing two pages or with noise in both closed-world and

open-world. Figure 5.20 shows each step of one-page and two-page traces prediction

with best algorithms. We use CNN classification first to distinguish between one-

page and two-page traces. For one-page trace, we make decision of whether the trace

contains the head part from the results of k-NN binary classification and apply cor-

responding CNN models to traces with and without head. For two-page traces, CNN

binary classification with packet size works best on the first website, and prediction

confidence approach with Renyi entropy has the similar performance as CNN binary

classification with packet size and timestamp on the second website. In conclusion,

DL algorithm has a great performance in partial page, multi-page prediction with its

strong ability in feature extraction based on only a small part of the whole trace.

71

CHAPTER VI

CONCLUSION AND FUTURE WORK

In this work, we explore the mitigation and assumptions in website fingerprinting

attacks. We showed the efficiency of our proposed defense algorithm. After that we

address the impracticalities of website fingerprinting attacks and propose solutions to

several limitations. Then we expand WF attack to a more realistic environment with

the help of DL algorithm. We investigate the settings when the captured trace is a

part of the entire traces, containing two pages or with noise in both closed-world and

open-world.

• Mitigation. We showed that our proposed cover traffic (noise generation)

algorithm mitigates website fingerprinting attacks as effectively as current ex-

isting schemes. However, the bandwidth overhead is only 20% for simulation

and 10% for real-world experiments, much lower than existing schemes. The

latency overhead is also 0%. Our algorithm can also be configured to utilize

different amounts of bandwidth.

• Splitting algorithm. We propose a “splitting” algorithm to identify two con-

tinuous network traces with an accuracy of 80% in finding the split point of the

two traces.

• Partial trace. We evaluate the DL model on partial traces. The accuracy

drops less than 3% when missing 10% packets at the end of the trace. We

improve the performance on traces missing the head part by adding the head

detection. With 10% of packets missing in the beginning of the trace, the

72

accuracy is increased from 22.12% to 86.35%.

• Two-page trace in general cases. We developed the method to predict both

websites in a two-page traces and verified its effectiveness in the real world

experiment. The methods with the best performance from the simulation is

binary classification based on CNN with packet size only for the first website

prediction. With 10s gap between the first and second website, it achieves an

accuracy of 95%in the open world evaluation with real world dataset. For the

second website, the best approaches are 1) prediction confidence with Renyi-

entropy and 2)binary classification with packet size and timestamp. We found

that timestamp is an important feature for the second website prediction and

the accuracy is improved 14% by adding the sequence of packet timestamp to

the training model.

• Noise With the increase number of noise packet added per second, the perfor-

mance of the model drops gradually and fails in classification when the number

reaches to 10.

Two limitations of this work are

1. We limit the multi-page visiting case to two-page or we can only detect the first

and last visited websites in a trace with more than two websites according to

our methodology. Traces with three (or more) overlapped pages case are even

more complicated and it’s very difficult to extract valuable information from

the middle webpage since it has a higher probability to mix more with other

pages compared to the first and last webpage.

2. We evaluate the impact of noise in WF with DL, however didn’t find an effective

way to perform prediction, that is, eliminate the noise.

In multi-page identification, another approach is to find the split point of each web-

page and analyse each one independently. However, it still depends on the fraction

73

of overlapped traces. One solution is cutting the single traces into several sections

and analyse each one separately. If non-overlapped sections are more than the over-

lapped ones, there’s still chance to make predictions. For future work, we would like

to investigate more about the multi-page and more realistic situation such as noise

elimination.

74

REFERNECES

(2017). Panopticlick. https://panopticlick.eff.org/.

(2019). Weka. http://www.cs.waikato.ac.nz/ml/weka/.

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,

Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,

G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,

D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,

B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas,

F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng,

X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems.

Software available from tensorflow.org.

Bissias, G. D., Liberatore, M., Jensen, D., and Levine, B. N. (2006). Privacy vulner-

abilities in encrypted http streams. In Proceedings of the 5th International Confer-

ence on Privacy Enhancing Technologies, PET’05, pages 1–11, Berlin, Heidelberg.

