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State observer is an essential component in computerized control loops for

greenhouse-crop systems. However, the current accomplishments of observer

modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring

physiological responses of crops. As a result, state observers for crop physiological

responses are rarely developed, and control operations are typically made based on

experience rather than actual crop requirements. In addition, existing observer models

require a large number of parameters, leading to heavy computational load and poor

application feasibility. To address these problems, we present a new state observer

modeling strategy that takes both environmental information and crop physiological

responses into consideration during the observer modeling process. Using greenhouse

cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber

seedlings at different time point during the exponential growth stage, and employ them

to build growth state observers together with 8 environmental parameters. Support

vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical

correlation analysis (CCA) is used to select the dominant environmental and physiological

parameters in the modeling process. With the dominant parameters, simplified observer

models are built and tested. We conduct contrast experiments with different input

parameter combinations on simplified and un-simplified observers. Experimental results

indicate that physiological information can improve the prediction accuracies of the

growth state observers. Furthermore, the simplified observer models can give equivalent

or even better performance than the un-simplified ones, which verifies the feasibility

of CCA. The current study can enable state observers to reflect crop requirements

and make them feasible for applications with simplified shapes, which is significant for

developing intelligent greenhouse control systems for modern greenhouse production.

Keywords: crop physiological information, state observer, greenhouse, cucumber seeding growth, canonical

correlation analysis, support vector machine

INTRODUCTION

Greenhouse has been widely believed to be a powerful cultivation facility in large regions of the
world. With its year-round running capability, greenhouse can greatly extend the productivity of
farmland. Inner climate control is the key factor that endows greenhouse with the year-round
running feature. It can serve the plants with optimal growth conditions while maximizing the
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grower’s economic benefits. At the early stage, greenhouse
climate control was executed based on growers’ experience. As
a result, the selection of control set-points and operation time
suffered from heavy arbitrariness, which led to poor control
performances and high energy cost.

To improve the control accuracy and reduce the energy
cost, computerized greenhouse climate control based on sensing
technologies was introduced. The existing computerized control
strategies can be categorized into two branches: conventional
control and generalized optimal control (Duarte-Galvan et al.,
2012). Conventional control can be regarded as the early
development stage of computerized control strategies. It only
considers how to reduce the deviation between the set-points
and the observations/measurements of interested values, such
as inner temperature or humidity of greenhouse. Logic control
(ON/OFF of actuators) strategies (Hooper and Davis, 1988) and
proportional integral derivative (PID) control (Setiawan et al.,
2000) are typical examples for conventional control. Compared
with conventional control, generalized optimal control solves
the climate control problem in a higher level by considering
practical limitations, such as lack of suitable system model,
actuator capabilities and energy consumption. Many optimal
control strategies have been proposed, including predictive
control (Roca et al., 2016), special optimal control (Van Beveren
et al., 2015), adaptive control (Gerasimov and Lyzlova, 2014),
neural networks control (Manonmani et al., 2016), fuzzy control
(Azaza et al., 2015), nonlinear control (Zeng et al., 2012), robust
control (Bennis et al., 2008), and multivariable control (Giraldo
et al., 2016), etc. A comprehensive review of greenhouse control
strategies is given by Van Straten et al. (2010).

All close-loop control systems need an essential component
to report the states of the plant (control object), in order to
decide when and how to take control actions. This component
can be defined as “state observer.” In greenhouse control systems,
state observer can be a sensor or a sensing data based model.
Sensor observers usually appear in conventional control systems,
and the states of the control objects can be directly obtained
from sensor measurements, such as temperature and humidity.
Model observers usually appear in optimal control systems, and
the states of the control objects are generated by feeding sensor
measurements into a model. Because greenhouse-crop system
is a complex system, sensor observers using few parameters are
usually not capable to obtain the true states of the system. As a
result, model observers are drawing more and more attentions
from researchers.

Models for greenhouse-crop systems are undergoing
tremendous progress in last decades. A number of famous
horticultural crop models were proposed, such as TOMGRO
(Jones et al., 1991; Shamshiri et al., 2016), HORTISIM (Gijzen
et al., 1998; Li et al., 2009), and TOMSIM (Heuvelink, 1999; Vaca
et al., 2015). The popular horticultural crop models generally
cover the similar topics with that of open field models, such as
biomass production/yield modeling (Vanthoor et al., 2011; von
Borell du Vernay, 2016), water relations modeling (Chen et al.,
2014), plant nutrition modeling (Juárez-Maldonado et al., 2014),
plant spatial structure and development modeling (Kang et al.,

2011), influences of environmental control actuators (Pahuja
et al., 2015), etc.

Although much progress has been made, horticultural crop
modeling still has a long way to go. One conspicuous drawback
is the missing of observers for crop physiological response, which
leads to the absence of true crop requirements in control decision
making process. Figure 1 is a common control hierarchy of
current greenhouse-crop systems, modified from the original
version of Van Straten et al. (2010). As shown in Figure 1,
observers for energy/mass transportation are employed to help
controller make decisions, most existing crop models focus on
this topic. However, information of crop growth states (shown
with a dash line rectangle) is rarely used by the controller.
Crop growth state observations (or predictions) are usually
taken manually by experienced growers, rather than sensors or
computerized observers. Another drawback of crop models is
that the number of parameters in a model is typically large. For
example, the TOMGRO model has 69 parameters for version 1.0
and 574 parameters for version 3.0 (Jones et al., 1999). A large
number of parameters results in not only high computational
load, but also poor model feasibility in applications (Speetjens
et al., 2009).

Aiming at addressing the drawbacks identified above, we
propose a new observer building strategy for greenhouse
cucumber seedling growth. The encouraging studies on sensing
technologies show that chlorophyll fluorescence (Maxwell and
Johnson, 2000; Misra et al., 2012) has become biological
probes to investigate the physical status of high plants (Bolhar-
Nordenkampf et al., 1989; Ajigboye et al., 2016). Thus, it is
expected that we can employ chlorophyll fluorescence and
leaf gas exchanges parameters as a powerful tool to reveal
plant growth status in response to changes of greenhouse
environmental conditions (Nishina, 2015). On the other hand,
the seedling nursery industry is booming with the specialization
in horticultural production, as the quality of seedlings is vital
for both vegetative growth and reproductive growth, such as
the crop morphogenesis and flower bud differentiation. Even
though the growth period of seedlings is short, mis-controls of
greenhouse environment may result in large economic losses to
growers (Moriyuki and Fukuda, 2016). Quick and precise control
responses according to the inner requirements of seedlings are
essential, and the research of crop physiological information
embedded observer becomes crucial.

In the proposed observer, crop physiological information
is measured by chlorophyll fluorescence technologies, and
employed together with environmental parameters to predict
growth status of cucumber seedling. Support Vector Machine
(SVM) acts as the mathematical modeling tool for the observer.
To simplify the model, Canonical Correlation Analysis (CCA)
is used to find the dominant parameters. Experimental results
demonstrate that physiological parameters can improve the
prediction accuracies of growth state observers, and that
simplified observer models using dominant parameter sets as
the inputs can give equivalent or even better performances
than observer models using complete parameter sets as the
inputs.
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FIGURE 1 | Typical control hierarchy for greenhouse-crop system (Van Straten et al., 2010). A typical greenhouse-crop system control loop consists of Greenhouse,

Crop, Controller, Management System, and Grower. As the observer for crop responses is missing (the dash line rectangle), the Controller needs information from the

Management System, whose operation settings are generated by Grower’s manual observations.

