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Abstract: A proper initial curing is a very simple and inexpensive alternative to improve concrete cover quality and accordingly

extend the service life of reinforced concrete structures exposed to aggressive species. A current study investigates the effect of wet

curing duration on chloride penetration in plain and blended cement concretes which subjected to tidal exposure condition in south

of Iran for 5 years. The results show that wet curing extension preserves concrete against high rate of chloride penetration at early

ages and decreases the difference between initial and long-term diffusion coefficients due to improvement of concrete cover

quality. But, as the length of exposure period to marine environment increased the effects of initial wet curing became less

pronounced. Furthermore, a relationship is developed between wet curing time and diffusion coefficient at early ages and the effect

of curing length on time-to-corrosion initiation of concrete is addressed.
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1. Introduction

The chloride-induced corrosion of the embedded steel has
become the most common cause of loss of integrity and
failure in concrete structures and infrastructures placed in the
marine environment (Swamy 1988; Neville 2000; Radlińska
et al. 2014; Pritzl et al. 2014; Ghassemzadeh et al. 2011).
Hence, the chloride permeability has been recognized to be a
critical intrinsic property of the concrete (Guneyisi et al.
2005, 2009), and a lot of research has been conducted to
enhance concrete resistance to chloride permeability (She-
karchi et al. 2009).
From durability point of view, concrete cover quality plays

significant role in blocking of aggressive substance ingress
such as chloride ions into the reinforced concrete (Thomas
1991; Bonavetti et al. 2000). There are several methods to
improve the quality of the concrete cover such as use of
supplementary cementitious materials, reduction in water-to-
cementitious materials ratio (w/cm), and appropriate initial

curing regimes (Neville and Brooks 1990; Ghassemzadeh
et al. 2010). Although it is a very simple and inexpensive
procedure, proper initial curing, prior to exposure to marine
environment, has an important influence on improving
concrete cover quality so that the concrete acting as a fine
barrier to the access of aggressive species and accordingly
extend the service life of reinforced concrete structures
exposed to chloride (Alizadeh et al. 2008; Khatib and
Mangat 2002; Khatib 2014; Radlinski and Olek 2015).
The objective of curing is considered by the duration of

providing concrete with sufficient humidity and appropriate
temperature conditions to reduce the loss of moisture to
ensure the progress of hydration reactions causing the filling
and segmentation of capillary voids by hydrated compounds
(Guneyisi et al. 2005, 2009). On the contrary, drying of
concrete particularly at the concrete surface, caused by a
poor curing regime, leads to a restricted hydration and thus
higher porosity and permeability in the surface layers which
form covers for the reinforcement protections (Mangat and
Limbachiya 1999; Khanzadeh-Moradllo et al. 2009).
The matter would be more critical in the case of concrete

containing silica fume replacement because the pozzolanic
reaction is, in general, very sensitive to the curing procedure
(Toutanji and Bayasi 1999; Atis et al. 2005). According to
the ACI 308 Recommended Practice (ACI Committee 308
1998), the curing period should be extended to 14 days
when the cement contains supplementary cementitious
materials, owing to the slow hydration reactions between
supplementary cementitious materials and the calcium
hydroxide. In addition, curing condition also could be an
important parameter in controlling durability of the rein-
forced concrete in a harsh condition of the marine tidal zone
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prior to exposing to sea water, where the concrete cover is
subjected to wetting–drying cycles.
A considerable volume of research has been conducted on

different curing regimes and related effects on concrete
properties. However, the effect of curing conditions on the
chloride penetration into the concrete in real field condition
at long term has not been well studied. Also, despite the
importance of this object in Persian Gulf region, which is
one of the high aggressive environments in the world, a few
investigations were conducted in this region in long-term
(Neville 2000; Shekarchi et al. 2009; Khanzadeh-Moradllo
et al. 2012). In this regard, a comprehensive effort is
accomplished in Construction Material Institute (CMI) to
examine the short and long-term effect of curing regimes on
durability of concretes located in Persian Gulf marine
environment. The objective of this study is to investigate the
effect of wet curing duration on chloride penetration in plain
and blended cement concretes with 7.5 % silica fume which
subjected to tidal exposure condition in Persian Gulf for
5 years.