Springer-Verlag.

Blunsom, P. (2004). Hidden markov models. Lecture Notes in Computer Science,

University of Melbourne.

Cai, X., Nithyanand, R., and Johnson, R. (2014a). Cs-buflo: A congestion sensitive

website fingerprinting defense. In Proceedings of the 13th Workshop on Privacy in

the Electronic Society, WPES ’14, pages 121–130, New York, NY, USA. ACM.

Cai, X., Nithyanand, R., Wang, T., Johnson, R., and Goldberg, I. (2014b). A sys-

tematic approach to developing and evaluating website fingerprinting defenses. In

75

http://www.cs.waikato.ac.nz/ml/weka/

Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communica-

tions Security, CCS ’14, pages 227–238, New York, NY, USA. ACM.

Cai, X., Zhang, X. C., Joshi, B., and Johnson, R. (2012). Touching from a distance:

Website fingerprinting attacks and defenses. In Proceedings of the 2012 ACM Con-

ference on Computer and Communications Security, CCS ’12, pages 605–616, New

York, NY, USA. ACM.

Chollet, F. et al. (2015). Keras. https://keras.io.

Cui, W., Chen, T., Fields, C., Chen, J., Sierra, A., and Chan-Tin, E. (2019). Revis-

iting assumptions for website fingerprinting attacks. In ASIACCS ’19: Proceedings

of the 2019 on Asia Conference on Computer and Communications Security, New

Zeland. ACM.

Cui, W., Yu, J., Gong, Y., and Chan-Tin, E. (2018). Realistic cover traffic to mitigate

website fingerprinting attacks. In 2018 IEEE 38th International Conference on

Distributed Computing Systems (ICDCS) Workshop, pages 1579–1584.

Diaz, C. and Preneel, B. (2004). Taxonomy of mixes and dummy traffic. In Proceedings

of I-NetSec04: 3rd Working Conference on Privacy and Anonymity in Networked

and Distributed Systems.

Dingledine, R., Mathewson, N., and Syverson, P. (2004). Tor: The second-generation

onion router. In Proceedings of the 13th USENIX Security Symposium.

Dyer, K. P., Coull, S. E., Ristenpart, T., and Shrimpton, T. (2012). Peek-a-boo, I

still see you: Why efficient traffic analysis countermeasures fail. In Proceedings of

the 2012 IEEE Symposium on Security and Privacy.

Eckersley, P. (2010). How unique is your web browser? In Proceedings of the 10th

International Conference on Privacy Enhancing Technologies, PETS’10.

76

https://keras.io

Fifield, D., Hardison, N., Ellithorpe, J., Stark, E., Boneh, D., Dingledine, R., and

Porras, P. (2012). Evading censorship with browser-based proxies. In Proceedings of

the 12th International Conference on Privacy Enhancing Technologies, PETS’12,

pages 239–258, Berlin, Heidelberg. Springer-Verlag.

Geddes, J., Schuchard, M., and Hopper, N. (2013). Cover your acks: Pitfalls of

covert channel censorship circumvention. In Proceedings of the 2013 ACM SIGSAC

Conference on Computer & Communications Security, CCS ’13, pages 361–

372, New York, NY, USA. ACM.

Gong, X., Borisov, N., Kiyavash, N., and Schear, N. (2012). Website detection us-

ing remote traffic analysis. In Proceedings of the 12th International Conference

on Privacy Enhancing Technologies, PETS’12, pages 58–78, Berlin, Heidelberg.

Springer-Verlag.

Hayes, J. and Danezis, G. (2016). k-fingerprinting: A robust scalable website finger-

printing technique. In 25th USENIX Security Symposium (USENIX Security 16),

pages 1187–1203, Austin, TX. USENIX Association.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image

recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 770–778.