MATERIALS AND METHODS

Canonical Correlation Analysis
Canonical correlation analysis is a branch of multivariate
statistical analysis, which is good at handling correlation analysis
for two sets of variants (Hardoon et al., 2004). Different from
regression analysis, CCA not only focuses on the correlations
between a set of dependant variants and one single independent
variant, but also considers the correlations among independent
variants from the same set. Following the same idea as
Principle Component Analysis (PCA), CCA abstracts principle
components from the dependant variant set and the independent
variant set, respectively, and maximizes the correlation between
the two sets of principle components. Then the correlation of
the two principle component sets can be employed to describe
the linear correlation between the dependant variants set and the
independent variants set. CCA has been widely used in many
research fields, such as computer vision and medical science.

The main idea of CCA can be elaborated as follows. We
assume X and Y are two sets of random variants with correlation

X = (x1, x2, · · ·, xp)
′ (1)

Y = (y1, y2, · · ·, yq)
′ (2)

X has p component variants and Y has q component variants.
Without loss of generality, we assume p ≤ q. Then, we use two
aggregate variables U and V to express X and Y in new linear

combinations as

U = a1x1 + a2x2 + · · ·apxp ≡ a′X (3)

V = b1y1 + b2y2 + · · · + bqyq ≡ b′Y (4)

where U and V are a pair of Canonical Correlation Variants
(CCV) of X and Y, a = [a1, a2, · · ·, ap] and b = [b1, b2, · · ·, bq]
are the coefficients of CCV, Theoretically, there are numerous
pairs of a and b. We need to find the pairs showing maximum
correlations of X and Y, which is equivalent to maximize the
covariance of U and V . Using the idea from PCA, we can define

λ2 = max(cov(U,V)) (5)

where λ is the Canonical Correlation Coefficient (CCC) forU and
V . As the eigenvalue of Equation (5), λ can have p different values.
Without loss of generality, we assume λ1 ≥ λ2 ≥ · · · ≥ λp. And
every λi(i = 1, · · · , p) will determine a corresponding pair of
coefficient sets ãi and b̃i. If we also assume var(Ui)= var(Vi)= 1
for computation convenience, ãi and b̃i can be called as a pair of
Standard Coefficient (SC) sets for λi.

Besides the CCC and SC, CCA also has several key values in
the analyzing process, including Canonical Loading, explanation
proportion of CCV, and significance testing value of CCV.

Canonical Loading (CL) is also called structure of CCV. CL
for X and U can be obtained as

CLXU = cov(X,U) (6)
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Similarly, CL for Y and V can be obtained as

CLYV = cov(Y,V) (7)

Explanation proportion for X and Ui is

mUi =

p
∑

j= 1

CLXU(j, i)
2/p (8)

Explanation proportion for Y and Vi is

nVi =

q
∑

j= 1

CLYV (j, i)
2/q (9)

Significance testing value of CCV can be computed as

Qi = −(l− i−
p+ q+ 1

2
) ln(

p
∏

i

(1− λ2i )) (10)

When l is big enough, which means l > (p+ q+ 1)/2+ k (k
is the number of the nonzero eigenvalues, usually k = p), we can
infer thatQi is approximate χ2[(p− i+1)(q− i+1)] distribution.
As a result, under the testing lever α (usually α = 0.05), if

Qi > χ2
α[(p− i+ 1)(q− i+ 1)] (11)

we conclude that the i-th pair CCV is significance and should be
used for CCA.

Support Vector Machine
For growth modeling problems, the sample quantity is always
small compared to the whole crop group. And the correlation
complexity among environmental, physiological and growth
parameters is far beyond the capacity of ordinary linear
prediction tools. Support Vector Machine (Boser et al., 1992;
Cortes and Vapnik, 1995) is a popular machine learning tool
for classification and prediction. Compared with other tools,
it has distinguishing advantages on handling small sample size
problems, nonlinear classification/prediction problems and high
dimensional classification/prediction problems. As a result, we
choose SVM as the main modeling tool.

Kernel function is a key factor in SVM training. There are
different kernel functions. Each kernel function has its unique
characteristics and is good at handling a specific training set.
There are 4 widely used kernel functions:
Linear:

K(xi, xj) = xi
Txj (12)

Polynomial:

K(xi, xj) = (γ xi
Txj + r)

d
, γ > 0 (13)

Radial Basis Function (RBF):

K(xi, xj) = exp(−γ
∥

∥xi − xj
∥

∥

2
), γ > 0 (14)

Sigmoid:

K(xi, xj) = tanh(γ xi
Txj + r) (15)

Here, γ , r, and d are parameters of kernel functions. According
to A Practical Guide to Support Vector Classification (Hsu
et al., 2003), RBF shows superior performances in computation
complexity and exceptional situation handling. The linear kernel
can be considered as a special case of RBF. Sigmoid kernel has
similar behavior to RBF under certain parameter settings. That
is, RBF can cover most cases of linear and sigmoid kernels.
Compared with polynomial kernel, RBF employs fewer hyper
parameters and does all the computation within the region
of [0, 1], resulting in a greatly reduced training and testing
computation load. In this paper, Linear kernel and RBF kernel
are used for prediction.

Data Acquisition
Plant Material and Growth Conditions
Seeds of cucumber genotypes “JINYOU NO.4” were germinated
and grown in a medium containing a mixture of peat,
vermiculite and perlite (6:3:1) in plastic pots (diameter, 10.5
cm; depth, 17.5 cm) in a controlled environment. One
seedling was grown per pot. The growth conditions were as
follows: the photosynthetic photo flux density (PPFD) was
400 µmol•m−2•s−1, the photoperiod was 14/10 h (day/night),
the day/night air temperature was 26/22◦C and the relative
humidity was 75%. Seedlings were watered daily to maintain
optimum moisture and were fertilized with Hoagland’s nutrient
solution every 3 days. About 2 weeks after germination, the
seedlings at 2-true leaves stage were transferred to different
controlled-environment growth room, where the atmospheric
environment including average temperature during the daytime
(T_D, ◦C), average temperature during the night (T_N, ◦C),
carbon dioxide concentration (CO2, µmolCO2•mol−1), relative
humidity (RH, %), absolute humidity (AH, µmolH2O•mol−1),
light intensity (PARo, µmol•m−2•s−1), ratio of white light and
blue light (Ratio_W/B), ration of white light and red light
(Ratio_W/R) were controlled at different but stable levels. For
all cases, unless otherwise stated, root substrate management
such as water, nutrient supply and others were the same, which
are not considered as environmental variants in the current
experiments. To get reliable growth responses, we designed
13 different environmental parameter combinations (Table 1).
In each combination, at least one environmental parameter is
different from other combinations. As a result, we had 13 sub-
experiments, and each sub-experiment runs 9 days. On days
0, 3, 6, and 9 after different environment treatment, at least 5
biological replicates were taken from each grown-condition for
growth rate determination. For physiological status parameters,
i.e., leaf gas exchange and chlorophyll fluorescence, there are also
2 repeat measurements for each 5–8 biological replicates. When
the data collection process was finished, we got 73 cucumber
seedling samples. Each sample consisted of 1 set of environmental
data (8 parameters), 4 sets of physiological data (10 parameters
on days 0, 3, 6, 9, respectively), and 3 sets of growth state data (4
parameters on days 3, 6, 9, respectively).