2. Experimental Program

2.1 Materials and Mixture Proportions
The cementitious materials used in this study were Port-

land cement (PC) equivalent to ASTM Type II with a
specific gravity of 3.14 and a fineness of 290 m2/kg, and
silica fume (SF) obtained from Azna ferro-silicon alloy
manufacture with a specific gravity of 2.20 and a specific
surface area of 20,000 m2/kg. The chemical and physical
properties of these materials are given in Table 1. The
aggregates used were crushed limestone from Metosak plant
and were graded according to ASTM C 33. The coarse
aggregate had maximum size of 12.5 mm and specific
gravity and absorption values of 2.79 and 1.9 %, respec-
tively. The fine aggregate had specific gravity and absorption
values of 2.59 and 3.2 %, respectively. The fineness mod-
ulus of fine aggregates was 3.2. Polycarboxylate ether
polymer superplasticizer was used for the mixes in order to
improve the workability of fresh concrete.

The concrete mixture proportions detailed in Table 2 were
used to study the effect of curing on both normal Portland
cement and silica fume concrete (labeled as NPC and SFC,
respectively); w/cm ratio is 0.5 and cementitious material
content 400 kg/m3.
The concrete mix proportions used in this study were not

specifically chosen to meet the durability requirements
given in Iranian National Code for concrete durability in
Persian Gulf for the conditions of exposure used, but to
provide concretes which would undergo a measurable
amount of chloride penetration and deterioration in the short
exposure periods used. Therefore, the results of this study
may not be generalized for concrete made with a low w/cm.
In addition, silica fume content of 7.5 % by weight of
cement was used, because a previous study (Shekarchi et al.
2009) showed that there is an optimum silica fume content
of 7.5 % by weight of cement beyond which additional
silica fume does not produce additional benefits in line with
the additional costs.

2.2 Casting and Curing of Concrete Specimens
The concrete mixture was prepared in the laboratory using

a 0.1 m3 countercurrent pan mixer. The fresh concrete was
tested for air content (ASTM C 231), slump (ASTM C 143)
and unit weight (ASTM C 138). Cubes of 150 9 150 9

150 mm and prisms of 150 9 150 9 600 mm in dimension
were casted in steel molds and were compacted using a
vibrating table. The 150 mm cubes were used for the
determination of the compressive strength in accordance
with DIN 1048, while the prisms were used to be tested for
chloride penetration in the field. Properties of fresh and
hardened concrete are summarized in Table 3. Five different
curing procedures were applied on both cube and prism
concrete specimens. All molds were covered with wet burlap
for the first 24 h after casting. Concrete specimens were
demolded after 24 h. Four of the five concrete prisms and
their cube specimens were cured in water for 1, 3, 6, and
27 days labeled 1-D, 3-D, 6-D, and 27-D, respectively. The
other one remained in ambient conditions of laboratory
without moist curing at 40–50 % RH and 19–23 �C until
exposure to seawater called 0-D for no-curing.

Table 1 Chemical properties of binders.

Oxide composition % by mass Cement Silica fume

CaO 62.25 –

SiO2 21.22 93.16

Al2O3 4.68 1.13

Fe2O3 3.68 0.72

MgO 3.63 1.6

Na2O 0.25 –

K2O 0.75 –

SO3 1.74 0.05

L.O.I. 1.37 1.58
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2.3 Exposure Condition
Next, the investigated prism specimens which were loca-

ted in Bandar-Abbas coast in south of Iran are sealed on four
sides using epoxy polyurethane coating to ensure one-di-
mensional diffusion. The performance of this type of coating
has been confirmed by previous studies (Khanzadeh-Mo-
radllo et al. 2012). Specimens were then subjected to tidal
zone exposure condition in Persian Gulf for the entire period
of investigation (60 months). Tidal exposure was situated at
the about 2.2 m from sea level, so that concrete specimens
were in contact with sea water for 12 h per day then they
were exposed to dry condition (air) for rest of the day,
simulating the tidal zone condition.
The Persian Gulf water is highly saline (Table 4) due to its

enclosed condition (mostly surrounded by lands of Iran and
Arabian Peninsula) and the high evaporation rate. Also, there
are large fluctuations in daily and seasonal temperature and
humidity regimes. Temperature can vary by as much as
30 �C during a typical summer day and relative humidity
can range from 40 to 100 % within 24 h (Al-Amoudi and
Bader 2001).