Herrmann, D., Wendolsky, R., and Federrath, H. (2009). Website fingerprinting:

Attacking popular privacy enhancing technologies with the multinomial näıve-bayes

classifier. In Proceedings of the 2009 ACM Workshop on Cloud Computing Security,

CCSW ’09, pages 31–42, New York, NY, USA. ACM.

Hintz, A. (2003). Fingerprinting websites using traffic analysis. In Proceedings of the

2Nd International Conference on Privacy Enhancing Technologies, PET’02, pages

171–178, Berlin, Heidelberg. Springer-Verlag.

77

Holowczak, J. and Houmansadr, A. (2015). Cachebrowser: Bypassing chinese cen-

sorship without proxies using cached content. In Proceedings of the 22Nd ACM

SIGSAC Conference on Computer and Communications Security, CCS ’15, pages

70–83, New York, NY, USA. ACM.

Houmansadr, A., Brubaker, C., and Shmatikov, V. (2013a). The parrot is dead:

Observing unobservable network communications. In Proceedings of the 2013 IEEE

Symposium on Security and Privacy, SP ’13, pages 65–79, Washington, DC, USA.

IEEE Computer Society.

Houmansadr, A., Riedl, T. J., Borisov, N., and Singer, A. C. (2013b). I want my

voice to be heard: Ip over voice-over-ip for unobservable censorship circumvention.

In NDSS.

Howe, D. and Nissenbaum, H. (2008). Trackmenot: Resisting surveillance in web

search. On the Identity Trail: Privacy, Anonymity and Identify in a Networked

Society.

Juarez, M., Afroz, S., Acar, G., Diaz, C., and Greenstadt, R. (2014). A critical eval-

uation of website fingerprinting attacks. In Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security, CCS ’14, pages 263–274,

New York, NY, USA. ACM.

Juarez, M., Imani, M., Perry, M., Diaz, C., and Wright, M. (2016). Toward an efficient

website fingerprinting defense. In ESORICS.

Le Blond, S., Choffnes, D., Zhou, W., Druschel, P., Ballani, H., and Francis, P. (2013).

Towards efficient traffic-analysis resistant anonymity networks. In Proceedings of

the ACM SIGCOMM 2013 Conference on SIGCOMM.

Liberatore, M. and Levine, B. N. (2006). Inferring the source of encrypted http

78

connections. In Proceedings of the 13th ACM Conference on Computer and Com-

munications Security, CCS ’06, pages 255–263, New York, NY, USA. ACM.

Lu, L., Chang, E.-C., and Chan, M. C. (2010). Website Fingerprinting and Identifica-

tion Using Ordered Feature Sequences, pages 199–214. Springer Berlin Heidelberg,

Berlin, Heidelberg.

Mallesh, N. and Wright, M. (2007). Countering statistical disclosure with receiver-

bound cover traffic. In Biskup, J. and Lopez, J., editors, Proceedings of 12th

European Symposium On Research In Computer Security (ESORICS 2007), volume

4734 of Lecture Notes in Computer Science, pages 547–562. Springer.

Maszczyk, T. and Wlodzislaw, D. (2008). Comparison of shannon, renyi and tsallis

entropy used in decision trees. volume 5097, pages 643–651.

Miller, B., Huang, L., Joseph, A. D., and Tygar, J. D. (2014). I Know Why You

Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis, pages 143–

163. Springer International Publishing, Cham.

Mittal, P., Khurshid, A., Juen, J., Caesar, M., and Borisov, N. (2011). Stealthy traffic

analysis of low-latency anonymous communication using throughput fingerprinting.

In Proceedings of the 18th ACM conference on Computer and Communications

Security (CCS 2011).

Moghaddam, H. M., Li, B., Derakhshani, M., and Goldberg, I. (2012). Skypemorph:

Protocol obfuscation for tor bridges. In Proceedings of the 19th ACM conference

on Computer and Communications Security (CCS 2012).

Nithyanand, R., Cai, X., and Johnson, R. (2014). Glove: A bespoke website finger-

printing defense. In Proceedings of the 13th Workshop on Privacy in the Electronic

Society, WPES ’14, pages 131–134, New York, NY, USA. ACM.