Frontiers in Plant Science | www.frontiersin.org 4 August 2017 | Volume 8 | Article 1297

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Qiu et al. Physiological Observer for Greenhouse Seedling

TABLE 1 | Thirteen different environmental parameter combinations.

Trials T_D T_N CO2 RH AH PARo Ratio_W/B Ratio_W/R

1 25 20 800 26 72 130 0.96: 1 0.96: 9.52

2 25 21 400 17 46 100 1.52: 1 1.52: 1.23

3 27 22 400 18 45 115 1.52: 1 1.52: 1.23

4 25 21 400 20 55 175 0.06: 1 0.06: 8.04

5 25 21 400 21 52 162 0.96: 1 0.96: 9.52

6 25 21 400 21 46 188 2.47: 1 2.47: 8.78

7 24 20 400 16 47 416 0.03: 2.76 0.03: 1

8 26 22 400 14 40 666 0.01: 1.3 0.01: 1

9 26 22 400 26 60 184 0.01: 1.54 0.01: 1

10 25 25 400 21 54 40 1.52: 1 1.52: 1.23

11 18 18 400 16 55 30 1.52: 1 1.52: 1.23

12 25 21 400 25 74 53 0.96: 1 0.96: 9.52

13 35 25 450 18 31 150 0.96: 1 0.96: 9.52

In each combination, at least one environmental parameter was different from other combinations. As a result, we had 13 sub-experiments, and each sub-experiment runs 9 days. All

the environmental parameters were kept stable in the sub-experiment.

Growth Measurement
Cucumber plants from each grown-condition were sampled
randomly for determination of average plant height increment
(Plant_Height, cm•d−1), average leaf area increment (Leaf_Area,
cm2•d−1), average fresh weight increment (Fresh_Weight,
g•d−1), average dry weight increment (Dry_Weight, g•d−1).
Total leaf area per plant was determined by measuring the
length and width of each leaf and calculating leaf area using the
equation of Cho et al. (2007). After fresh weight was determined,
plants were dried to constant dry mass in an oven at 80◦C. The
average plant growth rate was calculated on the basis of per day.
Plant_Height and Leaf_Area were measured on the day of 0, 3,
6, and 9. Fresh_Weight and Dry_Weight were measured only on
the day of 9. Finally, we have 3 sets of growth state parameters for
each sample as G1, G2, and G3.

Physiological Parameter Measurement
Leaf gas exchange and chlorophyll fluorescence analysis were
conducted to measure physiological parameters. Leaf gas
exchange measurements were coupled with measurements
of chlorophyll fluorescence using an open gas exchange
system (LI-6400; LI-COR, Inc., Lincoln, NE, USA) with an
integrated fluorescence chamber head (LI-6400-40 leaf chamber
fluorometer; LI-COR, Inc.) on the second fully developed leaves
in the morning from 9:00 to 11:00. For all cases, during gas
exchange and chlorophyll fluorescence parameters analysis, the
environment condition, such as temperature, relative humidity,
CO2 concentration were kept as the same environment where the
seedlings grew, by putting the Inlet-connected buffer gas cylinder
in the same growth chamber, while the incident PPFD were set as
the same value that the built-in light sensor sensed. The main leaf
gas exchange and chlorophyll fluorescence parameters including
net photosynthesis rate (Pn, µmolCO2• m−2•s−1), stomatal
conductance (Cond, molH2O• m−2•s−1), intercellular CO2

concentration (Ci, µmolCO2•mol−1), efficiency of excitation
capture by open PSII center (Fv′/Fm′, [0, 1]), quantum efficiency

of PSII (PhiPS2, [0, 1]), quantum efficiency of CO2 fixation
(PhiCO2, [0, 1]), photochemical quenching coefficient (qP,
[0, 1]), electron transport rate (ETR, µmolCO2• m−2•s−1),
transpiration rate (Tr, molH2O•m

−2•s−1), and vapor pressure
deficit at the leaf temperature (VpdL, kPa) were taken.
Fluorescence parameters were calculated on the basis of the light-
adapted fluorescence measurements. The PhiPS2 = (F′m-Fs)/F

′
m,

F′v/F
′
m = (F′m-F

′
0)/F

′
m, qP = (F′m-Fs)/(F

′
m-F

′
0) (Genty et al., 1989;

Van Kooten and Snel, 1990). All physiological parameters were
measured on the day of 0, 3, 6, and 9. Thus, we have 4 sets of
physiological parameters for each sample as P1, P2, P3, and P4.

RESULTS

Results of Canonical Correlation Analysis
The aim of CCA is to find inconsequential environmental/
physiological parameters for growth observation. Since the
inconsequential parameters do not appear in the observer
model, the model will be simplified and more suitable for
control applications. In this section, we analyzed the parameter
correlations in terms of groups: (environmental, growth) and
(physiological, growth). As mentioned above, we have chosen
8 environmental parameters, 10 physiological parameters and 4
growth parameters. All the CCA results for (E, G) and (P, G)
groups are given in the Supplementary Material.

CCA for Environmental and Growth Parameters
In this part, we analyze the correlations between 1 environmental
data set and 3 growth state data sets. CCA is performed for
3 groups of parameters: (E, G1), (E, G2), and (E, G3). The
CCA results reveal the influences of different environmental
parameters on different cucumber seedling growth period: early
stage (0 ∼ 3 days), middle stage (4 ∼ 6 days), and late stage (7
∼ 9 days). Without loss of generality, we denote T_D by e1, T_N
by e2, CO2 by e3, RH by e4, AH by e5, PARo by e6, Ratio_W/B
by e7, Ratio_W/R by e8, Plant_Height by g1, Leaf_Area by g2,
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TABLE 2 | Canonical correlation coefficients of (E, G1).

λ1 λ2 λ3 λ4

0.918148381 0.845727042 0.619930676 0.450549586

TABLE 3 | Significance testing of (E, G1).

λ1 λ2 λ3 λ4

Qi 388.9466864 221.5749247 99.45613576 37.4272967

χ2
α= 0.05[(p − i + 1)

(q − i + 1)]

46.194 32.671 21.026 11.070

(p−i+ 1)(q−i+1) 32 21 12 5

Forλi , if Qi > χ2, λi is significant and the corresponding canonical correlation variants pair

(Ui , Vi ) is considered in the Canonical Correlation Analysis with a high probability. Here,

every λi is significant.