2.4 Sampling and Testing
Sampling is carried out at the ages of 3, 9, 36, and

60 months of exposure in tidal zone. Each time, 100 mm

long prisms are cut from the end of the prism specimens
(Fig. 1). The cut surface of the remaining part is coated and
moved back to the exposure condition for future sampling.
The 150 9 150 9 100 mm slices are taken to the laboratory
in order to determinate the chloride penetration.
In the laboratory, a nominal 45 mm diameter core is taken

from each slice to provide chloride concentration profiles.
Each core is grinded in eight increments from the finished
surface to an estimated depth of chloride penetration. The
method used to estimate the chloride penetration depth was
according to the procedure described by NordTest NT Build
492, which involves measuring the depth of color change of
a freshly cut concrete surface in the direction of the chloride
flow using 0.1 M AgNO3 aqueous solution. Fine particles
for chloride analysis are collected using a profile grinder
parallel to the exposed surface according to NordTest NT
Build 443 method with the accuracy of 0.5 mm at eight
different depths. The first 1 mm fine particles are not
included in calculations as it might be affected by actions
such as washout, etc. The profile grinder and a grind hole are
cleaned between depth increments to reduce the possibility
of cross-contamination of samples from different depths. For
each sample of concrete, fine particles are collected, the
depth below the exposed surface is calculated as the average
of six uniformly distributed measurements using a slide

Table 2 Details of the concrete mixtures.

code Cement (kg/m3) Silica fume
(kg/m3)

w/cm Water (kg/m3) Coarse aggregate
(kg/m3)

Fine aggregate
(kg/m3)

Plasticizer (%)

NPC 400 0 0.5 200 956 778 1.2

SFC 370 30 0.5 200 959 784 1.2

Table 3 Properties of fresh and hardened concrete.

Code Density (kg/m3) Air content (%) Slump (mm) Curing Compressive strength (MPa)

7 days 28 days

NPC 2370 2.7 80 0-D 26.0 31.3

1-D 30.0 36.6

3-D 30.8 37.9

6-D 33.5 39.0

27-D 33.5 39.8

SFC 2355 1.6 65 0-D 26.0 37.1

1-D 29.9 45.3

3-D 32.9 51.4

6-D 34.4 53.6

27-D 34.4 55.2

Table 4 Concentration of various ions in seawater at Persian Gulf.

Ion type K? Ca?? Mg?? SO4
-- Na? Cl- Total salt

Concentration
(ppm)

470 480 1600 3300 12600 23,400 41,850
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caliper. The fine particles from each layer is collected and
pulverized so that all the material will pass a 850-lm (No.
20) sieve. At each depths, a sample having a mass of
approximately 10 g is selected to the nearest 0.01 g and then
analyzed for acid-soluble chloride content by the potentio-
metric titration of chloride with silver nitrate according with
ASTM C 1152, and ASTM C 114, part 19. The cross-sec-
tional area of a 45 mm diameter core is large enough to
represent the concrete so that there is no need to be con-
cerned about variations from sample to sample due to
varying aggregate contents.

2.5 Chloride Diffusion Coefficient (Dc)
and Surface Chloride Content (Cs) Calculation
The chloride penetration rate as a function of depth from

the concrete surface and time can reasonably be represented
by Fick’s second law of diffusion according to following
expression (Crank 1975):

oC

ot
¼ Dc

o2C

ox2
: ð1Þ

The solution for Eq. (1):

Cðx;tÞ ¼ Cs 1� erf
x

2
ffiffiffiffiffiffiffi

Dct
p

� �� �

ð2Þ

Cðx;0Þ ¼ 0 x[ 0 Cð0;tÞ ¼ Cs t� 0

where x is distance from concrete surface; t denotes time; Dc

is diffusion coefficient; Cs is surface chloride concentration;
C(x,t) represents chloride concentration at the depth of x from
the surface after time t; and erf is the error function.
Fick’s second law for one-dimensional diffusion, as shown

in Eq. (1), is a special case of a more generalized model of
diffusion where concrete is assumed to be a homogenous
material; chloride concentration at the exposure surface is
considered constant; no chemical or physical binding
between the diffusing species and material occurs; and the
effect of co-existing ions is constant. In other words, these
limitations of analysis may be neglected as measured data
are used for comparison purposes within the same set of
exposure conditions. Also, the effect of other mechanisms of
chloride ion penetration such as a capillary suction or
sorption mechanism is not considered in this study.
Using a computer statistical analysis program, the non-