79

Oh, S. E., Li, S., and Hopper, N. (2017a). Fingerprinting keywords in search queries

over tor. PoPETs, 2017.

Oh, S. E., Sunkam, S., and Hopper, N. (2017b). p-fp: Extraction, classification, and

prediction of website fingerprints with deep learning.

Panchenko, A., Lanze, F., Zinnen, A., Henze, M., Pennekamp, J., Wehrle, K., and

Engel, T. (2016). Website fingerprinting at internet scale. In Proceedings of the

23rd Internet Society (ISOC) Network and Distributed System Security Symposium

(NDSS 2016).

Panchenko, A., Niessen, L., Zinnen, A., and Engel, T. (2011). Website fingerprinting

in onion routing based anonymization networks. In Proceedings of the 10th Annual

ACM Workshop on Privacy in the Electronic Society, WPES ’11, pages 103–114,

New York, NY, USA. ACM.

Peddinti, S. and Saxena, N. (2010). On the privacy of web search based on query

obfuscation: A case study of trackmenot. In Atallah, M. and Hopper, N., edi-

tors, Privacy Enhancing Technologies, volume 6205 of Lecture Notes in Computer

Science, pages 19–37. Springer Berlin Heidelberg.

Perry, M. (2011). Experimental defense for website traffic fingerprint-

ing. https://blog.torproject.org/blog/experimental-defense-website-traffic-

fingerprinting.

Portal, T. M. (2017). https://metrics.torproject.org/.

Rimmer, V., Preuveneers, D., Juárez, M., van Goethem, T., and Joosen, W. (2017).

Automated feature extraction for website fingerprinting through deep learning.

CoRR, abs/1708.06376.

80

Simon Oya, C. T. and Pérez-González, F. (2014). Do dummies pay off? limits of

dummy traffic protection in anonymous communications. In Proceedings of the 14th

Privacy Enhancing Technologies Symposium (PETS 2014).

Sirinam, P., Imani, M., Juarez, M., and Wright, M. (2018). Deep fingerprinting:

Undermining website fingerprinting defenses with deep learning. In Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications Security,

CCS ’18, pages 1928–1943, New York, NY, USA. ACM.

Song, W. (2015). End-to-end deep neural network for automatic speech recognition.

Spreitzer, R., Griesmayr, S., Korak, T., and Mangard, S. (2016). Exploiting data-

usage statistics for website fingerprinting attacks on android. In Proceedings of the

9th ACM Conference on Security & Privacy in Wireless and Mobile Networks,

WiSec ’16, pages 49–60, New York, NY, USA. ACM.

Sun, Q., Simon, D. R., Wang, Y.-M., Russell, W., Padmanabhan, V. N., and Qiu, L.

(2002). Statistical identification of encrypted web browsing traffic. In Proceedings of

the 2002 IEEE Symposium on Security and Privacy, SP ’02, pages 19–, Washington,

DC, USA. IEEE Computer Society.

Tor (2017). https://www.torproject.org/.

Tschantz, M. C., Afroz, S., Anonymous, and Paxson, V. (2016). SoK: Towards

Grounding Censorship Circumvention in Empiricism. IEEE Symposium on Security

and Privacy.

Wang, L., Dyer, K. P., Akella, A., Ristenpart, T., and Shrimpton, T. (2015). Seeing

through network-protocol obfuscation. In Proceedings of the 22Nd ACM SIGSAC

Conference on Computer and Communications Security, CCS ’15, pages 57–69,

New York, NY, USA. ACM.

81

Wang, Q., Gong, X., Nguyen, G. T., Houmansadr, A., and Borisov, N. (2012). Cen-

sorspoofer: Asymmetric communication using ip spoofing for censorship-resistant

web browsing. In Proceedings of the 2012 ACM Conference on Computer and Com-

munications Security, CCS ’12, pages 121–132, New York, NY, USA. ACM.