Fresh_Weight by g3, and Dry_Weight by g4. Thus, for the CCA
of each (environmental, growth) group, we have p = 8, q = 4,
and min(p, q) = 4. It follows that there are 4 pairs of CCV for
each group. For example, the key values of CCV for the (E, G1)
group are listed in Tables 2–5.

To analyze the relationship between two parameter sets,
we employ Correlation Loading (CL) as the main correlation
analyzing tool. For (E, G1), we have 4 sets of CL. Significant
testing and explanation proportion allow us to determine
which sets should be taken into consideration. Referring to the
significance testing results (Table 3), we have Qi > χ2

α[(p − i +
1)(q − i + 1)] for λ1, λ2, λ3, and λ4 under the testing level of
α = 0.05. Based on these results, we conclude that all the 4
pairs of CCV are significant. We further consider the explanation
proportion (shown in Table 4). For the first and second pairs of
CCV, the explanation proportions of Ui for E and Vi for G1, are
all above 0.1 and show a nearly balanced state in values. For the
third pair, the explanation proportion of Ui for E is smaller than
0.05, while the proportion ofVi for G1 is more than 0.39. Because
the proportions show an unbalanced state and one of them is too
small to be meaningful, the third pair of CCV is not considered
in our CCA for (E, G1). We also drop the fourth pair because the
significant testing value is not prominent enough. As a result, we
only use the first two sets of CL to conduct the CCA of (E, G1).
We call the CL used in CCA as CCA concerned CL.

From the CCA concerned CL of (E, G1) shown in Table 5, we
can see that U1 correlates with e2, e3, e4, e5 (the absolute values
are larger than 0.3), especially with e3 (the absolute value is larger
than 0.5); U2 correlates with e2, e4, e6, e7, e8, especially with e2;
V1 only correlates with g1;V2 correlates with g1, g2, g3, especially
g3. In summary, the 7 environmental parameters including e2, e3,
e4, e5, e6, e7, e8 have influences on g1, g2, g3 through CCV.

Following the same analysis steps, we also run CCA for the
groups of (E, G2) and (E, G3). Based on the analyze results, we
find that the correlations of the two groups are similar to each
other: e1, e2, e4, e6, e7, e8 have influences on g1, g2, g3, g4
through CCV.

Figure 2 summarizes the CCA results for different (E, G)
groups mentioned above. The height of each bar stands for the

TABLE 4 | Explanation proportion of (E, G1).

Explanation proportion U for E

U1 U2 U3 U4 Sum

E 0.165105925 0.12477866 0.044655352 0.212473005 0.547012942

Explanation proportion V for G1

V1 V2 V3 V4 Sum

G1 0.242347816 0.164395701 0.392923172 0.20033331 1

Explanation Proportion (EP) helps Significance Testing select CCV pairs (Ui , Vi ) for CCA.

If the EP values of the same pair of (Ui , Vi ) are balanced and large enough, and the

corresponding λi is significant, then (Ui , Vi ) is considered in CCA. “Balanced” means the

difference of the two EP values is not large. For example, the two EP values of pair (U1,

V1) are 0.165105925 and 0.242347816, respectively, and they are balanced; the two EP

values of pair (U3, V3) are 0.044655352 and 0.392923172, respectively, and they are not

balanced.

TABLE 5 | Correlation loading of (E, G1).

Correlation loading for U and E

U1 U2 U3 U4

a1 −0.013078091 0.099097725 −0.340607888 0.250697361

a2 0.330681294 0.584721841 −0.234375711 0.199345914

a3 −0.915494942 0.250538624 0.25421471 0.010319347

a4 −0.377940741 0.400936862 −0.079642597 −0.189197335

a5 −0.433440866 0.19730076 0.216262731 −0.424967005

a6 −0.016769029 −0.380659435 0.032961724 0.776785745

a7 0.026914194 0.306926582 0.044116542 −0.682815388

a8 0.203665157 0.380731142 −0.255981896 −0.557731164

Correlation loading for V and G1

V1 V2 V3 V4

b1 0.9413701 0.33646808 0.006374862 −0.02389409

b2 0.152711533 0.31826233 0.396451757 −0.847475239

b3 0.031355557 0.646045495 0.71653988 −0.261175511

b4 0.242713034 0.160331978 0.949235827 0.119730469

Correlation Loading (CL) helps to determine whether a parameter of one set has

correlation with the other parameter set. For a parameter, if at least one CL’s absolute

value is above 0.3, and the corresponding CCV is considered in CCA, we consider that

the parameter has correlation with the other parameter set. For example, the CL of a2 for

U1 is −0.915494942, and (U1, V1) is considered in CCA, we consider that e2 (T_N) has

correlation with growth parameters in G1. At the same time, even though the CL of a1

for U3 is −0.340607888, we do not consider that e1 (T_D) has correlation with growth

parameters in G1, because (U3, V3) is not considered in CCA.

absolute value of the corresponding CL coefficient. Since the first
two pairs of CCV are considered for each (E, G) pair, there are
two bars for each environmental or growth parameter.We use 0.3
as the threshold value of the CL coefficients to determine whether
the correlations are remarkable or not. In Figure 2, the threshold
is marked with a red dash line. If any bar of a parameter reaches
the red dash line, we consider that it has remarkable correlations
with parameters in the other set. Following this rule, we conclude
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FIGURE 2 | CCA concerned CL bars for (E, G1), (E, G2), and (E, G3). For (E, G1), (E, G2), and (E, G3), as only the first two pairs of CCV are concerned by CCA, there

are two bars for each parameter in all the sub-figures. For each parameter, if one bar reaches the red dash line, we consider that the corresponding parameter has

correlation with the other parameter set in the CCA. Taking the sub-figure (A) CL of group (E, G1)—CL for E (the sub-figure on the left of the first row) for example,

none of e1’s bar reaches the dash line. Thus, we conclude the environmental parameter e1 (T_D) has no/weak correlation with growth parameters in G1.

that e2, e4, e6, e7, e8 have strong influences on growth parameters
during the whole experiment period, e1’s influences on growth

parameters are weak during the early stage (0 ∼ 3 days), and e3

and e5’s influences on growth parameters are weak during the

middle (4∼ 6 days) and late (7∼ 9 days) seedling stages.

Based on the CCA results of three (E, G) groups, we conclude

that e3 and e5 have weak influences on growth parameters during

the middle and late seedling stages. As a result, a simplified

environmental parameter combination of 6 dimensions is given
by

E_6D = [e1, e2, e4, e6, e7, e8] (16)

compared to the original environmental parameter combination
of 8 dimensions

E_8D = [e1, e2, e3, e4, e5, e6, e7, e8] (17)
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TABLE 6 | Canonical correlation coefficients of (P2, G1).

λ1 λ2 λ3 λ4

0.934281189 0.774302253 0.685212927 0.539731453

TABLE 7 | Significance testing of (P2, G1).

λ1 λ2 λ3 λ4

Qi 255.1677841 120.2344164 61.14400305 21.17673426

χ2
α=0.05[(p− i + 1)

[](q− i + 1)]

55.76 40.11 26.3 14.07

(p− i+ 1)(q− i+1) 40 27 16 7

For λi , if Qi > χ2, λi is significant and the corresponding Canonical Correlation Variants

pair (Ui , Vi ) is considered in the Canonical Correlation Analysis with a high probability.