linear regression is carried out on the experimental data and
by curve fitting of solutions of Fick’s second law of

diffusion, the values of Dc and Cs in the Eq. (2) are deter-
mined. The curve fitting has been done in such a way that the
chloride profiles are fitted where the correlation between the
measured and fitted profiles has a maximum. Curve fitting
has been performed in accordance with a procedure descri-
bed in NordTest NT Build 443 and resulted in two regression
parameters; Namely a diffusion coefficient and surface
chloride content. For each specimen, at the time of testing, a
single measurement of chloride concentration at each spec-
ified depth has been done and the diffusion coefficient and
surface chloride build-up have been calculated accordingly.

3. Results and Discussion

3.1 Chloride Profiles at Varying Exposure Time
Chloride concentration profiles of the concrete specimens

with different curing regimes which were placed in tidal
zone at varying exposure time (3, 9, 36, and 60 months) are
presented in Fig. 2. Based on Fig. 2a, it can be concluded
that the 27-D and 6-D curing regimes present better per-
formance to prevent chloride transmission into the concrete
for NPC sample after 3 months exposure. While by a visual
judgment it seems that extending the wet curing period till
3 days have not significantly improved the NPC sample
performance against the chloride uptake. It is obvious from
chloride profiles that there is a noticeable improvement in
reducing chloride concentration is seen in 27 days wet cured
SFC sample in comparison with the other curing regimes,
especially in early ages. The less pronounced effect of wet
curing in SFC until 6 days could be due to the micro filling
or particle packing effect of silica fume which conceal the
wet curing influence on chloride pentration. From Fig. 2b, d,
it is noticeable that wet cured samples of SFC show a higher
surface chloride concentration than the uncured sample at
early ages which could be due to the higher level of chloride
binding and sorptivity. Because, it is suggested that the
higher hydration rate for the the pozzolanic action of silica
fume results in the formation of a higher content of C–S–H
phases. This, in turn, increases the physical chloride binding
due to the relatively high surface area of the C–S–H
(Beaudoin et al. 1990; Luping and Nilsson 1993; Dousti
et al. 2011).
It is obvious from chloride concentration profiles during

exposure time (Fig. 2) that the wet curing effect is time-
dependent and its influence on chloride resistance diminishes
in long-term irrespective of the concrete mixture. Further

Cut surface-Recoated 
after cutting 

Initial coating 
 (Epoxy 

polyurethane) 

Chloride exposure 

50 cm 

15 cm 

10 cm 

15 cm 

Fig. 1 Initial concrete prism specimens ? cuts for laboratory tests.
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analysis is provided in following sections based on calcu-
lated diffusion coefficient and surface chloride content.

3.2 Chloride Diffusion Coefficient (Dc)
Diffusion coefficient changes, over time for different

curing periods in tidal zone are presented in Fig. 3. From

results, it can be seen that extending the wet curing period
has reduced the diffusion coefficient in comparison with no-
cured sample in plain and blended specimens at early ages (3
and 9 months) as the same as previous studies (Guneyisi
et al. 2007) that indicated long-term curing results in higher
resistance to chloride permeability. But as the time goes on,

Fig. 2 Chloride concentration profiles of concrete specimens with different curing regimes placed in tidal zone of Persian Gulf
region at varying exposure time. Note chloride threshold value is assumed 0.1 % by weight of concrete for corrosion
initiation (Thomas 1996; Pargar et al. 2007).
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this discrepancy reduces and the rate of diffusion coefficient
diminishes too. This is thought to be due to the curing effects
of the seawater masking initial differences (Thomas and
Matthews 1990). Mohammed et al. (Mohammed et al. 2002,
2004) found that seawater causes a reduction in the pore
volume or shifts the pore size to smaller pores at concrete
surface.
According to Fig. 3, the differences in value of diffusion

coefficient in various ages, especially between early and
long-term ages, were notable in short-term curing regimes
and non-curing, but this is not the case in 27 days curing.
Indeed, as the curing time increases, the decreasing rate of
diffusion coefficient upon time reduces while the
microstructure of concrete improves and the ingress of
chloride ions into the concrete diminishes in early ages. This
reduction in early age diffusion preserves the concrete
against high rate of chloride penetration at early ages. So the
initiation time of reinforcement corrosion will delay and the
service life of the structure will increase.
As it is shown in Fig. 3, with comparison of silica fume

and plain specimens, it is found that the silica fume speci-
mens have lower diffusion coefficient in all curing times
which confirms that concretes containing silica fume exhibit
improved chloride penetration resistance compared to those
of plain Portland cement concretes.
With regard to the time dependent variation of chloride

diffusion coefficient, following equation was employed to
express the Dc as a function of exposure time:

Dc ¼ atb ð3Þ

where Dc is the diffusion coefficient (mm2/s), t is the
exposure time (s), ‘‘a’’ and ‘‘b’’ are the regression parameters
presented at Table 5.
Based on Table 5, good correlation between Dc and

exposure time is observed for all NPC and SFC samples with
regression coefficients varying from 0.78 to 0.99. The model
introduced in Eq. (3) can be employed to estimate the
variation of chloride diffusion coefficient with time for dif-
ferent curing regimes. The fitted equation has also been
incorporated in estimating the time-to-corrosion initiation
which will be discussed in following sections.

3.3 Relationship Between Diffusion Coefficient
and Curing Time
From the modeling point of view, the effect of curing

conditions on the chloride diffusion coefficient has not been
studied well (Alizadeh et al. 2008). To understand better the
relationship between the curing time and a diffusion coeffi-
cient in short-term and long-term exposure periods,
kcuring = Dt/D0 versus curing times are plotted in Fig. 4 for
NPC and SFC samples in tidal zone, where D0 is the dif-
fusion coefficient of no-cured concrete, Dt is the diffusion
coefficient of wet cured specimen, and kcuring is the curing
factor. As it is seen from Fig. 4, there is a power functional
relationship between curing factor (kcuring) and time of wet
curing (tcuring) at early ages:
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Fig. 3 Diffusion coefficient values versus sampling time for different curing regimes in tidal zone: a NPC specimens, b SFC
specimens.
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kcuring ¼ a� t�m
curing ð4Þ

where ‘‘a’’ and ‘‘m’’ are coefficients varying with concrete
mixture design, which are determined for different concrete
mixtures with implementing the nonlinear regression on the
experimental data. The curing factor decreases with
increasing the wet curing time for NPC and SFC samples in
short-term ages (3 and 9 months), which represents the
efficiency of wet curing period in reducing the diffusion
coefficient. This decrease in diffusion coefficient is very
sharp until curing time of 6 days, especially for SFC, while
the curing factor decreasing rate significantly diminishes
from 6 days to 27 days curing time.
Based on Fig. 4, there is no distinct relationship between

kcuring and tcuring in long-term (36 and 60 months) and some
of the curing regimes are not any more effective in reducing

the diffusion coefficient. A ‘‘kcuring = 1’’ is considered as a
efficiency boundary of curing regimes, where the wet cured
sample acts similar to no-cured sample. According to results
in long-term ages, a 27 days wet curing is the only curing
regime which preserves its efficiency in reducing diffusion
coefficient in both of NPC and SFC mixtures. As mentioned,
this might be due to the curing effects of the seawater
masking initial differences.
The results of long-term ages also imply that there is a

slight increase in diffusion coefficient from a 0-D curing
condition to the 6-D and 3-D in NPC and SFC samples
(kcuring[ 1). William F. Perenchio observed the same trend
between initial curing period and long-term drying shrinkage
(Perenchio 1997). According to Perenchio’s suggestion
(Perenchio 1997), it is possible that there is a pessimum
initial curing time with respect to drying shrinkage or other

Table 5 Modeling the chloride ion diffusivity versus exposure time.

Curing NPC SFC

a b R2 a b R2

27-D 2.2991 -0.760 0.95 0.0008 -0.357 0.83

6-D 0.0165 -0.432 0.99 0.0005 -0.296 0.78

3-D 0.1863 -0.568 0.94 0.0004 -0.286 0.89

1-D 3.5321 -0.728 0.93 0.0026 -0.378 0.87

0-D 13.688 -0.797 0.90 0.3849 -0.659 0.91

Dt /D0 = 0.7937(tcuring)-0.31

R² = 0.869
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Fig. 4 Curing factor values versus curing time for different concrete mixtures in tidal zone: a NPC specimens, b SFC specimens.
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parameters which produces the greatest value for that
parameter. This higher drying shrinkage might cause micro-
cracks and respectively an increase in diffusion coefficient.
More work is needed to further understand this behavior.
According to the European Union RC structures durability

design guidline (The European Union 2000), it has been
suggested to include a coefficient for curing in RC structures
service life design in order to take into the account the effect
of curing regime on concrete diffusion coefficient and service
life. The European Union suggested values for curing factor
are compared to observed values from this study in early age
in Table 6. Based on Table 6, the European Union suggested
values are about 20 % higher than the calculated values for
NPC samples. This difference can be due to the variations in
concrete mixture proportions and environmental factors.