Wang, T., Cai, X., Nithyanand, R., Johnson, R., and Goldberg, I. (2014). Effective

attacks and provable defenses for website fingerprinting. In Proceedings of the 23rd

USENIX Conference on Security Symposium, SEC’14, pages 143–157, Berkeley,

CA, USA. USENIX Association.

Wang, T. and Goldberg, I. (2013). Improved website fingerprinting on tor. In Pro-

ceedings of the 12th ACM Workshop on Workshop on Privacy in the Electronic

Society, WPES ’13, pages 201–212, New York, NY, USA. ACM.

Wang, T. and Goldberg, I. (2016). On realistically attacking tor with website finger-

printing. In Privacy Enhancing Technologies Symposium (PETS).

Weinberg, Z., Wang, J., Yegneswaran, V., Briesemeister, L., Cheung, S., Wang, F.,

and Boneh, D. (2012). StegoTorus: A camouflage proxy for the Tor anonymity sys-

tem. In Proceedings of the 19th ACM conference on Computer and Communications

Security (CCS 2012).

Wright, C., Coull, S., and Monrose, F. (2009a). Traffic morphing: An efficient defense

against statistical traffic analysis. In Proceedings of the Network and Distributed

Security Symposium - NDSS ’09. IEEE.

Wright, C., Coull, S., and Monrose, F. (2009b). Traffic morphing: An efficient defense

against statistical traffic analysis. In Proceedings of the Network and Distributed

Security Symposium - NDSS ’09. IEEE.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are

features in deep neural networks? CoRR, abs/1411.1792.

82

Yu, J. and Chan-Tin, E. (2014). Identifying webbrowsers in encrypted communica-

tions. In Proceedings of the 13th Workshop on Privacy in the Electronic Society,

WPES ’14, pages 135–138, New York, NY, USA. ACM.

83

VITA

WEIQI CUI

Candidate for the Degree of

Doctor of Philosophy

Dissertation: WEBSITE FINGERPRINTING ATTACKS

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the degree of Doctor of Philosophy in
Computer Science at Oklahoma State University, Stillwater, Oklahoma, in
May 2019

Completed the requirements for the Bachelor of Science in Computer Sci-
ence at Dalian University of Technology, Dalian, Liaoning, China, in July
2014

Experience:
1.Machine Learning Internship, Facebook, Inc., Seattle, (May 2018—August
2018)
2.Teaching Assistant, Oklahoma State University, (Aug 2014—Present)

	INTRODUCTION
	Website Fingerprinting Defense
	Website Fingerprinting Assumptions
	Traditional Machine Learning
	Deep Learning

	BACKGROUND
	Website Fingerprinting Attack Procedures
	WF traces
	Classification
	Threat Model
	Closed World and Open World

	 REALISTIC COVER TRAFFIC TO MITIGATE WEBSITE FINGERPRINTING ATTACKS
	Proposed Noise Algorithm
	Overview
	Implementation Details
	Example

	Experimental Setup
	Simulation
	Real Experiment

	Evaluation
	Simulation Results
	Real-World Experiment Results

	Related Work
	Summary

	 REVISITING ASSUMPTIONS FOR WEBSITE FINGERPRINTING ATTACKS
	Background
	Analysis of Continuous Traces
	Algorithm description
	Results for Finding Split Point
	Results for Website Prediction

	Summary

	 MORE REALISTIC WEBSITE FINGERPRINTING USING DEEP LEARNING
	Background
	Methodology
	Motivation
	Features
	Classification of Traces
	One-page Trace
	Scenario
	Head Detection Method

	Two-page Trace
	Noise

	Simulation
	Dataset
	Deep Learning Model
	Implementation
	Hyperparameter Tuning

	Classification of Traces
	Closed-world Evaluation
	One-page Trace
	Two-page Traces
	Noise

	Open-world Evaluation
	One-page Trace
	Two-page Traces
	Noise

	Real World Experiment
	Data Collection
	Results analysis

	Summary

	 CONCLUSION AND FUTURE WORK
	References