Here, every λi is significant.

Both E_6D and E_8D will be used in the observer building
process for the purpose of comparison. If E_6D can deliver
similar observation performances to E_8D, a simplified observer
can be built based on E_6D.

CCA for Physiological and Growth Parameters
In this part, we analyze the correlations between 4 physiological
data sets and 3 growth state data sets. CCA is performed for
6 groups: (P2, G1), (P3, G2), (P4, G3) and (P1, G3), (P2,
G3), (P3, G3). The CCA results of the first 3 groups reveal
the correlations between physiological parameters and growth
parameters belonging to the same stage: (P2, G1) for early stage
(0 ∼ 3 days), (P3, G2) for middle stage (4 ∼ 6 days), and (P4,
G3) for late stage (7 ∼ 9 days). The CCA results of the last 3
groups reveal the correlations between physiological parameters
of different stages and the final growth state parameters. Without
loss of generality, we denote Pn by p1, Cond by p2, Ci by p3,
Fv′/Fm′ by p4, PhiPS2 by p5, PhiCO2 by p6, qP by p7, ETR by
p8, Tr by p9, VpdL by p10, Plant_Height by g1, Leaf_Area by g2,
Fresh_Weight by g3, and Dry_Weight by g4. Thus, for the CCA
of each (physiological, growth) pair, we have p = 10, q = 4, and
min(p, q) = 4. Thus, there are 4 pairs of CCV. For example, the
key values of CCV for the (P2, G1) group are listed in Tables 6–9.

For (P2, G1), we have 4 sets of CL. Referring to the significance
testing results (Table 7), we haveQi > χ2

α[(p− i+ 1)(q− i+ 1)]
for λ1, λ2, λ3, and λ4 under the testing level of α = 0.05.
Based on these results, we conclude that all the 4 pairs of CCV
are significant. We further consider the explanation proportion
(shown in Table 8). For the first, second and third pairs of CCV,
the explanation proportions of Ui for P2 and Vi for G1 are all
above 0.1 and show a nearly balanced state in values. For the
fourth pair, the explanation proportion of Ui for P2 is smaller
than 0.04, while the proportion of Vi for G1 is more than 0.33.
Because the proportions show an unbalanced state and one of
them is too small to be meaningful, the fourth pair of CCV is
not considered in our CCA for (P2, G1). As a result, we only use
the first three pairs of CCV to do the CCA of (P2, G1).

From the CCA concerned CL of (P2, G1) shown in Table 9,
we can see that U1 correlates with p1, p3, p5, p6, p7, p8, p10

TABLE 8 | Explanation proportion of (P2, G1).

Explanation proportion U for P2

U1 U2 U3 U4 Sum

P2 0.251407114 0.236510084 0.157155614 0.036876574 0.681949385

Explanation proportion V for G1

V1 V2 V3 V4 Sum

G1 0.327508541 0.20870704 0.130351894 0.333432525 1

The two EP values of pair (U1, V1) are 0.251407114 and 0.327508541, respectively, they

are balanced; the two EP values of pair (U4, V4) are 0.036876574 and 0.333432525,

respectively, they are not balanced. The contributions of U4 in explaining the correlation

between P2 and G1 are too small to be considered. So the CCV pair (U4, V4) will not be

used for CCA, even though λ4 is significant. As a result, we concern 3 pairs of CCV for

CCA here, including (U1, V1), (U2, V2), and (U3, V3).

TABLE 9 | Correlation loading of (P2, G1).

Correlation loading for U and P2

U1 U2 U3 U4

a1 −0.642981561 −0.602100812 0.219207031 0.097569221

a2 −0.202257745 −0.576443819 0.165279283 −0.207058935

a3 −0.930591559 −0.146724763 −0.123346051 −0.174737214

a4 −0.244819091 −0.528424665 −0.474203996 −0.234480666

a5 −0.456594265 −0.457973704 0.590766857 0.220701362

a6 −0.643725407 −0.600863709 0.218393613 0.097633487

a7 −0.377600166 −0.329525566 0.641263404 0.290897154

a8 −0.455518198 −0.4591943 0.591726819 0.221130685

a9 −0.02931568 −0.683987972 0.219437546 −0.197623722

a10 0.400002216 −0.107070231 0.223360753 −0.006469139

Correlation loading for V and G1

V1 V2 V3 V4

b1 0.986642955 0.15157808 −0.050539181 −0.031710519

b2 0.323177915 −0.207551591 0.670767992 −0.634467236

b3 0.289325947 −0.374448435 −0.021143823 −0.880699611

b4 0.38524846 −0.792819622 −0.261680352 −0.393120929

Correlation Loading (CL) helps to determine whether a parameter of one set has

correlation with the other parameter set. For a parameter, if at least one CL’s absolute

value is above 0.3, and the corresponding CCV is considered in CCA, we consider that

the parameter has correlation with the other parameter set. For example, the CL of a2 for

U2 is −0.576443819, and (U2, V2) is considered in CCA, we consider that p2 (Cond) has

correlation with growth parameters in G1.

(the absolute values are larger than 0.3), especially with p1, p3
and p6 (the absolute values are larger than 0.5); U2 correlates
with p1, p2, p4, p5, p6, p7, p8, p9, especially with p1, p2, p4, p6,
p9; U3 correlates with p4, p5, p7, p8; V1 correlates with g1, g2,
g4, especially with g1; V2 correlates with g3, g4, especially with
g4; V3 correlates with g3. In summary, all the 10 physiological
parameters have influences on 4 growth parameters through
CCV.
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Following the same analysis steps, we also run CCA for the
groups of (P3, G2), (P4, G3), (P1, G3), (P2, G3), and (P3, G3).

Figure 3 summarizes the CCA results of groups (P2, G1), (P3,
G2), and (P4, G3). Note that we consider the first three pairs
of CCV for almost all the three groups, except (P3, G2), for
which only the first and third pairs of its CCV are meaningful.
With the help of the marked threshold line (red dash line), we
conclude: for the group of (P2, G1), all physiological parameters
have influences on growth parameters; for the group of (P3, G2),
almost all physiological parameters have influences on growth
parameters, except p6 and p9; for the group of (P4, G3), almost all
physiological parameters have influences on growth parameters,
except p9. In summary, we conclude that all 10 physiological
parameters have strong influences on growth parameters during
the early stage (0∼ 3 days), p6 and p9’s influences onmiddle stage
(3 ∼ 6 days) growth parameters are weak, and p9’s influences on
final stage (7∼ 9 days) growth parameters are weak.

Based on the CCA results of (P3, G2), we conclude that p6 and
p9 have weak influences on growth parameters during the middle
seedling stages. As a result, a simplified physiological parameter
combination of 8 dimensions is given by

P_8D_ 6_ 9 = [p1, p2, p3, p4, p5, p7, p8, p10] (18)

compared to the original physiological parameter combination

P_10D = [p1, p2, p3, p4, p5, p6, p7, p8, p9, p10] (19)

P_8D_6_9 can be used for predicting G2. If P_8D_6_9 delivers
similar performances as P_10D, a simplified observer can be built
with P_8D_6_9.