3.4 The Influence of the Curing Time on Surface
Chloride Content (Cs)
The time-dependent characteristic of the chloride content

at a concrete surface is another significant parameter in
predicting the chloride ingress at the depth of steel and the
concrete structures service life (Ann et al. 2009). Therefore,
the influence of curing conditions on surface chloride con-
tent is addressed in current study.
The surface chloride content versus an exposure time is

plotted in Fig. 5 for different curing regimes in tidal zone.
Surface chloride content data were scattered with increment
of the curing time, there is no regular trend observed. The
general trend of surface chloride shows its increment as the
time goes on. The SFC specimens have more surface chlo-
ride content in comparison with NPC specimens in early
ages as shown in Fig. 5, presumably due to the higher level
of chloride binding and sorptivity. With increased chloride
binding capacity, total chloride contents increase nearer the
surface of the concrete, but decrease deeper in the concrete
(Glass and Buenfeld 2000; Song et al. 2008). As discussed
earlier, it is suggested that the higher hydration rate for the
the pozzolanic action of silica fume results in the formation
of a higher content of C–S–H phases. This, in turn, increases
the physical chloride binding due to the relatively high
surface area of the C–S–H (Beaudoin et al. 1990; Luping
and Nilsson 1993; Dousti et al. 2011). As the time goes, the
rate of surface chloride content increment is lower in SFC
specimens in contrast to NPC specimens.
In addition, it has been observed that the linear build-up

model can express the time dependent nature of the Cs

(Khanzadeh-Moradllo et al. 2012; Sadati et al. 2015). The
following equation was employed to express the Cs as a
function of exposure time:

Cs ¼ k � t þ C0 ð5Þ

where Cs is the surface chloride content (% weight of con-
crete), t is the time (s), ‘‘k’’ is the regression coefficient, and
C0 is the earliest available measurement on surface chloride
concentration; i.e. the measurement at 3 months.
Table 7 summarizes the regression coefficients. Based on

Table 7, good correlation between Cs and exposure time is
observed for all NPC and SFC samples with regression
coefficients varying from 0.76 to 0.99. This indicates that a
linear regression with the initial value is good representa-
tives of the surface chloride ion build-up in tidal zone. This
equation is proposed for further investigating the time-to-
corrosion initiation of structures at following section.

3.5 The Influence of the Wet Curing Time
on Time-to-Corrosion Initiation of Concrete
Structures
The efficiency of the curing condition in preventing the

ingress of chloride can be further emphasized by estimating
time-to-corrosion initiation of concrete structures which
subjected to different curing regimes. It is worth to mention
that the concrete structure corrosion occurs in two steps,
corrosion initiation time and corrosion propogation time
(Morga and Marano 2015). The latter step is not considered
in this study. The time-to-corrosion initiation is considered to
be the time required for chloride ion concentration to reach
to a certain threshold value at reinforcement cover depth.
The regression results obtained for predicting the chloride
ion diffusion and surface chloride build-up (Eqs. (3) and (5))
were incorporated to calculate the corrosion initiation time
based on Fick’s second law of diffusion (Crank 1975):

Cðx;tÞ ¼ C0 þ ktð Þ 1� erf
x

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðatbÞ � t
p

 ! !

ð6Þ

where ‘‘a’’, ‘‘b’’, ‘‘C0’’, and ‘‘k’’ are the regression parameters
presented at Tables 5 and 7. In this study the chloride
threshold value is supposed to be 0.1 % weight of the con-
crete, based on previous studies (Thomas 1996; Pargar et al.
2007), and the thickness of concrete reinforcement cover is
considered to be 50 mm. Therefore, Eq. (6) was solved for

Table 6 Curing factor for different curing conditions.