Furthermore, based on the CCA results of (P4, G3), another
simplified physiological parameter combination of 9 dimensions
is given by

P_9D_ 9 = [p1, p2, p3, p4, p5, p6, p7, p8, p10] (20)

P_9D_9 can be used for predicting G3. If P_9D_9 delivers similar
performances as P_10D, a simplified observer can be built with
P_9D_9.

Figure 4 shows the CCA concerned CL of groups (P1,
G3), (P2, G3), and (P3, G3). With the help of the marked
threshold line, we conclude: for (P1, G3), almost all physiological
parameters have influences on growth parameters, except p10;
for (P2, G3), almost all physiological parameters have influences
on growth parameters, except p10; for (P3, G3), almost all
physiological parameters have influences on growth parameters,
except p9. In other words, p9 and p10’s influences on final growth
parameters are not strong enough during the whole experiment
period.

Based on the CCA results of the last three (P, G) groups, a new
simplified physiological parameter combination without using p9
and p10 is given by

P_8D_ 9_ 10 = [p1, p2, p3, p4, p5, p6, p7, p8] (21)

P_8D_9_10 can be used for predicting G3. If P_8D_9_10 delivers
similar performances as P_10D, a simplified observer can be built
with P_8D_9_10.

Results of Support Vector Machine
Prediction
In the control loops of greenhouse-crop systems, observers are
used to monitor the states of control objects (environment or
crops). If observers find that control objects are not in good
states, control strategies will take actions to help objects revert
to good states. When the states of objects cannot be monitored
directly, prediction observers are used. Here, we use SVM to build
crop growth state observers. In the observers, environmental and
physiological parameters are inputs and “good” or “bad” states
of growth parameters are outputs. The labeling rule for “good”
or “bad” growth states is: if one instant of a sample parameter
variant is not smaller than the mean value of all instants, it is
labeled as “good”; otherwise, “bad.” Using variant Plant_Height1
as an example, we express the labeling rule as

sign(gi − g) =

{

1 (gi − g) ≥ 0
−1 (gi − g) < 0

(22)

where gi is the instant of Plant_Height1 in the i-th sample, g is
the mean value of all Plant_Height1 instances. As mentioned in
Section Materials and Methods, we have 73 samples of data in
total. Each sample has 1 set of environmental parameter variants,
4 sets of physiological parameter variants and 3 sets of growth
parameter variants. After labeling, we have 73 classification labels
for each growth parameter variant.

To demonstrate the advantages of designing observers based
on crop physiological response information, we build three
kinds of SVM observers and test them with only environmental
parameters, only physiological parameters, and environmental
parameters+ physiological parameters, respectively. To illustrate
the generality of the new observers, we consider three SVM
model building strategies, including linear core SVM predictor,
RBF core SVM predictor, and RBF core SVM predictor with auto
training and cross validation. Furthermore, simplified versions of
parameter combinations are tested to illustrate the feasibility of
the CCA results. For all the 73 samples, 48 samples are used for
SVMmodel training and 25 samples are used for testing.

Testing Results for SVM Models with RBF Core
Figure 5 shows the testing results for SVMmodels with RBF core.
When environmental parameters are employed to predict growth
parameters, the following 6 SVM models are trained and tested:
E_6D (E6 in Figure 5A) for predicting G1, E_6D for predicting
G2, E_6D for predicting G3, E_8D (E8 in Figure 5A) for
predicting G1, E_8D for predicting G2, and E_8D for predicting
G3. The first 3 models are used to show the performance
of the simplified environmental parameter combinations for
predicting cucumber seedling growth states in different stages.
The last 3 models are used to show the performance of the
complete environmental parameter combinations for predicting
cucumber seeding growth states in different stages. As each
sample only has 1 fresh weight measurement and 1 dry weight
measurement, Figure 5A only has 2 bars (E6 for predicting G3
and E8 for predicting G3) for fresh weight and dry weight,
respectively. When physiological parameters are employed to
predict growth parameters, the following 8 SVM models are

Frontiers in Plant Science | www.frontiersin.org 9 August 2017 | Volume 8 | Article 1297

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Qiu et al. Physiological Observer for Greenhouse Seedling

FIGURE 3 | CCA concerned CL bars for (P2, G1), (P3, G2), and (P4, G3). For (P2, G1) and (P4, G3), the first three pairs of CCV are concerned by CCA, so we have 3

bars for each parameter in the first and third rows of sub-figures. For (P3, G2), two pairs of CCV are concerned by CCA, so we have 2 bars for each parameter in the

second row of sub-figures. Taking the sub-figure (B) CL of group (P3, G2)—CL for P3 (the sub-figure on the left of the second row) for example, none of p9’s bar

reaches the dash line, we conclude that the physiological parameter p9 (Tr) in P3 has no/weak correlation with growth parameters in G2. Following the same rule, we

can infer that p9 in P4 also has no/weak correlation with growth parameters in G3. All growth parameters in G1, G2, and G3 have correlation with physiological

parameters.

trained and tested: P2 for predicting G1, P3 for predicting G2,
P4 for predicting G3, P1 for predicting G3, P2 for predicting
G3, P3 for predicting G3, P3_8D_6_9 (P38 in Figure 5B) for
predicting G2, and P4_9D_9 (P49 in Figure 5B) for predicting
G3. Here, the first 3 models are used to show the performance
of physiological parameters for reflecting current cucumber

seedling growth states. The fourth to sixth models are used
to show performance of physiological parameters in different
stages for predicting final cucumber seedling growth states.
The last 2 models are used to show the performance of the
simplified physiological parameter combinations for reflecting
current cucumber seedling growth states. When environmental
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FIGURE 4 | CCA concerned CL bars for (P1, G3), (P2, G3), and (P3, G3). For (P1, G3), (P2, G3), and (P3, G3), as the first three pairs of CCV are concerned by CCA,

we have 3 bars for each parameter in all sub-figures. For each parameter, if one bar reaches the red dash line, we conclude that the corresponding parameter has

correlations with the other parameter set in the CCA. Taking the sub-figure (A) CL of group (P1, G3)—CL for P1 (the sub-figure on the left of the first row) for example,

none of p10’s bar reaches the dash line, we conclude that the physiological parameter p10 (VpdL) in P1 has no/weak correlation with growth parameters in G3.

Following the same rule, we can infer that p10 (VpdL) in P2 and p9 (Tr) in P3 also has no/weak correlation with growth parameters in G3. All growth parameters in G3

have correlation with physiological parameters.

and physiological parameters are both employed to predict
growth parameters, another 6 SVM models are trained and
tested: E_8D plus P2 (E+P2 in Figure 5C) for predicting G1,
E_8D plus P3 (E+P3 in Figure 5C) for predicting G2, E_8D
plus P4 (E+P4 in Figure 5C) for predicting G3, E_6D plus
P3_8D_6_9 (E6+P38 in Figure 5C) for predicting G2, E_6D

plus P3_8D_9_10 (E6+P38 in Figure 5C) for predicting G3, and
E_6D plus P4_9D_9 (E6+P49 in Figure 5C) for predicting G3.
Here, the first 3 models are used to show the performances of
the complete parameter combinations for predicting cucumber
seedling growth states. The last 3 models are used to show
the performance of the simplified parameter combinations for
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FIGURE 5 | Testing results for SVM modes with RBF core. The height of a bar stands for the prediction success rate of a SVM model. In (A) for Height and Leaf_Area,

there are 6 bars. The first three bars stand for the success rates of the simplified environmental parameter combinations for predicting the growth parameters in 3

different growth stage—(0∼3 days, 4∼6 days, and 7∼9 days). The last three bars stand for the success rates of the complete environmental parameter combinations

for predicting the growth parameters in the final growth stage—(7∼9 days). For Fresh_Weight and Dry_Weight, there are 2 bars, one for the success rates of the

simplified environmental parameter combination, the other for the success rates of the complete environmental parameter combination. In (B) there are 8 bars for

each growth parameter. The first three bars stand for the success rates of predicting the growth parameters of different stages with the physiological parameter

combinations sampled at the same stage. The fourth to sixth bars stand for the success rates of predicting the growth parameters of the final stage with the

physiological parameter combinations sampled at different stages. The last two bars stand for the success rates of predicting the growth parameters of different

stages with the simplified physiological parameter combinations sampled at the same stage. In (C) there are 6 bars for each growth parameter. The first three bars

stand for the success rates of predicting the growth parameters with the complete environmental and physiological parameter combinations. The last three bars stand

for the success rates of predicting the growth parameters with the simplified environmental and physiological parameter combinations.

FIGURE 6 | Testing results for SVM modes with linear core. Here, all the SVM models share the same input and output parameter sets as those in Figure 5. Only the

core function of the SVM model is changed to linear core. In (A) for Height and Leaf_Area, there are 6 bars, respectively. The first three bars show the predicting

results using the simplified environmental parameter sets as inputs. The last three bars show the results of the complete environmental parameter sets. For

Fresh_Weight and Dry_Weight, there are 2 bars, respectively: one for the simplified environmental parameter combination, the other for the complete environmental

parameter combination. In (B) there are 8 bars for each growth parameter: the first three for predicting current growth states, the fourth to sixth for predicting the final

growth state, and the last two for predicting with the simplified physiological parameter combinations. In (C) there are 6 bars for each growth parameter: The first three

for predicting with the complete environmental and physiological parameter combinations, the last three for predicting with the simplified environmental and

physiological parameter combinations.

predicting cucumber seeding growth states. In the following part
for SVM with linear core and SVM with RBF core plus auto
training and cross validation, we use the same environmental,
physiological and environmental plus physiological parameter
combination strategies.

From the prediction success rate of SVM models with
RBF core, we conclude that: first, the model performance
suffers from dramatic undulation when only environmental
parameters are used as the inputs for predicting Height and
Leaf_Area, and the prediction accuracy ranges from lower than
50% to higher than 90%; second, the prediction accuracies on

Height and Leaf_Area show a rising trend from early stage
to late stage of cucumber seedling growth, which implies the
influences of environment parameters on crops require time to
exhibit their effects; third, the model performance is not good
when only physiological parameters are used as the inputs for
predicting Height and Dry_Weight, and most model prediction
accuracies are around 50%; fourth, the model performance is
greatly improved when both environmental and physiological
parameters are used as the inputs, and all model prediction
accuracies are increased to around 90% and above; fifth, the
simplified parameter combinations yield worse performance
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FIGURE 7 | Testing results for SVM modes with RBF core plus auto train and cross validation. Here, all the SVM models share the same input and output parameter

sets as those in Figure 5. Only auto train and cross validation techniques are employed during the training process of SVM models with RBF core. In (A) for Height

and Leaf_Area, there are 6 bars, respectively. The first three bars show the predicting results using the simplified environmental parameter sets as inputs. The last

three bars show the results of the complete environmental parameter sets. For Fresh_Weight and Dry_Weight, there are 2 bars, respectively: one for the simplified

environmental parameter combination, the other for the complete environmental parameter combination. In (B) there are 8 bars for each growth parameter: the first

three for predicting current growth states, the fourth to sixth for predicting final growth state, and the last two for predicting with the simplified physiological parameter

combinations. In (C) there are 6 bars for each growth parameter: The first three for predicting with the complete environmental and physiological parameter

combinations, the last three for predicting with the simplified environmental and physiological parameter combinations.

than the complete parameter combinations unless both the
environmental and physiological parameters are used.

Testing Results for SVM Models with Linear Core
Figure 6 shows the testing results for SVM models with linear
core. Based on Figure 6, we conclude the following: first, SVM
models with linear core can give good and stable prediction
performance with success rates around 90% and above; second,
the prediction accuracies on Height and Leaf_Area show a rising
trend from early stage to late stage of cucumber seedling growth,
which implies the influences of environment and physiological
parameters on crops require time to exhibit their effects; third,
the prediction performance can be slightly improved when
physiological parameters are introduced in; fourth, the simplified
parameter combinations can bring similar growth estimations
compared with the complete parameter combinations, which
verifies the feasibility of the CCA results.

Testing Results for SVM Models with RBF Core Plus

Auto Train and Cross Validation
Figure 7 shows the testing results for SVM models with RBF
core plus auto train and cross validation. Based on Figure 7,
we conclude that: first, this modeling strategy can give even
better prediction performance than SVM models with linear
core, especially on the prediction for Dry_Weight; second,
the physiological parameters show their improving capabilities,
which further demonstrate the benefit of incorporating crop
physiological responses in the observer building process; third,
the feasibility of the CCA results is verified again by the similar
performance of the simplified and the complete parameter
combinations.

Comparison of Three Different Modeling Strategies
Figure 8 compares the results in Figures 5–7. For each growth
parameter, the SVM models are categorized into 9 groups:

3 SVM models strategies with 3 parameter combination
strategies. We denote linear core as “L,” RBF core as “R,”
RBF core with auto train and cross validation as “Rac,”
parameter combinations consisting of environmental parameters
as “e,” parameter combinations consisting of physiological
parameters as “p,” parameter combinations consisting of both
environmental and physiological parameters as “e+p.” For
example, the group marked with “R(e+p)” indicates the
prediction results of the SVM models with RBF core that
employs both environmental and physiological parameters as
inputs. For every group, we compute and show 3 bars:
the minimum success rate, the average success rate and
the maximum success rate of the group. From Figure 8,
we conclude the following: first, “L” and “Rac” are capable
modeling strategies for our applications, while “R” is not
good enough because the minimum success rate greatly differs
from the maximum success rate, and the average success
rate is not high; second, the overall performance of “Rac”
in the experiment is slightly better than those of “L”; third,
models containing physiological parameters usually deliver
better performance than those containing only environmental
parameters.