Curing condition kc,cl* (NPC) kc,cl (SFC) kc,cl (The European Union 2000)

1 day wet curing 1.77 1.54 2.08

3 days wet curing 1.26 1.10 1.50

7 days wet curing** 1.00 1.00 1.00

28 days wet curing** 0.64 0.68 0.79

* kc,cl (curing factor for different curing regimes) = Dc (for correspondence curing)/Dc (7 days wet curing).

** To compare curing factors, 6-D and 27-D curings are assumed equal to 7 and 28 days wet curings, respectively.
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finding time-to-corrosion initiation (t) corresponding to
C(x,t) = 0.1 at x = 50 mm for different samples.
An estimated time-to-corrosion initiation versus curing

time for different mixtures are plotted in Fig. 6. Both plain
and silica fume specimens show that 27 days wet curing
causes tangible increase in time-to-corrosion initiation. It
seems that no difference is observable between the time-to-
corrosion initiation values of the curing times less than
6 days in both silica fume and plain specimens based on
time dependent results from field. It might happen because
of the availability of continuous capillary pores in concrete

specimens with less amount of wet curing (Shamim Khan
et al. 1993; Zhang et al. 1999). Based on Powers et al.
(1959), the approximate time required to produce maturity at
which capillaries become discontinuous is approximately
14 days for concrete with w/c of 0.50. As explained earlier,
microcracks due to drying shrinkage can also cause this
phenomenon.
According to results, it seems that longer wet curing

(27 days) provides high quality skin layer in concrete sur-
face, and accordingly it plays significant role as a barrier to
concrete inner depths in controlling chloride ions penetration
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Fig. 5 Surface chloride content values versus sampling time for different curing regimes in tidal zone: a NPC specimens, b SFC
specimens.

Table 7 Modeling the surface chloride concentration versus exposure time.

Sample Curing k R2

NPC 27-D 7.00E-09 0.95

6-D 4.00E-09 0.79

3-D 4.00E-09 0.83

1-D 4.00E-09 0.95

0-D 4.00E-09 0.99

SFC 27-D 4.00E-09 0.77

6-D 1.00E-09 0.95

3-D 2.00E-09 0.91

1-D 2.00E-09 0.76

0-D 6.00E-09 0.98
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into the concrete specimens. These results are for the
materials, mixtures, environmental conditions, and specifi-
cations used on this study.

4. Conclusion

This study was conducted to investigate the effect of wet
curing duration on chloride penetration in plain (NPC) and
blended cement concretes with 7.5 % silica fume (SFC) and
water-to-cement ratio of 0.5 which were subjected to tidal
exposure condition in Persian Gulf for five years. Based on
the test results, the major conclusions of this study could be
summarized as follows:

• A wet curing extension decreases difference between
initial and long-term diffusion coefficients due to
improvement of concrete cover quality and blocking
the ingress of aggressive substance in initial ages. This
reduction in early age diffusion preserves concrete
against high rate of chloride penetration at early ages.

• As the length of exposure period to marine environment
increased the effects of initial wet curing became less
pronounced. This might be due to the curing effects of
the seawater which compensate for the differences
observed in early age diffusion coefficient due to the
duration of initial wet curing. In long-term ages, a
27 days wet curing is the only curing regime which
preserves its efficiency in reducing diffusion coefficient
in both of NPC and SFC mixtures.

• A power functional relationship is derived between
curing factor (kcuring = Dt/D0, where D0 is the diffusion
coefficient of no-cured concrete, Dt is the diffusion
coefficient of wet cured specimen) and time of wet
curing (tcuring) at early ages.

• The general trend of surface chloride shows its increment
as the time goes on. The SFC specimens have more
surface chloride content in comparison with NPC
specimens in early ages presumably due to the higher
level of chloride binding and sorptivity. But as the time

goes, the rate of surface chloride content increment is
lower in SFC specimens in contrast to NPC specimens.

• Both plain and silica fume specimens show that 27 days
wet curing causes tangible increase in time-to-corrosion
initiation and service life of concrete structures. It seems
that no difference is observable between the time-to-
corrosion initiation values of the curing times less than
6 days in both silica fume and plain specimens based on
time dependent results from field. It might happen
because of the availability of continuous capillary pores
in concrete specimens (w/c of 0.50) with less amount of
wet curing.
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