Figure 9 shows the average prediction success rates of
the simplified parameter combinations and the complete
parameter combinations for the group of “Rac(e+p).” From
Figure 9, we see that the average prediction accuracies of
the simplified and the complete parameter combinations
are equal for Leaf_Area and Fresh_Weight. The average
prediction accuracies of the simplified parameter combinations
are better than the complete parameter combinations
for Height and Dry_Weight. The results in Figure 9

clearly elaborate that using CCA results, we can simplify
parameter combinations for observer models to improve the
computational efficiency and feasibility, without reducing
observer accuracy.
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FIGURE 8 | Comparison of three different modeling strategies for 4 growth parameters. The prediction accuracies of different SVM modeling strategies with different

input parameter combinations are shown here. We have 3 SVM modeling strategies: SVM with linear core, SVM with RBF core, SVM with RBF core plus auto train

and cross validation. Also, we have 3 kinds of input parameter combinations: combinations with only environmental parameters, combinations with only physiological

parameters, combinations with both environmental and physiological parameters. As a result, we have 3 × 3 = 9 sets of bars for each sub-figure of growth parameter.

For each set, we have 3 bars: the minimum success rate, the average success rate, the maximum success rate. To simplify the expressions, we denote linear core as

“L,” RBF core as “R,” RBF core with auto train and cross validation as “Rac,” combinations with only environmental parameters as “e,” combinations with only

physiological parameters as “p,” combinations with both environmental and physiological parameters as “e+p.” For example, the bar set marked with “Rac(e+p)”

shows the prediction accuracy results of the SVM model with RBF core plus auto train and cross validation, whose input parameters consist of both environmental

and physiological parameters.

DISCUSSIONS

In this study, we have proposed a new state observer
modeling strategy for greenhouse cucumber seedling growth.
Our strategy integrates crop physiological information to the
modeling process. Using physiological information to improve
the inner greenhouse microclimate control is not a new
idea. A similar concept named with “Speaking Plant” was
presented in 1978 (Udink ten Cate et al., 1978), hoping
that control systems could act according to plants’ actual
requirements. However, due to the limitation in sensing

technologies, “Speaking Plant” mainly focused on obtaining
physiological information through mathematical derivations.
Van Pee and Berckmans built a mathematical model to
describe the relationships between physiological parameters
and environmental parameters, and employed the model to
support the online greenhouse microclimate control (Van
Pee and Berckmans, 1998). The physiological parameters in
the model were photosynthesis and water potential, and the
environmental parameters in the model were CO2 concentration
and lighting intensity. González-Real and Baille tried to simulate
feedbacks of a greenhouse rose crop in the greenhouse control
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loop, by combining a physiological sub-model together with
a physical sub-model. The physiological sub-model contained
3 physiological parameters, including net CO2 assimilation,
stomatal conductance and transpiration (González-Real and
Baille, 2001). As mathematical models stand on the basis of
mass/energy transfer equations, they have innate drawbacks on
elaborating plants’ responses with high accuracy and frequency.
By using chlorophyll fluorescence analysis as the physiological
sensing tool, our new strategy can give growth state prediction
accuracies as high as 90% (Figures 6, 7).

With the development of sensing technologies, chlorophyll
fluorescence analysis was developed to monitor the health
condition of greenhouse tomato seedlings. It has been reported

FIGURE 9 | Comparison of the simplified and the complete parameter

combinations for the group of “Rac(e+p).”

that visible symptom of physiological dysfunction can detected
in the early stage (Takayama et al., 2011a). Also, unhealthy
seedlings can be found in the early stage under drought
stress (Takayama et al., 2011b). Induction curve, which is
generated with the chlorophyll fluorescence intensity changing
over time, is the key for dysfunction detection. In our strategy,
we take 10 physiological parameters under consideration,
including net photosynthesis rate (Pn), stomatal conductance
(Cond), intercellular CO2 concentration (Ci), efficiency of
excitation capture by open PSII center (Fv′/Fm′), quantum
efficiency of PSII (PhiPS2), quantum efficiency of CO2 fixation
(PhiCO2), photochemical quenching coefficient (qP), electron
transport rate (ETR), transpiration rate (Tr), and vapor pressure
deficit at the leaf temperature (VpdL). We believe that more
parameters lead to a more comprehensive view of crop
responses.

Recently, machine learning technologies appear in the
modeling of crop physiological responses. Moriyuki and Fukuda
employed neural network to predict the growth state of lettuce
seedlings. They took chlorophyll fluorescent intensity, leaf area
and circadian rhythms as the inputs for the neural network,
and average fresh weight as the output (Moriyuki and Fukuda,
2016). However, as the prediction accuracy was not reported,
we cannot compare directly with the neural network model.
The prediction accuracy of a neural network strongly depends
on the size of the training set. Typically, a satisfying accuracy
requires a large training set. Compared with neural network,
SVM has distinguishing advantages on handling small sample
size problems, nonlinear classification/prediction problems and
high dimensional classification/prediction problems. It takes
both empirical risk and confidence risk under consideration,
compromises betweenmodel complexity (learning accuracy) and
learning capability (the capability of handling noise, outliers,
etc.), and tries to carry out structural risk minimization for
classification/prediction tasks. SVM in the current strategy does

FIGURE 10 | Flow chart for the observer modeling process. Even though we have quite good results using CCA and SVM, we believe that the strategy can be further

improved if we use Kernel CCA (KCCA) and SVM. This is because CCA is limited by its linear natural instincts whereas KCCA (Akahu, 2001) is capable for analyzing

data coming from nonlinear systems.
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not need a large training set, which makes our strategy feasible
for application. Also, our strategy takes 4 growth parameters
into consideration, and feeds more information back to the
controller than the previous work (Moriyuki and Fukuda,
2016).

Although we use cucumber seedlings as an instance, the
proposed observer modeling strategy can be applied to other
seedlings as a universal strategy. The strategy consists of 4
steps: (1) Carrying out the data acquisition tasks following
the instructions in Section Data Acquisition. Note that, the
setting of environmental parameters and sub-experiments should
be altered according to practical situations; (2) Canonical
Correlation Analysis is launched to reveal the correlations of
(environmental, growth) and (physiological, growth) parameter
pairs. Based on the CCA results, several parameter combinations
are chosen as feature vector candidates for building SVM
models. In this step, all the feature vectors are formed by
parameters coming from the same category: environmental or
physiological; (3) An SVM model is trained for each (feature
vector, growth parameter) pair. If there are m feature vectors
and n growth parameters, we will have m × n SVM models.
The modeling strategy with RBF kernel plus auto train and cross
validation will be used for all SVM models. The testing results
will illustrate the top ranked combinations for environmental
and physiological parameters, respectively; (4) Several combined
feature vectors are formed to obtain new SVM models. A
combined feature vector contains a top ranked environmental
combination and a top ranked physiological combination. If
there are r combined feature vectors, we will have r × n
new SVM models. For each growth parameter, we have m+ r
SVM models. Among them, the one with the best testing
performance will be chosen as the final model. The flow
chart for the whole observer modeling process is shown in
Figure 10.

After the observer is obtained, we can add it together with a
chlorophyll fluorescent sensor into the greenhouse microclimate
control loop.
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